Beam deviation method as a diagnostic tool for the plasma focus.
Schmidt, H; Rückle, B
1978-04-15
The application of an optical method for density measurements in cylindrical plasmas is described. The angular deviation of a probing light beam sent through a plasma is proportional to the maximum of the density in the plasma column. The deviation does not depend on the plasma dimensions; however, it is influenced to a certain degree by the density profile. The method is successfully applied to the investigation of a dense plasma focus with a time resolution of 2 nsec and a spatial resolution (in axial direction) of 2 mm.
Uranium plasma emission at gas-core reaction conditions
NASA Technical Reports Server (NTRS)
Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.
1976-01-01
The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...
2017-12-27
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
NASA Astrophysics Data System (ADS)
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.
2017-12-01
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
Development of TPF-1 plasma focus for education
NASA Astrophysics Data System (ADS)
Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.
2017-09-01
The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.
Fission and activation of uranium by fusion-plasma neutrons
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.; Mcfarland, D. R.
1978-01-01
Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.
Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing
NASA Astrophysics Data System (ADS)
Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren
2017-03-01
The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.
NASA Astrophysics Data System (ADS)
Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.
The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.
Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R
The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.
About an Extreme Achievable Current in Plasma Focus Installation of Mather Type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulin, V. Ya.; Polukhin, S. N.; Vikhrev, V. V.
A computer simulation and analytical analysis of the discharge process in Plasma Focus has shown that there is an upper limit to the current which can be achieved in Plasma Focus installation of Mather type by only increasing the capacity of the condenser bank. The maximum current achieved for various plasma focus installations of 1 MJ level is discussed. For example, for the PF-1000 (IFPiLM) and 1 MJ Frascati PF, the maximum current is near 2 MA. Thus, the commonly used method of increasing the energy of the PF installation by increasing of the capacity has no merit. Alternative optionsmore » in order to increase the current are discussed.« less
Method and apparatus for reducing coherence of high-power laser beams
Moncur, Norman K.; Mayer, Frederick J.
1978-01-01
Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.
A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jingfeng; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Gao, Ruilin
2016-08-15
This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.
Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport
NASA Astrophysics Data System (ADS)
Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.
2017-10-01
Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.
NASA Astrophysics Data System (ADS)
Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.
2018-05-01
In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.
Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A
2011-08-01
The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Tavassoli, Seyed Hassan
2016-11-01
In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.
Neutron production mechanism in a plasma focus.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Shomo, L. P.; Williams, M. D.; Hermansdorfer, H.
1971-01-01
The neutrons emitted by a plasma focus were analyzed by using a time-of-flight method. Flight paths as large as 80 m were used to obtain better than 10% energy resolution. The energy spectrum of neutrons from d-d reactions in the plasma focus shows a sharp onset with average maximum energies of 2.8 and 3.2 MeV in the radial and the axial directions, respectively. The average half-width of the energy spectrum was 270 keV with a shot-to-shot variation between 150 and 400 keV. Simultaneous measurements in the axial and radial directions showed no appreciable difference in the half-widths and thus indicated randomly oriented ion velocities in the plasma. A converging ion model is described which is found to be in agreement with the measured quantities.
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
ION-STABILIZED ELECTRON INDUCTION ACCELERATOR
Finkelstein, D.
1960-03-22
A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.
NASA Astrophysics Data System (ADS)
Bulanov, Stepan; Bagdasarov, Gennadiy; Bobrova, Nadezhda; Boldarev, Alexey; Olkhovskaya, Olga; Sasorov, Pavel; Gasilov, Vladimir; Barber, Samuel; Gonsalves, Anthony; Schroeder, Carl; van Tilborg, Jeroen; Esarey, Eric; Leemans, Wim; Levato, Tadzio; Margarone, Daniele; Korn, Georg; Kando, Masaki; Bulanov, Sergei
2017-10-01
A novel method for asymmetric focusing of electron beams is proposed. The scheme is based on the active lensing technique, which takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside a capillary discharge are described theoretically and modeled with dissipative MHD simulations to enable analysis of capillaries of oblong rectangle cross-sections implying that large aspect ratio rectangular capillaries can be used to form flat electron bunches. The effect of the capillary cross-section on the electron beam focusing properties were studied using the analytical methods and simulation- derived magnetic field map showing the range of the capillary discharge parameters required for producing the high quality flat electron beams.
1998-03-31
plasma focus discharges. Part of the tests summarized here address methods and means for achieving controlled variations of the current sheath (CS) structure via electrode geometry modifications. CS parameters are monitored with multiple magnetic probes in the case of cylindrical - and open-funnel electrode
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.
2018-05-01
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.
We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presencemore » of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.« less
Studying the Generation Stage of a Plasma Jet in a Plasma Focus Discharge
NASA Astrophysics Data System (ADS)
Polukhin, S. N.; Gurei, A. E.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Kharrasov, A. M.
2017-12-01
A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is 1 mm, its electron density is more than 2 × 1019 cm-3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm-3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3-5 times and almost merges together with the leading edge of the shock wave.
Characterization of Low Pressure Cold Plasma in the Cleaning of Contaminated Surfaces
NASA Technical Reports Server (NTRS)
Lanz, Devin Garrett; Hintze, Paul E.
2016-01-01
The characterization of low pressure cold plasma is a broad topic which would benefit many different applications involving such plasma. The characterization described in this paper focuses on cold plasma used as a medium in cleaning and disinfection applications. Optical Emission Spectroscopy (OES) and Mass Spectrometry (MS) are the two analytical methods used in this paper to characterize the plasma. OES analyzes molecules in the plasma phase by displaying the light emitted by the plasma molecules on a graph of wavelength vs. intensity. OES was most useful in identifying species which may interact with other molecules in the plasma, such as atomic oxygen or hydroxide radicals. Extracting useful data from the MS is done by filtering out the peaks generated by expected molecules and looking for peaks caused by foreign ones leaving the plasma chamber. This paper describes the efforts at setting up and testing these methods in order to accurately and effectively characterize the plasma.
Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J
2017-09-01
We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.
Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications
Joslin, Jessica M.; McCall, James R.; Bzdek, Justin P.; Johnson, Derek C.; Hybertson, Brooks M.
2017-01-01
Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment. PMID:28428835
Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas
NASA Astrophysics Data System (ADS)
Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro
2013-09-01
Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.
Low voltage operation of plasma focus.
Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A
2010-08-01
Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.
Aerosol beam-focus laser-induced plasma spectrometer device
Cheng, Meng-Dawn
2002-01-01
An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.
Design and Construction of a Dense Plasma Focus Device
1976-10-01
This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu
2016-08-15
This paper reports a novel coaxial gridded hollow discharge during operation at low pressure (20 Pa–80 Pa) in an argon atmosphere. A homogeneous hollow discharge was observed under different conditions, and the excitation mechanism and the discharge parameters for the hollow cathode plasma were examined at length. An optical emission spectrometry (OES) method, with a special focus on absolute continuum intensity method, was employed to measure the plasma parameters. The Langmuir probe measurement (LPM) was used to verify the OES results. Both provided electron density values (n{sub e}) in the order of 10{sup 16} m{sup −3} for different plasma settings. Taken together, themore » results show that the OES method is an effective approach to diagnosing the similar plasma, especially when the LPM is hardly operated.« less
Triton burnup in plasma focus plasmas
NASA Astrophysics Data System (ADS)
Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi
1995-04-01
Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3
Meshless method for solving fixed boundary problem of plasma equilibrium
NASA Astrophysics Data System (ADS)
Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi
2015-07-01
This study solves the Grad-Shafranov equation with a fixed plasma boundary by utilizing a meshless method for the first time. Previous studies have utilized a finite element method (FEM) to solve an equilibrium inside the fixed separatrix. In order to avoid difficulties of FEM (such as mesh problem, difficulty of coding, expensive calculation cost), this study focuses on the meshless methods, especially RBF-MFS and KANSA's method to solve the fixed boundary problem. The results showed that CPU time of the meshless methods was ten to one hundred times shorter than that of FEM to obtain the same accuracy.
Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.
Noll, R; Haas, C R; Weikl, B; Herziger, G
1986-03-01
Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.
Plasma separation from magnetic field lines in a magnetic nozzle
NASA Technical Reports Server (NTRS)
Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.
1993-01-01
This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1977-01-01
The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.
Geological and Inorganic Materials.
ERIC Educational Resources Information Center
Jackson, L. L.; And Others
1989-01-01
Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…
CO2 Pulsed Laser Damage Mechanism and Plasma Effects (Focused Beam)
1986-12-01
sensitive detection methods or large amounts of bombardment have to be used. For the energy ranges and materials associated with 14 nuclear fusion (this...F^ Introduction to Plasma Physics and Controlled Fussion , v 1, 2nd edition. Plenum Press, 1984. 20. Naval Postgraduate School Report NPS-61-82-002
Calibration of a high harmonic spectrometer by laser induced plasma emission.
Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M
2009-08-17
We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America
Method and apparatus for charged particle propagation
Hershcovitch, A.
1996-11-26
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.
Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.
Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M
2011-03-01
We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
1985-06-01
Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.
A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-01-01
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-02-23
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.
Spectroscopic investigations of microwave generated plasmas
NASA Technical Reports Server (NTRS)
Hawley, Martin C.; Haraburda, Scott S.; Dinkel, Duane W.
1991-01-01
The study deals with the plasma behavior as applied to spacecraft propulsion from the perspective of obtaining better design and modeling capabilities. The general theory of spectroscopy is reviewed, and existing methods for converting emission-line intensities into such quantities as temperatures and densities are outlined. Attention is focused on the single-atomic-line and two-line radiance ratio methods, atomic Boltzmann plot, and species concentration. Electronic temperatures for a helium plasma are determined as a function of pressure and a gas-flow rate using these methods, and the concentrations of ions and electrons are predicted from the Saha-Eggert equations using the sets of temperatures obtained as a function of the gas-flow rate. It is observed that the atomic Boltzmann method produces more reliable results for the electronic temperature, while the results obtained from the single-line method reflect the electron temperatures accurately.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Harries, W. L.
1978-01-01
A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.
Tomographic diagnostics of nonthermal plasmas
NASA Astrophysics Data System (ADS)
Denisova, Natalia
2009-10-01
In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.
Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Hirose, A.; Xiao, C.
2018-01-01
A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.
Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. K.; Ngoi, S. K.; Yap, S. L.
The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2018-01-01
This paper reports a simulation study on a focused microwave (frequency 9.4 GHz, pulse width 2.5 μs, and peak electric field 1.2 kV/cm) discharge in 200 Pa nitrogen. A one-dimensional (1D) fluid model is based on the wave equation for the microwave field propagating through the gas breakdown plasma, the continuity equations for electron, ion and neutral particle densities, and the energy balance equations for mean electron temperature, and nitrogen vibrational and translational temperatures. These equations are numerically solved in a self-consistent manner with a simplified plasma chemistry set, in which the reaction rates involving electrons are calculated from the electron energy distribution function (EEDF) using a two-term expansion method. The spatial and temporal characteristics of the focused microwave breakdown in nitrogen are demonstrated, which include the amplitude of the microwave electric field, and the densities and temperatures of the plasma components. The temporal evolution of the plasma electron density agrees reasonably well with that measured with a microwave interferometer. The spatial-temporal distributions of metastable states are discussed on the plasma chemistry and the character of mean electron temperature. The spatially integrated N2(C3) density shows similar trends with the measured temporal intensity of optical emission spectroscopy, except for a time delay of 100-300 ns. The quantitative discrepancies are explained in light of limitations of the 1D model with a two-term expansion of EEDF. The theoretical model is found to describe the gas breakdown plasma generated by focused microwave beams at least qualitatively.
Králík, M; Krása, J; Velyhan, A; Scholz, M; Ivanova-Stanik, I M; Bienkowska, B; Miklaszewski, R; Schmidt, H; Řezáč, K; Klír, D; Kravárik, J; Kubeš, P
2010-11-01
The spectra of neutrons outside the plasma focus device PF-1000 with an upper energy limit of ≈1 MJ was measured using a Bonner spheres spectrometer in which the active detector of thermal neutrons was replaced by nine thermoluminescent chips. As an a priori spectrum for the unfolding procedure, the spectrum calculated by means of the Monte Carlo method with a simplified model of the discharge chamber was selected. Differences between unfolded and calculated spectra are discussed with respect to properties of the discharge vessel and the laboratory layout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito
2015-08-31
Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less
Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer.
Sadowski, M J; Czaus, K; Malinowski, K; Skladnik-Sadowska, E; Zebrowski, J
2009-05-01
The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akel, M., E-mail: pscientific2@aec.org.sy; Alsheikh Salo, S.; Ismael, Sh.
2014-07-15
Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in themore » graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.« less
Probing electron acceleration and x-ray emission in laser-plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thaury, C.; Ta Phuoc, K.; Corde, S.
2013-06-15
While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less
An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator
1988-11-01
The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to
Evaluating a vessel for suitability for containing fluid
Barefield, II, James E.; Judge, Elizabeth J.; Le, Loan A.; Lopez, Leon N.; Beveridge, Andrew C.; Chapman, Daniel R.; Taylor, Seth T.
2017-05-30
A method for evaluating a vessel for suitability to contain a fluid includes providing a vessel and forming a polished surface portion of the vessel by removing oxidation and/or contaminants from a portion of the vessel. The method further includes applying a focused laser to the polished surface portion to form plasma on the polished surface portion, and determining whether the vessel is suitable for containing a fluid based on silicon content of the polished surface portion. The silicon content is estimated based on light emitted from the plasma.
NASA Astrophysics Data System (ADS)
Zheng, Erhu; Huang, Yi; Zhang, Haiyang
2017-03-01
As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.
Preis, S; Klauson, D; Gregor, A
2013-01-15
Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death
NASA Astrophysics Data System (ADS)
Shimizu, Nobuyuki
2015-09-01
New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.
Orthobiologics and platelet rich plasma
Dhillon, Mandeep S; Behera, Prateek; Patel, Sandeep; Shetty, Vijay
2014-01-01
Orthobiologics have evolved to the extent that they significantly influence modern orthopedic surgical practice. A better understanding of the role of various growth factors and cells in the process of tendon healing, ligament repair, cartilage regeneration and bone formation has stimulated focused research in many chronic musculoskeletal ailments. Investigators have published results of laboratory as well as clinical studies, using orthobiologics like platelet rich plasma, stem cells, autologous conditioned serum etc., with variable results. However, a clear consensus over the best orthobiologic substance and the method of preparation and usage of these substances is lacking. Much of the confusion is due to the fact that studies ranging from RCTs to case reports present variable results, and the interpretations are wide-ranging. We have reviewed the available orthobiologics related data with a focus on platelet rich plasma in orthopedic conditions. PMID:24600055
NASA Astrophysics Data System (ADS)
Andola, Sanjay; Niranjan, Ram; Shaikh, A. M.; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.
2013-02-01
Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2±0.3) ×109 neutrons per pulse produced by D-D fusion reaction with a pulse width of 50±5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.
Current Interruption and Particle Beam Generation by a Plasma Focus.
1982-11-30
Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions...results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a...strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device. (Author)
Anisotropy of the neutron fluence from a plasma focus.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Shomo, L. P.; Kim, K. H.
1972-01-01
The fluence of neutrons from a plasma focus was measured by gamma spectrometry of an activated silver target. This method results in a significant increase in accuracy over the beta-counting method. Multiple detectors were used in order to measure the anisotropy of the fluence of neutrons. The fluence was found to be concentrated in a cone with a half-angle of 30 deg about the axis, and to drop off rapidly outside of this cone; the anisotropy was found to depend upon the total yield of neutrons. This dependence was strongest on the axis. Neither the axial concentration of the fluence of neutrons nor its dependence on the total yield of neutrons is explained by any of the currently proposed models. Some other explanations, including the possibility of an axially distributed source, are considered.
Parallel heat transport in reversed shear magnetic field configurations
NASA Astrophysics Data System (ADS)
Blazevski, D.; Del-Castillo-Negrete, D.
2012-03-01
Transport in magnetized plasmas is a key problem in controlled fusion, space plasmas, and astrophysics. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos; and (iii) Nonlocal parallel transport. We have recently developed a Lagrangian Green's function (LG) method to solve the local and non-local parallel (χ/χ->∞) transport equation applicable to integrable and chaotic magnetic fields. footnotetext D. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, APS Invited paper, submitted (2011). The proposed method overcomes many of the difficulties faced by standard finite different methods related to the three issues mentioned above. Here we apply the LG method to study transport in reversed shear configurations. We focus on the following problems: (i) separatrix reconnection of magnetic islands and transport; (ii) robustness of shearless, q'=0, transport barriers; (iii) leaky barriers and shearless Cantori.
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro
2016-03-01
Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.
NASA Astrophysics Data System (ADS)
Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk
2017-03-01
Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milanese, Maria Magdalena; CONICET - 7000 Tandil
2006-12-04
This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less
Method and apparatus for charged particle propagation
Hershcovitch, Ady
1996-11-26
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.
Results of ultra compact plasma focus operating in repetitive burst-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, R.; Shyam, A.; Verma, R.
2014-07-01
The results of a miniature plasma focus are being presented in this paper which is operated with energy less than or equal to 150 Joules. The miniature plasma focus is driven by a small capacitor bank and the peak current delivered in the focus is 75kA. The deuterium gas is filled with a pressure range of 5-7 mbar inside the plasma focus chamber. The quartz glass is used for generating initial surface breakdown at 4-5 kV discharge which is a typical value for low-voltage plasma focus discharges. The repetitive operation of the device is achieved by a combination of amore » simple and high power (5 kW) power supply with the synchronized triggering of the capacitor bank at the time of isolation between supply and the capacitor bank. As the plasma focus chamber volume is very low, in order to achieve reduced after-shot contamination effects, the gas pressure inside the plasma focus is maintained by continuous pumping which is disallowed at the time of shorts rather having a sealed type plasma focus assembly. The results of such scheme are also discussed in the paper. The diameter of cathode is 25mm and anode diameter is 8-12 mm and both of them are made of stainless steel. The length of anode and gas pressure is adjusted in such a way that the pinching occurs at the time of occurrence of the peak of current. It enhances the neutron emission from the device. The time-of-flight diagnostic is used to distinguish neutron and X-ray emission from the plasma focus. The device can serve the purpose of being a portable and compact repetitive neutron source for various applications as the flux of the radiation is comparable with the bigger devices of same type. The modeling results of plasma focus are also compared with experimental results to give a broader picture of the device. (author)« less
X-Ray Production in Defense Plasma Focus.
1980-03-01
This program investigated the operation of plasma focus (PF) devices at high voltage. Discharge formation, energy transfer, and X-ray emission were...produced electron beam phenomena: The model predicted that a neon plasma would radiate 1 percent of the stored energy. The construction of a 120-kV (108 kJ) plasma focus system is described. (Author)
Operational Characteristics of a High Voltage Dense Plasma Focus.
1985-11-01
A high voltage dense plasma focus powered by a single-stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120...kV, energy--20 kJ, short-circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The...about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and
Radiation Production by Charged Particle Beams Ejected from a Plasma Focus.
1981-02-01
The scope of this investigation concerns the development of a pulsed radiation source using the charged particle beam ejected from a plasma focus device...satellite components for radiation hardening and survivability. The plasma focus is operated in a modified geometry such that electron bursts which...a radiation facility. The plasma focus , identified as the Mark IV, is nominally rated at 34 kJ with a capacitance of 168 micro F at 20 kV. The
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
NASA Astrophysics Data System (ADS)
Langowski, Bryan Alfred
A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation in vivo and ex vivo. As the physical and chemical cues presented by micropatterned substrates control resulting cellular behavior, characterization of these cues via surface-sensitive analytical techniques is essential in developing cell scaffolds that mimic complex in vivo physicochemical environments. The initial focus of this thesis is the chemical and physical characterization of plasma-treated, microcontact-printed (muCP) polymeric substrates used to direct nerve cell behavior. Unmodified and oxygen plasma-treated poly(methyl methacrylate) (PMMA) substrates were analyzed by surface sensitive techniques to monitor plasma-induced chemical and physical modifications. Additionally, protein-micropattern homogeneity and size were microscopically evaluated. Lastly, poly(dimethylsiloxane) (PDMS) stamps and contaminated PMMA substrates were characterized by spectroscopic and microscopic methods to identify a contamination source during microcontact printing. The final focus of this thesis is the development of microscale plasma-initiated patterning (muPIP) as a versatile, reproducible micropatterning method. Using muPIP, polymeric substrates were micropatterned with several biologically relevant inks. Polymeric substrates were characterized following muPIP by surface-sensitive techniques to identify the technique's underlying physical and chemical bases. In addition, neural stem cell response to muPIP-generated laminin micropatterns was microscopically and biologically evaluated. Finally, enhanced versatility of muPIP in generating microscale poly-L-lysine gradients was demonstrated.
Apparatus and process for deposition of hard carbon films
Nyaiesh, Ali R.; Garwin, Edward L.
1989-01-01
A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.
Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources
Kublak, G.D.; Richardson, M.C.
1996-11-19
Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.
Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources
Kublak, Glenn D.; Richardson, Martin C. (CREOL
1996-01-01
Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.
Apparatus and process for deposition of hard carbon films
Nyaiesh, Ali R.; Garwin, Edward L.
1989-01-03
A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.
Production of fissioning uranium plasma to approximate gas-core reactor conditions
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.
1974-01-01
The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José
2014-12-15
The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{supmore » 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.« less
Preliminary Studies of Ions Emission in a Small Plasma Focus Device of Hundreds of Joules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Jose; Pavez, Cristian; Soto, Leopoldo
2009-01-21
Ion beam emission in plasma focus (PF) discharges was originally investigated to explain the strong forward anisotropy observed in the neutron. Several properties of PF emitted deuteron beams have been measured, including their angular distributions and energy spectra in devices operating with energies from 1 kJ to 1 MJ. At present there is a growing interest in the development of very small PF devices operating under 1 kJ. As part of the characterization program of the very low energy PF devices (<1 kJ) developed at the Chilean Nuclear Energy Commission, the charges particle emission in hydrogen (H{sub 2}) and mixturemore » (H{sub 2}+%Ar) are being studied. In order to obtain an estimation of the ions energy spectrum and ionization grade, by using time of flight method, a graphite collector system operating in the bias ion collector mode was constructed and it is being used. Preliminary results of the ion beams measurements in different experimental conditions, at a plasma focus device of 400 joules (PF-400 J) are presented.« less
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1981-11-30
particle beams generated in a plasma focus with the current flowing in the circuit just before the radial collapse of the pinch, IMB. The results show...the implications for the application of the plasma focus as an opening switch are discussed. (Author)
1984-03-01
POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related
NASA Astrophysics Data System (ADS)
Shamsian, Neda; Bidabadi, Babak Shirani; Pirjamadi, Hosein
2017-07-01
An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.
Ideal form of optical plasma lenses
NASA Astrophysics Data System (ADS)
Gordon, D. F.; Stamm, A. B.; Hafizi, B.; Johnson, L. A.; Kaganovich, D.; Hubbard, R. F.; Richardson, A. S.; Zhigunov, D.
2018-06-01
The canonical form of an optical plasma lens is a parabolic density channel. This form suffers from spherical aberrations, among others. Spherical aberration is partially corrected by adding a quartic term to the radial density profile. Ideal forms which lead to perfect focusing or imaging are obtained. The fields at the focus of a strong lens are computed with high accuracy and efficiency using a combination of eikonal and full Maxwell descriptions of the radiation propagation. The calculations are performed using a new computer propagation code, SeaRay, which is designed to transition between various solution methods as the beam propagates through different spatial regions. The calculations produce the full Maxwell vector fields in the focal region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andola, Sanjay; Niranjan, Ram; Rout, R. K.
Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.
A plasma microlens for ultrashort high power lasers
NASA Astrophysics Data System (ADS)
Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.
2009-07-01
We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.
NASA Astrophysics Data System (ADS)
Patil, S. D.; Takale, M. V.
2014-06-01
Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.
Maas, Christoph; Ringwald, Christine; Weber, Karin; Engel, Corinna; Poets, Christian F; Binder, Gerhard; Bassler, Dirk
2014-01-01
(1) To investigate the relationship of salivary and plasma cortisol levels in preterm infants with a focus on the usability of salivary cortisol in diagnostic work-up of infants at risk of adrenal insufficiency. (2) To perform a systematic review addressing this question. Clinical study: We conducted a prospective observational single-center study in preterm infants. We analyzed plasma and saliva cortisol concentrations by enzyme immunoassay. Correlation analysis was used to determine the relation between salivary and plasma cortisol levels and the agreement of the measurement methods was analyzed according to Bland-Altman. Systematic review: A systematic literature search (PubMed and Embase) on the relationship of salivary and plasma cortisol levels in neonates was performed in November 2012. Clinical study: We enrolled 58 preterm infants (median (interquartile range) gestational age at birth was 31.4 (28.1-32.7) weeks, birth weight 1,340 (974-1,745) g, respectively). Correlation analyses revealed a relationship of plasma cortisol and salivary cortisol levels. Rank correlation coefficient was 0.6. Estimating plasma cortisol levels based on measured salivary cortisol levels showed poor agreement of the two methods for determining plasma cortisol levels (direct and via salivary cortisol). Sensitivity and specificity of salivary cortisol for the detection of adrenal insufficiency were 0.66 and 0.62, respectively. Systematic review: Six studies in preterm infants and term neonates depicting the correlation of salivary and plasma cortisol were identified with a range of saliva-plasma correlation coefficients from 0.44 to 0.83. Substitution of plasma cortisol by salivary cortisol determination cannot be recommended in preterm infants because of unsatisfactory agreement between methods.
Electromagnetic Effects in the Near Field Plume Exhaust of a Micro-Pulsed Plasma Thruster
2002-06-12
plasma focus is developed at a few millimeters from the thruster exit plane at the axis. This plasma focus exists during the entire pulse, but the plasma density in the focus decreases from about 2x10(exp 22)/cu m at the beginning of the pulse down to 0.3x10(exp 22)/cu m at 5 microsec.
The focusing effect in backward Raman amplification in plasma
NASA Astrophysics Data System (ADS)
Li, Zhaoli; Peng, Hao; Zuo, Yanlei; Su, Jingxin; Yang, Suhui
2018-04-01
In this paper, the focusing effect on backward Raman amplification in plasma is investigated. A fluid model, used to simulate the backward Raman amplification and including the relativistic, ponderomotive, and thermal self-focusing and the mutual-focusing effect simultaneously, is proposed and investigated. The focusing effect is shown to severely distort the profile of the seed when the seed intensity was as high as 10 17 W/cm2. Reducing the plasma density can relax the focusing effect, but at the cost of decreasing the amplification efficiency. Changing the profile of the seed has a limited effect on mitigating the focusing effect. A Gaussian profile of the pump and a defocusing shape of the plasma density seem to be an effective way to mitigate the focusing effect without decreasing the amplification efficiency.
Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Floyd, Bertram M.
2017-01-01
We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.
Thermal barrier coating life-prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J.; Liu, A.
1986-01-01
The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.
Note: Repetitive operation of the capacitor bank of the low-voltage miniature plasma focus at 50 Hz.
Shukla, Rohit; Shyam, Anurag
2013-10-01
We have already reported the low-voltage operation of a plasma focus describing the operation of plasma focus at 4.2 kV which proposes possibility of making a repetitive system using compact driving source. Another recent article describes that the same capacitor-bank can drive the plasma focus for a measured ~5 × 10(4) neutrons per shot at 5 kV and 59 kA current. In the present work, repetitive operation of the capacitor-bank of plasma focus is done and that too is being reported at a very high repetition rate of 50 Hz using very simple scheme of charging and triggering the bank. The bank is continuously discharged to burst duration of 20 s in this configuration admeasuring a thousand shots.
NASA Astrophysics Data System (ADS)
Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru
2017-10-01
Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.
NASA Astrophysics Data System (ADS)
Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru
2011-10-01
Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.
NASA Astrophysics Data System (ADS)
Huismann, Tyler D.
Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.
Ti film deposition process of a plasma focus: Study by an experimental design
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.
2017-10-01
The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2014-12-01
Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.
RF plasma modeling of the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.
2013-02-01
This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.
X-ray Emission from the Interaction of a Macroscopic Particle with a Dense Plasma Focus.
1976-10-01
Recently the interest in dense plasma focus has greatly increased because of the possibility of developing the device into an intense, pulsed...using a macroscopic particle to interact with a plasma focus . A theoretical study was carried out to predict the relative amount of X-ray increase
2005-10-06
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD
Lin, Zhili; Chen, Xudong; Ding, Panfeng; Qiu, Weibin; Pu, Jixiong
2017-04-03
The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.
Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons
NASA Astrophysics Data System (ADS)
Gao, D.-N.; Zhang, J.; Yang, Y.; Duan, W.-S.
2017-08-01
Supersoliton (SS) can be mainly featured in two ways, namely, by focusing on subsidiary maxima on its electric field or by meeting the requirement that the appropriate Sagdeev pseudopotential (SP) has three local extrema between the equilibrium conditions and its amplitude. In this paper, by using the SP method, double layers and ion-acoustic SSs are studied in a plasma with Maxwellian cold electrons, nonthermal hot electrons, and fluid ions. The existence of the SS regime in parameter space is obtained in a methodical fashion. The existence domains for positive solitary waves are also presented. It is found that there is no SSs at the acoustic speed.
NASA Astrophysics Data System (ADS)
Saud Oraibi, Nissan
2018-05-01
A standoff laser Induced Break down Spectroscopy (L.I.B.S) technique has been used to characterization the organic material such as NH3(NO)4, a Q-switched Nd:YAG laser (1064 nm wavelength, 9 ns pulse width and 1 Hz repetition rate, 300 mJ is focused to the targets to generate plasma. HR 4000 CG-UV-NIR spectrum analyzer was used to collect the generated plasma emissions, specific signature of each targets material can be obtained by analysis the plasma emission spectrum Peak ratio analysis technique is used for the identification of energetic materials.
NASA Astrophysics Data System (ADS)
Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro
2015-09-01
Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.
Plasma lens experiments at the Final Focus Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, B.; Chattopadhyay, S.; Chen, P.
1993-04-01
We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less
NASA Astrophysics Data System (ADS)
Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.
2018-01-01
Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.
NASA Astrophysics Data System (ADS)
Kim, Yong W.
Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS
NASA Astrophysics Data System (ADS)
Cai, Xiaoming; Li, Ruibin
2016-11-01
Blood plasma is the most popularly used sample matrix for metabolite profiling studies, which aim to achieve global metabolite profiling and biomarker discovery. However, most of the current studies on plasma metabolite profiling focused on either the polar metabolites or lipids. In this study, a comprehensive analysis approach based on HILIC-FTMS was developed to concurrently examine polar metabolites and lipids. The HILIC-FTMS method was developed using mixed standards of polar metabolites and lipids, the separation efficiency of which is better in HILIC mode than in C5 and C18 reversed phase (RP) chromatography. This method exhibits good reproducibility in retention times (CVs < 3.43%) and high mass accuracy (<3.5 ppm). In addition, we found MeOH/ACN/Acetone (1:1:1, v/v/v) as extraction cocktail could achieve desirable gathering of demanded extracts from plasma samples. We further integrated the MeOH/ACN/Acetone extraction with the HILIC-FTMS method for metabolite profiling and smoking-related biomarker discovery in human plasma samples. Heavy smokers could be successfully distinguished from non smokers by univariate and multivariate statistical analysis of the profiling data, and 62 biomarkers for cigarette smoke were found. These results indicate that our concurrent analysis approach could be potentially used for clinical biomarker discovery, metabolite-based diagnosis, etc.
Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles
2017-07-24
Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.
NASA Astrophysics Data System (ADS)
Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.
2018-01-01
A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.
Investigation of Plasma Focus in Coaxial Accelerator with Pre-Ionization of Gas,
appears that when the accelerating current beyond the end of the central electrodes has sufficiently high levels a plasma focus is formed which is...obtained from an investigation of the main properties of the plasma focus in a system with a pre-ionized gas, achieved by means of an inductive electrical field.
Holographic investigation of residual deformations induced by a pulsed ion implanter.
Kaufmann, G H; Feugeas, J N; Marino, B; Galizzi, G E
1991-01-01
A new use of holographic interferometry to investigate the residual deformations induced in nitrogen implanted specimens by a plasma focus device is reported. The method is simple and nondestructive. Experimental results obtained for AISI 304 stainless steel specimens are presented.
Weber, Daniela; Davies, Michael J.; Grune, Tilman
2015-01-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921
Weber, Daniela; Davies, Michael J; Grune, Tilman
2015-08-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.
Assessment of image quality in x-ray radiography imaging using a small plasma focus device
NASA Astrophysics Data System (ADS)
Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.
2014-08-01
This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.
Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.
2015-01-01
The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatil-phy@rediffmail.com; Takale, M. V.
2014-06-15
Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.
Supersonic, subsonic and stationary filaments in the plasma focus
NASA Astrophysics Data System (ADS)
Nikulin, V. Ya; Startsev, S. A.; Tsybenko, S. P.
2017-10-01
Filaments in the plasma focus were investigated using a model of plasma with the London current. These structures involve a forward current that flows along the surface of a tangential discontinuity and reverse induction currents in the surrounding plasma, including those that flow over the surface of discontinuity, where the magnetic field reverses its direction. Supersonic filaments demonstrated the capture of plasma by the London current, and in subsonic and stationary filaments, the London current expelled the plasma.
Focused electron and ion beam systems
Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan
2004-07-27
An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and
NASA Astrophysics Data System (ADS)
Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao
2018-02-01
The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.
Thermal barrier coating life-prediction model development. Annual report no. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strangman, T. E.; Neumann, J.; Liu, A.
1986-10-01
The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimenmore » procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.« less
Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector.
Zinellu, Angelo; Caria, Marcello A; Tavera, Claudio; Sotgia, Salvatore; Chessa, Roberto; Deiana, Luca; Carru, Ciriaco
2005-07-15
Traditional clinical assays for nonprotein nitrogen compounds, such as creatine and creatinine, have focused on the use of enzymes or chemical reactions that allow measurement of each analyte separately. Most of these assays are mainly directed to urine quantification, so that their applicability on plasma samples is frequently hard to perform. This work describes a simple free zone capillary electrophoresis method for the simultaneous measurement of creatinine and creatine in human plasma. The effect of analytical parameters such as concentration and pH of Tris-phosphate running buffer and cartridge temperature on resolution, migration times, peak areas, and efficiency was investigated. Good separation was achieved using a 60.2-cm x 75-microm uncoated silica capillary, 75 mmol/L Tris-phosphate buffer, pH 2.25, at 15 degrees C, in less than 8 min. We compared the present method to a validated capillary electrophoresis assay, by measuring plasma creatinine in 120 normal subjects. The obtained data were compared by the Passing-Bablok regression and the Bland-Altman test. Moreover the performance of the developed method was assessed by measuring creatine and creatinine in 16 volunteers prior to and after a moderate physical exercise.
NASA Astrophysics Data System (ADS)
Farmanfarmaei, B.; Yousefi, H. R.; Salem, M. K.; Sari, A. H.
2018-04-01
The results of an experimental study of pre-ionization and heavy gas introduced into driven gas in a plasma focus device are reported. To achieve this purpose, we made use of two methods: first, the pre-ionization method by applying the shunt resistor and second, the admixture of heavy ions. We applied the different shunt resistors and found the optimum amount to be 200 MΩ at an optimum pressure of 0.5 Torr. Ion yield that was measured by array of Faraday cups and the energy of fast ions that was calculated by using the time-of-flight method were raised up to 22% and 45%, and the impurity caused by anode's erosion was reduced approximately by 67% in comparison to when there was no pre-ionization. Also, we have used the admixture of 5% argon ions with nitrogen (working gas) to improve the ion yield up to 45% in comparison with pure nitrogen. Finally, for the first time, we have utilized the combination of these methods together and have, consequently, reached the maximum ion yield and fusion yield. With this new method, ion yield raised up to 70% greater than that of the previous condition, i.e., without pre-ionization and heavy ion admixture.
Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma
NASA Astrophysics Data System (ADS)
Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan
2018-01-01
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164
NASA Astrophysics Data System (ADS)
Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan
2017-07-01
This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.
Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch
1993-11-10
plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-06-15
Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].
Electrondriven processes in polyatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKoy, Vincent
2017-03-20
This project developed and applied scalable computational methods to obtain information about low-energy electron collisions with larger polyatomic molecules. Such collisions are important in modeling radiation damage to living systems, in spark ignition and combustion, and in plasma processing of materials. The focus of the project was to develop efficient methods that could be used to obtain both fundamental scientific insights and data of practical value to applications.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1975-01-01
The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.
Relativistic laser channeling in plasmas for fast ignition
NASA Astrophysics Data System (ADS)
Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.
2007-12-01
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona
2012-10-01
To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.
NASA Astrophysics Data System (ADS)
Klein, Kristopher; Kasper, Justin; Korreck, Kelly; Alterman, Benjamin
2017-04-01
The role of free-energy driven instabilities in governing heating and acceleration processes in the heliosphere has been studied for over half a century, with significant recent advancements enabled by the statistical analysis of decades worth of observations from missions such as WIND. Typical studies focus on marginal stability boundaries in a reduced parameter space, such as the canonical plasma beta versus temperature anisotropy plane, due to a single source of free energy. We present a more general method of determining stability, accounting for all possible sources of free energy in the constituent plasma velocity distributions. Through this novel implementation, we can efficiently determine if the plasma is linearly unstable, and if so, how many normal modes are growing. Such identification will enabling us to better pinpoint the dominant heating or acceleration processes in solar wind plasma. The theory behind this approach is reviewed, followed by a discussion of our methods for a robust numerical implementation, and an initial application to portions of the WIND data set. Further application of this method to velocity distribution measurements from current missions, including WIND, upcoming missions, including Solar Probe Plus and Solar Orbiter, and missions currently in preliminary phases, such as ESA's THOR and NASA's IMAP, will help elucidate how instabilities shape the evolution of the heliosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less
Nanostructure iron-silicon thin film deposition using plasma focus device
NASA Astrophysics Data System (ADS)
Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.
2013-03-01
The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample
Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime
NASA Astrophysics Data System (ADS)
Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.
2018-02-01
Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.
System for the production of plasma
Bakken, George S.
1978-01-01
The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.
Electrostatic plasma lens for focusing negatively charged particle beams.
Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M
2012-02-01
We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.
1979-11-01
plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity
Investigation of Plasma Facing Components in Plasma Focus Operation
NASA Astrophysics Data System (ADS)
Roshan, M. V.; Babazadeh, A. R.; Kiai, S. M. Sadat; Habibi, H.; Mamarzadeh, M.
2007-09-01
Both aspects of the plasma-wall interactions, counter effect of plasma and materials, have been considered in our experiments. The AEOI plasma focus, Dena, has Filippov-type electrodes. The experimental results verify that neutron production increases using tungsten as an anode insert material, compared to the copper one. The experiments show decrement of the hardness of Aluminum targets outward the sides, from 135 to 78 in Vickers scale. The sputtering yield is about 0.0065 for deuteron energy of 50 keV.
Dynamics of a Focussed Discharge.
This report describes theoretical and experimental investigations on the dynamics of a dense plasma focus . The characteristics of the focus in terms...also described. The results of a preliminary theoretical investigation of the heating of a dense plasma focus by a laser is given.
Optical Pumping of High Power Lasers with an Array of Plasma Pinches.
1986-04-01
Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF
Opening Switch Research on a Dense Plasma Focus.
Several experiments were performed to enhance power coupling to the load by placing the load electrode opposite the muzzle end of the Dense Plasma ... Focus plasma gun. The impaler concept, whereby the current sheath is run into a knife edge insulator, was tested in two configurations. However, the
Counter-facing plasma guns for efficient extreme ultra-violet plasma light source
NASA Astrophysics Data System (ADS)
Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko
2013-11-01
A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-11-15
The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front inmore » cold quantum plasmas.« less
Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio
2006-12-04
It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less
Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. K.; Yap, S. L.; Wong, C. S.
Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction.more » The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.« less
NASA Astrophysics Data System (ADS)
Fazakas, É.; Heczel, A.; Molnár, D.; Varga, B.; Zadorozhnyy, V.; Vida, Á.
2018-03-01
The present study focuses on the corrosion behavior of a single-phase FCC high entropy alloy (VCrNiCoFeCu) casted by two different methods: induction melting and spark plasma sintering. The corrosion resistance has been evaluated using immersion tests in 3.5% NaCl solution, the potentiodynamic polarization measurements and the results are compared how is dependent the corrosion rate as a function of the production methods. Our results show that induction melted sample is stable in salty environment. On the other hand, based on the changes of polarization curves, there must be an evolution of oxide films on the SPSed sample until reaching the stable oxide layer.
Intense Excitation Source of Blue-Green Laser.
1985-10-15
plasma focus (DPF) can produce intense uv photons (200-300nm) which match the absorption spectra of both near uv and blue green dye lasers (300-400nm...existing blue green dye laser. On the other hand the dense- plasma focus (DPF) with new optical coupling has been designed and constructed. For the...optimization of the DPF device as the uv pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as
A Plasma Ultraviolet Source for Short Wavelength Lasers.
1986-03-10
A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than
Research on Short Duration Pulsed Radiation Sources.
correlate soft X-ray spots with the hard radiation in a 1 kJ plasma focus showed that field structures leading to the appearance of soft X-ray spots...are always present in this plasma focus . These field structures represent m = 0 plasma instabilities and do have a direct influence upon the observed neutron emission. (Author)
Plasma focus sources: Supplement to the Neutron Resonance Radiography Workshop proceedings
NASA Astrophysics Data System (ADS)
Nardi, Vittorio; Brzosko, Jan
1989-01-01
Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, Y (sub n), and the rate of neutron emission, Y (sub n), of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W (sub 0). Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y (sub n). The FDE-induced redistribution of the plasma current increases Y (sub n) by a factor approximate to or greater than 5 to 10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W (sub 0) = 6 kJ, and voltage, V (sub 0) = 16.5 kV provides Y (sub n) congruent to 4 x 10 to the 9th D-D neutrons/shot (pure D2 filling) and Y (sub n) = 4 x 10 to the 11th D-T neutrons/shot (filling is 50 pct deuterium and 50 pct tritium). The FDE-induced increase of Y (sub n) for fixed values of (W sub 0, V sub 0), the observed scaling law Y (sub n) proportional to W (sub 0) squared for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (10 to the 14th n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luong, Elise
1999-05-10
This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-tracemore » concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C + with 12C 1H + comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.« less
Neutron angular distribution in a plasma focus obtained using nuclear track detectors.
Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G
2002-01-01
The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.
NASA Astrophysics Data System (ADS)
Khan, M. Z.; Yap, S. L.; Wong, C. S.
2014-01-01
Radiation emission in a 2.2 kJ Mather-type plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. At optimum condition, radiation emission from the system is found to be strongly influenced in hollow anode and filling gas pressure. Maximum X-ray yield in 4π sr has been obtained in case of hollow anode in argon gas medium due to interaction of electron beam. Results indicate that an appropriate design of anode can enhance radiation emission by more intense interaction of expected electron beam with hollow anode. The outcome is helpful to design a plasma focus with enhanced X-ray generation with improved shot-to-shot reproducibility in plasma focus device.
Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser
NASA Astrophysics Data System (ADS)
Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.
2017-01-01
Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.
THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qing; Xu, Jin; Zhang, Wenchao
The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less
Tools for phospho- and glycoproteomics of plasma membranes.
Wiśniewski, Jacek R
2011-07-01
Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.
NASA Astrophysics Data System (ADS)
Bashutin, O. A.; Savelov, A. S.; Sidorov, P. P.
2017-12-01
Mechanical and thermal impact of the plasma focus discharge on structural elements of diagnostic windows of the PFM-72m discharge installation are calculated. The absence of critical impact at early discharge stages and during the first 300 ns after the "plasma focus" formation is shown. The possibility of shock impact on the surface of diagnostic windows at later times, which may result in their substantial deformation and destruction, is demonstrated.
Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams
1987-07-30
The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines
Relativistically strong electromagnetic radiation in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.
Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less
Experimental validation of tunable features in laser-induced plasma resonators
NASA Astrophysics Data System (ADS)
Colón Quiñones, Roberto A.; Cappelli, Mark A.
2017-08-01
Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.
Plasma X-Ray Sources for Lithography
1980-05-12
in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.
Environmentally benign semiconductor processing for dielectric etch
NASA Astrophysics Data System (ADS)
Liao, Marci Yi-Ting
Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi-k dielectric material, ZrO2, was studied. A novel cross-contamination sampling technique was developed, along with a mass transfer model.
Experimental Results of OH Regime Investigation in Globus-M Spherical Torus
NASA Astrophysics Data System (ADS)
Golant, Victor; Gusev, Vasily; Levin, Roman; Petrov, Yuriy; Sakharov, Nikolay
2001-10-01
Plasma parameters were measured in novel spherical torus Globus-M in highly shaped plasmas with aspect ratio, A > 1.5, elongation, k < 1.9, triangularity < 0.5. Plasma column was created by direct induction method with the currents up to Ip 0.3 MA in the magnetic field, Bt - 0.08 - 0.5 T. In Globus-M spherical torus plasma column is closely fitted into the vacuum vessel and wall conditioning technology described in [1] was used to achieve good plasma performance. Plasma experiments were focused around achievement of ultimate OH regimes allowed by power supplies. The operational limits of the device were investigated. In the regime with extreme low q(cy1) < 1 and high normalized current > 4, the plasma current of almost 100kA was sustained transiently in low magnetic field 800 Gs. The first results on stability analysis with numerical code are presented. The runaway electrons behavior was studied in spherical tokamak conditions. Influence of plasma current and density ramp-up speeds, MHD events on plasma performance and stability was demonstrated. Magnetic reconstruction was performed with EFIT version adopted for PC simulations. Plans for auxiliary heating and current drive are discussed. 1. V.K. Gusev, …, V.E. Golant, et al., Nucl. Fusion 41, No 7, (2001), to be published
Acceleration and focusing of plasma flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griswold, Martin Elias
The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, producemore » plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel approach to reducing plume divergence by using a PL located in the plume of the thruster to focus ions after they were ionized and accelerated. Finally we further improve thruster operation by suppressing a prominent low frequency oscillation in the thruster known as the rotating spoke. The suppression leads to decreased electron transport and more control over the operating conditions in the thruster.« less
NASA Astrophysics Data System (ADS)
Wang, Ying; Chen, Anmin; Wang, Qiuyun; Sui, Laizhi; Ke, Da; Cao, Sheng; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing
2018-03-01
In this study, the influence of distance between the focusing lens and target surface on the plasma temperature of copper induced by a Nd:YAG laser was investigated in the atmosphere. The plasma temperature was calculated by using the Cu (I) lines (510.55 nm, 515.32 nm, and 521.82 nm). The Cu (I) lines were recorded under different lens-to-sample distances and laser pulse energies (15.8 mJ, 27.0 mJ, 43.4 mJ, 59.2 mJ, and 76.8 mJ). The results indicated that the plasma temperature depended strongly on the distance between the focusing lens and target surface. With the increase in the distance, the plasma temperature firstly rose, and then dropped. This could be attributed to the interaction between the tailing of the nanosecond laser pulse and the front portion of the plasma plume, the plasma shielding effect, and the expanding of the plasma. In addition, there was an interesting phenomenon that the plasma temperature and the emission intensity were not completely consistent with the change of the lens-to-sample distance. It is hoped that our research will provide a deeper insight into the underlying physical processes.
NASA Astrophysics Data System (ADS)
Miremad, Seyed Milad; Shirani Bidabadi, Babak
2018-04-01
The effect of the anode's insert material of a plasma focus device on the properties of X-ray emission zone was studied. Inserts were fabricated out of six different materials including aluminum, copper, zinc, tin, tungsten, and lead to cover a wide range of atomic numbers. For each anode's insert material at different gas pressures and different voltages, the shape of X-ray emission zone was recorded by three pinhole cameras, which were installed on sidewall and roof of the chamber of plasma focus device. The results indicated that by changing the gas pressure and the charge voltage of capacitor, the X-ray source of plasma focus emerges with different forms as a concentrated column or conical shape with sharp or cloudy edges. These structures are in the form of a combination of plasma emission and anode-tip emission with different intensities. These observations indicate that the material of the anode-tip especially affects the structure of X-ray emission zone.
A system for a multiframing interferometry and its application to a plasma focus experiment.
Hirano, K; Shimoda, K; Emori, S
1979-10-01
A four-framing Mach-Zehnder interferometer system which has variable intervals from frame to frame is developed. TEA N(2) lasers that are operated with atmospheric-pressure N(2) gas are employed as light sources. Applicability of the system is demonstrated for a rapidly changing plasma in the plasma focus discharge.
1992-02-01
Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.
Correcting magnetic probe perturbations on current density measurements of current carrying plasmas.
Knoblauch, P; Raspa, V; Di Lorenzo, F; Lazarte, A; Clausse, A; Moreno, C
2010-09-01
A method to infer the current density distribution in the current sheath of a plasma focus discharge from a magnetic probe is formulated and then applied to experimental data obtained in a 1.1 kJ device. Distortions on the magnetic probe signal caused by current redistribution and by a time-dependent total discharge current are considered simultaneously, leading to an integral equation for the current density. Two distinct, easy to implement, numerical procedures are given to solve such equation. Experimental results show the coexistence of at least two maxima in the current density structure of a nitrogen sheath.
Opening Switch Research on a Plasma Focus VI.
1988-02-26
Sausage Instability in the Plasma Focus In this section the classical Kruskal- Schwarzschild 3 theory for the sausage mode is applied to the pinch phase...on 1) the shape of the pinch, 2) axial flow of plasma, and 3) self-generated magnetic fields are also presented. The Kruskal- Schwarzschild Theory The...classical mhd theory for the m=O mode in a plasma supported by a magnetic field against gravity; this is the well-known Kruskal- Schwarzschild
Plasma membrane changes during the liquid storage of boar spermatozoa: a comparison of methods.
Gaczarzewicz, Dariusz; Piasecka, Małgorzata; Udała, Jan; Błaszczyk, Barbara; Stankiewicz, Tomasz; Laszczyńska, Maria
2010-03-01
Studies were performed on boar semen routinely used at the local artificial insemination (AI) centre. The semen was stored in a Safe Cell Plus commercial extender at 17 degrees C for nine days. The aim of our research was focused on changes in sperm plasma membrane integrity. The integrity of the sperm plasma membrane and acrosome as well as sperm motility decreased after dilution and during storage of the semen. The highest percentage of live sperm was identified by the eosin-nigrosin method, a lower percentage by the SYBR-14/PI test, and the lowest percentage of live cells was discovered by the hypoosmotic swelling (HOS) test (P < 0.01). There were significant differences between the results of staining methods and sperm motility (P < 0.01). No significant differences were found between the HOS test results and sperm motility. The plasma membrane integrity parameters positively correlated (P < 0.001) with each other and with sperm motility but negatively with aspartate aminotransferase activity. Our findings confirmed that the boar sperm aging changes, which increased during liquid semen preservation, were connected with the loss of function and integrity of the sperm plasma membrane. The employed complementary tests are comprehensive indicators of sperm membrane integrity during long-term semen preservation, and they can help establish the actual number of 'healthy' cells. The assays may be used in AI laboratories and should be incorporated into the routine of semen analysis.
Plasma needle: treatment of living cells and tissues
NASA Astrophysics Data System (ADS)
Stoffels, Eva
2003-10-01
Non-thermal plasmas are capable of refined treatment of heat sensitive surfaces. Recently, many non-thermal sources working under atmospheric pressure have been constructed. Their main applications are various surface treatments: cleaning, etching, changing the wettability/adhesion, and bacterial decontamination. A new research at the Eindhoven University of Technology focuses on in vivo treatment by means of a novel non-thermal plasma source (the plasma needle). At present, a fundamental study has been undertaken to identify all possible responses of living objects exposed to the plasma. Plasma treatment does not lead to cell death (necrosis), which is a cause of inflammation. On the contrary, we observe various sophisticated reactions of mammalian cells, e.g. cell detachment (loss of cell contact) and programmed cell death (apoptosis). Moreover, under certain conditions the plasma is capable of killing bacteria, while eukaryotic cells remain unharmed. These findings may result in development of new techniques, like bacterial sterilization of infected (living) tissues or removal of cells without inflammatory response, and on a longer time scale to new methods in the health care. Possible applications include treatment of skin ailments, aiding wound healing and sterilization of dental cavities.
Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A
2008-10-01
A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.
PMT-scintillator system set up for D-D neutron TOF measurements in INTI plasma focus device
NASA Astrophysics Data System (ADS)
Damideh, V.; Saw, S. H.; Sadighzadeh, A.; Ali, J.; Rawat, R. S.; Lee, P.; Lee, S.
2017-03-01
This paper summarizes a Photomultiplier-Scintillator diagnostic system for use in our plasma focus experiments at the Center for Plasma Research INTI IU. The system features an anode-grounded high pulse linearity voltage divider and uses NE102A plastic scintillators. It has detected D-D neutrons in INTI plasma focus device with clear and high signal to noise ratio. Neutron TOF of 120 ns has been measured from the time difference between hard x-ray pulse peak and neutron peak time over a flight path of 2.6±0.01 m; giving energy of 2.5±0.1 MeV for these side-on neutrons.
Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.
Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E
2010-10-01
Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.
Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.
Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.
Experimental characterization of active plasma lensing for electron beams
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marocchino, A.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2017-03-01
The active plasma lens represents a compact and affordable tool with radially symmetric focusing and field gradients up to several kT/m. In order to be used as a focusing device, its effects on the particle beam distribution must be well characterized. Here, we present the experimental results obtained by focusing an high-brightness electron beam by means of a 3 cm-long discharge-capillary pre-filled with Hydrogen gas. We achieved minimum spot sizes of 24 μ m (rms) showing that, during plasma lensing, the beam emittance increases due to nonlinearities in the focusing field. The results have been cross-checked with numerical simulations, showing an excellent agreement.
Dynamics of the plasma current sheath in plasma focus discharges in different gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.
2016-12-15
The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.
Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-10-15
By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less
Electrodeless plasma acceleration system using rotating magnetic field method
NASA Astrophysics Data System (ADS)
Furukawa, T.; Takizawa, K.; Kuwahara, D.; Shinohara, S.
2017-11-01
We have proposed Rotating Magnetic Field (RMF) acceleration method as one of electrodeless plasma accelerations. In our experimental scheme, plasma generated by an rf (radio frequency) antenna, is accelerated by RMF antennas, which consist of two-pair, opposed, facing coils, and these antennas are outside of a discharge tube. Therefore, there is no wear of electrodes, degrading the propulsion performance. Here, we will introduce our RMF acceleration system developed, including the experimental device, e.g., external antennas, a tapered quartz tube, a vacuum chamber, external magnets, and a pumping system. In addition, we can change RMF operation parameters (RMF applied current IRMF and RMF current phase difference ϕ, focusing on RMF current frequency fRMF) by adjusting matching conditions of RMF, and investigate the dependencies on plasma parameters (electron density ne and ion velocity vi); e.g., higher increases of ne and vi (˜360 % and 55 %, respectively) than previous experimental results were obtained by decreasing fRMF from 5 MHz to 0.7 MHz, whose RMF penetration condition was better according to Milroy's expression. Moreover, time-varying component of RMF has been measured directly to survey the penetration condition experimentally.
Lana, Jose Fabio Santos Duarte; Purita, Joseph; Paulus, Christian; Huber, Stephany Cares; Rodrigues, Bruno Lima; Rodrigues, Ana Amélia; Santana, Maria Helena; Madureira, João Lopo; Malheiros Luzo, Ângela Cristina; Belangero, William Dias; Annichino-Bizzacchi, Joyce Maria
2017-07-01
Platelet-rich plasma (PRP) has emerged as a significant therapy used in medical conditions with heterogeneous results. There are some important classifications to try to standardize the PRP procedure. The aim of this report is to describe PRP contents studying celular and molecular components, and also propose a new classification for PRP. The main focus is on mononuclear cells, which comprise progenitor cells and monocytes. In addition, there are important variables related to PRP application incorporated in this study, which are the harvest method, activation, red blood cells, number of spins, image guidance, leukocytes number and light activation. The other focus is the discussion about progenitor cells presence on peripherial blood which are interesting due to neovasculogenesis and proliferation. The function of monocytes (in tissue-macrophages) are discussed here and also its plasticity, a potential property for regenerative medicine treatments.
Design and construction of pulsed neutron diagnostic system for plasma focus device (SBUPF1).
Moghadam, Sahar Rajabi; Davani, Fereydoon Abbasi
2010-07-01
In this paper, two designs of pulsed neutron counter structure are introduced. To increase the activation counter efficiency, BC-400 plastic scintillator plates along with silver foils are utilized. Rectangular cubic and cylindrical geometries for activation counter cell are modeled using MCNP4C code. Eventually, an optimum length of 14 cm is calculated for the detector cell and optimum numbers of 20 silver foils for rectangular cubic geometry and ten foils for cylindrical geometry have been acquired. Due to the high cost of cutting, polishing of plastics, and etc., the rectangular cubic design is found to be more economical than the other design. In order to examine the functionality and ensure the detector output and corresponding designing, neutron yield of a 2.48 kJ plasma focus device (SBUPF1) in 8 mbar pressure with removal source method for calibration was measured (3.71+/-0.32)x10(7) neutrons per shot.
Gallium arsenide/gold nanostructures deposited using plasma method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.
2016-05-23
The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi
2016-01-15
The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less
Propagation of intense short laser pulses in the atmosphere.
Sprangle, P; Peñano, J R; Hafizi, B
2002-10-01
The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device
NASA Astrophysics Data System (ADS)
Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.
2013-04-01
Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
The effect of standing acoustic waves on the formation of laser-induced air plasmas.
Craig, Stephanie M; Brownell, Kara; O'Leary, Brendon; Malfitano, Christopher; Kelley, Jude A
2013-03-01
The expected location of an air plasma produced by a focused YAG laser pulse has been found to be influenced by the acoustics of the surrounding environment. In open air, the expected location of a laser-induced air plasma is centered close to the focal point of the lens focusing the laser beam. When confining the same beam coaxially along the interior of a quartz tube, the expected location of the air plasma shifts away from the focal point, toward the focusing lens, in a region of less laser fluence. This shift is caused by an interaction between standing acoustic waves (formed from sound waves produced by previous laser-induced plasmas) and the impinging laser pulse. Standing acoustic waves in a tube produce areas (antinodes) of slightly higher and slightly lower pressure than ambient atmospheric conditions, that in turn have a noticeable affect on the probability of creating an air plasma at a given location. This leads to two observed phenomena: Increased probability of air plasma formation before the optical focal point is reached, and the formation of distinct (separate) air plasmas at the antinodes themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir
2015-10-15
The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show thatmore » the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.« less
Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.
2016-03-21
We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less
Effects of admixture gas on the production of (18)F radioisotope in plasma focus devices.
Talaei, Ahmad; Sadat Kiai, S M; Zaeem, A A
2010-12-01
In this article, the effect of admixture gas on the heating and cooling of pinched plasma directly related to the enhancement or reduction of (18)F production through the (16)O((3)He, p)(18)F is considered in the plasma focus devices. It is shown that by controlling the velocity of added Oxygen particles mixed with the working helium gas into the plasma focus chamber, one can increase the current and decrease the confinement time (plasma heating) or vice verse (plasma cooling). The highest level of nuclear activities of (18)F was found around 16% of the Oxygen admixture participation and was about 0.35 MBq in the conditions of 20 kJ, 0.1 Hz and after 2 min operating of Dena PF. However, in the same condition, but for the frequency of 1 Hz, the level of activity increased up to 3.4 MBq. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2011-03-01
Relatively long-lived spheroidal structures coincident with the neutron emission phase have been observed in frozen deuterium fiber Z-pinch and some plasma focus devices. Existence of energetic ion-trapping mechanism in plasma focus has also been inferred from experimental data. It has been conjectured that these are related phenomena. This paper applies Turner's theory [L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986)] of relaxation of a Hall magnetofluid to construct a model of these structures and ion-trapping mechanism. Turner's solution modified for a finite-length plasma is used to obtain expressions for the magnetic field, velocity, and equilibrium pressure fields and is shown to represent an entity which is simultaneously a fluid vortex, a force-free magnetic field, a confined finite-pressure plasma, a charged object, and a trapped energetic ion beam. Characteristic features expected from diagnostic experiments are evaluated and shown to resemble experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berk, Herbert L.
2018-02-15
The study of this project focused on developing a reduced nonlinear model to describe chirping processes in a fusion plasma. A successful method was developed with results clear enough to allow an analytic theory to be developed that replicates the long term response of a nonlinear phase space structure immersed in the MHD continnuum.
Self-sustained focusing of high-density streaming plasma
NASA Astrophysics Data System (ADS)
Bugaev, A.; Dobrovolskiy, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Naiko, I.; Oks, E.
2017-01-01
We describe our observations of the transport through an electrostatic plasma lens of a wide-aperture, high-current, low energy, metal-ion plasma flow produced by a cathodic arc discharge. The lens input aperture was 80 mm, the length of the lens was 140 mm, and there were three electrostatic ring electrodes located in a magnetic field formed by permanent magnets. The lens outer electrodes were grounded and the central electrode was biased up to -3 kV. The plasma was a copper plasma with directed (streaming) ion energy 20-40 eV, and the equivalent ion current was up to several amperes depending on the potential applied to the central lens electrode. We find that when the central lens electrode is electrically floating, the current density of the plasma flow at the lens focus increases by up to 40%-50%, a result that is in good agreement with a theoretical treatment based on plasma-optical principles of magnetic insulation of electrons and equipotentialization along magnetic field lines. When the central lens electrode is biased negatively, an on-axis stream of energetic electrons is formed, which can also provide a mechanism for focusing of the plasma flow. Optical emission spectra under these conditions show an increase in intensity of lines corresponding to both copper atoms and singly charged copper ions, indicating the presence of fast electrons within the lens volume. These energetic electrons, as well as accumulating on-axis and providing ion focusing, can also assist in reducing the microdroplet component in the dense, low-temperature, metal plasma.
Deuteron Beam Source Based on Mather Type Plasma Focus
NASA Astrophysics Data System (ADS)
Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.
2013-04-01
A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.
Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device
NASA Astrophysics Data System (ADS)
Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow
2014-03-01
The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target "Lead" due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.
Subramaniam, Srinivas; Huening, Jennifer; Richards, John; Johnson, Kevin
2017-08-01
The xenon plasma focused ion beam instrument (PFIB), holds significant promise in expanding the applications of focused ion beams in new technology thrust areas. In this paper, we have explored the operational characteristics of a Tescan FERA3 XMH PFIB instrument with the aim of meeting current and future challenges in the semiconductor industry. A two part approach, with the first part aimed at optimizing the ion column and the second optimizing specimen preparation, has been undertaken. Detailed studies characterizing the ion column, optimizing for high-current/high mill rate activities, have been described to support a better understanding of the PFIB. In addition, a novel single-crystal sacrificial mask method has been developed and implemented for use in the PFIB. Using this combined approach, we have achieved high-quality images with minimal artifacts, while retaining the shorter throughput times of the PFIB. Although the work presented in this paper has been performed on a specific instrument, the authors hope that these studies will provide general insight to direct further improvement of PFIB design and applications.
Role of anode length in a mather-type plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, F.N.; Zakaullah, M.; Nisar, M.
In this paper, neutron emission from a 3 KJ Mather-type plasma focus is studied. Specifically, the behavior of system with the change in anode length is investigated. Anode lengths of high and low fluence anisotropy as well as for high neutron yield are identified. Experiment also suggest the possibility of ion beam generation leading to neutron production via beam-plasma interaction.
Zhang, Boke; Cao, Manlin; He, Yiqing; Liu, Yiwen; Zhang, Guoliang; Yang, Cuixia; Du, Yan; Xu, Jing; Hu, Jiajie; Gao, Feng
2017-01-01
Background: Breast cancer (BC)-derived hyaluronan (HA) can induce the formation of M2-like tumor-associated macrophages (TAMs) in tumor context. However, little is known about the correlation between circulating M2-like monocytes and plasma HA in BC patients. This study focused on evaluating the relationship between circulating M2-like monocytes and plasma HA, and further appraised the diagnostic value of them in BC. Methods: The expression of M2-like TAMs and HA was determined in pathological tissues by immunohistochemistry. Flow cytometry was used to detect the levels of circulating CD14 + CD204 + M2-like monocytes in 81 BC patients, 45 patients with breast benign diseases, and 46 healthy subjects. The levels of HA, CEA, and CA15-3 were measured in plasma samples using chemiluminescence method. Results: M2-like TAMs and HA expressions were elevated in BC tissues compared with benign tissues. In correspondence, the frequency of circulating CD14 + CD204 + M2-like monocytes and the plasma HA levels were significantly higher in patients with BC than those in control groups. Importantly, there was a positive correlation between circulating M2-like monocytes and the plasma HA (Spearman r = 0.404, p < 0.001). Area under receiver operating characteristic curve (ROC) for the combination of circulating M2-like monocytes and HA was 0.899 (95% CI: 0.853-0.946), which was higher than the panel of CEA and CA15-3. Conclusions: The frequency of circulating CD14 + CD204 + M2-like monocytes was positively correlated to plasma HA levels. The combination of circulating CD14 + CD204 + M2-like monocytes and plasma HA could provide considerable diagnostic value in BC.
Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri
2018-07-01
This paper deals with the implementation of high order semi-Lagrangian particle methods to handle high dimensional Vlasov-Poisson systems. It is based on recent developments in the numerical analysis of particle methods and the paper focuses on specific algorithmic features to handle large dimensions. The methods are tested with uniform particle distributions in particular against a recent multi-resolution wavelet based method on a 4D plasma instability case and a 6D gravitational case. Conservation properties, accuracy and computational costs are monitored. The excellent accuracy/cost trade-off shown by the method opens new perspective for accurate simulations of high dimensional kinetic equations by particle methods.
Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing
Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB
2000-03-13
A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.
NASA Astrophysics Data System (ADS)
Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.
2018-05-01
When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.
NASA Technical Reports Server (NTRS)
Cheng, D. Y.
1971-01-01
Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
NASA Astrophysics Data System (ADS)
Belashov, V. Yu.; Belashova, E. S.
2016-11-01
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B / B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4 πnT/ B 2 ≪ 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = ( B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less
NASA Astrophysics Data System (ADS)
Somov, B. V.
If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics
Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László
2009-01-01
There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.
DEM analysis of FOXSI-2 microflare using AIA observations
NASA Astrophysics Data System (ADS)
Athiray Panchapakesan, Subramania; Glesener, Lindsay; Vievering, Juliana; Camilo Buitrago-Casas, Juan; Christe, Steven; Inglis, Andrew; Krucker, Sam; Musset, Sophie
2017-08-01
The second flight of Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment was successfully completed on 11 December 2014. FOXSI makes direct imaging and spectral observation of the Sun in hard X-rays using grazing incidence optics modules which focus X-rays onto seven focal plane detectors kept at a 2m distance, in the energy range 4 to 20 keV, to study particle acceleration and coronal heating. Significant HXR emissions were observed by FOXSI during microflare events with A0.5 and A2.5 class, as classified by GOES, that occurred during FOXSI-2 flight.Spectral analysis of FOXSI data for these events indicate presence of plasma at higher temperatures (>10MK). We attempt to study the plasma content in the corona at different temperatures, characterized by the differential emission measure (DEM), over the FOXSI-2 observed flare regions using the Atmospheric Imaging Assembly (SDO/AIA) data. We utilize AIA observations in different EUV filters that are sensitive to ionized iron lines, to determine the DEM by using a regularized inversion method. This poster will show the properties of hot plasma as derived from FOXSI-2 HXR spectra with supporting DEM analysis using AIA observations.
NASA Astrophysics Data System (ADS)
Grant, Daniel S.; Rawat, Rajdeep S.; Bazaka, Kateryna; Jacob, Mohan V.
2017-09-01
The high degree of crosslinking present in plasma polymerised thin films, coupled with their high molecular weight, imbues these films with properties similar to those of thermosetting polymers. For instance, such films tend to be relatively hard, insoluble, and to date have not exhibited plasticity when subjected to elevated temperatures. In this paper it is demonstrated that plasma polymers can, in fact, undergo plastic deformation in response to the application of extremely short-lived thermal treatment delivered by a dense plasma focus device, as evidenced by the evolution of bubble-like structures from the thin film. This finding suggests new avenues for texturing plasma thin films, and synthesising cavities that may find utility as thermal insulators or domains for material encapsulation.
Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams
van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...
2015-10-28
The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.
Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J
2013-12-13
We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100 μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5 μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.
NASA Technical Reports Server (NTRS)
Miernik, Janie
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.
Electromagnetic PIC modeling with a background gas
NASA Astrophysics Data System (ADS)
Verboncoeur, J. P.; Cooperberg, D.
1997-02-01
Modeling the interaction of relativistic electromagnetic plasmas with a background gas is described. The timescales range over many orders of magnitude, from the electromagnetic Courant condition (˜10-12 sec) to electron-neutral collision times (˜10-7 sec) to ion transit times (˜10-5 sec). For this work, the traditional Monte Carlo algorithm [1] is described for relativistic electrons. Subcycling is employed to improve efficiency, and smoothing is employed to reduce particle noise. Applications include plasma-focused electron guns, gas-filled microwave tubes, surface wave discharges driven at microwave frequencies, and electron-cyclotron resonance discharges. The method is implemented in the OOPIC code [2].
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Militzer, Burkhard
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less
Focused beams of fast neutral atoms in glow discharge plasma
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.
2017-06-01
Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.
NASA Astrophysics Data System (ADS)
Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.
2017-11-01
Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.
Current sheet collapse in a plasma focus.
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.
1972-01-01
Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.
NASA Astrophysics Data System (ADS)
Pathak, Nidhi; Kaur, Sukhdeep; Singh, Sukhmander
2018-05-01
In this paper, self-focusing/defocusing effects have been studied by taking into account the combined effect of ponder-motive and relativistic non linearity during the laser plasma interaction with density variation. The formulation is based on the numerical analysis of second order nonlinear differential equation for appropriate set of laser and plasma parameters by employing moment theory approach. We found that self-focusing increases with increasing the laser intensity and density variation. The results obtained are valuable in high harmonic generation, inertial confinement fusion and charge particle acceleration.
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.
2016-07-15
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Shojaei, F.
In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N{sub 2}), Oxygen (O{sub 2}), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse ismore » emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.« less
Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch
Kuschel, S.; Hollatz, D.; Heinemann, T.; ...
2016-07-20
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less
Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses
Ooi, C. H. Raymond; Talib, Md. Ridzuan
2016-01-01
We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644
Improved Characteristics of Laser Source of Ions Using a Frequency Mode Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaydarov, R. T.
2008-04-07
We used a mass-spectrometric method to investigate the characteristics of laser-produced plasma ions depending on the nature of the target and on the parameters of the laser radiation. Experiments are carried out on porous Y{sub 2}O{sub 3} targets with different densities {rho}, subjected to a laser radiation, where the laser works in a frequency mode (v = l-12 Hz). We found that the laser frequency has a significant effect on the parameters of plasma ions: with increasing the frequency of the laser the charge, energy and intensity of ions increase for a given parameters of the target. This effect ismore » more pronounced for small densities of the target. We related these two effects to a non-linear ionization process in the plasma due to the formation of dense plasma volume inside the sample absorbing the laser radiation and to the change of the focusing conditions in the case of the frequency mode laser.« less
Plasma puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Choi, E. H.
1990-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.
Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.
Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R
2010-10-01
A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.
X-ray imaging crystal spectrometer for extended X-ray sources
Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.
2001-01-01
Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less
Absolute intensity of radiation emitted by uranium plasmas
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.
1975-01-01
The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.
NASA Astrophysics Data System (ADS)
Umstadter, Donald
2002-04-01
Conventional electron acceleration at a place like SLAC needs miles to boost particles up to 50 GeV energies by feeding microwaves into a succession of cavities. In recent years we have been developing alternative acceleration concepts, based on lasers focused into plasmas, that might someday do the job in a much smaller space without the use of cavities. Our near term goal is to produce a first stage accelerator that outputs electron beams with lower energy but with properties that are more suitable for x-ray sources, such as those based on Compton scattering or the proposed linear synchrotrons at SLAC and DESY. In the plasma wakefield approach, for example, a terawatt laser beam is focused onto a gas jet, ionizing it and driving plasma waves that move at relativistic speeds. If timed just right, electrons in the plasma can surf the plasma waves to high speeds, as high as 100 MeV in the space of only a millimeter. NanoCoulombs of charge have been accelerated in well-collimated beams (1-degree divergence angle). One problem with this concept is the mismatch between the electron source (sometimes an external photocathode, sometimes an uncontrolled cloud of electrons from the plasma itself) and the incoming laser pulse. We will be reporting methods for generating electrons in a controllable way, namely the use of a pair of crossed laser beams which position, heat, and synchronize the insertion of electrons into the plasma wave. We show that this "all-optical injection" increases the number and energy of energetic electrons as compared with use of only one laser beam. It has been shown theoretically that this approach can ultimately be used to reduce the electron energy spread to a few percent. Besides potential applications to particle physics and x-ray lasers, high gradient acceleration schemes are also expected to benefit the production of medical radioisotopes and the ignition of thermonuclear fusion reactions.
Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com; Ling, Yap Seong; San, Wong Chiow
The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anodemore » with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu; Sun, Hai-wei, E-mail: hsun@umac.mo
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptivemore » grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.« less
Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji
2017-01-01
Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI. PMID:28753641
Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.
Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten
2017-06-01
We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.
Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies
NASA Astrophysics Data System (ADS)
Song, Jiaojian; Guo, Jinjia; Tian, Ye; Lu, Yuan; Zheng, Ronger
2017-10-01
With the hope of applying LIBS to solid target detection in deep-sea, the influences of laser focus to sample distance (LFTSD) on the plasma characteristics were investigated using spectra-image approach with the laser energies at sub- and super- threshold irradiance of solution. The experimental results show that LFTSD is a critical parameter which can directly influence the plasma shapes, by changing the laser fluence on sample surface. The plasma is divided into two parts under pre-focus condition, while the plasma only forms at the surface of Cu target under de-focus condition. Moreover, the "seed electron" generated from Cu sample can reduce the breakdown threshold of the solution. By comparing the laser energy, it seems to be inefficient by using super-threshold energy due to the plasma shielding effect of the liquid. High quality spectra can be observed by using lower laser energy and longer gate delay (25 mJ and 1000 ns, in this work).
NASA Astrophysics Data System (ADS)
Singh, Arwinder; Heoh, Saw Sor; Sing, Lee
2017-03-01
In this paper, we use Lee's 5 phase model code to configure both the India Bhabha Atomic Research Center (BARC) Plasma focus machine operating in the pressure (P0) range from 1 Torr to 14 Torr as well as the Imperial College Plasma Focus Machine operating in the pressure (P0) range from 0.5 Torr to 6 Torr to compare the computational neutron yield to the experimental neutron yield as well as to obtain the relationship between axial speed va, radial shock speed vs, piston speed vp and pinch temperature with P0 for these machines.
Paul Ion Trap as a Diagnostic for Plasma Focus
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.
2010-02-01
The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
Ji, Sang Hye; Ki, Se Hoon; Ahn, Ji Ho; Shin, Jae Ho; Hong, Eun Jeong; Kim, Yun Ji; Choi, Eun Ha
2018-04-02
This study focused on sterilization methods for the reduction of microorganisms on perilla leaves by cylinder type Dielectric Barrier Discharge (DBD) plasma with underwater bubbler treatment. S. aureus and E. coli in a suspension were reduced to less than 3.4 and 0.5 log CFU/ml after the plasma treatment for 3 min, respectively. On the perilla leaves, they were also reduced to 4.8 and 1.6 log CFU/ml after the plasma treatment, respectively. The S. aureus and E. coli bacterial cell wall was damaged by the plasma treatment evident by scanning electron microscopic analysis. The observed infrared bands of the FTIR spectra demonstrated changes in protein, lipid, polysaccharide, polyphosphate group and other carbohydrate functionalities of plasma treated bacteria and untreated bacterial cell membranes. The degradation of the constituent bonds of the bacterial cell membrane by RONS generated from plasma destroys the DNA, RNA, and proteins within the cell, and may eventually cause cell death. In this study, H 2 O 2 (13.68 μM) and NO 3 (138 μM), which are the main factors generated by plasma, proved to have a bactericidal effect by inducing lipid peroxidation of bacterial cell membranes. In conclusion, cylinder type DBD plasma with underwater bubbler can be used as an environmentally friendly food disinfection device in cleaning processes of the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Habibi, M.; Ramezani, V.
2017-02-01
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.
Ion Beam Measurements of a Dense Plasma Focus Device Using CR 39 Nuclear Track Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngoi, S. K.; Yap, S. L.; Wong, C. S.
The project is carried out using a small Mather type plasma focus device powered by a 15 kV, 30 {mu}F capacitor. The filling gas used is argon. The ion beam generated is investigated by both time resolved and time integrated methods. Investigation on the dynamic of the current sheath is also carried out in order to obtain an optimum condition for ion beam production. The angular distribution of the ion emission is measured at positions of 0 deg. (end-on), 45 deg. and 90 deg. (side-on) by using CR-39 nuclear track detectors. The divergence of the ion beam is also determinedmore » using these detectors. A biased ion collector is used for time resolved measurement of the ion beam. Time of flight technique is employed for the determination of the ion beam energy. Average ion beam energy obtained is about 180 keV. The ion beam produced can be used for applications such as material surface modification and ion implantation.« less
Tracking of buried layers during plasma-assisted femtosecond laser drilling of compound targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhvaniya, I. A., E-mail: irina.zhvaniya@physics.msu.ru; Garmatina, A. A.; Makarov, I. A.
It was shown that drilling of multi-layered target placed in the air by tightly focused femtosecond laser radiation with high fluence (up to 1000 J/cm{sup 2}) can be monitored online using plasma-induced X-ray emission and second harmonic of incident laser radiation. The technique based on X-rays registration is appeared to be more flexible than the method based on detection of second harmonic since its accuracy depends crucially on the target type. We demonstrated that the X-ray signal clearly indicates the transition from one layer to another during the microdrilling of targets consisting of 2–4 layers of titanium foil when a lasermore » beam is focused beneath the target surface at a depth comparable to the layer thickness. The diagnostics of microchannel production in the chicken eggshell was performed for the first time. It was found that the presence of albumen beneath the shell accounts for longtime generation of X-ray pulses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark
Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.
2D model of plasma current sheath propagation in a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil
2018-06-01
Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.
Assessment of glomerular filtration rate measurement with plasma sampling: a technical review.
Murray, Anthony W; Barnfield, Mark C; Waller, Michael L; Telford, Tania; Peters, A Michael
2013-06-01
This article reviews available radionuclide-based techniques for glomerular filtration rate (GFR) measurement, focusing on clinical indications for GFR measurement, ideal GFR radiopharmaceutical tracer properties, and the 2 most common tracers in clinical use. Methods for full, 1-compartment, and single-sample renal clearance characterization are discussed. GFR normalization and the role of GFR measurement in chemotherapy dosing are also considered.
Method and apparatus for sputtering with a plasma lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
A plasma lens for enhancing the quality and rate of sputter deposition onto a substrate is described herein. The plasma lens serves to focus positively charged ions onto the substrate while deflecting negatively charged ions, while at the same time due to the line of sight positioning of the lens, allowing for free passage of neutrals from the target to the substrate. The lens itself is formed of a wound coil of multiple turns, inside of which are deposed spaced lens electrodes which are electrically paired to impress an E field overtop the B field generated by the coil, themore » potential applied to the electrodes increasing from end to end towards the center of the lens, where the applied voltage is set to a high potential at the center electrodes as to produce a potential minimum on the axis of the lens.« less
Propagation characteristics of two-color laser pulses in homogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemlata,; Saroch, Akanksha; Jha, Pallavi
2015-11-15
An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less
NASA Astrophysics Data System (ADS)
Gueye, P.; Cressault, Y.; Rohani, V.; Fulcheri, L.
2017-02-01
This paper focuses on the modeling of a hydrogen arc column at very high pressure (20 bar). The problem is solved from Elenbaas-Heller equation where the radiation is carefully considered with the net emission coefficient. The absorption spectrum requires the integration of background continuum, molecular bands, and line spectra. This work directly aims to predict the electric current-voltage characteristics which is key for the design of new processes. We propose also a new analytic solution which generalizes the channel model of electric arc to the case when the volume radiation makes a significant contribution to the energy balance. The presented formalism allows a better determination of the plasma thickness parameter Rp for net emission coefficient method in cylindrical arcs and gives satisfactory results in comparison to earlier experimental works on high pressure hydrogen plasma.
Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, M H; Mackinnon, A J; Patel, P K
A new technique is described for the isochoric heating (i.e., heating at constant volume) of matter to high energy-density plasma states (>10{sup 5} J/g) on a picosecond timescale (10{sup -12} sec). An intense, collimated, ultrashort-pulse beam of protons--generated by a high-intensity laser pulse--is used to isochorically heat a solid density material to a temperature of several eV. The duration of heating is shorter than the timescale for significant hydrodynamic expansion to occur, hence the material is heated to a solid density warm dense plasma state. Using spherically-shaped laser targets a focused proton beam is produced and used to heat amore » smaller volume to over 20 eV. The technique described of ultrafast proton heating provides a unique method for creating isochorically heated high-energy density plasma states.« less
Scalable direct Vlasov solver with discontinuous Galerkin method on unstructured mesh.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Ostroumov, P. N.; Mustapha, B.
2010-12-01
This paper presents the development of parallel direct Vlasov solvers with discontinuous Galerkin (DG) method for beam and plasma simulations in four dimensions. Both physical and velocity spaces are in two dimesions (2P2V) with unstructured mesh. Contrary to the standard particle-in-cell (PIC) approach for kinetic space plasma simulations, i.e., solving Vlasov-Maxwell equations, direct method has been used in this paper. There are several benefits to solving a Vlasov equation directly, such as avoiding noise associated with a finite number of particles and the capability to capture fine structure in the plasma. The most challanging part of a direct Vlasov solvermore » comes from higher dimensions, as the computational cost increases as N{sup 2d}, where d is the dimension of the physical space. Recently, due to the fast development of supercomputers, the possibility has become more realistic. Many efforts have been made to solve Vlasov equations in low dimensions before; now more interest has focused on higher dimensions. Different numerical methods have been tried so far, such as the finite difference method, Fourier Spectral method, finite volume method, and spectral element method. This paper is based on our previous efforts to use the DG method. The DG method has been proven to be very successful in solving Maxwell equations, and this paper is our first effort in applying the DG method to Vlasov equations. DG has shown several advantages, such as local mass matrix, strong stability, and easy parallelization. These are particularly suitable for Vlasov equations. Domain decomposition in high dimensions has been used for parallelization; these include a highly scalable parallel two-dimensional Poisson solver. Benchmark results have been shown and simulation results will be reported.« less
NASA Astrophysics Data System (ADS)
Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.
2011-01-01
This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.
Magnetic nanomotor fabrication by plasma coating method and its biological application
NASA Astrophysics Data System (ADS)
Oksuz, Lutfi; Yurdabak Karaca, Gozde; Uygun, Emre; Uygun Oksuz, Aysegul
2017-10-01
Nano/micro scale motors are exciting research area due to a wide range of application area especially offer considerable promise for the diagnosis and treatment of the diseases. In this scope, the preparation and characterization of Gold (Au)/ Nickel (Ni) nanomotors transport and their applications based on the detection of miRNA-21 will be examined. In addition, magnetic segment Ni which was coated by RF magnetron sputter technique on to the electrochemical synthesized Au nanowire can also be used to focus on the controlled movement and target. We propose a sensitive stable plasma coated magnetic nanomotor-based approach for miRNA-21 detection for simple and cancer diagnosis.
Plasma processing of superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Upadhyay, Janardan
The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.
ELM mitigation studies in JET and implications for ITER
NASA Astrophysics Data System (ADS)
de La Luna, Elena
2009-11-01
Type I edge localized modes (ELMs) remain a serious concern for ITER because of the high transient heat and particle flux that can lead to rapid erosion of the divertor plates. This has stimulated worldwide research on exploration of different methods to avoid or at least mitigate the ELM energy loss while maintaining adequate confinement. ITER will require reliable ELM control over a wide range of operating conditions, including changes in the edge safety factor, therefore a suite of different techniques is highly desirable. In JET several techniques have been demonstrated for control the frequency and size of type I ELMs, including resonant perturbations of the edge magnetic field (RMP), ELM magnetic triggering by fast vertical movement of the plasma column (``vertical kicks'') and ELM pacing using pellet injection. In this paper we present results from recent dedicated experiments in JET focusing on integrating the different ELM mitigation methods into similar plasma scenarios. Plasma parameter scans provide comparison of the performance of the different techniques in terms of both the reduction in ELM size and on the impact of each control method on plasma confinement. The compatibility of different ELM mitigation schemes has also been investigated. The plasma response to RMP and vertical kicks during the ELM mitigation phase shares common features: the reduction in ELM size (up to a factor of 3) is accompanied by a reduction in pedestal pressure (mainly due to a loss of density) with only minor (< 10%) reduction of the stored energy. Interestingly, it has been found that the combined application of RMP and kicks leads to a reduction of the threshold perturbation level (vertical displacement in the case of the kicks) necessary for the ELM mitigation to occur. The implication of these results for ITER will be discussed.
Parsons, Teresa L.; Marzinke, Mark A.; Hoang, Thuy; Bliven-Sizemore, Erin; Weiner, Marc; Mac Kenzie, William R.; Dorman, Susan E.
2014-01-01
The quantification of antituberculosis drug concentrations in multinational trials currently requires the collection of modest blood volumes, centrifugation, aliquoting of plasma, freezing, and keeping samples frozen during shipping. We prospectively enrolled healthy individuals into the Tuberculosis Trials Consortium Study 29B, a phase I dose escalation study of rifapentine, a rifamycin under evaluation in tuberculosis treatment trials. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying rifapentine in whole blood on dried blood spots (DBS) to facilitate pharmacokinetic/pharmacodynamic analyses in clinical trials. Paired plasma and whole-blood samples were collected by venipuncture, and whole blood was spotted on Whatman protein saver 903 cards. The methods were optimized for plasma and then validated for DBS. The analytical measuring range for quantification of rifapentine and its metabolite was 50 to 80,000 ng/ml in whole-blood DBS. The analyte was stable on the cards for 11 weeks with a desiccant at room temperature and protected from light. The method concordance for paired plasma and whole-blood DBS samples was determined after correcting for participant hematocrit or population-based estimates of bias from Bland-Altman plots. The application of either correction factor resulted in acceptable correlation between plasma and whole-blood DBS (Passing-Bablok regression corrected for hematocrit; y = 0.98x + 356). Concentrations of rifapentine may be determined from whole-blood DBS collected via venipuncture after normalization in order to account for the dilutional effects of red blood cells. Additional studies are focused on the application of this methodology to capillary blood collected by finger stick. The simplicity of processing, storage, shipping, and low blood volume makes whole-blood DBS attractive for rifapentine pharmacokinetic evaluations, especially in international and pediatric trials. PMID:25182637
A methodology for the rigorous verification of plasma simulation codes
NASA Astrophysics Data System (ADS)
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
Evidence for gain on the C VI 182 A transition in a radiation-cooled selenium/Formvar plasma
NASA Technical Reports Server (NTRS)
Seely, J. F.; Brown, C. M.; Feldman, U.; Richardson, M.; Behring, W. E.
1985-01-01
Thin plastic foils coated with selenium have been irradiated using from 4 to 8 beams of the OMEGA laser in a line focus configuration. Spectra were recorded using a 3 meter spectrograph that viewed the plasma along the line focus. Based on a comparison of the intensities of the spectral lines from plasmas with lengths of 1.7, 3.4, 6.8, and 13.6 mm, the C VI n = 3 to 2 transition at 182 A was anomalously intense in the spectra from the longer plasmas. Calculations indicate that the carbon plasma was cooled by radiation from the highly-charged selenium plasma in a time that was smaller than the expansion time of the plasma. These plasma conditions are favorable for the occurrence of population inversions between the n = 2 and 3 levels of C VI resulting from recombination and cascading from higher levels. The measured gain coefficient for the C VI 182 A transition is 3/cm, and this corresponds to a gain-length product of 4 in the longest plasma.
Time-resolved characteristics of deuteron-beam generated by plasma focus discharge.
Lim, Lian-Kuang; Yap, Seong-Ling; Bradley, D A
2018-01-01
The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1-3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic.
Time-resolved characteristics of deuteron-beam generated by plasma focus discharge
Bradley, D. A.
2018-01-01
The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1–3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic. PMID:29309425
A novel method to predict the highest hardness of plasma sprayed coating without micro-defects
NASA Astrophysics Data System (ADS)
Zhuo, Yukun; Ye, Fuxing; Wang, Feng
2018-04-01
The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.
Laser Heating in a Dense Plasma Focus.
The report is divided in two parts. In the first part an account is given of the measurement of the momentum distribution of the deuterons ejected from a dense plasma focus . The results show the existence of a pronounced non-Maxwellian distribution and a small population of deuterons accelerated to the voltage of the condenser bank. In the second part theoretical calculation of laser heating establish the presence of large density gradient which probably accounts for the large currents detected in such plasmas. (Author)
Convex Curved Crystal Spectograph for Pulsed Plasma Sources.
The geometry of a convex curved crystal spectrograph as applied to pulsed plasma sources is presented. Also presented are data from the dense plasma focus with particular emphasis on the absolute intensity of line radiations.
Identification and analysis of circulating exosomal microRNA in human body fluids.
Lässer, Cecilia
2013-01-01
Exosomes are 40-100 nm sized vesicles released from cells when multivesicular bodies fuse with the plasma membrane. These vesicles take part in cell-to-cell communication by binding and signalling through membrane receptors on cells or by transferring proteins, RNA, and lipids into the cells. Exosomal RNA in body fluids, such as plasma and urine, has been associated with malignancies, making the exosomal RNA a potential biomarker for early detection of these diseases. This has increased the interest in the field of extracellular RNA and in particular, the interest in exosomal RNA.In this chapter, a well-established exosome isolation method is described, as well as how to characterize the isolated vesicles by electron microscopy. Furthermore, two types of RNA isolation methods are described with a focus on isolating RNA from body fluids, which can be more viscous than cell culture media.
N-alkylated aminopyrazines for use as hydrophilic optical agents
NASA Astrophysics Data System (ADS)
Poreddy, Amruta R.; Asmelash, Bethel; Galen, Karen P.; Fitch, Richard M.; Shieh, Jeng-Jong; Wilcox, James M.; Schoenstein, Tasha M.; Wojdyla, Jolette K.; Gaston, Kimberly R.; Freskos, John N.; Neumann, William L.; Rajagopalan, Raghavan; Ahn, Hyo-Yang; Kostelc, James G.; Debreczeny, Martin P.; Belfield, Kevin D.; Dorshow, Richard B.
2009-02-01
Rapid assessment of glomerular filtration rate (GFR), which measures the amount of plasma filtered through the kidney within a given time, would greatly facilitate monitoring of renal function for patients at the bedside in the clinic. In our pursuit to develop exogenous fluorescent tracers for real-time monitoring of renal function by optical methods, N-alkylated aminopyrazine dyes and their hydrophilic conjugates based on poly (ethylene glycol) (PEG) were synthesized via reductive amination as the key step. Photophysical properties indicated a bathochromic shift on the order of 50 nm in both absorption and emission compared to naked aminopyrazines which could be very useful in enhancing both tissue penetration as well as easier detection methods. Structure-activity relationship (SAR) and pharmacokinetic (PK) studies, and the correlation of in vivo optical data with plasma PK for measurement of clearance (and hence GFR) are focus of the current investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidorov, A.; Dorf, M.; Zorin, V.
2008-02-15
Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less
Morré, D M; Morre, D J
2000-06-23
Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum
NASA Astrophysics Data System (ADS)
Lee, Seungjun; Lee, Myoung-Jae
2012-10-01
The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).
NASA Technical Reports Server (NTRS)
Morre, D. M.; Morre, D. J.
2000-01-01
Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum
Characterization of the Low-Molecular-Weight Human Plasma Peptidome.
Greening, David W; Simpson, Richard J
2017-01-01
The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomics in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.
Physics in Europe--A Data File of Selected Research.
1984-06-18
Negev Sapir Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 1025 CPBICF laser plasma soft x-ray refractometry France...CPBICF laser plasma Schlieren diagnostic France 623 CPBICF laser plasma self focusing numerics UK 1025 CPBICF laser plasma soft x-ray refractometry
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less
Chevillet, John R.; Khokhlova, Tatiana D.; Giraldez, Maria D.; Schade, George R.; Starr, Frank; Wang, Yak-Nam; Gallichotte, Emily N.; Wang, Kai; Hwang, Joo Ha
2017-01-01
Purpose To compare the abilities of three pulsed focused ultrasound regimes (that cause tissue liquefaction, permeabilization, or mild heating) to release tumor-derived microRNA into the circulation in vivo and to evaluate release dynamics. Materials and Methods All rat experiments were approved by the University of Washington Institutional Animal Care and Use Committee. Reverse-transcription quantitative polymerase chain reaction array profiling was used to identify candidate microRNA biomarkers in a rat solid tumor cell line. Rats subcutaneously grafted with these cells were randomly assigned among three pulsed focused ultrasound treatment groups: (a) local tissue liquefaction via boiling histotripsy, (b) tissue permeabilization via inertial cavitation, and (c) mild (<10°C) heating of tissue, as well as a sham-treated control group. Blood specimens were drawn immediately prior to treatment and serially over 24 hours afterward. Plasma microRNA was quantified with reverse-transcription quantitative polymerase chain reaction, and statistical significance was determined with one-way analysis of variance (Kruskal-Wallis and Friedman tests), followed by the Dunn multiple-comparisons test. Results After tissue liquefaction and cavitation treatments (but not mild heating), plasma quantities of candidate biomarkers increased significantly (P value range, <.0001 to .04) relative to sham-treated controls. A threefold to 32-fold increase occurred within 15 minutes after initiation of pulsed focused ultrasound tumor treatment, and these increases persisted for 3 hours. Histologic examination confirmed complete liquefaction of the targeted tumor area with boiling histotripsy, in addition to areas of petechial hemorrhage and tissue disruption by means of cavitation-based treatment. Conclusion Mechanical tumor tissue disruption with pulsed focused ultrasound–induced bubble activity significantly increases the plasma abundance of tumor-derived microRNA rapidly after treatment. © RSNA, 2016 Online supplemental material is available for this article. PMID:27802108
NASA Astrophysics Data System (ADS)
Verheest, Frank
2008-03-01
After introducing the basic multifluid model equations, this review discusses three different methods to describe nonlinear plasma waves, by giving a rather general overview of the relevant methodology, followed by a specific and recent application. First, reductive perturbation analysis is applicable to waves that are not too strongly nonlinear, if their linear counterparts have an acoustic-like dispersion at low frequencies. It is discussed for electrostatic modes, with a brief application to dusty plasma waves. The typical paradigm for such problems is the well known KdV equation and its siblings. Stationary waves with larger amplitudes can be treated, i.a., via the fluid-dynamic approach pioneered by McKenzie, which focuses on essential insights into the limitations that restrict the range of available solitary electrostatic solutions. As an illustration, novel electrostatic solutions have been found in plasmas with two-temperature electron species that are relevant in understanding certain magnetospheric plasma observations. The older cousin of the large-amplitude technique is the Sagdeev pseudopotential description, to which the newer fluid-dynamic approach is essentially equivalent. Because the Sagdeev analysis has mostly been applied to electrostatic waves, some recent results are given for electromagnetic modes in pair plasmas, to show its versatility.
Transition from linear- to nonlinear-focusing regime in filamentation
Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin
2014-01-01
Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people
2012-01-01
Background Curcumin extracts of turmeric are proposed to produce health benefits. To date, human intervention studies have focused mainly on people with existing health problems given high doses of poorly absorbed curcumin. The purpose of the current study was to check whether in healthy people, a low dose of a lipidated curcumin extract could alter wellness-related measures. Methods The present study was conducted in healthy middle aged people (40–60 years old) with a low dose of curcumin (80 mg/day) in a lipidated form expected to have good absorption. Subjects were given either curcumin (N = 19) or placebo (N = 19) for 4 wk. Blood and saliva samples were taken before and after the 4 weeks and analyzed for a variety of blood and saliva measures relevant to health promotion. Results Curcumin, but not placebo, produced the following statistically significant changes: lowering of plasma triglyceride values, lowering of salivary amylase levels, raising of salivary radical scavenging capacities, raising of plasma catalase activities, lowering of plasma beta amyloid protein concentrations, lowering of plasma sICAM readings, increased plasma myeloperoxidase without increased c-reactive protein levels, increased plasma nitric oxide, and decreased plasma alanine amino transferase activities. Conclusion Collectively, these results demonstrate that a low dose of a curcumin-lipid preparation can produce a variety of potentially health promoting effects in healthy middle aged people. PMID:23013352
Canonical Descriptions of High Intensity Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Le Cornu, B. J.
The problem of laser-plasma interaction has been studied extensively in the context of inertial confinement fusion (ICF). These studies have focussed on effects like the nonlinear force, self-focusing, Rayleigh- Taylor instabilities, stimulated Brillouin scattering and stimulated Raman scattering observed in ICF schemes. However, there remains a large discrepancy between theory and experiment in the context of nuclear fusion schemes. Several authors have attempted to gain greater understanding of the physics involved by the application of standard or 'canonical' methods used in Lagrangian and Hamiltonian mechanics to the problem of plasma physics. This thesis presents a new canonical description of laser-plasma interaction based on the Podolsky Lagrangian. Finite self-energy of charged particles, incroporation of high-frequency effects and an ability to quantise are the main advantages of this new model. The nature of the Podolsky constant is also analysed in the context of plasma physics, specifically in terms of the plasma dispersion relation. A new gauge invariant expression of the energy-momentum tensor for any gauge invariant Lagrangian dependent on second order derivatives is derived for the first time. Finally, the transient and nontransient expressions of the nonlinear ponderomotive force in laser-plasma interaction are discussed and shown to be closely approximated by a canonical derivation of the electromagnetic Lagrangian, a fact that seems to have been missed in the literature.
Modeling of nanosecond pulsed laser processing of polymers in air and water
NASA Astrophysics Data System (ADS)
Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon
2018-07-01
Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in air. Plasma expansion velocities are much lower in water than in air. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.
Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Ratcliffe, Alicia C.
2018-01-01
The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the main Maxwellian distribution (the bump-on-the-tail distribution function). For a range of parameters in these non-Maxwellian distributions, we compute the current collection to the probes. We compare the distribution function that was assumed a priori with the distribution function one would infer when applying standard triple probe theory to analyze the collected currents. For the assumed class of non-Maxwellian distribution functions this serves to illustrate the effect a non-Maxwellian plasma would have on results interpreted using the equilibrium triple probe current collection theory, allowing us to state the magnitudes of these deviations as a function of the assumed distribution function properties.
Application of an impedance matching transformer to a plasma focus.
Bures, B L; James, C; Krishnan, M; Adler, R
2011-10-01
A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
Foster, J.S. Jr.
1958-03-11
This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
NASA Astrophysics Data System (ADS)
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Comparison of measured and computed radial trajectories of plasma focus devices UMDPF1 and UMDPF0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. H.; Yap, S. L., E-mail: yapsl@um.edu.my; Lim, L. K.
In published literature, there has been scant data on radial trajectory of the plasma focus and no comparison of computed with measured radial trajectory. This paper provides the first such comparative study. We compute the trajectories of the inward-moving radial shock and magnetic piston of UMDPF1 plasma focus and compare these with measured data taken from a streak photograph. The comparison shows agreement with the measured radial trajectory in terms of average speeds and general shape of trajectory. This paper also presents the measured trajectory of the radially compressing piston in another machine, the UMDPF0 plasma focus, confirming that themore » computed radial trajectory also shows similar general agreement. Features of divergence between the computed and measured trajectories, towards the end of the radial compression, are discussed. From the measured radial trajectories, an inference is made that the neutron yield mechanism could not be thermonuclear. A second inference is made regarding the speeds of axial post-pinch shocks, which are recently considered as a useful tool for damage testing of fusion-related wall materials.« less
Sabri, Firouzeh; Marchetta, Jeffrey G.; Sinden-Redding, M.; Habenicht, James J.; Chung, Thien Phung; Melton, Charles N.; Hatch, Chris J.; Lirette, Robert L.
2012-01-01
Background Dust accumulation on surfaces of critical instruments has been a major concern during lunar and Mars missions. Operation of instruments such as solar panels, chromatic calibration targets, as well as Extra Vehicular Activity (EVA) suits has been severely compromised in the past as a result of dust accumulation and adhesion. Wind storms with wind speeds of up to 70 mph have not been effective in removing significant amounts of the deposited dust. This is indeed an indication of the strength of the adhesion force(s) involved between the dust particles and the surface(s) that they have adhered to. Complications associated with dust accumulation are more severe for non-conducting surfaces and have been the focus of this work. Methodology Argon plasma treatment was investigated as a mechanism for lowering dust accumulation on non-conducting polymeric surfaces. Polymers chosen for this study include a popular variety of silicones routinely used for space and terrestrial applications namely RTV 655, RTV 615, and Sylgard 184. Surface properties including wettability, surface potential, and surface charge density were compared before and after plasma treatment and under different storage conditions. Effect of ultraviolet radiation on RTV 655 was also investigated and compared with the effect of Ar plasma treatment. Conclusion/Significance Gravimetric measurements proved Ar plasma treatment to be an effective method for eliminating dust adhesion to all three polymers after short periods of exposure. No physical damage was detected on any of the polymer surfaces after Ar plasma treatment. The surface potential of all three polymers remained zero up to three months post plasma exposure. Ultraviolet radiation however was not effective in reducing surface and caused damage and significant discoloration to RTV 655. Therefore, Ar plasma treatment can be an effective and non-destructive method for treating insulating polymeric surfaces in order to eliminate dust adhesion and accumulation. PMID:23077496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polukhin, S. N., E-mail: snpol@lebedev.ru; Dzhamankulov, A. M.; Gurei, A. E.
The velocities of the plasma jets formed from Ne, N{sub 2}, Ar, and Xe gases in plasma focus facilities were determined by means of laser-optical shadowgraphy of the shock waves generated at the jet leading edge. In spite of the almost tenfold ratio between the atomic weights of these gases, the outflow velocities of the plasma jets formed in experiments with these gases differ by less than twice, in the range of (0.7–1.1) × 10{sup 7} cm/s under similar discharge conditions. The energies of the jet ions were found to vary from 0.7 keV for nitrogen to 4 keV formore » xenon.« less
Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration
NASA Astrophysics Data System (ADS)
Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee
2018-05-01
We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.
NASA Technical Reports Server (NTRS)
Aston, G.; Wilbur, P. J.
1981-01-01
The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
Coupling of laser energy into plasma channels
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-04-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.
2014-03-15
The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less
Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses
MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.
1987-05-05
A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.
Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Startsev, Edward
2006-10-01
Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been developed to study these instabilities. The results of the investigations that identify the instability growth rates, levels of saturations, and conditions for quiescent beam propagation will also be discussed. [1] E.A. Startsev and R.C. Davidson, Phys.Plasmas 10, 4829 (2003). [2] E.A. Startsev, R.C. Davidson and H. Qin, Phys.Rev. ST Accel. Beams 8,124201 (2005).
Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro
2006-01-01
An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.
Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M
2016-05-05
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
Electric Field Measurements At The Magnetopause
NASA Astrophysics Data System (ADS)
Lindqvist, P.-A.; Dunlop, M.
The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (<0.1 eV), as encountered in planetary ionospheres, with a single instrument. We will finally focus on the thermal noise analysis we might perform using an electric dipole on the bepiColombo/MMO probe, with the aim to get accurate measurements of elec- tron density and temperature for comparison with our models of Mercury/solar wind interaction.
Development & characterization of alumina coating by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Sebastian, Jobin; Scaria, Abyson; Kurian, Don George
2018-03-01
Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.
Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane
NASA Astrophysics Data System (ADS)
Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.
2016-10-01
Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.
Advances and challenges in the field of plasma polymer nanoparticles
Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847
Advances and challenges in the field of plasma polymer nanoparticles.
Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
NASA Astrophysics Data System (ADS)
Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.
2018-04-01
We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.
Indirect monitoring shot-to-shot shock waves strength reproducibility during pump-probe experiments
NASA Astrophysics Data System (ADS)
Pikuz, T. A.; Faenov, A. Ya.; Ozaki, N.; Hartley, N. J.; Albertazzi, B.; Matsuoka, T.; Takahashi, K.; Habara, H.; Tange, Y.; Matsuyama, S.; Yamauchi, K.; Ochante, R.; Sueda, K.; Sakata, O.; Sekine, T.; Sato, T.; Umeda, Y.; Inubushi, Y.; Yabuuchi, T.; Togashi, T.; Katayama, T.; Yabashi, M.; Harmand, M.; Morard, G.; Koenig, M.; Zhakhovsky, V.; Inogamov, N.; Safronova, A. S.; Stafford, A.; Skobelev, I. Yu.; Pikuz, S. A.; Okuchi, T.; Seto, Y.; Tanaka, K. A.; Ishikawa, T.; Kodama, R.
2016-07-01
We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ˜660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ˜2%, implying an accuracy in the derived electron plasma temperature of 5%-10% in pump-probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ˜ 0.5, the electron temperature follows Te ˜ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.
Plasma-Based Mixing Actuation in Airflow, Quantitated by Probe Breakdown Fluorescence
NASA Astrophysics Data System (ADS)
Leonov, Sergey; Firsov, Alexander; Shurupov, Michail; Yarantsev, Dmitry; Ohio State University Team; JIHT RAS Team
2013-09-01
Effective mixing of fuel and oxidizer in air-breathing engine at compressible conditions is an essential problem of high-speed combustion due to short residence time of gas mixture in the combustor of limited length. The effect of the mixing actuation by plasma is observed because of the gasdynamic instability arisen after the long filamentary discharge of submicrosecond duration generated along the contact zone of two co-flown gases. The work is focused on detail consideration of the mechanism of gas instability, promoted by plasma, on effect of the discharge specific localization, and on diagnostics development for qualitative and quantitative estimation of the mixing efficiency. The dynamics of relative concentration of gas components is examined quantitatively by means of Probe Discharge Breakdown Fluorescence (PBF). In this method an optical emission spectra of weak filamentary high-voltage nanosecond probe discharge are collected from local zone of interest in airflow. The first measurements of the mixing efficiency in vicinity of wall-injected secondary gas are presented. It is shown that the method of PBF could deliver experimental data on state of the two-component medium with <1 mcs and <5 mm of time and spatial resolution, correspondingly. Funded by AFOSR under Dr Chiping Li supervision
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Miranda, B., E-mail: belen.lopez@ciemat.es; Zurro, B.; Baciero, A.
The study of plasma-wall interactions and impurity transport in the plasma fusion devices is critical for the development of future fusion reactors. An experiment to perform laser induced breakdown spectroscopy, using minor modifications of our existing laser blow-off impurity injection system, has been set up thus making both experiments compatible. The radiation produced by the laser pulse focused at the TJ-II wall evaporates a surface layer of deposited impurities and the subsequent radiation produced by the laser-produced plasma is collected by two separate lens and fiber combinations into two spectrometers. The first spectrometer, with low spectral resolution, records a spectrummore » from 200 to 900 nm to give a survey of impurities present in the wall. The second one, with high resolution, is tuned to the wavelengths of the Hα and Dα lines in order to resolve them and quantify the hydrogen isotopic ratio present on the surface of the wall. The alignment, calibration, and spectral analysis method will be described in detail. First experimental results obtained with this setup will be shown and its relevance for the TJ-II experimental program discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.
2017-01-01
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.
Enhanced target normal sheath acceleration based on the laser relativistic self-focusing
NASA Astrophysics Data System (ADS)
Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.
2014-06-01
The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.
López-Ferrer, Daniel; Hixson, Kim K.; Smallwood, Heather; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.
2009-01-01
A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultra-rapid digestion and thorough 18O labeling for quantitative protein comparisons. The reproducible and highly efficient method provided effective digestions in <1 min with a minimized amount of enzyme required compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as 18O labeling of such complex protein mixtures, which validated the application of this method for differential proteomic measurements. This approach is simple, reproducible, cost effective, rapid, and thus well-suited for automation. PMID:19555078
Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion
NASA Astrophysics Data System (ADS)
Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.
1992-01-01
Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.
Focusing experiments in plasma coaxial railguns
NASA Astrophysics Data System (ADS)
Driga, M. D.; Cook, R. W.; Thelen, R. F.
1986-11-01
Results are reported from experiments on focusing of plasma fired from a coaxial electromagnetic gun (CEMG). The plasma used, obtained by exploding a metallic fuse at the gun breech, comprised metal vapor, metallic liquid droplets and small chunks of solid metal. An azimuthal current, and thereby an axial field, was introduced at the breech of the CEMG by a solenoid. Previous studies indicated that the field would cause vaporized metal to form into a self-stabilizing toroidal plasma. Test shots instrumented with Languir probes and pick-up coils did not reveal the presence of toroidal plasma rings. However, post-mortem of the 30 cm rail showed that only one-third of the 3 mg Al fuse metal remained in the bore. Further, a toroidal hole was punched in a diagnostic screen at the bore exit after one shot.
NASA Astrophysics Data System (ADS)
Borets-Pervak, I. Yu; Vorob'ev, V. S.
1990-08-01
An analysis is made of the influence of the statistical scatter of the size of thermally insulated microdefects and of their number in the focusing spot on the threshold energies of plasma formation by microsecond laser pulses interacting with metal surfaces. The coordinates of the laser pulse intensity and the surface density of the laser energy are used in constructing plasma formation regions corresponding to different numbers of microdefects within the focusing spot area; the same coordinates are used to represent laser pulses. Various threshold and nonthreshold plasma formation mechanisms are discussed. The sizes of microdefects and their statistical characteristics deduced from limited experimental data provide a consistent description of the characteristics of plasma formation near polished and nonpolished surfaces.
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1974-01-01
Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.
Laser Scattering from the Dense Plasma Focus.
plasma focus (DPF) illuminated by a pulse of laser light. Scattering was observable from 10 nanoseconds prior to arrival of the collapse on axis and for an additional 50 nanoseconds. The frequency spectrum is markedly asymmetric about the laser frequency, a feature which is inconsistent with spectral expectations based on thermal particle distributions even if particle drifts or waves excitations are included. A model is postulated which attributes the asymmetry to lateral displacement of scattering region from the axis of the focus. Analysis based on this model yields
Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Pour, Maria Z. A.
2017-01-01
High voltage solar array interactions with the space environment can have a significant impact on array performance and spacecraft charging. Over the past 10 years, data from the International Space Station has allowed for detailed observations of these interactions over long periods of time. Some of the surprising observations have been floating potential transients, which were not expected and are not reproduced by existing models. In order to understand the underlying processes producing these transients, the temporal evolution of the plasma sheath surrounding the solar cells in low Earth orbit is being investigated. This study includes lumped element modeling and particle-in-cell simulation methods. This presentation will focus on recent results from the on-going investigations.
Vasudev, Milana C; Anderson, Kyle D; Bunning, Timothy J; Tsukruk, Vladimir V; Naik, Rajesh R
2013-05-22
Chemical vapor deposition (CVD) has been used historically for the fabrication of thin films composed of inorganic materials. But the advent of specialized techniques such as plasma-enhanced chemical vapor deposition (PECVD) has extended this deposition technique to various monomers. More specifically, the deposition of polymers of responsive materials, biocompatible polymers, and biomaterials has made PECVD attractive for the integration of biotic and abiotic systems. This review focuses on the mechanisms of thin-film growth using low-pressure PECVD and current applications of classic PECVD thin films of organic and inorganic materials in biological environments. The last part of the review explores the novel application of low-pressure PECVD in the deposition of biological materials.
Nanostructured materials: A novel approach to enhanced performance. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korth, G.E.; Froes, F.H.; Suryanarayana, C.
Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a viewmore » to increase their ductilities. The major findings of this project are reported.« less
Pink-beam focusing with a one-dimensional compound refractive lens
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...
2016-07-28
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
Taylor, Vivien F; Toms, Andrew; Longerich, Henry P
2002-01-01
The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.
NASA Astrophysics Data System (ADS)
Gribkov, V.; Van Oost, G.; Malaquias, A.; Herrera, J.
2006-10-01
Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions—to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J.
Ma, Rui; Wang, Linlin; Jin, Lei; Li, Zhiwen; Ren, Aiguo
2017-07-17
Optimal blood folate levels of women before pregnancy are critical to the prevention of neural tube defects (NTDs). However, few studies have focused on blood folate levels of women planning to become pregnant. The aims of this study were to assess plasma folate levels in women who planned to become pregnant in a population with high prevalence of NTDs, to identify factors associated with plasma folate levels, and to evaluate the risk of NTDs at the population level. A total of 2065 women were enrolled at the time of premarital health check-up in two rural counties in northern China from November 2009 to December 2012. Fasting venous blood samples were collected and plasma folate concentrations were measured by microbiological method. The overall median of plasma folate was 10.5 nmol/L. 50% of the women had a plasma folate level below 10.5 nmol/L, a cutoff for megaloblastic anemia, and 88% below 18 nmol/L, a proposed optimal plasma folate level for the prevention of NTDs. Folic acid supplementation was the only factor to be associated with plasma folate concentrations, but only 1.9% of the women reported having taken folic acid supplements. A population risk of 29.3 NTD cases per 10,000 births was predicted. Women who planned to become pregnant had very low plasma folate in the population. Folic acid supplementation was the only factor to be associated with a high plasma folate concentration. High NTD risk would remain if women would get pregnant without having taken folic acid supplements. Birth Defects Research 109:1039-1047, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ulanov, S. F.
1990-06-01
A method proposed for investigating the statistics of bulk optical breakdown relies on multifrequency lasers, which eliminates the influence of the laser radiation intensity statistics. The method is based on preliminary recording of the peak intensity statistics of multifrequency laser radiation pulses at the caustic using the optical breakdown threshold of K8 glass. The probability density distribution function was obtained at the focus for the peak intensities of the radiation pulses of a multifrequency laser. This method may be used to study the self-interaction under conditions of bulk optical breakdown of transparent dielectrics.
NASA Astrophysics Data System (ADS)
Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.
2014-07-01
Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.
Plasma cleaning of nanoparticles from EUV mask materials by electrostatics
NASA Astrophysics Data System (ADS)
Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.
2008-03-01
Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.
Propagation velocities of laser-produced plasmas from copper wire targets and water droplets
NASA Technical Reports Server (NTRS)
Song, Kyo-Dong; Alexander, Dennis R.
1994-01-01
Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.
Filamentary structures in dense plasma focus: Current filaments or vortex filaments?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José
2014-07-15
Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments frommore » interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.« less
Production of hard X rays in a plasma focus
NASA Technical Reports Server (NTRS)
Newman, C. E.; Petrosian, V.
1975-01-01
A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Shengtai; Jungman, Gerard
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
The interaction of intense, ultra-short microwave beams with the plasma generated by gas ionization
NASA Astrophysics Data System (ADS)
Shafir, G.; Cao, Y.; Bliokh, Y.; Leopold, J. G.; Levko, D.; Rostov, V.; Gad, R.; Fisher, A.; Bernshtam, V.; Krasik, Ya. E.
2018-03-01
Results of the non-linear interaction of an extremely short (0.6 ns) high power (˜500 MW) X-band focused microwave beam with the plasma generated by gas ionization are presented. Within certain gas pressure ranges, specific to the gas type, the plasma density is considerably lower around the microwave beam axis than at its periphery, thus forming guiding channel through which the beam self-focuses. Outside these pressure ranges, either diffuse or streamer-like plasma is observed. We also observe high energy electrons (˜15 keV), accelerated by the very high-power microwaves. A simplified analytical model of this complicated dynamical system and particle-in-cell numerical simulations confirm the experimental results.
Interferometry using subnanosecond pulses from TEA nitrogen lasers.
Schmidt, H; Salzmann, H; Strohwald, H
1975-09-01
The applicability of TEA nitrogen lasers emitting at 3371 A for high speed optical plasma interferometry of short lived plasmas is demonstrated. Interferograms of the dense phase of a 30-kJ plasma focus are obtained with an exposure time of less than 500 psec.
Preionization Techniques in a kJ-Scale Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea
2016-10-01
A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.
Investigation of the effects of plasma treatments on biodeteriorated ancient paper
NASA Astrophysics Data System (ADS)
Laguardia, L.; Vassallo, E.; Cappitelli, F.; Mesto, E.; Cremona, A.; Sorlini, C.; Bonizzoni, G.
2005-11-01
Deterioration of paper-based materials is mainly due to the degradation of cellulose caused by a lot of factors such as chemical attack due to acidic hydrolysis, oxidative agent, light, air pollution and biological attack and also due to the presence of microorganisms like bacteria and fungi. It is therefore desirable to focus the research activities on restoration and conservation techniques to develop appropriate treatments. The aim of this paper is the removal or reduction of the microbial contamination and paper consolidation by means of plasma treatment. For plasma processes, different gas mixtures are utilised, and the different gas mixtures are compared as a function of pressure, power, and treatment time. To demonstrate the efficiency of the sterilisation treatment, two fungi: Aspergillus niger and Penicillium funiculosum, commonly found in libraries and archives were spread on naturally aged paper (19th century). Microorganisms were let to grow by using the organic compounds found in the historical records as a sole source of carbon and energy. The microbial abatement was measured before and after the plasma treatment by using the standard plate count method. Surface chemical and morphological characterisation of paper before and after plasma treatment has been carried out by X-ray photoelectron spectroscopy (XPS) and ATR infrared spectroscopy (ATR FTIR). The tensile strength of the plasma-treated papers was also determined. CNR Patent, n° Mi2004A000068, 21/01/2004.
Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases
NASA Astrophysics Data System (ADS)
Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.
2018-01-01
We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.
Advanced Design Concepts for Dense Plasma Focus Devices at LLNL
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea
2017-10-01
The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Krauz, V. I.; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.
2015-05-01
The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5-3 Torr in discharges with energies of 0.3-0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.
Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro
2016-11-01
Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows amore » phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.« less
Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws
Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther
2013-01-01
Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085
Metal surface nitriding by laser induced plasma
NASA Astrophysics Data System (ADS)
Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.
1996-10-01
We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features as purity, thickness, and surface morphology.
Kavsak, Peter A; Malinowski, Paul; Roy, Chantele; Clark, Lorna; Lamers, Shana
2018-03-13
Analytical evaluation of high-sensitivity cardiac troponin (hs-cTn) assays, with particular attention to imprecision, interferences and matrix effects, at normal cTn concentrations, is of utmost importance as many different clinical algorithms use concentration cutoffs <10 ng/L for decision-making. The objective for the present analytical study was to compare the new Beckman Coulter hs-cTnI assay (Access hsTnI) to Abbott's hs-cTnI assay in different matrices and for different interferences, with a focus on concentrations <10 ng/L. The limit of blank (LoB) and the limit of detection (LoD) were determined in different matrices for the Beckman hs-cTnI assay. Passing-Bablok regression and difference plots were determined for 200 matched lithium heparin and EDTA plasma samples for the Beckman assay and 200 lithium heparin samples for the Abbott assay. Both EDTA and heparin plasma samples were also evaluated for stability under refrigerated conditions, for endogenous alkaline phosphatase interference and for hemolysis and icterus. The Beckman hs-cTnI assay LoB was 0.5 ng/L with the following range of LoDs=0.8-1.2 ng/L, with EDTA plasma yielding lower concentrations as compared to lithium heparin plasma (mean difference=-14.9%; 95% CI=-16.9 to 12.9). Below 10 ng/L, lithium heparin cTnI results from the Beckman assay were on average 1.1 ng/L (95% CI=0.7 to 1.5) higher than the Abbott results, with no difference between the methods when using EDTA plasma (mean difference =-0.1 ng/L; 95% CI=-0.3 to 0.2). Low cTnI concentrations were less effected by interferences in EDTA plasma. The Access hsTnI method can reliably detect normal cTnI concentrations with both lithium heparin and EDTA plasma being suitable matrices.
Working group report on beam plasmas, electronic propulsion, and active experiments using beams
NASA Technical Reports Server (NTRS)
Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.
1986-01-01
The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.
NASA Astrophysics Data System (ADS)
Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.
2017-03-01
The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.
ERIC Educational Resources Information Center
Najarian, Maya L.; Chinni, Rosemarie C.
2013-01-01
This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…
Preliminary characterization of a laser-generated plasma sheet
Keiter, P. A.; Malamud, G.; Trantham, M.; ...
2014-12-10
We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less
Nakov, Natalija; Bogdanovska, Liljana; Acevska, Jelena; Tonic-Ribarska, Jasmina; Petkovska, Rumenka; Dimitrovska, Aneta; Kasabova, Lilia; Svinarov, Dobrin
2016-11-01
In this research, as a part of the development of fast and reliable HPLC-MS/MS method for quantification of ibuprofen (IBP) enantiomers in human plasma, the possibility of IBP acylglucoronide (IBP-Glu) back-conversion was assessed. This involved investigation of in source and in vitro back-conversion. The separation of IBP enantiomers, its metabolite and rac-IBP-d3 (internal standard), was achieved within 6 min using Chiracel OJ-RH chromatographic column (150 × 2.1 mm, 5 μm). The followed selected reaction monitoring transitions for IBP-Glu (m/z 381.4 → 205.4, m/z 381.4 → 161.4 and m/z 205.4 → 161.4) implied that under the optimized electrospray ionization parameters, in source back-conversion of IBP-Glu was insignificant. The results obtained after liquid-liquid extraction of plasma samples spiked with IBP-Glu revealed that the amount of IBP enantiomers generated by IBP-Glu back-conversion was far <20% of lower limit of quantification sample. These results indicate that the presence of IBP-Glu in real samples will not affect the quantification of the IBP enantiomers; thereby reliability of the method was improved. Additional advantage of the method is the short analysis time making it suitable for the large number of samples. The method was fully validated according to the EMA guideline and was shown to meet all requirements to be applied in a pharmacokinetic study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980
NASA Technical Reports Server (NTRS)
Aston, G.
1980-01-01
An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.; Camacho-Lopez, S.
2010-11-15
This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, {lambda}=532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 {mu}J, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher onmore » previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].« less
Promoting Plasma Physics as a Career: A Generational Approach
NASA Astrophysics Data System (ADS)
Morgan, James
2005-10-01
A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.
Manipulation by multiple filamentation of subpicosecond TW KrF laser beam
NASA Astrophysics Data System (ADS)
Zvorykin, V. D.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.
2018-05-01
A self-focusing of TW-level subpicosecond UV KrF laser pulses in ambient air produces a few 100 randomly distributed filaments over 100-m propagation distance. A control of multiple filamentation process by a number of methods was demonstrated in the present work envisaging applications for a HV discharge guiding, remote excitation of an atmospheric air laser, MW radiation transfer by virtual plasma waveguide, as well as filamentation suppression to improve short pulse parameters in direct amplification scheme. Under the laser beam focusing, a multitude of filaments coalesced into a superfilament with highly increased intensity and plasma conductivity. A superradiant forward lasing was obtained in the superfilament around 1.07-µm wavelength of atmospheric nitrogen. A regular 2D array of a 100 superfilaments was configured over 20-m distance by Fresnel diffraction on periodic amplitude masks. Effective Kerr defocusing and a subsequent filaments suppression over 50-m distance was demonstrated in Xe due to 2-photon resonance of laser radiation with 6p state being accompanied by a narrow-angle coherent conical emission at 828-nm wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.
2017-02-15
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less
The inverse skin effect in the Z-pinch and plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usenko, P. L., E-mail: otd4@expd.vniief.ru; Gaganov, V. V.
The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.
Modelling of the internal dynamics and density in a tens of joules plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel
2012-01-15
Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.
Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP
NASA Astrophysics Data System (ADS)
Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.
2017-10-01
In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, John M., E-mail: finn@lanl.gov
2015-03-15
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint.more » We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012)], appears to work very well.« less
NASA Astrophysics Data System (ADS)
Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.
2018-03-01
Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.
A Wide Field of View Plasma Spectrometer
Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; ...
2016-07-01
Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less
NASA Astrophysics Data System (ADS)
Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana
2016-12-01
The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.
Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana
2016-01-01
The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34–80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics. PMID:28000704
Ferreira-Gonzalez, A; Yanovich, S; Langley, M R; Weymouth, L A; Wilkinson, D S; Garrett, C T
2000-01-01
Accurate and rapid diagnosis of CMV disease in immunocompromised individuals remains a challenge. Quantitative polymerase chain reaction (QPCR) methods for detection of CMV in peripheral blood mononuclear cells (PBMC) have improved the positive and negative predictive value of PCR for diagnosis of CMV disease. However, detection of CMV in plasma has demonstrated a lower negative predictive value for plasma as compared with PBMC. To enhance the sensitivity of the QPCR assay for plasma specimens, plasma samples were centrifuged before nucleic-acid extraction and the extracted DNA resolubilized in reduced volume. Optimization of the nucleic-acid extraction focused on decreasing or eliminating the presence of inhibitors in the pelleted plasma. Quantitation was achieved by co-amplifying an internal quantitative standard (IS) with the same primer sequences as CMV. PCR products were detected by hybridization in a 96-well microtiter plate coated with a CMV or IS specific probe. The precision of the QPCR assay for samples prepared from untreated and from pelleted plasma was then assessed. The coefficient of variation for both types of samples was almost identical and the magnitude of the coefficient of variations was reduced by a factor of ten if the data were log transformed. Linearity of the QPCR assay extended over a 3.3-log range for both types of samples but the range of linearity for pelleted plasma was 20 to 40,000 viral copies/ml (vc/ml) in contrast to 300 to 400,000 vc/ml for plasma. Thus, centrifugation of plasma before nucleic-acid extraction and resuspension of extracted CMV DNA in reduced volume enhanced the analytical sensitivity approximately tenfold over the dynamic range of the assay. Copyright 2000 Wiley-Liss, Inc.
Hou, Huaming; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E
2017-07-18
Recently, laser ablated molecular isotopic spectrometry (LAMIS) has expanded its capability to explore molecules formation mechanism in laser-induced plasma in addition to isotope analysis. LAMIS is a powerful tool for tracking the origination of atoms that is involved in formation of investigated molecules by labeling atoms with their isotopic substitution. The evolutionary formation pathways of organic molecules, especially of C 2 dimers and CN radicals, were frequently reported. However, very little is known about the formation pathways for metallic radicals and heterodimers in laser ablated plasma. This research focuses on elucidating the formation pathways of AlO radicals in femtosecond laser ablated plasma from 18 O-labeled Al 2 O 3 pellet. Plasmas expanding with strong forward bias in the direction normal to the sample surface were generated in the wake of a weakly ionized channel created by a femtosecond laser. The formation mechanism of AlO and influence of air were investigated with multiple plasma diagnostic methods such as monochromatic fast gating imaging, spatiotemporal resolved optical emission spectroscopy, and LAMIS. An advanced LAMIS fitting procedure was used to deduce the spatiotemporal distributions of Al 18 O and Al 16 O number densities and also their ratios. We found that the Al 16 O/Al 18 O number density ratio is higher for plasma portion closer to the sample surface, which suggests that chemical reactions between the plasma plume and ambient air are more intense at the tail of the plasma. The results also reveals that direct association of free Al and O atoms is the main mechanism for the formation of AlO at the early stage of the plasma. To the contrast, chemical reactions between plasma materials and ambient oxygen molecules and the isotope exchange effect are the dominant mechanisms of the formation of AlO and evolution of Al 16 O/Al 18 O number density ratio at the late stage of the plasma.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J. F.; Ma, Q. M.; Song, T.
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusionmore » coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.« less
Uranium plasma radiates in the UV spectrum
NASA Technical Reports Server (NTRS)
Williams, M. D.
1973-01-01
Description of an experiment designed to produce and spectroscopically analyze a simulated gas core reactor plasma in the spectral range from 300 to 1300 A. The plasma was produced by focusing the radiation of a Q-spoiled ruby laser onto the flat surface of a pure U-238 specimen.
Determining tumor blood flow parameters from dynamic image measurements
NASA Astrophysics Data System (ADS)
Libertini, Jessica M.
2008-11-01
Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, D.; Coelho, R.; Collaboration: JET-EFDA Contributors
2013-08-15
The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already provenmore » their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.« less
NASA Astrophysics Data System (ADS)
Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo
2012-10-01
Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.
Space and time resolved emission of hard X-rays from a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.
Study on Ferroelectric Thick Film Insulator Sleeve On Plasma Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Gustavo; Silva, Patricio; Moreno, Jose
The effect of ferroelectric lead germanate Pb5Ge3O11 (PGO) thick film in the alumina insulator sleeve of the 400 Joule Mather-type plasma focus device, PF-400J is studied. The breakdown phase along the insulator is fundamental for the formation of a homogeneous and symmetric current sheath, that is essential for a good plasma pinching, high neutron yield and X-ray emissions. For over several hundreds of electrical discharges, the films show good mechanical and electric performance. From the beginning the operating system is highly reproducible, shot to shot, with a clear definition of the plasma pinch on the axis of discharge. The grademore » of influence of the electron emission from the ferroelectric is experimentally studied.« less
A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.
Robitaille, Line; Hoffer, L John
2016-04-21
In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.
Toroidal Alfven Waves in Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Berk, Herbert L.
2003-10-01
In burning plasma experiments, alpha particles have speeds that readily resonate with shear Alfven waves. It is essential to understand this Alfven wave spectrum for toroidal plasma confinement. Most interest has focused on the Toroidal Alfven Eigenmode (TAE), and a method of analysis has been developed to understand the structure of this mode at a flux surface with a given magnetic shear. However, this model fails when the shear is too low or reversed. In this case a new method of analysis is required, which must incorporate novel fluid-like effects from the energetic particles [1] and also include effects that are second order in the inverse toroidal aspect ratio. With this new method [2] we can obtain spectral features that agree with experimental results. In particular, this theory gives an explanation for the so-called Cascade modes that have been observed in JT-60 [3], JET [4], and TFTR [5]. For these Cascade modes, slow upward frequency sweeping is observed, beginning from frequencies below the TAE range but then often blending into the TAE range of frequencies. The theoretical understanding of the Cascades modes has evolved to the point where these modes can be used as a diagnostic "signature" [6] to experimentally optimize the formation of thermal barriers in reversed-shear operation when the minimum q value is an integer. [1] H. L. Berk et al., Phys. Rev. Lett. 87, 185 (2002). [2] B. N. Breizman et al., submitted to Phys. Plasmas (2003). [3] H. Kimura et al., Nucl. Fusion 38, 1303 (1998). [4] S. Sharapov et al., Phys. Lett. A 289, 127 (2001); S. Sharapov, Phys. Plasmas 9, 2027 (2002). [5] R. Nazikian, H. L. Berk, et al., Bull. Am. Phys. Soc. 47, 327 (2002). [6] E. Joffrin et al., Plasma Phys. Contr. Fusion 44, 1739 (2002); E. Joffrin et al., in Proc. 2002 IAEA Fusion Energy Conference, submitted to Nucl. Fusion.
Indirect monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikuz, T. A., E-mail: tatiana.pikuz@eie.eng.osaka-u.ac.jp; Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871 Japan; Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412
We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ∼660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and tomore » control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ∼2%, implying an accuracy in the derived electron plasma temperature of 5%–10% in pump–probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ∼ 0.5, the electron temperature follows T{sub e} ∼ I{sub las}{sup 2/3}. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.« less
NASA Technical Reports Server (NTRS)
Bostick, W. H.; Nardi, V.
1985-01-01
Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.
NASA Astrophysics Data System (ADS)
Bostick, W. H.; Nardi, V.
1985-08-01
Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.
2010-10-01
A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.
Borthakur, T K; Talukdar, N; Neog, N K; Rao, C V S; Shyam, A
2011-10-01
A qualitative study on the performance of cylindrical vacuum photodiodes (VPDs) for x-ray detection in plasma focus device has been carried out. Various parameters of VPD such as electrode's diameter, electrode's separation, and its sensitivity are experimentally tested in plasma focus environment. For the first time it is found experimentally that the electrode-separation in the lateral direction of the two coaxial electrodes of cylindrical VPD also plays an important role to increase the efficiency of the detector. The efficiency is found to be highest for the detector with smaller cathode-anode lateral gap (1.5 mm) with smaller photo cathode diameter (10 mm). A comparison between our VPD with PIN (BPX-65) diode as an x-ray detector has also been made.
Synthesis of Biocompatible Surfaces by Different Techniques
2002-04-01
production . In the other hand, polymers are widely used in bone/cartilage implants, both, as polymeric materials themselves and as a polymeric surface on a...focus on the production of HA scaffolds by a sol-gel method using different drying processes, and on the study of the plasma polymerization technique to...precursor at 3. SA-stoichiometric amount (to maintain Ca/P= 1,67) of the calcium precursor solution (3 M solution in anhidrous etanol ) was added dropwise
NASA Astrophysics Data System (ADS)
Paci, Jeffrey T.; Belytschko, Ted; Schatz, George C.
2006-11-01
We examine the mechanical properties of ultrananocrystalline diamond (UNCD) produced by plasma-enhanced chemical vapor deposition, with a focus on thin films created with high levels of nitrogen in the plasma. A model with several of the attributes of the corresponding experimental UNCD is developed and its properties explored. Simulations are performed using semiempirical quantum mechanics and density functional theory. Our results predict a Young’s modulus of 0.69TPa , failure strain of 0.13, and a tensile fracture stress of 61GPa which are 66%, 100%, and 61%, respectively, of those predicted for UNCD produced in the absence of nitrogen. As in the case of UNCD produced without nitrogen in the plasma deposition, the fracture stress (σf=61GPa) is very large compared to that observed experimentally; these indicate that the experimental specimens contain large defects and some estimates are made of the size of these defects using the Griffith formula with the surface energy computed here. The effect of nitrogen on the mechanical properties of atom-wide UNCD grain boundaries is also investigated. Throughout, the accuracy of the various simulation methods is compared and evaluated.
NASA Astrophysics Data System (ADS)
Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.
2018-03-01
A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.
A review on microbiological decontamination of fresh produce with nonthermal plasma.
Pignata, C; D'Angelo, D; Fea, E; Gilli, G
2017-06-01
Food safety is a critical public health issue for consumers and the food industry because microbiological contamination of food causes considerable social and economic burdens on health care. Most foodborne illness comes from animal production, but as of the mid-1990s in the United States and more recently in the European Union, the contribution of fresh produce to foodborne outbreaks has rapidly increased. Recent studies have suggested that sterilization with nonthermal plasma could be a viable alternative to the traditional methods for the decontamination of heat-sensitive materials or food because this technique proves capable of eliminating micro-organisms on surfaces without altering the substrate. In the last 10 years, researchers have used nonthermal plasma in a variety of food inoculated with many bacterial species. All of these experiments were conducted exclusively in a laboratory and, to our knowledge, this technique has not been used in an industrial setting. Thus, the purpose of this review is to understand whether this technology could be used at the industrial level. The latest researches using nonthermal plasma on fresh produce were analysed. These evaluations have focused on the log reduction of micro-organisms and the treatment time. © 2017 The Society for Applied Microbiology.
Scalable graphene production: perspectives and challenges of plasma applications
NASA Astrophysics Data System (ADS)
Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth
2016-05-01
Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.
Scalable graphene production: perspectives and challenges of plasma applications.
Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth
2016-05-19
Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.
Polidori, David; Rowley, Clarence
2014-07-22
The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.
Royère, C
1999-03-01
The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.
Operational characteristics of a high voltage dense plasma focus
NASA Astrophysics Data System (ADS)
Woodall, D. M.
1985-11-01
A high voltage dense plasma focus powered by a single stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120 kV, energy--20 kJ, short circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The outer electrode diameter is 10.16 cm. Rundown length is about 10 cm, corresponding to a bank quarter period of about 900 millohms ns. Rundown L is about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and related topics. Theoretical motivation for high voltage operation is presented. The design, construction and operation of this device are discussed in detail. Results and analysis of measurements obtained are presented. Device operation was investigated primarily at 80 kV (9 kJ), with a gas fill of about 1 torr H2, plus 3-5 percent A. The following diagnostics were used: gun voltage and current measurements; filtered, time resolved x ray PIN measurements of the pinch region; time integrated x ray pinhole photographs of the pinch region; fast frame visible light photographs of the sheath during rundown; and B probe measurements of the current sheath shortly before collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-05-15
The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less
Plasma Discharge Process in a Pulsed Diaphragm Discharge System
NASA Astrophysics Data System (ADS)
Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu
2014-12-01
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.
Adipose-derived stem cells for cartilage regeneration - moving towards clinical applicability
2013-01-01
Despite multiple methods of treatment and a wealth of research in the field of regenerative medicine focusing on cartilage defects, the management of cartilage injuries remains a challenge. A recent study by Van Pham and colleagues proposes a method for preconditioning autologous adipose-derived stem cells. Their study offers evidence about the increased proliferative and chondrogenetic capabilities of platelet-rich plasma-treated adipose-derived stem cells and the increased efficiency of these in treating articular cartilage defects in mice. Even though the method needs further elaboration and the composition of the repair tissue requires investigation, the results are promising for the design of clinically acceptable cell therapies aimed at cartilage regeneration. PMID:24079605
Helium microwave-induced plasmas for element specific detection in chromatography
NASA Astrophysics Data System (ADS)
Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.
1994-01-01
This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.
Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster
2014-06-01
Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of
Magnetospheric radio and plasma wave research - 1987-1990
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1991-01-01
This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.
A plasma lens for a linear collider final focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norem, J.; Cline, D.B.; Cole, B.
High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.
Quantification of SAA1 and SAA2 in lung cancer plasma using the isotype-specific PRM assays.
Kim, Yeoun Jin; Gallien, Sebastien; El-Khoury, Victoria; Goswami, Panchali; Sertamo, Katriina; Schlesser, Marc; Berchem, Guy; Domon, Bruno
2015-09-01
The quantification of plasma proteins using the high resolution and accurate mass (HR/AM)-based parallel reaction monitoring (PRM) method provides an immediate benefit over the conventional SRM-based method in terms of selectivity. In this study, multiplexed PRM assays were developed to analyze isotypes of serum amyloid A (SAA) proteins in human plasma with a focus on SAA1 and SAA2. Elevated plasma levels of these proteins in patients diagnosed with lung cancer have been reported in previous studies. Since SAA1 and SAA2 are highly homologous, the available immunoassays tend to overestimate their concentrations due to cross-reactivity. On the other hand, when mass spectrometry (MS)-based assays are used, the presence of the several allelic variants may result in a problem of underestimation. In the present study, eight peptides that represent the target proteins at three different levels: isotype-specific (SAA1α, SAA 1β, SAA1γ, SAA2α, SAA2β), protein-specific (SAA1 or SAA2), and pan SAA (SAA1 and SAA2) were chosen to differentiate SAAs in lung cancer plasma samples using a panel of PRM assays. The measurement of specific isotypes, leveraging the analytical performance of PRM, allowed to quantify the allelic variants of both target proteins. The isotypes detected were corroborated with the genetic information obtained from the same samples. The combination of SAA2α and SAA2β assays representing the total SAA2 concentration demonstrated a superior analytical outcome than the previously used assay on the common peptide when applied to the detection of lung cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Li, Bing; Wang, Qi; Li, Chengzhi; Zhang, Yinming; Lin, Hancheng; Wang, Zhenyuan
2017-02-01
Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48 h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ± 1.92 h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minjeaud, Sebastian; INRIA project CASTOR; Pasquetti, Richard, E-mail: richard.pasquetti@unice.fr
Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. Tomore » capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.« less
Ion acceleration in a plasma focus
NASA Technical Reports Server (NTRS)
Gary, S. P.
1974-01-01
The electric and magnetic fields associated with anomalous diffusion to the axis of a linear plasma discharge are used to compute representative ion trajectories. Substantial axial acceleration of the ions is demonstrated.
Plasma phenomena at magnetic neutral points
NASA Technical Reports Server (NTRS)
Sturrock, P. A.
1975-01-01
A model of the plasma focus is considered, in which large axial electric fields are induced by the imploding current sheet during the final few nanoseconds of the collapse phase. This field provides a mechanism for creation of a beam of electrons of highly suprathermal energies. For this beam, the bremsstrahlung radiation is calculated, which is expected either from electron-deuteron collisions in the focused plasma itself or from the beam as it reaches the walls of the device. Comparison with experimental results indicates that the walls are the more likely source of these hard X-rays and also find qualitative agreement of the expected angular distribution of X-rays with experiment.
Filamentation in the pinched column of the dense plasma focus
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-03-01
The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, K. N., E-mail: mitrkn@inbox.ru; Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru; Grabovski, E. V.
The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with amore » dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.« less
Ghobeira, Rouba; Philips, Charlot; Declercq, Heidi; Cools, Pieter; De Geyter, Nathalie; Cornelissen, Ria; Morent, Rino
2017-01-24
For most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy. Bioresponsive properties are evaluated by performing cell culture tests. The results show that air and argon plasmas decrease the WCA significantly due to the incorporation of oxygen-containing functionalities onto the PCL surface, without modifying its morphology. Extended treatment times lead to PCL degradation, especially in the case of air plasma. In addition to surface modification, the plasma potential to sterilize PCL is studied with appropriate treatment times, but sterility has not been achieved so far. Therefore, plasma-modified films are subjected to UV, H 2 O 2 plasma (HP) and ethylene oxide (EtO) sterilizations. UV exposure of 3 h does not alter the PCL physico-chemical properties. A decreased wettability is observed after EtO sterilization, attributable to the modification of PCL chain ends reacting with EtO molecules. HP sterilization increases the WCA of the plasma-treated samples, presumably due to the scission of the hydrophilic bonds generated during the prior plasma treatments. Moreover, HP modifies the PCL surface morphology. For all the sterilizations, an improved cell adhesion and proliferation is observed on plasma-treated films compared to untreated ones. EtO shows the lowest proliferation rate compared to HP and UV. Overall, of the three sterilizations, UV is the most effective, since the physical alterations provoked by HP might interfere with the structural integrity when it comes to 3D scaffolds, and the chemical modifications caused by EtO, in addition to its toxicity, interfere with PCL bioactivity.
Martinkova, Pavla; Opatrilova, Radka; Kruzliak, Peter; Styriak, Igor; Pohanka, Miroslav
2016-05-01
Magnetic particles (MPs) are currently used as a suitable alternative for peroxidase in the construction of novel biosensors, analytic and diagnostic methods. Their better chemical and thermal stabilities predestine them as appropriate pseudo-enzymatic catalysts. In this point of view, our research was focused on preparation of simply and fast method for immobilization of glucose oxidase onto surface of MPs with peroxidase-like activity. Spectrophotometric method (wavelength 450 nm) optimized for glucose determination using modified MPs has been successfully developed. Concentration curve for optimization of method was assayed, and Michaelis-Menten constant (K m) calculated, maximum reaction rate (V max), limit of detection, and correlation coefficient were determined to be 0.13 mmol/l (2.34 mg/dl), 1.79 pkat, 3.74 µmol/l (0.067 mg/dl), and 0.996, respectively. Interferences of other sugars such as sucrose, sorbitol, deoxyribose, maltose, and fructose were determined as well as effect of substances presenting in plasma (ascorbic acid, reduced glutathione, trolox, and urea). Results in comparison with positive and negative controls showed no interferences of the other sugars and no influence of plasma substances to measuring of glucose. The constructed method showed corresponding results with linear dependence and a correlation coefficient of 0.997. Possibility of repeated use of modified MPs was successfully proved.
Plasma Metamaterials for Arbitrary Complex-Amplitude Wave Filters
2013-09-10
plasmas as reflectors , 4 absorbers, 4,5 and antennae 6 of electromagnetic waves. In contrast with the other materials in these devices, parameters...are controlled using launching antenna and high-power wave sources. One of the fundamental facts we have learned in microwave plasmas is that...metamaterials.” 29 In this report, we demonstrate the functional composites of plasmas and metamaterials, and the focusing point is verification of
Plasma based optical guiding of an amplitude-modulated electromagnetic beam
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2015-06-01
We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.
NASA Astrophysics Data System (ADS)
Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.
2014-08-01
This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.
Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.
2013-10-01
Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.
Effect of insulator sleeve material on the x-ray emission from a plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, S.; Badar, M. A.; Shafiq, M.
The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves suchmore » as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.« less
Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S
2018-06-02
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Dispersion and waves in bounded plasmas with subwavelength inhomogeneities: Genesis of MEFIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Sudeep
Bounded plasma exhibit many interesting behavior that are not found in plasmas of 'infinite' extent such as space and astrophysical plasmas. Our studies have revealed that the dispersion properties of waves in a bounded magnetoplasma deviates considerably from the predictions of the Clemmow-Mullaly-Allis (CMA) model, giving rise to new regimes of wave propagation and absorption. The anisotropy of the medium dictated by the length scales of plasma nonuniformity and magnetostatic field inhomogeneity lead to rotation of the polarization axis an effect similar to the Cotton-Mouton effect in a magneto-optic medium but with distinct differences due to wave induced resonances. Thismore » article highlights some of these interesting effects observed experimentally and corroborated with Monte Carlo simulations. One of the principal outcomes of this research is the genesis of a novel multielement focused ion beam (MEFIB) system that utilizes compact bounded plasmas in a minimum – B field to provide intense focused ion beams of a variety of elements for new research in nanoscience and technology.« less
EDITORIAL: Focus on Plasma Medicine
NASA Astrophysics Data System (ADS)
Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.
2009-11-01
'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture M K Singh, A Ogino and M Nagatsu Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma H J Lee, C H Shon, Y S Kim, S Kim, G C Kim and M G Kong The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air A Helmke, D Hoffmeister, N Mertens, S Emmert, J Schuette and W Vioel Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet D L Bayliss, J L Walsh, G Shama, F Iza and M G Kong The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging René Pompl, Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W Stark, Takuya Urayama, Shuitsu Fujii and Gregor Eugen Morfill Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure Mi Hee Lee, Bong Joo Park, Soo Chang Jin, Dohyun Kim, Inho Han, Jungsung Kim, Soon O Hyun, Kie-Hyung Chung and Jong-Chul Park Cell permeabilization using a non-thermal plasma M Leduc, D Guay, R L Leask and S Coulombe Physical and biological mechanisms of direct plasma interaction with living tissue Danil Dobrynin, Gregory Fridman, Gary Friedman and Alexander Fridman Nosocomial infections-a new approach towards preventive medicine using plasmas G E Morfill, T Shimizu, B Steffes and H-U Schmidt Generation and transport mechanisms of chemical species by a post-discharge flow for inactivation of bacteria Takehiko Sato, Shiroh Ochiai and Takuya Urayama Low pressure plasma discharges for the sterilization and decontamination of surfaces F Rossi, O Kylián, H Rauscher, M Hasiwa and D Gilliland Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding S P Kuo, O Tarasenko, J Chang, S Popovic, C Y Chen, H W Fan, A Scott, M Lahiani, P Alusta, J D Drake and M Nikolic A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine QY Nie, Z Cao, C S Ren, D Z Wang and M G Kong A novel plasma source for sterilization of living tissues E Martines, M Zuin, R Cavazzana, E Gazza, G Serianni, S Spagnolo, M Spolaore, A Leonardi, V Deligianni, P Brun, M Aragona, I Castagliuolo and P Brun Designing plasmas for chronic wound disinfection T Nosenko, T Shimizu and G E Morfill Plasma medicine: an introductory review M G Kong, G Kroesen, G Morfill, T Nosenko, T Shimizu, J van Dijk and J L Zimmermann
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L.
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less
FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, Pierre
2017-11-03
Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused ourmore » efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.« less
Hahn, David W; Omenetto, Nicoló
2010-12-01
Laser-induced breakdown spectroscopy (LIBS) has become a very popular analytical method in the last decade in view of some of its unique features such as applicability to any type of sample, practically no sample preparation, remote sensing capability, and speed of analysis. The technique has a remarkably wide applicability in many fields, and the number of applications is still growing. From an analytical point of view, the quantitative aspects of LIBS may be considered its Achilles' heel, first due to the complex nature of the laser-sample interaction processes, which depend upon both the laser characteristics and the sample material properties, and second due to the plasma-particle interaction processes, which are space and time dependent. Together, these may cause undesirable matrix effects. Ways of alleviating these problems rely upon the description of the plasma excitation-ionization processes through the use of classical equilibrium relations and therefore on the assumption that the laser-induced plasma is in local thermodynamic equilibrium (LTE). Even in this case, the transient nature of the plasma and its spatial inhomogeneity need to be considered and overcome in order to justify the theoretical assumptions made. This first article focuses on the basic diagnostics aspects and presents a review of the past and recent LIBS literature pertinent to this topic. Previous research on non-laser-based plasma literature, and the resulting knowledge, is also emphasized. The aim is, on one hand, to make the readers aware of such knowledge and on the other hand to trigger the interest of the LIBS community, as well as the larger analytical plasma community, in attempting some diagnostic approaches that have not yet been fully exploited in LIBS.
2014-01-01
Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018
NASA Technical Reports Server (NTRS)
Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)
2014-01-01
An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.
Summary Report on Controlled Thermonuclear Synthesis,
stellarator and the tokamak. Adiabatic magnetic traps are also briefly discussed, as well as the plasma focus . The paper is a very brief generalization of the current state of high-temperature plasma physics. (Author)
Gamma ray measurements with photoconductive detectors using a dense plasma focus.
May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C
2014-11-01
Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.
Dynamics of ions generated by 2.3 kJ UNU/ICTP plasma focus device
NASA Astrophysics Data System (ADS)
Tangitsomboon, P.; Ngamrungroj, D.; Chandrema, E.; Mongkolnavin, R.
2017-09-01
UNU/ICTP Plasma Focus Device has been used as an ions source in many applications. In this paper, the full dynamic range of argon ions produced by the Plasma Focus Device from its initial phase through to beyond the focussing phase of the plasma is shown experimentally. The average speed of the ions is determined by measuring time taken for ions to reach different positions using magnetic probes and ion probes. Also, by adapting a well-established computational model that represents the dynamics of plasma in such device, it is also possible to determine the speed of these ions up to the point where the movement of the plasma sheath under the Lorentz force is completed. However, it was found that the speed determined by the computational model is higher in comparison with the values obtained experimentally at all different operating pressures. The ions’ speed found for operating pressure of 0.5 mbar, 1.0 mbar, 1.5 mbar and 2.0 mbar were 5.16 ± 0.04 cm/μs, 4.24 ± 0.04 cm/μs, 3.81 ± 0.03cm/μs and 3.16 ± 0.04 cm/μs respectively. These correspond to the ion energy of 551.38 ± 8.55 eV, 372.29 ± 7.02 eV, 300.61 ± 4.73 eV and 206.79 ± 5.24 eV.
The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease.
Winkler, Anne M; Koepsell, Scott A
2015-11-01
The purpose of this review is to discuss the use of convalescent plasma for the treatment of emerging infectious diseases, focusing on the recent use for the treatment of Ebola virus disease (EVD). Ebola convalescent plasma has been used as a therapy for treatment of EVD during the 2014 West Africa epidemic. Several cases from the United States and Europe have been recently published, in addition to multiple ongoing clinical trials in the United States and West Africa. Even more recently, convalescent plasma has been used for treatment of individuals with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Although the first reports of successful treatment with passive immune therapy date back to the early 1900s, convalescent plasma has materialized as a possible therapy for patients who develop infection from one of the emerging infectious diseases such as EVD or MERS-CoV, although the efficacy of such therapy has yet to be proven in clinical trials.
Kwok, Wai Him; Ho, Emmie N M; Lau, Ming Yip; Leung, Gary N W; Wong, April S Y; Wan, Terence S M
2013-03-01
In recent years, there has been an ongoing focus for both human and equine doping control laboratories on developing detection methods to control the misuse of peptide therapeutics. Immunoaffinity purification is a common extraction method to isolate peptides from biological matrices and obtain sufficient detectability in subsequent instrumental analysis. However, monoclonal or polyclonal antibodies for immunoaffinity purification may not be commercially available, and even if available, such antibodies are usually very costly. In our study, a simple mixed-mode anion exchange solid-phase extraction cartridge was employed for the extraction of seven target peptides (GHRP-1, GHRP-2, GHRP-6, ipamorelin, hexarelin, CJC-1295, and N-acetylated LKKTETQ (active ingredient of TB-500)) and their in vitro metabolites from horse plasma. The final extract was subject to ultra-high-performance liquid chromatographic separation and analysed with a hybrid high-resolution mass spectrometer. The limits of detection for all seven peptides were estimated to be less than 50 pg/mL. Method validation was performed with respect to specificity, precision, and recovery. The applicability of this multi-analyte method was demonstrated by the detection of N-acetylated LKKTETQ and its metabolite N-acetylated LK from plasma samples obtained after subcutaneous administration of TB-500 (10 mg N-acetylated LKKTETQ) to two thoroughbred geldings. This method could easily be modified to cover more bioactive peptides, such as dermorphin, β-casomorphin, and desmopressin. With the use of high-resolution mass spectrometry, the full-scan data acquired can also be re-processed retrospectively to search for peptides and their metabolites that have not been targeted at the time of analysis. To our knowledge, this is the first identification of in vitro metabolites of all the studied peptides other than TB-500 in horses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Subodh; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P.
Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yieldmore » of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.« less
Diagnostics of ion beam generated from a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Lim, L. K.; Ngoi, S. K.; Wong, C. S.; Yap, S. L.
2014-03-01
Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 1011 per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dergachev, A A; Kandidov, V P; Shlenov, S A
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
2001-03-19
Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on
2010-03-01
Reliable spiking of the airstream with metals proved to be a challenge . Based on reference method results, it is unclear whether delivery of the...etc that challenge the pollutant analyzer part of the CEMS (and as much of the whole system as possible), but which do not challenge the entire...calibration, when developed, will be acceptable as a procedure for determining RA. Such a procedure will involve challenging the entire CEMS, including the
Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment
NASA Astrophysics Data System (ADS)
Fridman, Alexander
2015-09-01
Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.
NASA Astrophysics Data System (ADS)
Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemyslaw; Jarocki, Roman; Fiedorowicz, Henryk; Limpouch, Jiri
2018-01-01
Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm) laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis) range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE), the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.
NASA Astrophysics Data System (ADS)
Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao
2018-06-01
Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.
An Analytic Model for the Compression of Plasma Toroids
1990-10-01
chamber are only 18 cm apart in the formation section, and the total chamber length can be several meters. The concept is to form a confined plasma ring , and...Focusing of Magnetically Confined Plasma Rings ," Physical Review Letters, Vol. 61, No. 25, pp.2843-2846, 19 December 1988. 2. Turner, W. C., Goldenbaum, G
Process for forming exoergic structures with the use of a plasma
Kelly, M.D.
1987-05-29
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
1993-02-01
currents can be reached by optimizing the electrode geometry and the charging circuit voltage and that the equivalent circuit modelling provides a realistic basis for analyzing plasma focus pinch dynamics.
Finn, John M.
2015-03-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less
Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses
MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.
1988-01-01
A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).
Miles, Dale R; Mesfin, Mimi; Mody, Tarak D; Stiles, Mark; Lee, Jean; Fiene, John; Denis, Bernie; Boswell, Garry W
2006-05-01
Liquid chromatography-fluorescence (LC-FLS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC-FLS method exhibited the greatest sensitivity (0.0057 microg mL(-1)), and was used for pharmacokinetic, biodistribution, and protein binding studies with small sample sizes or low MGd concentrations. The LC-MS/MS method, which exhibited a short run time and excellent selectivity, was used for routine clinical plasma sample analysis. The ICP-MS method, which measured total Gd, was used in conjunction with LC methods to assess MGd stability in plasma. All three methods were validated using human plasma. The LC-FLS method was also validated using plasma, liver and kidneys from mice and rats. All three methods were shown to be accurate, precise and robust for each matrix validated. For three mice, the mean (standard deviation) concentration of MGd in plasma/tissues taken 5 hr after dosing with 23 mg kg(-1) MGd was determined by LC-FLS as follows: plasma (0.025+/-0.002 microg mL(-1)), liver (2.89+/-0.45 microg g(-1)), and kidney (6.09+/-1.05 microg g(-1)). Plasma samples from a subset of patients with brain metastases from extracranial tumors were analyzed using both LC-MS/MS and ICP-MS methods. For a representative patient, > or = 90% of the total Gd in plasma was accounted for as MGd over the first hour post dosing. By 24 hr post dosing, 63% of total Gd was accounted for as MGd, indicating some metabolism of MGd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Studies of ˜ps laser driven plasmas in line focus geometry
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Al-Hadithi, Y.; Dwivedi, L.; Behjat, A.; Demir, A.; Holden, M.; Krishnan, J.; Zhang, J.; Key, M. H.; Neely, D.; Norreys, P. A.; Lewis, C. L. S.; MacPhee, A. G.
1995-05-01
Measurements of X-ray emission along linear plasmas produced in short pulse (2-12 ps) experiments using the Rutherford Appleton Laboratory glass (1.06 μm) and KrF (0.268 μm) lasers are interpreted to provide information about the uniformity and lateral and axial energy transport of X-ray laser gain media. For fiber targets, the difficulties of achieving uniform irradiation and accurate plasma length measurements are illustrated and discussed. For slab targets, it is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for spot focus experiments.
Dose Measurements in a 20-J Repetitive Plasma Focus
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.; Mazandarani, A.
2018-02-01
In this article, the results of X-ray dose measurements executed using thermoluminescent dosimeters in experiments with a very small (20 J) repetitive plasma focus device named SORENA-1 are presented and analyzed. The working gas in these experiments was Argon. Also, pinch formation in experiments with this device has been observed. This device has been designed and constructed in Plasma and Nuclear Fusion Research School of Nuclear Science and Technology Research Institute of Iran. From these results, it is concluded that we can do experiments with this device using Ar as working gas all over the working days of year, and a good symmetry for measured dose around the device has been seen.
NASA Astrophysics Data System (ADS)
von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.
2013-09-01
Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.
Self-aligning concave relativistic plasma mirror with adjustable focus
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; Stark, David J.; Wang, Xiaoming; Zgadzaj, Rafal; Downer, M. C.
2017-01-01
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity ( 10 18 < I 0 < 10 19 W / cm 2 ) by near-normally incident ( 4 ° ), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective ( 0.6 - 0.8 ) and focus a significant fraction of reflected light to intensity as large as ˜ 10 I 0 at distance f as small as ˜ 25 μ m from the PM, provided that pre-pulses do not exceed 1014 W/cm2 prior to ˜ 20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusing results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲ L ≲ 3 μ m. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.
Preliminary Results Of A 600 Joules Small Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. H.; Yap, S. L.; Wong, C. S.
Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltagemore » across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.« less
Effect of nonlinear absorption on self focusing of short laser pulse in a plasma
NASA Astrophysics Data System (ADS)
Kumar, Ashok
2012-06-01
Paraxial theory of self focusing of short pulse laser in a plasma under transient and saturating effects of nonlinearity and nonlinear absorption is developed. The absorption is averaged over the cross-section of the beam and is different for different time segments of the pulse. The electron temperature includes cumulative effect of previous history of temporal profile of pulse intensity, however, the ambipolar diffusion is taken to be faster than the heating time. The relaxation effect causes self-distortion of the pulse temporal profile where as the nonlinear absorption weakens self focusing. For the pulses of duration comparable to the electron ion collision time, the front part of the pulse gets defocused where as the latter part undergoes periodic self focusing.
Environmental Management vitrification activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumrine, P.H.
1996-05-01
Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity formore » the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.« less
Study the Output Characteristics of a 90 kJ Filippove-Type Plasma Focus
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Talaei, A.; Adlparvar, S.; Zirak, A.; Elahi, M.; Safarian, A.; Farhangi, S.; Alhooie, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; Talaei, M.; KaKaei, S.; Sheibani, S.; Kashani, A.; Zahedi, F.
2010-08-01
The output characteristics of a Filippove-Type plasma focus "Dena" (288 μF, 25 kV, 90 kJ) is numerically investigated by considering the voltage, current, current derivative, and maximum current as a function of capacitor bank energy in the constant Argon gas pressure and compared to the experiment. It is shown that increase on the bank energy leads to the increment on the maximum current and decrement on the pinch time.
Multiple Compressions in the Middle Energy Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Ejiri, Y.; Ito, H.
This paper reports some of the results that are aimed to investigate the neutron emission from the middle energy Mather-type plasma focus. These results indicated that with increase the pressure, compression time is increase but there is not any direct relation between the compression time and neutron yield. Also it seems that multiple compression regimes is occurred in low pressure and single compression is appeared at higher pressure where is the favorable to neutron production.
NASA Astrophysics Data System (ADS)
Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.
2012-01-01
A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.
Electron density measurement in gas discharge plasmas by optical and acoustic methods
NASA Astrophysics Data System (ADS)
Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-08-01
Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.
NASA Astrophysics Data System (ADS)
Kawamura, Emi
Particle-in-cell (PIC) simulations of bounded plasma discharges are attractive because the fields and the particle motion can be obtained self-consistently from first principles. Thus, we can accurately model a wide range of nonlocal and kinetic behavior. The only disadvantage is that PIC may be computationally expensive compared to other methods. Fluid codes, for example, may run faster but make assumptions about the bulk plasma velocity distributions and ignore kinetic effects. In Chapter 1, we demonstrate methods of accelerating PIC simulations of bounded plasma discharges. We find that a combination of physical and numerical methods makes run-times for PIC codes much more competitive with other types of codes. In processing plasmas, the ion energy distributions (IEDs) arriving at the wafer target are crucial in determining ion anisotropy and etch rates. The current trend for plasma reactors is towards lower gas pressure and higher plasma density. In Chapter 2, we review and analyze IEDs arriving at the target of low pressure high density rf plasma reactors. In these reactors, the sheath is typically collisionless. We then perform PIC simulations of collisionless rf sheaths and find that the key parameter governing the shape of the TED at the wafer is the ratio of the ion transit time across the sheath over the rf period. Positive columns are the source of illumination in fluorescent mercury-argon lamps. The efficiency of light production increases with decreasing gas pressure and decreasing discharge radius. Most current lamp software is based on the local concept even though low pressure lighting discharges tend to be nonlocal. In Chapter 3, we demonstrate a 1d3v radial PIC model to conduct nonlocal kinetic simulations of low pressure, small radius positive columns. When compared to other available codes, we find that our PIC code makes the least approximations and assumptions and is accurate and stable over a wider parameter range. We analyze the PIC simulation results in detail and find that the radial electron heat flow, which is neglected in local models, plays a major role in maintaining the global power balance. In Chapter 2, we focused on the sheaths of low pressure high density plasma reactors. In Chapter 4, we extend our study to the bulk and presheaths. Typical industrial plasma reactors often use gases with complex chemistries which tend to generate discharges containing negative ions. For high density electronegative plasmas with low gas pressure, we expect Coulomb collisions between positive and negative ions to dominate over collisions between ions and neutrals. We incorporate a Coulomb collision model into our PIC code to study the effect of this ion-ion Coulomb scattering. We find that the Coulomb collisions between the positive and negative ions significantly modify the negative ion flux, density and kinetic energy profiles.
Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion
2012-09-21
including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup
Raft-Like Membrane Domains in Pathogenic Microorganisms
Farnoud, Amir M.; Toledo, Alvaro M.; Konopka, James B.; Del Poeta, Maurizio; London, Erwin
2016-01-01
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids packed in a liquid-ordered state, commonly known as lipid rafts, are believed to exist. While less studied in bacterial cells, reports on the presence of sterol or protein-mediated microdomains in bacterial cell membranes are also appearing with increasing frequency. Recent efforts have been focused on addressing the biophysical and biochemical properties of lipid rafts. However, most studies have been focused on synthetic membranes, mammalian cells, and/or model, non-pathogenic microorganisms. Much less is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and the developing field of microdomains in pathogenic bacteria. The current literature on the structure and function and of microdomains is reviewed and the potential role of microdomains in growth, pathogenesis, and drug resistance of pathogens are discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of the process of pathogenesis and development of raft-mediated approaches for new methods of therapy. PMID:26015285
Apparatus For Metal/Inert-Gas Welding In Vacuum
NASA Technical Reports Server (NTRS)
Stocks, C. O.
1994-01-01
Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.
NASA Astrophysics Data System (ADS)
Dan'ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.
2017-04-01
This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.
Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma
NASA Astrophysics Data System (ADS)
Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian
2017-12-01
The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.
Design of general apochromatic drift-quadrupole beam lines
NASA Astrophysics Data System (ADS)
Lindstrøm, C. A.; Adli, E.
2016-07-01
Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi
A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less
NASA Astrophysics Data System (ADS)
Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale
2016-10-01
Experiments have suggested that dense plasma focus (DPF) neutron yield increases with faster drivers [Decker NIMP 1986]. Using the particle-in-cell code LSP [Schmidt PRL 2012], we reproduce this trend in a kJ DPF [Ellsworth 2014], and demonstrate how driver rise time is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. Driver capacitance and voltage are varied to modify the current rise time, and anode length is adjusted so that run-in coincides with the peak current. We observe during run down that magnetohydrodynamic (MHD) instabilities of the sheath shed blobs of plasma that remain in the inter-electrode gap during run in. This trailing plasma later acts as a low-inductance restrike path that shunts current from the pinch during maximum compression. While the MHD growth rate increases slightly with driver speed, the shorter anode of the fast driver allows fewer e-foldings and hence reduces the trailing mass between electrodes. As a result, the fast driver postpones parasitic restrikes and maintains peak current through the pinch during maximum compression. The fast driver pinch therefore achieves best simultaneity between its ion beam and peak target density, which maximizes neutron production. Prepared by LLNL under Contract DE-AC52-07NA27344.
Process for forming exoergic structures with the use of a plasma
Kelly, Michael D.
1989-02-21
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten, without chemically reacting in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
Method of processing materials using an inductively coupled plasma
Hull, Donald E.; Bieniewski, Thomas M.
1990-01-01
A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.
NASA Astrophysics Data System (ADS)
Regmi, Abiral; Sarangadharan, Indu; Chen, Yen-Wen; Hsu, Chen-Pin; Lee, Geng-Yen; Chyi, Jen-Inn; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin
2017-08-01
Fibrinogen found in blood plasma is an important protein biomarker for potentially fatal diseases such as cardiovascular diseases. This study focuses on the development of an assay to detect plasmatic fibrinogen using electrical double layer gated AlGaN/GaN high electron mobility transistor biosensors without complex sample pre-treatment methods used in the traditional assays. The test results in buffer solution and clinical plasma samples show high sensitivity, specificity, and dynamic range. The sensor exhibits an ultra-low detection limit of 0.5 g/l and a detection range of 0.5-4.5 g/l in 1× PBS with 1% BSA. The concentration dependent sensor signal in human serum samples demonstrates the specificity to fibrinogen in a highly dense matrix of background proteins. The sensor does not require complicated automation, and quantitative results are obtained in 5 min with <5 μl sample volume. This sensing technique is ideal for speedy blood based diagnostics such as POC (point of care) tests, homecare tests, or personalized healthcare.
Wide band gap gallium arsenide nanoparticles fabricated using plasma method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, D., E-mail: dvjainnov@gmail.com; Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007
2016-05-23
In this paper, we have reported the fabrication of gallium arsenide (GaAs) nanoparticles on quartz placed at distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively from top of anode. The fabrication has been carried out by highly energetic and high fluence ions of GaAs produced by hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. GaAs nanoparticles have mean size of about 23 nm, 16 nm and 14 nm for deposition at a distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively. The nanoparticles are crystalline in nature as evident from X-ray diffraction patterns. The band gap of nanoparticles is found tomore » increase from 1.425 eV to 5.37 eV at 4.0 cm distance, which further increases as distance increases. The wide band gap observed for fabricated GaAs nanoparticles suggest the possible applications of nanoparticles in laser systems.« less
ERIC Educational Resources Information Center
Blechle, Joshua M.
2016-01-01
Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Method for extreme ultraviolet lithography
Felter, T. E.; Kubiak, Glenn D.
1999-01-01
A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.
Method for extreme ultraviolet lithography
Felter, T. E.; Kubiak, G. D.
2000-01-01
A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.
NASA Astrophysics Data System (ADS)
Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.
2017-10-01
Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.
ION BEAM FOCUSING MEANS FOR CALUTRON
Backus, J.G.
1959-06-01
An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)
NASA Astrophysics Data System (ADS)
Jardin, A.; Mazon, D.; Malard, P.; O'Mullane, M.; Chernyshova, M.; Czarski, T.; Malinowski, K.; Kasprowicz, G.; Wojenski, A.; Pozniak, K.
2017-08-01
The tokamak WEST aims at testing ITER divertor high heat flux component technology in long pulse operation. Unfortunately, heavy impurities like tungsten (W) sputtered from the plasma facing components can pollute the plasma core by radiation cooling in the soft x-ray (SXR) range, which is detrimental for the energy confinement and plasma stability. SXR diagnostics give valuable information to monitor impurities and study their transport. The WEST SXR diagnostic is composed of two new cameras based on the Gas Electron Multiplier (GEM) technology. The WEST GEM cameras will be used for impurity transport studies by performing 2D tomographic reconstructions with spectral resolution in tunable energy bands. In this paper, we characterize the GEM spectral response and investigate W density reconstruction thanks to a synthetic diagnostic recently developed and coupled with a tomography algorithm based on the minimum Fisher information (MFI) inversion method. The synthetic diagnostic includes the SXR source from a given plasma scenario, the photoionization, electron cloud transport and avalanche in the detection volume using Magboltz, and tomographic reconstruction of the radiation from the GEM signal. Preliminary studies of the effect of transport on the W ionization equilibrium and on the reconstruction capabilities are also presented.
Plasma treatments of wool fiber surface for microfluidic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su
Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less
Saka, Cafer
2018-01-02
The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.
2011-01-17
To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4%more » by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only {approx}5 x 10{sup -4} cm{sup 3}/Nm with 4% of porosity.« less
NASA Astrophysics Data System (ADS)
Winters, Victoria; Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg
2015-11-01
The versatile helicon plasma device, MARIA (Magnetized AnisotRopic Ion-distribution Apparatus), was upgraded with stronger magnetic field B <= 1200G. The main focus is to understand the neutral particle dynamics and ionization mechanism with helicon waves to establish a high-density plasma (10 ∧ 20/m ∧ 3) at substantial electron (Te ~5-15eV) and ion (Ti ~1-3eV) temperature. To achieve this, installation of higher RF Power <= 15kW is planned as well as design of an ion cyclotron-heating antenna. To quantify the plasma characteristics, diagnostics including a Triple Langmuir Probe, Emissive Probe, and Laser Induced Fluorescence were established. We show first results from characterization of the device. The coupling of the helicon mode in the electron temperature and density parameter space in Argon was mapped out with regard to neutral pressure, B-field and RF power. In addition, validity of the Bohm Criterion and of the Chodura model starting in the weakly collisional regime is tested. A key goal in all efforts is to develop methods of quantitative spectroscopy based on cutting-edge models and active laser spectroscopy. This work was funded by Startup funds of the Department of Engineering Physics at UW Madison, the NSF CAREER award PHY-1455210 and NSF grant PHY-1206421.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udey, R. N.; Corzett, T. H.; Alcaraz, A.
Following the successful completion of the 3rd biomedical confidence building exercise (February 2013 – March 2013), which included the analysis of plasma and urine samples spiked at low ppb levels as part of the exercise scenario, another confidence building exercise was targeted to be conducted in 2014. In this 4th exercise, it was desired to focus specifically on the analysis of plasma samples. The scenario was designed as an investigation of an alleged use of chemical weapons where plasma samples were collected, as plasma has been reported to contain CWA adducts which remain present in the human body for severalmore » weeks (Solano et al. 2008). In the 3rd exercise most participants used the fluoride regeneration method to analyze for the presence of nerve agents in plasma samples. For the 4th biomedical exercise it was decided to evaluate the analysis of human plasma samples for the presence/absence of the VX adducts and aged adducts to blood proteins (e.g., VX-butyrylcholinesterase (BuChE) and aged BuChE adducts using a pepsin digest technique to yield nonapeptides; or equivalent). As the aging of VX-BuChE adducts is relatively slow (t1/2 = 77 hr at 37 °C [Aurbek et al. 2009]), soman (GD), which ages much more quickly (t1/2 = 9 min at 37 °C [Masson et al. 2010]), was used to simulate an aged VX sample. Additional objectives of this exercise included having laboratories assess novel OP-adducted plasma sample preparation techniques and analytical instrumentation methodologies, as well as refining/designating the reporting formats for these new techniques.« less
Vinothkumar, G; Kedharnath, C; Krishnakumar, S; Sreedhar, S; Preethikrishnan, K; Dinesh, S; Sundaram, A; Balakrishnan, D; Shivashekar, G; Sureshkumar; Venkataraman, P
2017-12-01
Cognitive dysfunction has been increasingly recognized in chronic kidney disease (CKD) patients. Senile plaques are important pathophysiological characteristic of cognitive dysfunction. The major component of plaques is the amyloid β (Aβ) peptide released from proteolytic cleavage of amyloid precursor protein (APP). Plasma Aβ has been a focus of the growing literature on blood based biomarkers for cognitive dysfunction. Oxidative stress is prevalent in CKD and it plays an important role in cognitive dysfunction. Increased oxidative stress leads to cause cleavage of APP and Aβ production. The aim of this study is to assess the antioxidant status and Aβ 42 levels in plasma of CKD patients with cognitive dysfunction compared to CKD without cognitive dysfunction. A total of 60 subjects divided into 30 CKD without cognitive dysfunction and 30 CKD with cognitive dysfunction based on neuropsychological assessment tests. To compare antioxidant status and Aβ 42 levels in plasma, the following groups such as healthy subjects (n = 30), normocytic normochromic anemia (n = 30) and Alzheimer's disease (AD, n = 10) patients were also maintained. Plasma Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Reduced glutathione (GSH) and lipid peroxidation (LPO) were determined by spectrophotometrically. Aβ level was determined by immunoblotting method. The parameters were statistically compared with healthy, normocytic normochromic anemia and AD subjects. Like AD subjects, significantly increased Aβ and LPO level while decreased SOD, CAT, GPx and GSH levels were observed in plasma of CKD patients with cognitive dysfunction when compared to healthy, CKD without cognitive dysfunction and normocytic normochromic anemic subjects. Results suggest that elevated plasma oxidative stress and Aβ were seen in CKD patients with cognitive dysfunction may be attributed to pathological changes within the brain.
Foundations of High-Pressure Thermal Plasmas
NASA Astrophysics Data System (ADS)
Murphy, Anthony B.; Uhrlandt, Dirk
2018-06-01
An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems
Kong, Peter C.; Grandy, Jon D.
2002-01-01
In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.
A source with a 10{sup 13} DT neutron yield on the basis of a spherical plasma focus chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavyalov, N. V.; Maslov, V. V.; Rumyantsev, V. G., E-mail: rumyantsev@expd.vniief.ru
2013-03-15
Results from preliminary experimental research of neutron emission generated by a spherical plasma focus chamber filled with an equal-component deuterium-tritium mixture are presented. At a maximum current amplitude in the discharge chamber of {approx}1.5 MA, neutron pulses with a full width at half-maximum of 75-80 ns and an integral yield of {approx}1.3 Multiplication-Sign 10{sup 13} DT neutrons have been recorded.
Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules
1998-05-22
consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced
Development of a plasma focus neutron source powered by an explosive magnetic generator
NASA Astrophysics Data System (ADS)
Ablesimov, V. E.; Andrianov, A. V.; Bazanov, A. A.; Glybin, A. M.; Dolin, Yu. N.; Drozdov, I. Yu.; Drozdov, Yu. M.; Duday, P. V.; Zimenkov, A. A.; Ivanov, V. A.; Ivanovskii, A. V.; Kalinychev, A. E.; Karpov, G. V.; Kraev, A. I.; Lomtev, S. S.; Nudikov, V. N.; Pak, S. V.; Pozdov, N. I.; Polyushko, S. M.; Rybakov, A. F.; Skobelev, A. N.; Turov, A. N.; Fevralev, A. Yu.
2015-01-01
This paper presents the results of laboratory and explosive experiments with a plasma focus discharge Mather-type chamber at a discharge current amplitude of 1.3-1.4 MA. It has been found that in laboratory experiments, the yield of a deuterium-deuterium neutrons reached 1011, and in an explosive experiment using the chamber filled with a deuterium-tritium gas mixture, the integral yield of a deuterium-tritium neutrons with an energy of 14 MeV was more than 1012 neutrons.
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
NASA Astrophysics Data System (ADS)
Dergachev, A. A.; Ionin, A. A.; Kandidov, V. P.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Shlenov, S. A.; Shustikova, A. P.
2014-12-01
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis.
Apparatus for generating quasi-free-space microwave-driven plasmas
NASA Astrophysics Data System (ADS)
Hoff, Brad W.; French, David M.; Reid, Remington R.; Lawrance, Julie E.; Lepell, P. David; Maestas, Sabrina S.
2016-03-01
An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ˜5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.
Apparatus for generating quasi-free-space microwave-driven plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, Brad W.; French, David M.; Reid, Remington R.
An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.
Apparatus for generating quasi-free-space microwave-driven plasmas.
Hoff, Brad W; French, David M; Reid, Remington R; Lawrance, Julie E; Lepell, P David; Maestas, Sabrina S
2016-03-01
An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.
Plasma particle simulations on interactions between spacecraft and cold streaming plasmas
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Nakashima, H.
2012-12-01
In order to better assess space weather effects on spacecraft system, we require in-depth understanding of fundamental processes of spacecraft-plasma interactions. Particularly in scientific spacecraft missions, the wake and photoelectron cloud formation as well as the spacecraft charging are significant factors influencing their operations, because onboard scientific instruments are often susceptible to such plasma disturbances. In this paper, we focus on the wake formation resulting from spacecraft interactions with a cold streaming plasma and study it by means of numerical simulations using modern supercomputers. We apply the particle-in-cell (PIC) method to the study of wake structure around a scientific spacecraft. We use our original plasma particle simulation code EMSES [2], which enables us to include solid spacecraft and sensor surfaces as internal boundaries. Although there are a number of preceding PIC simulation works regarding the wake structure behind a spacecraft [3], we here extend the studies by including numerical models of both spacecraft body and conducting booms simultaneously in the simulation system. The current analysis focuses on the wake structures behind the Cluster satellite in a tenuous plasma flow. We have included the conducting surfaces of wire booms as well as the spacecraft body in the simulations, the both of which can contribute to the wake formation. The major outcomes of the simulations are summarized as follows [4]; 1. not only a spacecraft body but also a thin (in an order of mm) wire boom contribute substantially to the formation of an electrostatic wake, particularly when the spacecraft has a positive potential of a few tens of volts; 2. in such a condition, the spatial scale of the wake reaches up to 100 m, leading to the detection of a wake electric field pattern that is very similar to that observed in the presence of a uniform ambient electric field; 3. spurious electric field can be detected even in subsonic ion flows occasionally, which is caused by an asymmetric potential pattern between the up- and down- streams of the spacecraft. We will report some details of these results as well as the comparison of the numerical results with observational data. [References] [1] André, M., and C. M. Cully (2012), Low-energy ions: A previously hidden solar system particle population, Geophys. Res. Lett., 39, L03101, doi:10.1029/ 2011GL050242. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922. [3] Engwall, E., A. I. Eriksson, and J. Forest (2006), Wake formation behind positively charged spacecraft in flowing tenuous plasmas, Phys. Plasmas, 13, 062904, doi:10.1063/1.2199207. [4] Miyake, Y., and H. Usui (2012), Particle simulations of wake effects on electric field measurements in multi-species ion flows, Proc. of 12th Spacecraft Charging Technology Conference, Kitakyushu, Japan.
Guillard, V; Mauricio-Iglesias, M; Gontard, N
2010-11-01
Classical stabilization techniques (thermal treatments) usually involve food to be packed after being processed. On the contrary and increasingly, novel food processing methods, such as high pressure or microwaves, imply that both packaging and foodstuff undergo the stabilization treatment. Moreover, novel treatments (UV light, irradiation, ozone, cold plasma) are specifically used for disinfection and sterilization of the packaging material itself. Therefore, in the last several years a number of papers have focused on the effects of these new treatments on food-packaging interactions with a special emphasis on chemical migration and safety concerns. New packaging materials merged on the market with specific interest regarding the environment (i.e. bio-sourced materials) or mechanical and barrier properties (i.e. nanocomposites packaging materials). It is time to evaluate the knowledge about how these in-package food technologies affect food/packaging interactions, and especially for novel biodegradable and/or active materials. This article presents the effect of high pressure treatment, microwave heating, irradiation, UV-light, ozone and, cold plasma treatment on food/packaging interactions.
Gas chromatography-mass spectrometry of biofluids and extracts.
Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Yang, Yang; Kharbatia, Najeh M
2015-01-01
Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.
Method and apparatus for fast laser pulse detection using gaseous plasmas
McLellan, Edward J.; Webb, John A.
1984-01-01
The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface (1). Measurements are made with a 10.6 .mu.m CO.sub.2 laser capable of producing peak intensities of 10.sup.13 W/cm.sup.2 when directed through a converging lens (2). Evacuated detector response to such laser intensity is 1 kV signal peak amplitude and subnanosecond risetimes into a 50.OMEGA. load (3). Detector performance is found to be greatly altered with the introduction of a background gas (4). For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates "trigger pulses" of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.
Method and apparatus for fast laser-pulse detection using gaseous plasmas
McLellan, E.J.; Webb, J.A.
1981-06-18
The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface. Measurements are made with a 10.6 ..mu..m CO/sub 2/ laser capable of producing peak intensities of 10/sup 13/ W/cm/sup 2/ when directed through a converging lens. Evacuated detector response to such laser intensity if 1 kV signal peak amplitude and subnanosecond risetimes into a 50 ..cap omega.. load. Detector performance is found to be greatly altered with the introduction of a background gas. For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates trigger pulses of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.
A comparison of complication rates based on published haemovigilance data.
Flesland, O
2007-06-01
Haemovigilance is defined as the collection of information on complications of transfusion, the analysis of the data, and suggestions for improvement in the transfusion service. A national haemovigilance system is of value in identifying possible areas in need of improvement in the national transfusion system. Haemovigilance becomes even more important if the system is used to compare the situation in one country with the situation in other countries, e.g. if the countries differ significantly in products used. The current study focuses on immunological transfusion complications, especially TRALI, as published in haemovigilance reports from Denmark, Norway, Sweden and the UK. In Norway immunological transfusion reactions occurred 96.7 times per 100 000 red cell (RBC) transfusion, 231.1 times per 100 000 thrombocyte (Trc) concentrate transfusion and five times per 100.000 transfusions of solvent detergent treated plasma (SD plasma). Denmark and the UK have similar rates of transfusion reactions to RBC and fresh frozen plasma (FFP), but quite different for Trc (0.5 vs. 4.9 per 100 000). In 49% of reported TRALI the causative product is FFP, but no case of TRALI after SD plasma transfusion has been reported. When considering all reports for immunological complications in Norway, the most striking is the very small number of reports related to SD plasma. Comparing data from Denmark and the UK shows a big difference in reactions caused by thrombocyte concentrates that may reflect different production methods in the two countries. TRALI is most often caused by FFP, but has never been reported after SD plasma transfusion. Heamovigilance data can be valuable in choosing the safest products available.
Okazaki, Tetsuji; Shimada, Masayuki
2012-09-01
Cryopreservation of boar spermatozoa offers an effective means of long-term storage of important genetic material. Many researchers have investigated how to improve reproductive performance by artificial insemination (AI) using cryopreserved boar spermatozoa. Recently, we and other groups reported that high conception rates (70-80%) can be achieved by AI with frozen-thawed boar spermatozoa using a modified temperature program during freezing, or a novel cryopreservation extender to improve sperm quality (including sperm survivability, motility, membrane status and fertilization ability) after thawing, or a novel sperm infusion method, deep intra uterine insemination. However, these techniques have not yet been used for commercial pig production. The variation in sperm freezability among boars or among ejaculations in an identical boar is one of the main reasons for this problem. In our previous study, it was revealed that some components of seminal plasma have a negative effect on the freezability of boar sperm. One of these factors is bacteria-released endotoxin (lipopolysaccharide: LPS). LPS binds to Toll-like receptor-4 (TLR-4) expressed on the sperm surface, resulting in induction of apoptosis. On the other hand, seminal plasma suppresses cryo-capacitation induced by thawing stress. On the basis of these findings, we designed a novel protocol of AI using frozen-thawed boar sperm. © 2012 Japanese Society of Animal Science.