Sample records for plasma focus system

  1. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  2. A system for a multiframing interferometry and its application to a plasma focus experiment.

    PubMed

    Hirano, K; Shimoda, K; Emori, S

    1979-10-01

    A four-framing Mach-Zehnder interferometer system which has variable intervals from frame to frame is developed. TEA N(2) lasers that are operated with atmospheric-pressure N(2) gas are employed as light sources. Applicability of the system is demonstrated for a rapidly changing plasma in the plasma focus discharge.

  3. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  4. X-Ray Production in Defense Plasma Focus.

    DTIC Science & Technology

    1980-03-01

    This program investigated the operation of plasma focus (PF) devices at high voltage. Discharge formation, energy transfer, and X-ray emission were...produced electron beam phenomena: The model predicted that a neon plasma would radiate 1 percent of the stored energy. The construction of a 120-kV (108 kJ) plasma focus system is described. (Author)

  5. Low voltage operation of plasma focus.

    PubMed

    Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A

    2010-08-01

    Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

  6. System for the production of plasma

    DOEpatents

    Bakken, George S.

    1978-01-01

    The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.

  7. Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Ngoi, S. K.; Yap, S. L.

    The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less

  8. PMT-scintillator system set up for D-D neutron TOF measurements in INTI plasma focus device

    NASA Astrophysics Data System (ADS)

    Damideh, V.; Saw, S. H.; Sadighzadeh, A.; Ali, J.; Rawat, R. S.; Lee, P.; Lee, S.

    2017-03-01

    This paper summarizes a Photomultiplier-Scintillator diagnostic system for use in our plasma focus experiments at the Center for Plasma Research INTI IU. The system features an anode-grounded high pulse linearity voltage divider and uses NE102A plastic scintillators. It has detected D-D neutrons in INTI plasma focus device with clear and high signal to noise ratio. Neutron TOF of 120 ns has been measured from the time difference between hard x-ray pulse peak and neutron peak time over a flight path of 2.6±0.01 m; giving energy of 2.5±0.1 MeV for these side-on neutrons.

  9. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles (POSTPRINT)

    DTIC Science & Technology

    2005-10-06

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD

  10. A plasma microlens for ultrashort high power lasers

    NASA Astrophysics Data System (ADS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  11. Investigation of Plasma Focus in Coaxial Accelerator with Pre-Ionization of Gas,

    DTIC Science & Technology

    appears that when the accelerating current beyond the end of the central electrodes has sufficiently high levels a plasma focus is formed which is...obtained from an investigation of the main properties of the plasma focus in a system with a pre-ionized gas, achieved by means of an inductive electrical field.

  12. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  13. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  14. Optical Pumping of High Power Lasers with an Array of Plasma Pinches.

    DTIC Science & Technology

    1986-04-01

    Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF

  15. Study of Plasma Flows Generated in Plasma Focus Discharge in Different Regimes of Working Gas Filling

    NASA Astrophysics Data System (ADS)

    Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.

    2017-12-01

    Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.

  16. Plasma X-Ray Sources for Lithography

    DTIC Science & Technology

    1980-05-12

    in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.

  17. Note: Repetitive operation of the capacitor bank of the low-voltage miniature plasma focus at 50 Hz.

    PubMed

    Shukla, Rohit; Shyam, Anurag

    2013-10-01

    We have already reported the low-voltage operation of a plasma focus describing the operation of plasma focus at 4.2 kV which proposes possibility of making a repetitive system using compact driving source. Another recent article describes that the same capacitor-bank can drive the plasma focus for a measured ~5 × 10(4) neutrons per shot at 5 kV and 59 kA current. In the present work, repetitive operation of the capacitor-bank of plasma focus is done and that too is being reported at a very high repetition rate of 50 Hz using very simple scheme of charging and triggering the bank. The bank is continuously discharged to burst duration of 20 s in this configuration admeasuring a thousand shots.

  18. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1986-03-10

    A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than

  19. Application of an impedance matching transformer to a plasma focus.

    PubMed

    Bures, B L; James, C; Krishnan, M; Adler, R

    2011-10-01

    A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.

  20. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  1. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  2. Ti film deposition process of a plasma focus: Study by an experimental design

    NASA Astrophysics Data System (ADS)

    Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.

    2017-10-01

    The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.

  3. Role of anode length in a mather-type plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, F.N.; Zakaullah, M.; Nisar, M.

    In this paper, neutron emission from a 3 KJ Mather-type plasma focus is studied. Specifically, the behavior of system with the change in anode length is investigated. Anode lengths of high and low fluence anisotropy as well as for high neutron yield are identified. Experiment also suggest the possibility of ion beam generation leading to neutron production via beam-plasma interaction.

  4. Plasma focus sources: Supplement to the Neutron Resonance Radiography Workshop proceedings

    NASA Astrophysics Data System (ADS)

    Nardi, Vittorio; Brzosko, Jan

    1989-01-01

    Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, Y (sub n), and the rate of neutron emission, Y (sub n), of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W (sub 0). Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y (sub n). The FDE-induced redistribution of the plasma current increases Y (sub n) by a factor approximate to or greater than 5 to 10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W (sub 0) = 6 kJ, and voltage, V (sub 0) = 16.5 kV provides Y (sub n) congruent to 4 x 10 to the 9th D-D neutrons/shot (pure D2 filling) and Y (sub n) = 4 x 10 to the 11th D-T neutrons/shot (filling is 50 pct deuterium and 50 pct tritium). The FDE-induced increase of Y (sub n) for fixed values of (W sub 0, V sub 0), the observed scaling law Y (sub n) proportional to W (sub 0) squared for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (10 to the 14th n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution.

  5. Estimation of electron temperature and radiation emission of a low energy (2.2 kJ) plasma focus device

    NASA Astrophysics Data System (ADS)

    Khan, M. Z.; Yap, S. L.; Wong, C. S.

    2014-01-01

    Radiation emission in a 2.2 kJ Mather-type plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. At optimum condition, radiation emission from the system is found to be strongly influenced in hollow anode and filling gas pressure. Maximum X-ray yield in 4π sr has been obtained in case of hollow anode in argon gas medium due to interaction of electron beam. Results indicate that an appropriate design of anode can enhance radiation emission by more intense interaction of expected electron beam with hollow anode. The outcome is helpful to design a plasma focus with enhanced X-ray generation with improved shot-to-shot reproducibility in plasma focus device.

  6. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Tasooji, A.

    1985-01-01

    This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.

  7. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  8. Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.

    2018-06-01

    In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.

  9. Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion

    DTIC Science & Technology

    2012-09-21

    including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup

  10. Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1980-01-01

    An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  11. Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing

    PubMed

    Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.

  12. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  13. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    DTIC Science & Technology

    1998-05-22

    consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced

  14. Paul trap simulator experiment to model intense-beam propagation in alternating-gradient transport systems.

    PubMed

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip C; Majeski, Richard

    2004-04-16

    The results presented here demonstrate that the Paul trap simulator experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s=omega(2)(p)(0)/2omega(2)(q)

  15. Luminescent characteristics study of Mather-type dense plasma focus and applications to short-wavelength optical pumping. Final technical report, 1 May 1984-30 September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.K.

    A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less

  16. Deuteron Beam Source Based on Mather Type Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.

    2013-04-01

    A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.

  17. Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-01

    The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target "Lead" due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.

  18. Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio

    2006-12-04

    It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less

  19. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  20. Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com; Ling, Yap Seong; San, Wong Chiow

    The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anodemore » with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.« less

  1. Plasma Lens for Muon and Neutrino Beams

    NASA Astrophysics Data System (ADS)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  2. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  3. Helium microwave-induced plasmas for element specific detection in chromatography

    NASA Astrophysics Data System (ADS)

    Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.

    1994-01-01

    This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.

  4. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  5. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  6. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    ERIC Educational Resources Information Center

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  7. Design and Construction of a Dense Plasma Focus Device

    DTIC Science & Technology

    1976-10-01

    This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device

  8. The interaction of intense, ultra-short microwave beams with the plasma generated by gas ionization

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Cao, Y.; Bliokh, Y.; Leopold, J. G.; Levko, D.; Rostov, V.; Gad, R.; Fisher, A.; Bernshtam, V.; Krasik, Ya. E.

    2018-03-01

    Results of the non-linear interaction of an extremely short (0.6 ns) high power (˜500 MW) X-band focused microwave beam with the plasma generated by gas ionization are presented. Within certain gas pressure ranges, specific to the gas type, the plasma density is considerably lower around the microwave beam axis than at its periphery, thus forming guiding channel through which the beam self-focuses. Outside these pressure ranges, either diffuse or streamer-like plasma is observed. We also observe high energy electrons (˜15 keV), accelerated by the very high-power microwaves. A simplified analytical model of this complicated dynamical system and particle-in-cell numerical simulations confirm the experimental results.

  9. Ion extraction from a plasma

    NASA Technical Reports Server (NTRS)

    Aston, G.; Wilbur, P. J.

    1981-01-01

    The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  10. Experimental investigation of the effect of insulator sleeve length on the time to pinch and multipinch formation in the plasma focus facility

    NASA Astrophysics Data System (ADS)

    Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.

    2017-03-01

    The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.

  11. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  12. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  13. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  14. Study on Ferroelectric Thick Film Insulator Sleeve On Plasma Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Gustavo; Silva, Patricio; Moreno, Jose

    The effect of ferroelectric lead germanate Pb5Ge3O11 (PGO) thick film in the alumina insulator sleeve of the 400 Joule Mather-type plasma focus device, PF-400J is studied. The breakdown phase along the insulator is fundamental for the formation of a homogeneous and symmetric current sheath, that is essential for a good plasma pinching, high neutron yield and X-ray emissions. For over several hundreds of electrical discharges, the films show good mechanical and electric performance. From the beginning the operating system is highly reproducible, shot to shot, with a clear definition of the plasma pinch on the axis of discharge. The grademore » of influence of the electron emission from the ferroelectric is experimentally studied.« less

  15. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  16. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.

    2015-09-01

    Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.

  18. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increasemore » its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.« less

  19. Restrike Particle Beam Experiments on a Dense Plasma Focus. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    1985-06-01

    Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.

  20. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Krauz, V. I.; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.

    2015-05-01

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5-3 Torr in discharges with energies of 0.3-0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.

  1. Investigation of a staged plasma-focus apparatus. [pinch construction and current sheet dynamics investigation

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Harries, W. L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.

  2. Development of TPF-1 plasma focus for education

    NASA Astrophysics Data System (ADS)

    Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.

    2017-09-01

    The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.

  3. Conceptual achievement of 1GBq activity in a Plasma Focus driven system.

    PubMed

    Tabbakh, Farshid; Sadat Kiai, Seyed Mahmood; Pashaei, Mohammad

    2017-11-01

    This is an approach to evaluate the radioisotope production by means of typical dense plasma focus devices. The production rate of the appropriate positron emitters, F-18, N-13 and O-15 has been studied. The beam-target mechanism was simulated by GEANT4 Monte Carlo tool using QGSP_BIC and QGSP_INCLXX physic models as comparison. The results for positron emitters have been evaluated by reported experimental data and found conformity between simulations and experimental reports that leads to using this code as a reliable tool in optimizing the DPF driven systems for achieving to 1GBq activity of produced radioisotope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mini-conference on helicon plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E.; Keesee, A. M.; Boswell, R. W.

    2008-05-15

    The first two sessions of this mini-conference focused attention on two areas of helicon source research: The conditions for optimal helicon source performance and the origins of energetic electrons and ions in helicon source plasmas. The final mini-conference session reviewed novel applications of helicon sources, such as mixed plasma source systems and toroidal helicon sources. The session format was designed to stimulate debate and discussion, with considerable time available for extended discussion.

  5. Breakthrough in 4π ion emission mechanism understanding in plasma focus devices.

    PubMed

    Sohrabi, Mehdi; Zarinshad, Arefe; Habibi, Morteza

    2016-12-12

    Ion emission angular distribution mechanisms in plasma focus devices (PFD) have not yet been well developed and understood being due to the lack of an efficient wide-angle ion distribution image detection system to characterize a PFD space in detail. Present belief is that the acceleration of ions points from "anode top" upwards in forward direction within a small solid angle. A breakthrough is reported in this study, by mega-size position-sensitive polycarbonate ion image detection systems invented, on discovery of 4π ion emission from the "anode top" in a PFD space after plasma pinch instability and radial run-away of ions from the "anode cathodes array" during axial acceleration of plasma sheaths before the radial phase. These two ion emission source mechanisms behave respectively as a "Point Ion Source" and a "Line Ion Source" forming "Ion Cathode Shadows" on mega-size detectors. We believe that the inventions and discoveries made here will open new horizons for advanced ion emission studies towards better mechanisms understanding and in particular will promote efficient applications of PFDs in medicine, science and technology.

  6. Preliminary characterization of a laser-generated plasma sheet

    DOE PAGES

    Keiter, P. A.; Malamud, G.; Trantham, M.; ...

    2014-12-10

    We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less

  7. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  8. Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2018-01-01

    A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.

  9. Thermal barrier coating life-prediction model development. Annual report no. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-10-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimenmore » procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.« less

  10. Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams

    NASA Astrophysics Data System (ADS)

    Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie

    2013-10-01

    Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program

  11. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less

  12. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare example in which simplicity emerges from the complexity present in the plasma state.

  13. Dispersion and waves in bounded plasmas with subwavelength inhomogeneities: Genesis of MEFIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Sudeep

    Bounded plasma exhibit many interesting behavior that are not found in plasmas of 'infinite' extent such as space and astrophysical plasmas. Our studies have revealed that the dispersion properties of waves in a bounded magnetoplasma deviates considerably from the predictions of the Clemmow-Mullaly-Allis (CMA) model, giving rise to new regimes of wave propagation and absorption. The anisotropy of the medium dictated by the length scales of plasma nonuniformity and magnetostatic field inhomogeneity lead to rotation of the polarization axis an effect similar to the Cotton-Mouton effect in a magneto-optic medium but with distinct differences due to wave induced resonances. Thismore » article highlights some of these interesting effects observed experimentally and corroborated with Monte Carlo simulations. One of the principal outcomes of this research is the genesis of a novel multielement focused ion beam (MEFIB) system that utilizes compact bounded plasmas in a minimum – B field to provide intense focused ion beams of a variety of elements for new research in nanoscience and technology.« less

  14. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    PubMed

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  15. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  16. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    PubMed

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  17. Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian

    2017-12-01

    The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.

  18. Palm top plasma focus device as a portable pulsed neutron source.

    PubMed

    Rout, R K; Niranjan, Ram; Mishra, P; Srivastava, R; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10(4) neutrons∕pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of (3)He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  19. Palm top plasma focus device as a portable pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Niranjan, Ram; Mishra, P.; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 104 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  20. Nonthermal plasma technology for organic destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, W.O.; Birmingham, J.G.

    1995-06-01

    Pacific Northwest Laboratory (PNL) is investigating the use of nonthermal, electrically driven plasmas for destroying organic contaminants near ambient temperatures and pressures. Three different plasma systems have been developed to treat organics in air, water, and soil. These systems are the Gas-Phase Corona Reactor (GPCR)III for treating air, the Liquid-Phase Corona Reactor for treating water, and In Situ Corona for treating soils. This presentation focuses on recent technical developments, commercial status, and project costs of OPCR as a cost-effective alternative to other air-purification technologies that are now in use to treat off-gases from site-remediation efforts as well as industrial emissions.

  1. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrkn@inbox.ru; Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru; Grabovski, E. V.

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with amore » dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.« less

  2. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  3. First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Göksel, B.; Mashek, I. Ch

    2017-04-01

    A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.

  4. Interaction of the high energy deuterons with the graphite target in the plasma focus devices based on Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akel, M., E-mail: pscientific2@aec.org.sy; Alsheikh Salo, S.; Ismael, Sh.

    2014-07-15

    Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in themore » graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.« less

  5. An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator

    DTIC Science & Technology

    1988-11-01

    The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to

  6. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  7. Final Report for the Center for Momentum Transport and Flow Organization (CMTFO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, George R.

    The Center for Momentum Transport and Flow Organization (CMTFO) was established in 2009 as a multi-institutional U.S. DOE Plasma Science Center, with a focus on the fundamental physics mechanisms that lead to the transport of momentum within fusion and astrophysical plasma systems, and the subsequent formation of ordered behavior in such systems. It was funded in two tranches; this report covers the activities supported by the second period of funding which ran from May 2012 through May 2016.

  8. Breakthrough in 4π ion emission mechanism understanding in plasma focus devices

    PubMed Central

    Sohrabi, Mehdi; Zarinshad, Arefe; Habibi, Morteza

    2016-01-01

    Ion emission angular distribution mechanisms in plasma focus devices (PFD) have not yet been well developed and understood being due to the lack of an efficient wide-angle ion distribution image detection system to characterize a PFD space in detail. Present belief is that the acceleration of ions points from “anode top” upwards in forward direction within a small solid angle. A breakthrough is reported in this study, by mega-size position-sensitive polycarbonate ion image detection systems invented, on discovery of 4π ion emission from the “anode top” in a PFD space after plasma pinch instability and radial run-away of ions from the “anode cathodes array” during axial acceleration of plasma sheaths before the radial phase. These two ion emission source mechanisms behave respectively as a “Point Ion Source” and a “Line Ion Source” forming “Ion Cathode Shadows” on mega-size detectors. We believe that the inventions and discoveries made here will open new horizons for advanced ion emission studies towards better mechanisms understanding and in particular will promote efficient applications of PFDs in medicine, science and technology. PMID:27941832

  9. Current Interruption and Particle Beam Generation by a Plasma Focus.

    DTIC Science & Technology

    1982-11-30

    Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions...results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a...strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device. (Author)

  10. Ionization effects and linear stability in a coaxial plasma device

    NASA Astrophysics Data System (ADS)

    Kurt, Erol; Kurt, Hilal; Bayhan, Ulku

    2009-03-01

    A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.

  11. Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer.

    PubMed

    Sadowski, M J; Czaus, K; Malinowski, K; Skladnik-Sadowska, E; Zebrowski, J

    2009-05-01

    The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.

  12. The synergetic effect of UV rays on the decomposition of xylene in dielectric barrier discharge plasma and photocatalyst process

    NASA Astrophysics Data System (ADS)

    Li, Wenjuan; Gu, Zhenyu; Teng, Fuhua; Lu, Jianhai; Dong, Shibi; Miao, Xiaoping; Wu, Zhongbiao

    2018-06-01

    The degradation of xylene in the dielectric barrier discharge plasma and photocatalyst process was studied, focusing on the synergetic effect of UV rays from plasma process and external UV lamps on the decomposition of xylene. The results showed that xylene could be decomposed by the discharge process in plasma system, whereas the UV rays from plasma process was very weak. After adding TiO2, the removal efficiency of xylene and energy yield in plasma process were enhanced since energetic particles activated the catalysis of TiO2. The removal efficiency of xylene and energy field in plasma and photocatalyst process combined with external UV lamps were further enhanced attributed to the degradation effect of plasma, the catalysis of TiO2 activated by plasma, the photolysis of UV rays and the photocatalysis of photocatalyst. The synergetic effect of UV rays from external UV lamps was obvious.

  13. Overview of Advanced Space Propulsion Activities in the Space Environmental Effects Team at MSFC

    NASA Technical Reports Server (NTRS)

    Edwards, David; Carruth, Ralph; Vaughn, Jason; Schneider, Todd; Kamenetzky, Rachel; Gray, Perry

    2000-01-01

    Exploration of our solar system, and beyond, requires spacecraft velocities beyond our current technological level. Technologies addressing this limitation are numerous. The Space Environmental Effects (SEE) Team at the Marshall Space Flight Center (MSFC) is focused on three discipline areas of advanced propulsion; Tethers, Beamed Energy, and Plasma. This presentation will give an overview of advanced propulsion related activities in the Space Environmental Effects Team at MSFC. Advancements in the application of tethers for spacecraft propulsion were made while developing the Propulsive Small Expendable Deployer System (ProSEDS). New tether materials were developed to meet the specifications of the ProSEDS mission and new techniques had to be developed to test and characterize these tethers. Plasma contactors were developed, tested and modified to meet new requirements. Follow-on activities in tether propulsion include the Air-SEDS activity. Beamed energy activities initiated with an experimental investigation to quantify the momentum transfer subsequent to high power, 5J, ablative laser interaction with materials. The next step with this experimental investigation is to quantify non-ablative photon momentum transfer. This step was started last year and will be used to characterize the efficiency of solar sail materials before and after exposure to Space Environmental Effects (SEE). Our focus with plasma, for propulsion, concentrates on optimizing energy deposition into a magnetically confined plasma and integration of measurement techniques for determining plasma parameters. Plasma confinement is accomplished with the Marshall Magnetic Mirror (M3) device. Initial energy coupling experiments will consist of injecting a 50 amp electron beam into a target plasma. Measurements of plasma temperature and density will be used to determine the effect of changes in magnetic field structure, beam current, and gas species. Experimental observations will be compared to predictions from computer modeling.

  14. Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id; Ramli, Muliadi; Hedwig, Rinda

    This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma weremore » detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.« less

  15. The Dense Plasma Focus Group of IFAS at Argentina: A brief history and recent direction of the investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanese, Maria Magdalena; CONICET - 7000 Tandil

    2006-12-04

    This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less

  16. Palm top plasma focus device as a portable pulsed neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, R. K.; Niranjan, Ram; Srivastava, R.

    2013-06-15

    Development of a palm top plasma focus device generating (5.2 {+-} 0.8) Multiplication-Sign 10{sup 4} neutrons/pulse into 4{pi} steradians with a pulse width of 15 {+-} 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is ofmore » 2 {mu}F capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 {mu}F, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of {sup 3}He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.« less

  17. Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications

    NASA Astrophysics Data System (ADS)

    Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo

    2012-10-01

    Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.

  18. Results of ultra compact plasma focus operating in repetitive burst-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, R.; Shyam, A.; Verma, R.

    2014-07-01

    The results of a miniature plasma focus are being presented in this paper which is operated with energy less than or equal to 150 Joules. The miniature plasma focus is driven by a small capacitor bank and the peak current delivered in the focus is 75kA. The deuterium gas is filled with a pressure range of 5-7 mbar inside the plasma focus chamber. The quartz glass is used for generating initial surface breakdown at 4-5 kV discharge which is a typical value for low-voltage plasma focus discharges. The repetitive operation of the device is achieved by a combination of amore » simple and high power (5 kW) power supply with the synchronized triggering of the capacitor bank at the time of isolation between supply and the capacitor bank. As the plasma focus chamber volume is very low, in order to achieve reduced after-shot contamination effects, the gas pressure inside the plasma focus is maintained by continuous pumping which is disallowed at the time of shorts rather having a sealed type plasma focus assembly. The results of such scheme are also discussed in the paper. The diameter of cathode is 25mm and anode diameter is 8-12 mm and both of them are made of stainless steel. The length of anode and gas pressure is adjusted in such a way that the pinching occurs at the time of occurrence of the peak of current. It enhances the neutron emission from the device. The time-of-flight diagnostic is used to distinguish neutron and X-ray emission from the plasma focus. The device can serve the purpose of being a portable and compact repetitive neutron source for various applications as the flux of the radiation is comparable with the bigger devices of same type. The modeling results of plasma focus are also compared with experimental results to give a broader picture of the device. (author)« less

  19. Commercial D-T FRC Power Plant Systems Analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Canh; Santarius, John; Emmert, Gilbert; Steinhauer, Loren; Stubna, Michael

    1998-11-01

    Results of an engineering issues scoping study of a Field-Reversed Configuration (FRC) burning D-T fuel will be presented. The study primarily focuses on engineering issues, such as tritium-breeding blanket design, radiation shielding, neutron damage, activation, safety, and environment. This presentation will concentrate on plasma physics, current drive, economics, and systems integration, which are important for the overall systems analysis. A systems code serves as the key tool in defining a reference point for detailed physics and engineering calculations plus parametric variations, and typical cases will be presented. Advantages of the cylindrical geometry and high beta (plasma pressure/magnetic-field pressure) are evident.

  20. Neutral Beam Injection System for the SHIP Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdrashitov, G.F.; Abdrashitov, A.G.; Anikeev, A.V.

    2005-01-15

    The injector ion source is based on an arcdischarge plasma box. The plasma emitter is produced by a 1 kA arc discharge in deuterium. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found by means of numerical simulation tomore » provide precise beam formation. The measured angular divergence of the beam is 0.025 rad, which corresponds to a 4.7 cm Gaussian radius of the beam profile measured at focal point.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less

  2. Operational Characteristics of a High Voltage Dense Plasma Focus.

    DTIC Science & Technology

    1985-11-01

    A high voltage dense plasma focus powered by a single-stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120...kV, energy--20 kJ, short-circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The...about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and

  3. Radiation Production by Charged Particle Beams Ejected from a Plasma Focus.

    DTIC Science & Technology

    1981-02-01

    The scope of this investigation concerns the development of a pulsed radiation source using the charged particle beam ejected from a plasma focus device...satellite components for radiation hardening and survivability. The plasma focus is operated in a modified geometry such that electron bursts which...a radiation facility. The plasma focus , identified as the Mark IV, is nominally rated at 34 kJ with a capacitance of 168 micro F at 20 kV. The

  4. Molecular formation in the stagnation region of colliding laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.

    2016-10-27

    The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less

  5. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  6. Production of fissioning uranium plasma to approximate gas-core reactor conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.

    1974-01-01

    The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.

  7. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{supmore » 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.« less

  8. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  9. Restrike Particle Beam Experiments on a Dense Plasma Focus.

    DTIC Science & Technology

    1981-11-30

    particle beams generated in a plasma focus with the current flowing in the circuit just before the radial collapse of the pinch, IMB. The results show...the implications for the application of the plasma focus as an opening switch are discussed. (Author)

  10. Investigation of Ion Beam Production and Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus.

    DTIC Science & Technology

    1984-03-01

    POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related

  11. Raman Amplification with a Flying Focus

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.

    2018-01-01

    We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.

  12. Raman Amplification with a Flying Focus

    DOE PAGES

    Turnbull, D.; Bucht, S.; Davies, A.; ...

    2018-01-12

    Here, we propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus" - a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v=-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just about the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that thismore » will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.« less

  13. Thermal imaging of plasma with a phased array antenna in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Kishore, E-mail: mishra@triam.kyushu-u.ac.jp; Nagata, K.; Akimoto, R.

    2014-11-15

    A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversionmore » region and its position is successfully reconstructed using phase array technique which is done in post processing.« less

  14. Response to "Comment on 'Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma'" [Phys. Plasmas 21, 064701 (2014)

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Takale, M. V.

    2014-06-01

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  15. High efficiency focus neutron generator

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.

    2017-12-01

    In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.

  16. Electromagnetic Effects in the Near Field Plume Exhaust of a Micro-Pulsed Plasma Thruster

    DTIC Science & Technology

    2002-06-12

    plasma focus is developed at a few millimeters from the thruster exit plane at the axis. This plasma focus exists during the entire pulse, but the plasma density in the focus decreases from about 2x10(exp 22)/cu m at the beginning of the pulse down to 0.3x10(exp 22)/cu m at 5 microsec.

  17. PumpKin: A tool to find principal pathways in plasma chemical models

    NASA Astrophysics Data System (ADS)

    Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.

    2014-10-01

    PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.

  18. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    PubMed

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  19. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    PubMed

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  20. The focusing effect in backward Raman amplification in plasma

    NASA Astrophysics Data System (ADS)

    Li, Zhaoli; Peng, Hao; Zuo, Yanlei; Su, Jingxin; Yang, Suhui

    2018-04-01

    In this paper, the focusing effect on backward Raman amplification in plasma is investigated. A fluid model, used to simulate the backward Raman amplification and including the relativistic, ponderomotive, and thermal self-focusing and the mutual-focusing effect simultaneously, is proposed and investigated. The focusing effect is shown to severely distort the profile of the seed when the seed intensity was as high as 10 17 W/cm2. Reducing the plasma density can relax the focusing effect, but at the cost of decreasing the amplification efficiency. Changing the profile of the seed has a limited effect on mitigating the focusing effect. A Gaussian profile of the pump and a defocusing shape of the plasma density seem to be an effective way to mitigate the focusing effect without decreasing the amplification efficiency.

  1. Collisionless current sheet equilibria

    NASA Astrophysics Data System (ADS)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  2. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath. II. Towards a first principles theory

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2017-11-01

    This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.

  3. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  4. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q =more » 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.« less

  5. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  6. Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression

    NASA Astrophysics Data System (ADS)

    Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen

    2016-10-01

    Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a

  7. Preliminary Studies of Ions Emission in a Small Plasma Focus Device of Hundreds of Joules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Jose; Pavez, Cristian; Soto, Leopoldo

    2009-01-21

    Ion beam emission in plasma focus (PF) discharges was originally investigated to explain the strong forward anisotropy observed in the neutron. Several properties of PF emitted deuteron beams have been measured, including their angular distributions and energy spectra in devices operating with energies from 1 kJ to 1 MJ. At present there is a growing interest in the development of very small PF devices operating under 1 kJ. As part of the characterization program of the very low energy PF devices (<1 kJ) developed at the Chilean Nuclear Energy Commission, the charges particle emission in hydrogen (H{sub 2}) and mixturemore » (H{sub 2}+%Ar) are being studied. In order to obtain an estimation of the ions energy spectrum and ionization grade, by using time of flight method, a graphite collector system operating in the bias ion collector mode was constructed and it is being used. Preliminary results of the ion beams measurements in different experimental conditions, at a plasma focus device of 400 joules (PF-400 J) are presented.« less

  8. Simulations of a dense plasma focus on a high impedance generator

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander

    2017-10-01

    We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.

  9. Global parameter optimization of a Mather-type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-12-01

    Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.

  10. Physics of Self-Field-Dominated Plasmas.

    DTIC Science & Technology

    1995-03-31

    plasma focus machines (APF) for different optimal levels of discharge feeding energy W, in particular for APF-20O (W <or = 200 kJ) and APF-50 (W <or= 50 kJ). The function of these APF systems was to determine, along with the data of smaller machines, the scaling laws of the emission (fluence) of ion and ion cluster beams as a function of W, ejected from the self field dominated plasma of the APF pinch. Typical ion spectra from a Thomson (parabola) spectrometer in the 80 deg direction from the electrode/pinch axis are also included

  11. Multidimensional electron beam-plasma instabilities in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Gremillet, L.; Dieckmann, M. E.

    2010-12-15

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, themore » basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell-Juettner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.« less

  12. X-ray Emission from the Interaction of a Macroscopic Particle with a Dense Plasma Focus.

    DTIC Science & Technology

    1976-10-01

    Recently the interest in dense plasma focus has greatly increased because of the possibility of developing the device into an intense, pulsed...using a macroscopic particle to interact with a plasma focus . A theoretical study was carried out to predict the relative amount of X-ray increase

  13. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  14. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  15. Technological aspects of GEM detector design and assembling for soft x-ray application

    NASA Astrophysics Data System (ADS)

    Kowalska-Strzeciwilk, E.; Chernyshova, M.

    2016-09-01

    Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.

  16. Plasma lens experiments at the Final Focus Test Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, B.; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less

  17. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  18. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less

  19. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system.

    PubMed

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  20. Non-stationary self-focusing of intense laser beam in plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2011-10-15

    The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less

  1. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    NASA Astrophysics Data System (ADS)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization. With applications ranging from engineefficiency and pollution control to stabilized operation of scramjet technology in hypersonic flows, developing an understanding of the underlying plasma chemistry is of the utmost importance. While the use of equilibrium (thermal) plasmas in the combustion process extends back to the ad- vent of the spark-ignition engine, works from the last few decades have demonstrated fundamental differences between PAC and classical combustion theory. The KGMf is applied to nanosecond- discharge systems in order to analyze the effects of electron energy distribution assumptions on reaction kinetics and highlight the usefulness of 0D modeling in systems defined by coupled and complex physics. With fundamentally different principles involved, the concept of optically-pumped rare gas metastable lasing (RGL) presents a novel opportunity for scalable high-powered lasers by taking advantage of similarities in the electronic structure of elements while traversing the periodic ta- ble. Building from the proven concept of diode-pumped alkali vapor lasers (DPAL), RGL systems demonstrate remarkably similar spectral characteristics without problems associated with heated caustic vapors. First introduced in 2012, numerical studies on the latent kinetics remain immature. This work couples an analytic model developed for DPAL with KGMf plasma chemistry to bet- ter understand the interaction of a non-equilibrium plasma with the induced laser processes and determine if optical pumping could be avoided through careful discharge selection.

  2. Response to “Comment on ‘Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma’” [Phys. Plasmas 21, 064701 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S. D., E-mail: sdpatil-phy@rediffmail.com; Takale, M. V.

    2014-06-15

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  3. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  4. Supersonic, subsonic and stationary filaments in the plasma focus

    NASA Astrophysics Data System (ADS)

    Nikulin, V. Ya; Startsev, S. A.; Tsybenko, S. P.

    2017-10-01

    Filaments in the plasma focus were investigated using a model of plasma with the London current. These structures involve a forward current that flows along the surface of a tangential discontinuity and reverse induction currents in the surrounding plasma, including those that flow over the surface of discontinuity, where the magnetic field reverses its direction. Supersonic filaments demonstrated the capture of plasma by the London current, and in subsonic and stationary filaments, the London current expelled the plasma.

  5. Evaluation of ITER MSE Viewing Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S; Lerner, S; Morris, K

    2007-03-26

    The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on themore » design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate image that then was relayed out of the port plug with more ideal (dielectric) mirrors. Engineering models of the optics, port plug, and neutral beam geometry were also created, using the CATIA ITER models. Two video conference calls with the USIPO provided valuable design guidelines, such as the minimum distance of the first optic from the plasma. A second focus of the project was the calibration of the system. Several different techniques are proposed, both before and during plasma operation. Fixed and rotatable polarizers would be used to characterize the system in the no-plasma case. Obtaining the full modulation spectrum from the polarization analyzer allows measurement of polarization effects and also MHD plasma phenomena. Light from neutral beam interaction with deuterium gas (no plasma) has been found useful to determine the wavelength of each spatial channel. The status of the optical design for the edge (upper) and core (lower) systems is included in the following figure. Several issues should be addressed by a follow-on study, including whether the optical labyrinth has sufficient neutron shielding and a detailed polarization characterization of actual mirrors.« less

  6. Short-wavelength ablation of polymers in the high-fluence regime

    NASA Astrophysics Data System (ADS)

    Liberatore, Chiara; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Juha, Libor; Vyšín, Ludek; Rocca, Jorge J.; Endo, Akira; Mocek, Tomas

    2014-05-01

    Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm-2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique.

  7. Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing

    NASA Astrophysics Data System (ADS)

    Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren

    2017-03-01

    The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.

  8. Study of the Role of Vortex Annihilation in the Mechanism of Neutron and X-Ray Production in the Plasma Focus.

    DTIC Science & Technology

    This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and

  9. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE PAGES

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...

    2017-12-27

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  10. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  11. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.

    2017-12-01

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  12. Invited Review Article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices

    DOE PAGES

    Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...

    2017-04-27

    Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less

  13. Investigation Of Plasma Critical Surface Rippling By Harmonics Generation In Laser Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racz, E.; Foeldes, I. B.; Szatmari, S.

    2006-01-15

    Experiments were carried out by a tightly focused, prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). Intense 2{omega}, 3{omega} and near threshold 4{omega} were generated in laser plasmas on solid surfaces for p- and s-polarized 1.5{center_dot}1017 W/cm2 radiation intensity. Directionality and polarization properties were investigated depending on the laser intensity and polarization. The observations showed diffuse propagation of harmonics for intensities above 1016 W/cm2 and the polarization of harmonics was mixed for the highest intensities. The explanation of these results is surface rippling of the plasma critical surface because of the Rayleigh-Taylor instability, whichmore » is an intrinsic consequence of the unstable balance between light pressure and plasma expansion.« less

  14. Invited Review Article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweben, S. J.; Terry, J. L.; Stotler, D. P.

    Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less

  15. Plasma Transfusion: History, Current Realities, and Novel Improvements.

    PubMed

    Watson, Justin J J; Pati, Shibani; Schreiber, Martin A

    2016-11-01

    Traumatic hemorrhage is the leading cause of preventable death after trauma. Early transfusion of plasma and balanced transfusion have been shown to optimize survival, mitigate the acute coagulopathy of trauma, and restore the endothelial glycocalyx. There are a myriad of plasma formulations available worldwide, including fresh frozen plasma, thawed plasma, liquid plasma, plasma frozen within 24 h, and lyophilized plasma (LP). Significant equipoise exists in the literature regarding the optimal plasma formulation. LP is a freeze-dried formulation that was originally developed in the 1930s and used by the American and British military in World War II. It was subsequently discontinued due to risk of disease transmission from pooled donors. Recently, there has been a significant amount of research focusing on optimizing reconstitution of LP. Findings show that sterile water buffered with ascorbic acid results in decreased blood loss with suppression of systemic inflammation. We are now beginning to realize the creation of a plasma-derived formulation that rapidly produces the associated benefits without logistical or safety constraints. This review will highlight the history of plasma, detail the various types of plasma formulations currently available, their pathophysiological effects, impacts of storage on coagulation factors in vitro and in vivo, novel concepts, and future directions.

  16. Low energy, high power hydrogen neutral beam for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase themore » efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.« less

  17. Electron effects in the Neutralized Transport Experiment (NTX)

    NASA Astrophysics Data System (ADS)

    Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.

    2005-05-01

    The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.

  18. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  19. Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport

    NASA Astrophysics Data System (ADS)

    Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.

    2017-10-01

    Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.

  20. The development and stability of non-thermal plasma in space

    NASA Astrophysics Data System (ADS)

    Kasper, Justin

    2017-10-01

    This talk will review our understanding of non-thermal ion and electron velocity distribution functions (VDFs) in space plasma, with a focus on pressure anisotropy and unequal temperatures in the solar wind and corona. Under typical solar wind plasma conditions, which are common for a range of astrophysical plasmas, relaxation processes such as Coulomb collisions are sufficiently slow compared to interactions between particles and electromagnetic fluctuations that ion and electron VDFs can depart significantly from the classical Maxwell-Boltzmann distribution and maintain these non-thermal features for times greater than the dynamical scales of the system. These non-thermal properties of the plasma are very important as they can significantly modify aspects of the plasma such as heat flux, susceptibility to kinetic instabilities, and interaction with waves and turbulence. Major open questions in the field will be reviewed, along with current and planned observational capabilities of instruments on spacecraft such as Wind and the upcoming Parker Solar Probe, with an eye to potential crossover with laboratory plasma experiments.

  1. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.

    PubMed

    Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J

    2017-09-01

    We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.

  2. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.

  3. Low-energy plasma focus device as an electron beam source.

    PubMed

    Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  4. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    NASA Astrophysics Data System (ADS)

    Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.

    2013-05-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  5. Physicochemical processes in the indirect interaction between surface air plasma and deionized water

    NASA Astrophysics Data System (ADS)

    Liu, Z. C.; Liu, D. X.; Chen, C.; Li, D.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2015-12-01

    One of the most central scientific questions for plasma applications in healthcare and environmental remediation is the chemical identity and the dose profile of plasma-induced reactive oxygen and nitrogen species (ROS/RNS) that can act on an object inside a liquid. A logical focus is on aqueous physicochemical processes near a sample with a direct link to their upstream gaseous processes in the plasma region and a separation gap from the liquid bulk. Here, a system-level modeling framework is developed for indirect interactions of surface air plasma and a deionized water bulk and its predictions are found to be in good agreement with the measurement of gas-phase ozone and aqueous long-living ROS/RNS concentrations. The plasma region is described with a global model, whereas the air gap and the liquid region are simulated with a 1D fluid model. All three regions are treated as one integrated entity and computed simultaneously. With experimental validation, the system-level modeling shows that the dominant aqueous ROS/RNS are long-living species (e.g. H2O2 aq, O3 aq, nitrite/nitrate, H+ aq). While most short-living gaseous species could hardly survive their passage to the liquid, aqueous short-living ROS/RNS are generated in situ through reactions among long-living plasma species and with water molecules. This plasma-mediated remote production of aqueous ROS/RNS is important for the abundance of aqueous HO2 aq, HO3 aq, OHaq and \\text{O}2- aq as well as NO2 aq and NO3 aq. Aqueous plasma chemistry offers a novel and significant pathway to activate a given biological outcome, as exemplified here for bacterial deactivation in plasma-activated water. Additional factors that may synergistically broaden the usefulness of aqueous plasma chemistry include an electric field by aqueous ions and liquid acidification. The system-modeling framework will be useful in assisting designs and analyses of future investigations of plasma-liquid and plasma-cell interactions.

  6. Development of a Laser Induced Fluorescence (LIF) system on the Plasma Material Interaction System (PLAMIS-II) device

    NASA Astrophysics Data System (ADS)

    Kang, I. J.; Lee, K. Y.; Lee, K. I.; Choi, Y.-S.; Cho, S. G.; Bae, M. K.; Lee, D.-H.; Hong, S. H.; Lho, T.; Chung, K.-S.

    2015-12-01

    A laser induced fluorescence (LIF) system has been developed for the plasma material interaction system (PLAMIS-II) device, which is equipped with a unique plasma gun composed of a LaB6 cathode and two anodes with electromagnets to generate a focused dense plasma. PLAMIS-II simulates the interactions of plasma with different materials and is to be used for the test of plasma facing components of fusion devices. The LIF system is composed of a seed laser with Littmann/Metcalf cavity and a master oscillator power amplifier to pump 3d4F7/2 metastable argon ion to 4p4D5/2 level at the wavelength of 668.61 nm, which has the following input parameters: laser power = 20 mW, line width < 100 kHz, and a mode-hop free tuning range > 70 GHz. For in-situ measurement of laser wavelength, the wavelength spectrum of an iodine cell was measured by a photo-transistor during LIF measurement. To measure argon ion temperature (Ti) and drift velocity (vd) in PLAMIS-II, the fluorescence light with the wavelength of 442.72 nm, emitted from 4p4D5/2 level to 4s4P3/2 level and passing through 1 nm band-width filter, was collected by the photomultiplier tube combined with a lock-in amplifier and a chopper with frequency of 3 kHz. Initial data of Ti and vd were analysed in terms of gas flow rate and applied power.

  7. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    NASA Astrophysics Data System (ADS)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  8. Generation of terahertz radiation by intense hollow Gaussian laser beam in magnetised plasma under relativistic-ponderomotive regime

    NASA Astrophysics Data System (ADS)

    Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan

    2017-07-01

    This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.

  9. About an Extreme Achievable Current in Plasma Focus Installation of Mather Type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulin, V. Ya.; Polukhin, S. N.; Vikhrev, V. V.

    A computer simulation and analytical analysis of the discharge process in Plasma Focus has shown that there is an upper limit to the current which can be achieved in Plasma Focus installation of Mather type by only increasing the capacity of the condenser bank. The maximum current achieved for various plasma focus installations of 1 MJ level is discussed. For example, for the PF-1000 (IFPiLM) and 1 MJ Frascati PF, the maximum current is near 2 MA. Thus, the commonly used method of increasing the energy of the PF installation by increasing of the capacity has no merit. Alternative optionsmore » in order to increase the current are discussed.« less

  10. Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch

    DTIC Science & Technology

    1993-11-10

    plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with

  11. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-06-15

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].

  12. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1975-01-01

    The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.

  13. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Chakera, J. A.; Naik, P. A.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available formore » time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.« less

  14. Relativistic laser channeling in plasmas for fast ignition

    NASA Astrophysics Data System (ADS)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  15. Beam deviation method as a diagnostic tool for the plasma focus.

    PubMed

    Schmidt, H; Rückle, B

    1978-04-15

    The application of an optical method for density measurements in cylindrical plasmas is described. The angular deviation of a probing light beam sent through a plasma is proportional to the maximum of the density in the plasma column. The deviation does not depend on the plasma dimensions; however, it is influenced to a certain degree by the density profile. The method is successfully applied to the investigation of a dense plasma focus with a time resolution of 2 nsec and a spatial resolution (in axial direction) of 2 mm.

  16. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  17. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  18. Introducing minimum Fisher regularisation tomography to AXUV and soft x-ray diagnostic systems of the COMPASS tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynar, J.; Weinzettl, V.; Imrisek, M.

    2012-10-15

    The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In themore » SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken.« less

  19. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  20. Nanostructure iron-silicon thin film deposition using plasma focus device

    NASA Astrophysics Data System (ADS)

    Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.

    2013-03-01

    The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample

  1. Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus (Particle Energy Spectrum and Optimization Criteria).

    DTIC Science & Technology

    1979-11-01

    plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity

  2. Investigation of Plasma Facing Components in Plasma Focus Operation

    NASA Astrophysics Data System (ADS)

    Roshan, M. V.; Babazadeh, A. R.; Kiai, S. M. Sadat; Habibi, H.; Mamarzadeh, M.

    2007-09-01

    Both aspects of the plasma-wall interactions, counter effect of plasma and materials, have been considered in our experiments. The AEOI plasma focus, Dena, has Filippov-type electrodes. The experimental results verify that neutron production increases using tungsten as an anode insert material, compared to the copper one. The experiments show decrement of the hardness of Aluminum targets outward the sides, from 135 to 78 in Vickers scale. The sputtering yield is about 0.0065 for deuteron energy of 50 keV.

  3. Dynamics of a Focussed Discharge.

    DTIC Science & Technology

    This report describes theoretical and experimental investigations on the dynamics of a dense plasma focus . The characteristics of the focus in terms...also described. The results of a preliminary theoretical investigation of the heating of a dense plasma focus by a laser is given.

  4. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    Several experiments were performed to enhance power coupling to the load by placing the load electrode opposite the muzzle end of the Dense Plasma ... Focus plasma gun. The impaler concept, whereby the current sheath is run into a knife edge insulator, was tested in two configurations. However, the

  5. The next large helical devices

    NASA Astrophysics Data System (ADS)

    Iiyoshi, Atsuo; Yamazaki, Kozo

    1995-06-01

    Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ctibor, Pavel; Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz; Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-raymore » diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.« less

  7. Semiconductor and thermoluminescent dosimetry of pulsed soft X ray plasma sources.

    PubMed

    Krása, J; Cejnarová, A; Juha, L; Ryć, L; Scholz, M; Kubes, P

    2002-01-01

    A multichannel detection system having a dynamic range of approximately 1 x 10(-9) Gy --20 Gy was developed with the use of commercially produced Si-photodiodes and TLDs for accurate measurement of X ray energy emitted from plasma-focus facility and from laser-produced plasmas. The proof of linearity of the employed detectors accomplished by a comparison of their responses to a broad band spectrum of X rays emitted from plasmas, is reported. It is demonstrated that TLDs irradiated with no protective filter show an incorrect response due to overloading in the sub-keV range and repopulation of dosimetric peaks induced by the UV radiation. The measurement of the power of undesirable secondary X ray sources driven by the primary plasma inside the interaction chamber was performed on the basis of analysis of space dependence of X ray intensity with respect to the assumed r(-2) decrease in the intensity far away from the plasma.

  8. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in the First Year of a Two Year Investigation

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2016-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS)1 was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I we learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx.100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The current work within the Phase II NIAC effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a unique MSFC test chamber, 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Further down select of a wire deployment and control approach from those narrowed down in the Phase I effort. This paper will document the findings to date (June, 2016) of the above focused areas.

  9. Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2012-11-15

    The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front inmore » cold quantum plasmas.« less

  10. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  11. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on the ISS Express Logistics Carrier for long-term observations and the Space Station Remote Manipulator System for short-term focused campaigns. The presentation will include a description of the instrument complement and an overview of the operations concept.

  12. X-ray free-electron laser studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam M.

    2015-10-01

    > The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.

  13. Coherent control of plasma dynamics

    NASA Astrophysics Data System (ADS)

    He, Zhaohan

    2014-10-01

    The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which subsequently produces electron beams with a different divergence. The proof-of-principle demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications. This study should also enable a significantly improved understanding of the complex dynamics of laser plasma interactions. This work was supported by DARPA under Contract No. N66001-11-1-4208, the NSF under Contract No. 0935197 and MCubed at the University of Michigan.

  14. Low-Energy Plasma Focus Device as an Electron Beam Source

    PubMed Central

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  15. Theory and Numerical Simulation of Plasma-wall Interactions in Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Mikellides, Ioannis

    2016-10-01

    Electric propulsion (EP) can be an enabling technology for many science missions considered by NASA because it can produce high exhaust velocities, which allow for less propellant mass compared to typical chemical systems. Over the last decade two EP technologies have emerged as primary candidates for several proposed science missions, mainly due to their superior performance and proven record in space flight: the Ion and Hall thrusters. As NASA looks ahead to increasingly ambitious science goals, missions demand higher endurance from the propulsion system. So, by contrast to the early years of development of these thrusters, when the focus was on performance, considerable focus today is shifting towards extending their service life. Considering all potentially life-limiting mechanisms in Ion and Hall thrusters two are of primary concern: (a) the erosion of the acceleration channel in Hall thrusters and (b) the erosion of the hollow cathode. The plasma physics leading to material wear in these devices are uniquely challenging. For example, soon after the propellant is introduced into the hollow cathode it becomes partially ionized as it traverses a region of electron emission. Electron emission involves highly non-linear boundary conditions. Also, the sheath size is typically many times smaller than the characteristic physical scale of the device, yet energy gained by ions through the sheath must be accounted for in the erosion calculations. The plasma-material interactions in Hall thruster channels pose similar challenges that are further exacerbated by the presence of a strong applied magnetic field. In this presentation several complexities associated with plasma-wall interactions in EP will be discussed and numerical simulation results of key plasma properties in two examples, Hall thrusters and hollow cathodes, will be presented.

  16. An Overview of Recent PISCES Program PMI Results

    NASA Astrophysics Data System (ADS)

    Tynan, George; Doerner, Russell; Abe, Shota; Baldwin, Matthew; Barton, Joseph; Chen, Renkun; Gosselin, Jordan; Hollmann, Eric; Nishijima, Daisuke; Simmonds, Michael; Wang, Yong; Yu, Jonathan

    2015-11-01

    The PISCES Program is focused on fundamental PMI studies of Be and W-based solid plasma facing components under steady-state and transient conditions. We will show results from studies in W, Be and mixed W-Be material systems. Topics of investigation include formation of near-surface nanobubbles from He plasma ion implantation, growth of W-fuzz from these bubbles in steady-state and transient conditions, D retention in Be and W and development of a D-retention model for both H/D isotope exchange and displacement damage experiments. Initial studies of PMI in displacement damaged W are also presented, showing the effect of damage and exposure temperature on D retention, D diffusion, W thermal conductivity. Be-based results include morphology evolution under high plasma flux exposure, Be erosion mechanisms, and retention in Be-based materials. Future plans and connections to fusion energy system requirements will be discussed. This work supported by grant DE-FG02-07ER54912.

  17. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  18. An university-scale pulsed-power system using a bipolar Marx generator

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yu; Yang, Sheng-Hua; Huang, Mei-Feng; Isaps, Natl Cheng Kung Univ Team

    2017-10-01

    A bipolar Marx generator is being built for x-ray sources or laboratory astrophysics and space research for university-scale laboratory. The system consists of ten stages. In each stage, two 1 μF capacitors connected in series are charged to +/- 30 kV storing 9 kJ of total energy. It delivers a current of 200 kA to the load with a 200 ns rise time during the discharge. It will be used for following three purposes: (1) gas-puff z pinches generating soft x-ray for bio-medical research in the future; (2) generating plasma jets to study interactions between plasma flows and unmagnetized/magnetized obstacles analogous to the interactions between solar winds and planetary magnetic fields or unmagnetized planets; and (3) studying the pinch in a dense plasma focus device. The results of current measurements and circuit characteristics are shown.

  19. Electrodeless plasma acceleration system using rotating magnetic field method

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Kuwahara, D.; Shinohara, S.

    2017-11-01

    We have proposed Rotating Magnetic Field (RMF) acceleration method as one of electrodeless plasma accelerations. In our experimental scheme, plasma generated by an rf (radio frequency) antenna, is accelerated by RMF antennas, which consist of two-pair, opposed, facing coils, and these antennas are outside of a discharge tube. Therefore, there is no wear of electrodes, degrading the propulsion performance. Here, we will introduce our RMF acceleration system developed, including the experimental device, e.g., external antennas, a tapered quartz tube, a vacuum chamber, external magnets, and a pumping system. In addition, we can change RMF operation parameters (RMF applied current IRMF and RMF current phase difference ϕ, focusing on RMF current frequency fRMF) by adjusting matching conditions of RMF, and investigate the dependencies on plasma parameters (electron density ne and ion velocity vi); e.g., higher increases of ne and vi (˜360 % and 55 %, respectively) than previous experimental results were obtained by decreasing fRMF from 5 MHz to 0.7 MHz, whose RMF penetration condition was better according to Milroy's expression. Moreover, time-varying component of RMF has been measured directly to survey the penetration condition experimentally.

  20. Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.

    2016-12-01

    It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)

  1. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  2. Microwave produced plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  3. Intense Excitation Source of Blue-Green Laser.

    DTIC Science & Technology

    1985-10-15

    plasma focus (DPF) can produce intense uv photons (200-300nm) which match the absorption spectra of both near uv and blue green dye lasers (300-400nm...existing blue green dye laser. On the other hand the dense- plasma focus (DPF) with new optical coupling has been designed and constructed. For the...optimization of the DPF device as the uv pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as

  4. The existence of electron-acoustic shock waves and their interactions in a non-Maxwellian plasma with q-nonextensive distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai

    2013-07-15

    We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less

  5. Research on Short Duration Pulsed Radiation Sources.

    DTIC Science & Technology

    correlate soft X-ray spots with the hard radiation in a 1 kJ plasma focus showed that field structures leading to the appearance of soft X-ray spots...are always present in this plasma focus . These field structures represent m = 0 plasma instabilities and do have a direct influence upon the observed neutron emission. (Author)

  6. Measurement of erosion in helicon plasma thrusters using the VASIMR® VX-CR device

    NASA Astrophysics Data System (ADS)

    Del Valle Gamboa, Juan Ignacio; Castro-Nieto, Jose; Squire, Jared; Carter, Mark; Chang-Diaz, Franklin

    2015-09-01

    The helicon plasma source is one of the principal stages of the high-power VASIMR® electric propulsion system. The VASIMR® VX-CR experiment focuses solely on this stage, exploring the erosion and long-term operation effects of the VASIMR helicon source. We report on the design and operational parameters of the VX-CR experiment, and the development of modeling tools and characterization techniques allowing the study of erosion phenomena in helicon plasma sources in general, and stand-alone helicon plasma thrusters (HPTs) in particular. A thorough understanding of the erosion phenomena within HPTs will enable better predictions of their behavior as well as more accurate estimations of their expected lifetime. We present a simplified model of the plasma-wall interactions within HPTs based on current models of the plasma density distributions in helicon discharges. Results from this modeling tool are used to predict the erosion within the plasma-facing components of the VX-CR device. Experimental techniques to measure actual erosion, including the use of coordinate-measuring machines and microscopy, will be discussed.

  7. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  8. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  9. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  10. Plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  11. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  12. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma

    PubMed Central

    Kahaly, S.; Sylla, F.; Lifschitz, A.; Flacco, A.; Veltcheva, M.; Malka, V.

    2016-01-01

    Ion acceleration from intense (Iλ2 > 1018 Wcm−2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less

  14. Oxidation-Resistant Surfaces For Solar Reflectors

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.

    1988-01-01

    Thin films on silver provide highly-reflective, corrosion-resistant mirrors. Study evaluated variety of oxidation-resistant reflective materials for use in solar dynamic power system, one that generates electricity by focusing Sunlight onto reciever of heat engine. Thin films of platinum and rhodium deposited by ion-beam sputtering on various substrate materials. Solar reflectances measured as function of time of exposure to radio-frequency-generated air plasma. Several protective coating materials deposited on silver-coated substrates and exposed to plasma. Analyzed before and after exposure by electon spectroscopy for chemical analysis and by Auger spectroscopy.

  15. Optical diagnostics of the arc plasma using fast intensified CCD-spectrograph system

    NASA Astrophysics Data System (ADS)

    Pavelescu, Gabriela; Guillot, Stephane; Braic, Mariana T.; Hong, Dunpin; Pavelescu, D.; Fleurier, Claude; Braic, Viorel; Gherendi, F.; Dumitrescu, G.; Anghelita, P.; Bauchire, J. M.

    2004-10-01

    Spectroscopic diagnostics, using intensified high speed CCD camera, was applied to study the arc dynamics in low voltage circuit breakers, in vacuum and in air. Time-resolved emission spectroscopy of the vacuum arc plasma, generated during electrode separation, provided information about the interruption process. The investigations were focused on the partial unsuccessful interruption around current zero. Absorption spectroscopy, in a peculiar setup, was used in order to determine the metallic atoms densities in the interelectrode space of a low voltage circuit breaker, working in ambient air.

  16. DoE Plasma Center for Momentum Transport and Flow Self-Organization in Plasmas: Non-linear Emergent Structure Formation in magnetized Plasmas and Rotating Magnetofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, Cary B.

    This report covers the UW-Madison activities that took place within a larger DoE Center Administered and directed by Professor George Tynan at the University of California, San Diego. The work at Wisconsin will also be covered in the final reporting for the entire center, which will be submitted by UCSD. There were two main activities, one experimental and one that was theoretical in nature, as part of the Center activities at the University of Wisconsin, Madison. First, the Center supported an experimentally focused postdoc (Chris Cooper) to carry out fundamental studies of momentum transport in rotating and weakly magnetized plasma.more » His experimental work was done on the Plasma Couette Experiment, a cylindrical plasma confinement device, with a plasma flow created through electromagnetically stirring plasma at the plasma edge facilitated by arrays of permanent magnets. Cooper's work involved developing optical techniques to measure the ion temperature and plasma flow through Doppler-shifted line radiation from the plasma argon ions. This included passive emission measurements and development of a novel ring summing Fabry-Perot spectroscopy system, and the active system involved using a diode laser to induce fluorescence. On the theoretical side, CMTFO supported a postdoc (Johannes Pueschel) to carry out a gyrokinetic extension of residual zonal flow theory to the case with magnetic fluctuations, showing that magnetic stochasticity disrupts zonal flows. The work included a successful comparison with gyrokinetic simulations. This work and its connection to the broader CMTFO will be covered more thoroughly in the final CMTFO report from Professor Tynan.« less

  17. Study of Mechanical and Thermal Impact of a Plasma Focus Discharge on Diagnostic Elements of PFM-72M Installation

    NASA Astrophysics Data System (ADS)

    Bashutin, O. A.; Savelov, A. S.; Sidorov, P. P.

    2017-12-01

    Mechanical and thermal impact of the plasma focus discharge on structural elements of diagnostic windows of the PFM-72m discharge installation are calculated. The absence of critical impact at early discharge stages and during the first 300 ns after the "plasma focus" formation is shown. The possibility of shock impact on the surface of diagnostic windows at later times, which may result in their substantial deformation and destruction, is demonstrated.

  18. Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams

    DTIC Science & Technology

    1987-07-30

    The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines

  19. Influence of distance between focusing lens and target surface on laser-induced Cu plasma temperature

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Anmin; Wang, Qiuyun; Sui, Laizhi; Ke, Da; Cao, Sheng; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2018-03-01

    In this study, the influence of distance between the focusing lens and target surface on the plasma temperature of copper induced by a Nd:YAG laser was investigated in the atmosphere. The plasma temperature was calculated by using the Cu (I) lines (510.55 nm, 515.32 nm, and 521.82 nm). The Cu (I) lines were recorded under different lens-to-sample distances and laser pulse energies (15.8 mJ, 27.0 mJ, 43.4 mJ, 59.2 mJ, and 76.8 mJ). The results indicated that the plasma temperature depended strongly on the distance between the focusing lens and target surface. With the increase in the distance, the plasma temperature firstly rose, and then dropped. This could be attributed to the interaction between the tailing of the nanosecond laser pulse and the front portion of the plasma plume, the plasma shielding effect, and the expanding of the plasma. In addition, there was an interesting phenomenon that the plasma temperature and the emission intensity were not completely consistent with the change of the lens-to-sample distance. It is hoped that our research will provide a deeper insight into the underlying physical processes.

  20. Effect of inserted metal at anode tip on formation of pulsed X-ray emitting zone of plasma focus device

    NASA Astrophysics Data System (ADS)

    Miremad, Seyed Milad; Shirani Bidabadi, Babak

    2018-04-01

    The effect of the anode's insert material of a plasma focus device on the properties of X-ray emission zone was studied. Inserts were fabricated out of six different materials including aluminum, copper, zinc, tin, tungsten, and lead to cover a wide range of atomic numbers. For each anode's insert material at different gas pressures and different voltages, the shape of X-ray emission zone was recorded by three pinhole cameras, which were installed on sidewall and roof of the chamber of plasma focus device. The results indicated that by changing the gas pressure and the charge voltage of capacitor, the X-ray source of plasma focus emerges with different forms as a concentrated column or conical shape with sharp or cloudy edges. These structures are in the form of a combination of plasma emission and anode-tip emission with different intensities. These observations indicate that the material of the anode-tip especially affects the structure of X-ray emission zone.

  1. Engineering Considerations for the Self-Energizing Magnetoplasmadynamic (MPD)-Type Fusion Plasma Thruster

    DTIC Science & Technology

    1992-02-01

    Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.

  2. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  3. Opening Switch Research on a Plasma Focus VI.

    DTIC Science & Technology

    1988-02-26

    Sausage Instability in the Plasma Focus In this section the classical Kruskal- Schwarzschild 3 theory for the sausage mode is applied to the pinch phase...on 1) the shape of the pinch, 2) axial flow of plasma, and 3) self-generated magnetic fields are also presented. The Kruskal- Schwarzschild Theory The...classical mhd theory for the m=O mode in a plasma supported by a magnetic field against gravity; this is the well-known Kruskal- Schwarzschild

  4. Methylation potential associated with diet, genotype, protein, and metabolite levels in the Delta Obesity Vitamin Study

    USDA-ARS?s Scientific Manuscript database

    Micronutrient research typically focuses on analyzing the effects of single or a few nutrients on health by analyzing a limited number of biomarkers. The observational study described here analyzed micronutrients, plasma proteins, dietary intakes, and genotype using a systems approach. Participants ...

  5. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.

    PubMed

    Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E

    2010-10-01

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  6. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  7. Experimental characterization of active plasma lensing for electron beams

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marocchino, A.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2017-03-01

    The active plasma lens represents a compact and affordable tool with radially symmetric focusing and field gradients up to several kT/m. In order to be used as a focusing device, its effects on the particle beam distribution must be well characterized. Here, we present the experimental results obtained by focusing an high-brightness electron beam by means of a 3 cm-long discharge-capillary pre-filled with Hydrogen gas. We achieved minimum spot sizes of 24 μ m (rms) showing that, during plasma lensing, the beam emittance increases due to nonlinearities in the focusing field. The results have been cross-checked with numerical simulations, showing an excellent agreement.

  8. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  9. Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.

    2018-05-01

    In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.

  10. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less

  11. Plasma Decontamination: A Case Study on Kill Efficacy of Geobacillus stearothermophilus Spores on Different Carrier Materials.

    PubMed

    Semmler, Egmont; Novak, Wenzel; Allinson, Wilf; Wallis, Darren; Wood, Nigel; Awakowicz, Peter; Wunderlich, Joachim

    2016-01-01

    A new technology to the pharmaceutical field is presented: surface decontamination by plasmas The technology is comparable to established barrier systems like e-beam, volatile hydrogen peroxide, or radiation inactivation of microbiological contaminations. This plasma technology is part of a fully automated and validated syringe filling line at a major pharmaceutical company and is in production operation. Incoming pre-sterilized syringe containers ("tubs") are processed by plasma, solely on the outside, and passed into the aseptic filling isolator upon successful decontamination. The objective of this article is to present the operating principles and develop and establish a validation routine on the basis of standard commercial biological indicators. Their decontamination efficacies are determined and correlated to the actual inactivation efficacy on the pharmaceutical packaging material.The reference setup is explained in detail and a short presentation of the cycle development and the relevant plasma control parameters is given, with a special focus on the in-process monitor determining the cycle validity. Different microbial inactivation mechanisms are also discussed and evaluated for their contribution and interaction to enhance plasma decontamination. A material-dependent inactivation behavior was observed. In order to be able to correlate the tub surface inactivation of Geobacillus stearothermophilus endospores to metallic biological indicators, a comparative study was performed. Through consistently demonstrating the linear inactivation behavior between the different materials, it becomes possible to develop an effective and time-saving validation scheme. The challenge in new decontamination systems lies in a thorough validation of the inactivation efficacy under different operating regimes. With plasma, as an ionized gas, a new barrier concept is introduced into pharmaceutical aseptic processing of syringes. The presented system operates in vacuum and only decontaminates the outer surface of pre-sterilized syringe containers ("tubs"), before they are transferred into the aseptic area. The plasma does not penetrate into the tub. This article discusses the phase from development and test germ selection, across the identified sporicidal mechanisms, to a proposal for a validation scheme on the basis of commercially available biological indicators. A special focus is placed on an extensive investigation to establish a link between the tub surface microbial kill (polystyrene and Tyvek(and (2)) ) and biological indicator inactivation (stainless steel). Additionally, a rationale is developed on how an optical in-process monitor can be applied to establish a validatable limit on the base of the predetermined inactivation data of Geobacillus stearothermophilus endospores. © PDA, Inc. 2016.

  12. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  13. Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi

    2016-01-15

    The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less

  14. Pink-beam focusing with a one-dimensional compound refractive lens

    DOE PAGES

    Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...

    2016-07-28

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less

  15. New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Coenen, J. W.; Mao, Y.; Gonzalez-Julian, J.; Bram, M.

    2017-12-01

    Smart tungsten-based alloys are under development as plasma-facing components for a future fusion power plant. Smart alloys are planned to adjust their properties depending on environmental conditions: acting as a sputter-resistant plasma-facing material during plasma operation and suppressing the sublimation of radioactive tungsten oxide in case of an accident on the power plant. New smart alloys containing yttrium are presently in the focus of research. Thin film smart alloys are featuring an remarkable 105-fold suppression of mass increase due to an oxidation as compared to that of pure tungsten at 1000 °C. Newly developed bulk smart tungsten alloys feature even better oxidation resistance compared to that of thin films. First plasma test of smart alloys under DEMO-relevant conditions revealed the same mass removal as for pure tungsten due to sputtering by plasma ions. Exposed smart alloy samples demonstrate the superior oxidation performance as compared to tungsten-chromium-titanium systems developed earlier.

  16. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  17. Production and Characterization of High Repetition Rate Terahertz Radiation in Femtosecond-Laser-Induced Air Plasma

    DTIC Science & Technology

    2009-03-01

    nanometer, 50 femtosecond, 0.35 Watt, 40 KHz, pulsed Ti:Sapphire laser system was used as the source infrared beam. This beam was focused onto a...development of high speed THz imaging and spectroscopy systems. Until recently, the production and detection of coherent THz radiation has been both...exist a tabletop model that generates enough power at a high enough repetition rate to be feasible for most imaging or spectroscopy systems. The

  18. Recent progress of RF-dominated experiments on EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.

    2017-10-01

    The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.

  19. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2017-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS) was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I our team learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx. 100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The completed work within the Phase II NIAC funded effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a MSFC simulated solar environment vacuum test chamber. 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Conceptual design of a Technology Demonstration Mission (TDM) spacecraft developed to showcase E-Sail propulsion systems. 4) Down selection of both: a) Materials for a multi km length conductor and, b) Best configuration of the proposed conductor deployment subsystem. This paper will document the findings to date (June, 2017) of the above focused areas.

  20. Pulsed Plasma Propulsion - Making CubeSat Missions Beyond Low Earth Orbit Possible

    NASA Astrophysics Data System (ADS)

    Northway, P.

    2015-12-01

    As CubeSat missions become more and more popular means of scientific exploration of space, the current direction of interest is to utilize them in areas beyond low earth orbit. The University of Washington CubeSat program focuses on examining possible mission scenarios in addition to technology development and integration. Specifically, we are developing an inert CubeSat propulsion system in the form of a pulsed plasma thruster (PPT) capable of orbit maneuvers. Such a system would allow for missions at the Earth beyond LEO, extended missions at the Moon, and even missions at Europa, when assisted to the Jovian system. We will discuss how starting with a CubeSat design using PPTs for orbital maneuvers, other developing compact technology can be adapted to create a full suite of systems that would meet the requirements for a mission traveling outside low earth orbit.

  1. Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream

    NASA Astrophysics Data System (ADS)

    Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia

    2018-05-01

    The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.

  2. Plasma-Sprayed Fine-grained Zirconium Silicate and Its Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Pala, Z.; Nevrlá, B.; Neufuss, K.

    2017-05-01

    The article is focused on selected dielectric and electrical properties of ZrSiO4, which was plasma sprayed by a water-stabilized plasma system. A combination of two feeding distances and three spray distances was utilized for spraying and the structure and properties of samples evaluated. The coatings were tested in alternating electric field to determine capacity and loss factor with the frequency from 100 Hz to 100 kHz. Relative permittivity was calculated from the capacity. Volume resistivity and dielectric strength of ZrSiO4 were measured in a direct current regime. The aim was to test electrically this natural silicate material in the form of plasma-sprayed deposits. Microstructure was characterized by relatively large and non-globular pores. Crystallites were very small, about 10-20 nm. Dielectric losses were small, resistivity as well as strength relatively high. This silicate ceramic was recognized to be prospective for electrical engineering.

  3. JET disruption studies in support of ITER

    NASA Astrophysics Data System (ADS)

    Riccardo, V.; Arnoux, G.; Cahyna, P.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Koslowski, R.; Krlin, L.; Lehnen, M.; Loarte, A.; Nardon, E.; Paprok, R.; Tskhakaya (Sr, D.; contributors, JET-EFDA

    2010-12-01

    Plasma disruptions affect plasma-facing and structural components of tokamaks due to electromechanical forces, thermal loads and generation of high energy runaway electrons (REs). Asymmetries in poloidal halo and toroidal plasma current can now be routinely measured in four positions 90° apart. Their assessment is used to validate the design of the ITER vessel support system and its in-vessel components. The challenge of disruption thermal loads comes from both the short duration over which a large energy has to be lost and the potential for asymmetries. The focus of this paper will be on localized heat loads. Resonant magnetic perturbations failed to reduce the generation of REs in JET. An explanation of the limitations applying to these attempts is offered together with a minimum guideline. The REs generated by a moderate, but fast, Ar injection in limiter plasmas show evidence of milder and more efficient losses due to the high Ar background density.

  4. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qing; Xu, Jin; Zhang, Wenchao

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less

  5. The effect of standing acoustic waves on the formation of laser-induced air plasmas.

    PubMed

    Craig, Stephanie M; Brownell, Kara; O'Leary, Brendon; Malfitano, Christopher; Kelley, Jude A

    2013-03-01

    The expected location of an air plasma produced by a focused YAG laser pulse has been found to be influenced by the acoustics of the surrounding environment. In open air, the expected location of a laser-induced air plasma is centered close to the focal point of the lens focusing the laser beam. When confining the same beam coaxially along the interior of a quartz tube, the expected location of the air plasma shifts away from the focal point, toward the focusing lens, in a region of less laser fluence. This shift is caused by an interaction between standing acoustic waves (formed from sound waves produced by previous laser-induced plasmas) and the impinging laser pulse. Standing acoustic waves in a tube produce areas (antinodes) of slightly higher and slightly lower pressure than ambient atmospheric conditions, that in turn have a noticeable affect on the probability of creating an air plasma at a given location. This leads to two observed phenomena: Increased probability of air plasma formation before the optical focal point is reached, and the formation of distinct (separate) air plasmas at the antinodes themselves.

  6. Self-focusing and defocusing of Gaussian laser beams in collisional underdense magnetized plasmas with considering the nonlinear ohmic heating and ponderomotive force effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir

    2015-10-15

    The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show thatmore » the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.« less

  7. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.

    2016-03-21

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less

  8. Effects of admixture gas on the production of (18)F radioisotope in plasma focus devices.

    PubMed

    Talaei, Ahmad; Sadat Kiai, S M; Zaeem, A A

    2010-12-01

    In this article, the effect of admixture gas on the heating and cooling of pinched plasma directly related to the enhancement or reduction of (18)F production through the (16)O((3)He, p)(18)F is considered in the plasma focus devices. It is shown that by controlling the velocity of added Oxygen particles mixed with the working helium gas into the plasma focus chamber, one can increase the current and decrease the confinement time (plasma heating) or vice verse (plasma cooling). The highest level of nuclear activities of (18)F was found around 16% of the Oxygen admixture participation and was about 0.35 MBq in the conditions of 20 kJ, 0.1 Hz and after 2 min operating of Dena PF. However, in the same condition, but for the frequency of 1 Hz, the level of activity increased up to 3.4 MBq. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Evaluation of Turner relaxed state as a model of long-lived ion-trapping structures in plasma focus and Z-pinches

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2011-03-01

    Relatively long-lived spheroidal structures coincident with the neutron emission phase have been observed in frozen deuterium fiber Z-pinch and some plasma focus devices. Existence of energetic ion-trapping mechanism in plasma focus has also been inferred from experimental data. It has been conjectured that these are related phenomena. This paper applies Turner's theory [L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986)] of relaxation of a Hall magnetofluid to construct a model of these structures and ion-trapping mechanism. Turner's solution modified for a finite-length plasma is used to obtain expressions for the magnetic field, velocity, and equilibrium pressure fields and is shown to represent an entity which is simultaneously a fluid vortex, a force-free magnetic field, a confined finite-pressure plasma, a charged object, and a trapped energetic ion beam. Characteristic features expected from diagnostic experiments are evaluated and shown to resemble experimental observations.

  10. Multi-chord fiber-coupled interferometer with a long coherence length laser

    NASA Astrophysics Data System (ADS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.

    2012-03-01

    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.

  11. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Laser-heated emissive plasma probe.

    PubMed

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  13. RF Antenna Design for a Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Godden, Katarina; Stassel, Brendan; Warta, Daniel; Yep, Isaac; Hicks, Nathaniel; Munk, Jens

    2017-10-01

    A helicon plasma source is under development for the new Plasma Science and Engineering Laboratory at the University of Alaska Anchorage. The helicon source is of a type comprising Pyrex and stainless steel cylindrical sections, joined to an ultrahigh vacuum chamber. A radio frequency (RF) helical antenna surrounds the Pyrex chamber, as well as DC solenoidal magnetic field coils. This presentation focuses on the design of the RF helical antenna and RF matching network, such that helicon wave power is coupled to argon plasma with minimal reflected power to the RF amplifier. The amplifier output is selectable between 2-30 MHz, with forward c.w. power up to 1.5 kW. Details and computer simulation of the antenna geometry, materials, and power matching will be presented, as well as the matching network of RF transmission line, tuning capacitors, and cooling system. An initial computational study of power coupling to the plasma will also be described. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615, by the Alaska Space Grant Program, and by UAA Innovate 2017.

  14. Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics.

    PubMed

    Corrêa, Stephany; Panis, Carolina; Binato, Renata; Herrera, Ana Cristina; Pizzatti, Luciana; Abdelhay, Eliana

    2017-01-16

    Breast Cancer (BC) is the most common neoplasia among women and has a high mortality rate worldwide. Over the past several decades, increasing molecular knowledge of BC has resulted in its stratification into 4 major molecular subtypes according to hormonal receptor expression. Unfortunately, although the data accumulated thus far has improved BC prognosis and treatment, there have been few achievements in its diagnosis. In this study, we applied a Label-free Nano-LC/MSMS approach to reveal systemic molecular features and possible plasma markers for BC patients. Compared to healthy control plasma donors, we identified 191, 166, 182, and 186 differentially expressed proteins in the Luminal, Lumina-HER2, HER2, and TN subtypes. In silico analysis demonstrated an overall downregulation of cellular basal machinery and, more importantly, brought new focus to the known pathways and signaling molecules in BC that are related to immune system alterations. Moreover, using western blot analysis, we verified high levels of BCAS3, IRX1, IRX4 and IRX5 in BC plasma samples, thus highlighting the potential use of plasma proteomics in investigations into cancer biomarkers. The results of this study provide new insight into Breast Cancer (BC). We determined the plasma proteomic profile of BC subtypes. Furthermore, we report that the signaling pathways correlating with late processes in BC already exhibit plasma alterations in less aggressive subtypes. Additionally, we validated the high levels of particular proteins in patient samples, which suggests the use of these proteins as potential disease markers.

  15. Charge Exchange Recombination Spectroscopy Based on Diagnostic Neutral Beam in HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Yingying; William, Rowan; Huang, He; Wang, Fudi; Gao, Huixian; Huang, Juann; Zhou, Qian; Liu, Sheng; Zhang, Jian; Li, Jun; Xie, Yuanlai; Liu, Zhimin; Huang, Yiyun; Hu, Chundong; Wan, Baonian

    2010-02-01

    Charge exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam (DNB) installed in the HT-7 tokamak is introduced. DNB can provide a 6 A extracted current at 50 kV for 0.1 s in hydrogen. It can penetrate into the core plasma in HT-7. The CXRS system is designed to observe charge exchange (CX) transitions in the visible spectrum. CX light from the beam is focused onto 10 optical fibers, which view the plasma from -5 cm to 20 cm. The CXRS system can measure the ion temperature as low as 0.1 keV. With CXRS, the local ion temperature profile in HT-7 was obtained for the first time.

  16. Neutral Beam Development for the Lockheed Martin Compact Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sullivan, Regina

    2017-10-01

    The Compact Fusion Reactor project at Lockheed Martin Skunk Works is developing a neutral beam injection system for plasma heating. The neutral beam plasma source consists of a high current lanthanum hexaboride (LaB6) hollow cathode which drives an azimuthal cusp discharge similar to gridded ion thrusters. The beam is extracted with a set of focusing grids and is then neutralized in a chamber pumped with Titanium gettering. The design, testing, and analyses of individual components are presented along with the most current full system results. The goal of this project is to advance in-house neutral beam expertise at Lockheed Martin to aid in operation, procurement, and development of neutral beam technology. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  17. Ionization-potential depression and other dense plasma statistical property studies - Application to spectroscopic diagnostics.

    NASA Astrophysics Data System (ADS)

    Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard

    2017-02-01

    The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.

  18. Self-sustained focusing of high-density streaming plasma

    NASA Astrophysics Data System (ADS)

    Bugaev, A.; Dobrovolskiy, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Naiko, I.; Oks, E.

    2017-01-01

    We describe our observations of the transport through an electrostatic plasma lens of a wide-aperture, high-current, low energy, metal-ion plasma flow produced by a cathodic arc discharge. The lens input aperture was 80 mm, the length of the lens was 140 mm, and there were three electrostatic ring electrodes located in a magnetic field formed by permanent magnets. The lens outer electrodes were grounded and the central electrode was biased up to -3 kV. The plasma was a copper plasma with directed (streaming) ion energy 20-40 eV, and the equivalent ion current was up to several amperes depending on the potential applied to the central lens electrode. We find that when the central lens electrode is electrically floating, the current density of the plasma flow at the lens focus increases by up to 40%-50%, a result that is in good agreement with a theoretical treatment based on plasma-optical principles of magnetic insulation of electrons and equipotentialization along magnetic field lines. When the central lens electrode is biased negatively, an on-axis stream of energetic electrons is formed, which can also provide a mechanism for focusing of the plasma flow. Optical emission spectra under these conditions show an increase in intensity of lines corresponding to both copper atoms and singly charged copper ions, indicating the presence of fast electrons within the lens volume. These energetic electrons, as well as accumulating on-axis and providing ion focusing, can also assist in reducing the microdroplet component in the dense, low-temperature, metal plasma.

  19. The Potential for Ambient Plasma Wave Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at frequencies below the ion cyclotron frequency. They have been observed in both laboratory and astrophysical settings. On Earth, they are being investigated as a possible means for plasma heating, current drive, and momentum addition in magnetic confinement fusion systems. In addition, Alfven waves have been proposed as a mechanism for acceleration of the solar wind away from the sun.

  20. Plasma particle simulations on interactions between spacecraft and cold streaming plasmas

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Nakashima, H.

    2012-12-01

    In order to better assess space weather effects on spacecraft system, we require in-depth understanding of fundamental processes of spacecraft-plasma interactions. Particularly in scientific spacecraft missions, the wake and photoelectron cloud formation as well as the spacecraft charging are significant factors influencing their operations, because onboard scientific instruments are often susceptible to such plasma disturbances. In this paper, we focus on the wake formation resulting from spacecraft interactions with a cold streaming plasma and study it by means of numerical simulations using modern supercomputers. We apply the particle-in-cell (PIC) method to the study of wake structure around a scientific spacecraft. We use our original plasma particle simulation code EMSES [2], which enables us to include solid spacecraft and sensor surfaces as internal boundaries. Although there are a number of preceding PIC simulation works regarding the wake structure behind a spacecraft [3], we here extend the studies by including numerical models of both spacecraft body and conducting booms simultaneously in the simulation system. The current analysis focuses on the wake structures behind the Cluster satellite in a tenuous plasma flow. We have included the conducting surfaces of wire booms as well as the spacecraft body in the simulations, the both of which can contribute to the wake formation. The major outcomes of the simulations are summarized as follows [4]; 1. not only a spacecraft body but also a thin (in an order of mm) wire boom contribute substantially to the formation of an electrostatic wake, particularly when the spacecraft has a positive potential of a few tens of volts; 2. in such a condition, the spatial scale of the wake reaches up to 100 m, leading to the detection of a wake electric field pattern that is very similar to that observed in the presence of a uniform ambient electric field; 3. spurious electric field can be detected even in subsonic ion flows occasionally, which is caused by an asymmetric potential pattern between the up- and down- streams of the spacecraft. We will report some details of these results as well as the comparison of the numerical results with observational data. [References] [1] André, M., and C. M. Cully (2012), Low-energy ions: A previously hidden solar system particle population, Geophys. Res. Lett., 39, L03101, doi:10.1029/ 2011GL050242. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922. [3] Engwall, E., A. I. Eriksson, and J. Forest (2006), Wake formation behind positively charged spacecraft in flowing tenuous plasmas, Phys. Plasmas, 13, 062904, doi:10.1063/1.2199207. [4] Miyake, Y., and H. Usui (2012), Particle simulations of wake effects on electric field measurements in multi-species ion flows, Proc. of 12th Spacecraft Charging Technology Conference, Kitakyushu, Japan.

  1. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  2. A comparison of complication rates based on published haemovigilance data.

    PubMed

    Flesland, O

    2007-06-01

    Haemovigilance is defined as the collection of information on complications of transfusion, the analysis of the data, and suggestions for improvement in the transfusion service. A national haemovigilance system is of value in identifying possible areas in need of improvement in the national transfusion system. Haemovigilance becomes even more important if the system is used to compare the situation in one country with the situation in other countries, e.g. if the countries differ significantly in products used. The current study focuses on immunological transfusion complications, especially TRALI, as published in haemovigilance reports from Denmark, Norway, Sweden and the UK. In Norway immunological transfusion reactions occurred 96.7 times per 100 000 red cell (RBC) transfusion, 231.1 times per 100 000 thrombocyte (Trc) concentrate transfusion and five times per 100.000 transfusions of solvent detergent treated plasma (SD plasma). Denmark and the UK have similar rates of transfusion reactions to RBC and fresh frozen plasma (FFP), but quite different for Trc (0.5 vs. 4.9 per 100 000). In 49% of reported TRALI the causative product is FFP, but no case of TRALI after SD plasma transfusion has been reported. When considering all reports for immunological complications in Norway, the most striking is the very small number of reports related to SD plasma. Comparing data from Denmark and the UK shows a big difference in reactions caused by thrombocyte concentrates that may reflect different production methods in the two countries. TRALI is most often caused by FFP, but has never been reported after SD plasma transfusion. Heamovigilance data can be valuable in choosing the safest products available.

  3. Shock-Wave Acceleration of Protons on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2015-11-01

    Recent experimental results using shock-wave acceleration (SWA) driven by a CO2 laser in a H2 gas-jet plasma have shown the possibility of producing proton beams with energy spreads <10% and with energies of up to 20 MeV using a modest peak laser power of 4 TW. Here we propose the investigation of the scaling of the SWA mechanism to higher laser powers using the 1- μm OMEGA EP Laser System at the Laboratory for Laser Energetics. The required tailored plasma profile is created by expanding a CH target using the thermal x-ray emission from a UV ablated material. The desired characteristics optimal for SWA are met: (a) peak plasma density is overcritical for the 1- μm main pulse and (b) the plasma profile exponentially decays over a long scale length on the rear side. Results will be shown using a 4 ω probe to experimentally characterize the plasma density profile. Scaling from simulations of the SWA mechanism shows that ion energies in the range of 100 MeV/amu are achievable with a focused a0 of 5 from the OMEGA EP Laser System. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  5. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  6. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  7. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    PubMed

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  8. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source

    PubMed Central

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-01-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634

  9. Application of microplasma discharge in a spark gap for high repetitive switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Hasibur; Nam, Sang Hoon; Nam, Jong Woo

    2010-04-05

    The electrical breakdown in a spark gap for repetitive switching has been a long research interest. For this purpose, microplasma discharge is implemented in the spark gap which is further integrated inside a coaxial transmission line. This work addresses important physical properties and insights of the microplasma discharge, to be optimized, such as plasma generation in a spark channel, dielectric recovery process, and residual plasma in the postspark discharge period. Although understanding the microplasma discharge is the primary goal, considerable attention has been focused on an external circuit scheme to drive the discharge system at a high repetition rate.

  10. Twisting Blob of Plasma

    NASA Image and Video Library

    2017-12-08

    A twisted blob of solar material – a hot, charged gas called plasma – can be seen erupting off the side of the sun on Sept. 26, 2014. The image is from NASA's Solar Dynamics Observatory, focusing in on ionized Helium at 60,000 degrees C. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. A survey of dusty plasma physics

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in several laboratory experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty-first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multidisciplinary areas of science.

  12. ICPP: Introduction to Dusty Plasma Physics

    NASA Astrophysics Data System (ADS)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in microgravity experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multi-disciplinary areas of science.

  13. Dynamic changes in plasma tissue plasminogen activator, plasminogen activator inhibitor-1 and beta-thromboglobulin content in ischemic stroke.

    PubMed

    Zhuang, Ping; Wo, Da; Xu, Zeng-Guang; Wei, Wei; Mao, Hui-ming

    2015-07-01

    The aim of this paper is to investigate the corresponding variations of plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activities, and beta-thromboglobulin (β-TG) content in patients during different stages of ischemic stroke. Ischemic stroke is a common disease among aging people and its occurrence is associated with abnormalities in the fibrinolytic system and platelet function. However, few reports focus on the dynamic changes in the plasma fibrinolytic system and β-TG content in patients with ischemic stroke. Patients were divided into three groups: acute, convalescent and chronic. Plasma t-PA and PAI-1 activities were determined by chromogenic substrate analysis and plasma β-TG content was detected by radioimmunoassay. Patients in the acute stage of ischemic stroke had significantly increased levels of t-PA activity and β-TG content, but PAI-1 activity was significantly decreased. Negative correlations were found between plasma t-PA and PAI-1 activities and between plasma t-PA activity and β-TG content in patients with acute ischemic stroke. There were significant differences in plasma t-PA and PAI-1 activities in the aged control group, as well as in the acute, convalescent and chronic groups. It can be speculated that the increased activity of t-PA in patients during the acute stage was the result of compensatory function, and that the increase in plasma β-TG level not only implies the presence of ischemic stroke but is likely a cause of ischemic stroke. During the later stages of ischemic stroke, greater attention is required in monitoring levels of PAI-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Wallner, Thomas; Pamminger, Michael

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less

  15. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  16. Inelastic deformation of plasma polymerised thin films facilitated by transient dense plasma focus irradiation

    NASA Astrophysics Data System (ADS)

    Grant, Daniel S.; Rawat, Rajdeep S.; Bazaka, Kateryna; Jacob, Mohan V.

    2017-09-01

    The high degree of crosslinking present in plasma polymerised thin films, coupled with their high molecular weight, imbues these films with properties similar to those of thermosetting polymers. For instance, such films tend to be relatively hard, insoluble, and to date have not exhibited plasticity when subjected to elevated temperatures. In this paper it is demonstrated that plasma polymers can, in fact, undergo plastic deformation in response to the application of extremely short-lived thermal treatment delivered by a dense plasma focus device, as evidenced by the evolution of bubble-like structures from the thin film. This finding suggests new avenues for texturing plasma thin films, and synthesising cavities that may find utility as thermal insulators or domains for material encapsulation.

  17. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    DOE PAGES

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...

    2015-10-28

    The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  18. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  19. The Center for Multiscale Plasma Dynamics, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gombosi, Tamas I.

    The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less

  20. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device

    NASA Astrophysics Data System (ADS)

    Shamsian, Neda; Bidabadi, Babak Shirani; Pirjamadi, Hosein

    2017-07-01

    An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.

  1. Design and construction of pulsed neutron diagnostic system for plasma focus device (SBUPF1).

    PubMed

    Moghadam, Sahar Rajabi; Davani, Fereydoon Abbasi

    2010-07-01

    In this paper, two designs of pulsed neutron counter structure are introduced. To increase the activation counter efficiency, BC-400 plastic scintillator plates along with silver foils are utilized. Rectangular cubic and cylindrical geometries for activation counter cell are modeled using MCNP4C code. Eventually, an optimum length of 14 cm is calculated for the detector cell and optimum numbers of 20 silver foils for rectangular cubic geometry and ten foils for cylindrical geometry have been acquired. Due to the high cost of cutting, polishing of plastics, and etc., the rectangular cubic design is found to be more economical than the other design. In order to examine the functionality and ensure the detector output and corresponding designing, neutron yield of a 2.48 kJ plasma focus device (SBUPF1) in 8 mbar pressure with removal source method for calibration was measured (3.71+/-0.32)x10(7) neutrons per shot.

  2. Current sheet collapse in a plasma focus.

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.

    1972-01-01

    Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.

  3. Study of self-focusing of Non Gaussian laser beam in a plasma with density variation using moment theory approach

    NASA Astrophysics Data System (ADS)

    Pathak, Nidhi; Kaur, Sukhdeep; Singh, Sukhmander

    2018-05-01

    In this paper, self-focusing/defocusing effects have been studied by taking into account the combined effect of ponder-motive and relativistic non linearity during the laser plasma interaction with density variation. The formulation is based on the numerical analysis of second order nonlinear differential equation for appropriate set of laser and plasma parameters by employing moment theory approach. We found that self-focusing increases with increasing the laser intensity and density variation. The results obtained are valuable in high harmonic generation, inertial confinement fusion and charge particle acceleration.

  4. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.

    2016-07-15

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less

  5. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  6. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  7. Computational study of arc discharges: Spark plug and railplug ignitors

    NASA Astrophysics Data System (ADS)

    Ekici, Ozgur

    A theoretical study of electrical arc discharges that focuses on the discharge processes in spark plug and railplug ignitors is presented. The aim of the study is to gain a better understanding of the dynamics of electrical discharges, more specifically the transfer of electrical energy into the gas and the effect of this energy transfer on the flow physics. Different levels of computational models are presented to investigate the types of arc discharges seen in spark plugs and railplugs (i.e., stationary and moving arc discharges). Better understanding of discharge physics is important for a number of applications. For example, improved fuel economy under the constraint of stricter emissions standards and improved plug durability are important objectives of current internal combustion engine designs. These goals can be achieved by improving the existing systems (spark plug) and introducing more sophisticated ignition systems (railplug). In spite of the fact spark plug and railplug ignitors are the focus of this work, the methods presented in this work can be extended to study the discharges found in other applications such as plasma torches, laser sparks, and circuit breakers. The system of equations describing the physical processes in an air plasma is solved using computational fluid dynamics codes to simulate thermal and flow fields. The evolution of the shock front, temperature, pressure, density, and flow of a plasma kernel were investigated for both stationary and moving arcs. Arc propagation between the electrodes under the effects of gas dynamics and electromagnetic processes was studied for moving arcs. The air plasma is regarded as a continuum, single substance material in local thermal equilibrium. Thermophysical properties of high temperature air are used to take into consideration the important processes such as dissociation and ionization. The different mechanisms and the relative importance of several assumptions in gas discharges and thermal plasma modeling were investigated. Considering the complex nature of the studied problem, the computational models aid in analyzing the analytical theory and serve as relatively inexpensive tools when compared to experiments in design process.

  8. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  9. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  10. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGES

    Kuschel, S.; Hollatz, D.; Heinemann, T.; ...

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  11. Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses

    PubMed Central

    Ooi, C. H. Raymond; Talib, Md. Ridzuan

    2016-01-01

    We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644

  12. Plasma puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Choi, E. H.

    1990-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.

  13. Neutron production mechanism in a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Williams, M. D.; Hermansdorfer, H.

    1971-01-01

    The neutrons emitted by a plasma focus were analyzed by using a time-of-flight method. Flight paths as large as 80 m were used to obtain better than 10% energy resolution. The energy spectrum of neutrons from d-d reactions in the plasma focus shows a sharp onset with average maximum energies of 2.8 and 3.2 MeV in the radial and the axial directions, respectively. The average half-width of the energy spectrum was 270 keV with a shot-to-shot variation between 150 and 400 keV. Simultaneous measurements in the axial and radial directions showed no appreciable difference in the half-widths and thus indicated randomly oriented ion velocities in the plasma. A converging ion model is described which is found to be in agreement with the measured quantities.

  14. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.

    PubMed

    Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  15. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  16. Overview of C-2U FRC Experimental Program and Plans for C-2W

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Smirnov, A.; Thompson, M. C.; Yang, X.; Cappello, M.; Ivanov, A. A.; TAE Team

    2016-10-01

    Tri Alpha Energy's experimental program has been focused on a demonstration of reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid experimental devices, C-2 and C-2U, have successfully produced a well-stabilized, sustainable FRC plasma state with NB injection (input power, PNB 10 + MW; 15 keV hydrogen) and end-on coaxial plasma guns. Remarkable improvements in confinement and stability of FRC plasmas have led to further improved fast-ion build up; thereby, an advanced beam-driven FRC state has been produced and sustained for up to 5 + ms (longer than all characteristic system time scales), only limited by hardware and electric supply constraints such as NB and plasma-gun power supplies. To further improve the FRC performance the C-2U device is being replaced by C-2W featuring higher injected NB power, longer pulse duration as well as enhanced edge-biasing systems and substantially upgraded divertors. Main C-2U experimental results and key features of C-2W will be presented. Tri Alpha Energy, Inc.

  17. Flying Focus: Spatiotemporal Control of the Laser Beam Intensity

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Turnbull, D.; Kessler, T. J.; Haberberger, D.; Bahk, S.-W.; Begishev, I. A.; Boni, R.; Bucht, S.; Davies, A.; Katz, J.; Sefkow, A. B.; Shaw, J. L.

    2017-10-01

    A ``flying focus'' is presented: this advanced focusing scheme provides unprecedented spatiotemporal control over the laser focal volume. A chromatic focusing system combined with chirped laser pulses enabled the speed of a small-diameter laser focus to propagate over nearly 100 × its Rayleigh length. Furthermore, the flying focus decouples the speed at which the peak intensity propagates from the group velocity of the laser pulse, allowing the laser focus to co- or counter-propagate along its axis at any velocity. Experiments have demonstrated a nearly constant intensity over 4.5 mm while the velocity of the focus ranged from subluminal (0.01 c) to superluminal (15 c) . These properties could provide the opportunity to overcome current fundamental limitations in laser-plasma amplifiers, laser-wakefield accelerators, photon accelerators, ion accelerators, and high-order frequency conversion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less

  20. Hardware and software systems for the determination of charged particle parameters in low pressure plasmas using impedance-tuned Langmuir probes

    NASA Astrophysics Data System (ADS)

    Ye, Yuancai; Marcus, R. Kenneth

    1997-12-01

    A computer-controlled, impedance-tuned Langmuir probe data acquisition system and processing software package have been designed for the diagnostic study of low pressure plasmas. The combination of impedance-tuning and a wide range of applied potentials (± 100 V) provides a versatile system, applicable to a variety of analytical plasmas without significant modification. The automated probe system can be used to produce complete and undistorted current-voltage (i-V) curves with extremely low noise over the wide potential range. Based on these hardware and software systems, it is possible to determine all of the important charged particle parameters in a plasma; electron number density ( ne), ion number density ( ni), electron temperature ( Te), electron energy distribution function (EEDF), and average electron energy (<ɛ>). The complete data acquisition system and evaluation software are described in detail. A LabView (National Instruments Corporation, Austin, TX) application program has been developed for the Apple Macintosh line of microcomputers to control all of the operational aspects of the Langmuir probe experiments. The description here is mainly focused on the design aspects of the acquisition system with the targets of extremely low noise and reduction of the influence of measurement noise in the calculation procedures. This is particularly important in the case of electron energy distribution functions where multiple derivatives are calculated from the obtained i-V curves. A separate C-language data processing program has been developed and is included here to allow the reader to evaluate data obtained with the described hardware, or any i-V data imported in tab separated variable format. Both of the software systems are included on a Macintosh formatted disk for their use in other laboratories desiring these capabilities.

  1. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  2. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    NASA Astrophysics Data System (ADS)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides unparalleled insight into the chemistry of these plasma systems. Part II of this work is focused on understanding the efficacy of a general chemistry recitation program. Such programs can be an valuable tool for improving students' problem solving skills and understanding using methods that are difficult to implement in large lecture settings. Here, general chemistry students at Colorado State University participated in a variety of recitation activities throughout the first semester of a 2-semester general chemistry sequence, including peer-led exercises, games, and scaffolded worksheets. Through weekly surveys, students were asked to evaluate and assess recitation activities for both interest and effectiveness as part of their course homework. Also included in these survey assignments were content questions relevant to the weekly themes, providing a measure of student learning of recitation topics. Student opinions were correlated with content retention, and these data were compared against student responses to a pre-survey administered before the first recitation session. This analysis allows for monitoring students' expectations of recitation courses and how well those expectations are met through the various types of activities employed. Ultimately, this work has found that students have positive feeling with respect to individual assignments, but that perspectives on chemistry and the course in general decrease dramatically from the beginning to the end of the semester. Thus, this work can serve as a significant starting points for future efforts to monitor and record student perceptions in the general chemistry recitation classroom, leading to further investigation into the source of changing attitudes and the role that week-to-week activities have on global course attitudes.

  3. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  4. Optics design for J-TEXT ECE imaging with field curvature adjustment lens.

    PubMed

    Zhu, Y; Zhao, Z; Liu, W D; Xie, J; Hu, X; Muscatello, C M; Domier, C W; Luhmann, N C; Chen, M; Ren, X; Tobias, B J; Zhuang, G; Yang, Z

    2014-11-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging Te fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.

  5. Arc spray process for the aircraft and stationary gas turbine industry

    NASA Astrophysics Data System (ADS)

    Sampson, E. R.; Zwetsloot, M. P.

    1997-06-01

    Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.

  6. The effects of the cathode array on emitted hard x-ray from a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.

    2017-08-01

    In this study, the effects of the cathode array variations on emitted hard x-rays from a small Mather type plasma focus device (450 J) were investigated. The gradual elimination of the cathode rods inside the cathode array of the device lowered the quality and quantity of the emitted hard x-rays at different pressure values of argon gas. We theorized that the variations of the cathode array were able to change some discharge parameters that could vary the number of the energetic runaway electrons generated during the pinch phase which were responsible for the created features of the emitted hard x-rays. On the other hand, we hypothesized that the removal of the cathode rods could influence the current sheath dynamics during all the phases of a shot including its average axial velocity which was demonstrated by using two axial magnetic probes. We also theorized that cathode rod omission from the cathode array could also increase the initial inductance and the impedance of the system, and the impurities inside the plasma during the pinch phase which could lead to the growth of the instabilities. Moreover, by using the wavelet technique and studying the Mirnov signals, it was shown that the decrease of the cathode rod number increased the plasma magnetic field fluctuations or instabilities (MHD activities) that adversely affected the pinch quality, and reduced the emitted hard x-rays.

  7. Book review: Modern Plasma Physics, Vol. I: Physical Kinetics of Turbulent Plasmas, by Patrick H. Diamond, Sanae-I. Itoh and Kimitaka Itoh, Cambridge University Press, Cambridge (UK), 2010, IX, 417 p., ISBN 978-0-521-86920-1 (Hardback)

    NASA Astrophysics Data System (ADS)

    Somov, B. V.

    If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics

  8. FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Pierre

    2017-11-03

    Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused ourmore » efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.« less

  9. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    NASA Astrophysics Data System (ADS)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched off a flurry of interest in holography as a toolkit for studying strongly-correlated many-body systems more generally. Holography also allows us to use results from quantum fluids to study classical and quantum gravity; for example, the phase structure of a quantum many-body system translates into a rich classification of black holes in the dual space-time. Given both the rapid progress in applied holography and the exciting developments in ultracold quantum gases and QCD plasmas discussed above, the time is ripe for new collaborations across traditional lines of specialization. This focus issue explores the convergence between three heretofore separate areas of physics. Over forty research groups have contributed original work, and there will be a review article which complements these advances, overviewing them and presenting them in the context of all three fields and their interconnections. The review concludes with a list of open questions. This sets the tone for the present focus issue; namely, interdisciplinary dialog, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted.

  10. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study.

    PubMed

    Demirkan, Ayşe; Isaacs, Aaron; Ugocsai, Peter; Liebisch, Gerhard; Struchalin, Maksim; Rudan, Igor; Wilson, James F; Pramstaller, Peter P; Gyllensten, Ulf; Campbell, Harry; Schmitz, Gerd; Oostra, Ben A; van Duijn, Cornelia M

    2013-03-01

    The central nervous system has the second highest concentration of lipids after adipose tissue. Alterations in neural membrane phospho- and sphingolipid composition can influence crucial intra- and intercellular signalling and alter the membrane's properties. Recently, the polyunsaturated fatty acids (PUFA) hypothesis for depression suggests that phospho- and sphingolipid metabolism includes potential pathways for the disease. In 742 people from a Dutch family-based study, we assessed the relationships between 148 different plasma phospho- and sphingolipid species and depression/anxiety symptoms as measured by the Hospital Anxiety and Depression Scales (HADS-A and HADS-D) and the Centre for Epidemiological Studies Depression Scale (CES-D). We observed significant differences in plasma sphingomyelins (SPM), particularly the SPM 23:1/SPM 16:0 ratio, which was inversely correlated with depressive symptom scores. We observed a similar trend for plasma phosphatidylcholines (PC), particularly the molar proportion of PC O 36:4 and its ratio to ceramide CER 20:0. Absolute levels of PC O 36:4 were also associated with depression symptoms in an independent replication. To our knowledge this is the first study on depressive symptoms that focuses on specific phospho- and sphingolipid molecules in plasma rather than total PUFA concentrations. The findings of this lipidomic study suggests that plasma sphingomyelins and ether phospholipids should be further studied for their potential as biomarkers and for a better understanding of the underlying mechanisms of this systemic disease. Copyright © 2012. Published by Elsevier Ltd.

  11. Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Listopad, A.; Davydenko, V.; Ivanov, A.

    2012-02-15

    The upgrade of the diagnostic neutral beam injector RUDI in 2010 was performed to increase the beam density at the focal plane in accordance with the requirements of charge-exchange recombination spectroscopy diagnostics. A new focusing ion-optical system (IOS) with slit beamlets and an enlarged aperture was optimized for 50% higher nominal beam current and reduced angular divergence with respect to the previous multi-aperture IOS version. The upgraded injector provides the beam current up to 3 A, the measured beam divergence in the direction along the slits is 0.35 deg. Additionally, the plasma generator was modified to extend the beam pulsemore » to 8 s.« less

  12. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extractionmore » with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.« less

  13. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, K. S.

    1985-10-01

    An intense and efficient excitation source for blue-green lasers useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, hypocycloidal pinch plasma (HCP), and a newly designed dense-plasma focus (DPF) can produce intense UV photons (200 to 300 nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400 nm). During the current project period, the successful enhancement of blue-green laser output of both Coumarin 503 and LD490 dye through the spectral conversion of the HCP pumping light has been achieved with a converter dye BBQ. The factor of enhancement in the blue-green laser output energy of both Coumarin 503 and LD490 is almost 73%. This enhancement will definitely be helpful in achieving the direct high power blue-green laser (> 1 MW) with the existing blue green dye laser. On the other hand the dense-plasma focus (DPF) with new optical coupling has been designed and constructed. For the optimization of the DPF device as the UV pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as function of argon or argon-deuterium fill gas pressure. Finally, the blue-green dye laser (LD490) has been pumped with the DPF device for preliminary tests. Experimental results with the DPF device show that the velocity of the current sheath follows the inverse relation of sq st. of pressure as expected. The blue-green dye (LD490) laser output exceeded 3.1 m at the best cavity tuning of laser system. This corresponds to 3J/1 cu cm laser energy extraction.

  14. Formation of Imploding Plasma Liners for HEDP and MIF Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the targetmore » plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km/s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding plasma liners. HyperV’s tasks focused on developing the plasma guns and associated pulse power systems required for the 30 gun experiment at LANL. Unfortunately, funding for the entire PLX collaborative project was terminated after only two years of the four year project due to program funding realignments which necessitated recompeting the project in midstream. Despite the loss of funding, HyperV installed two Mark1 guns and pulsed power systems on PLX, and jet characterization and merging experiments were subsequently successfully performed at LANL by the PLX Team. In parallel with those PLX experiments, HyperV continued its efforts to develop a plasma gun capable of meeting the PLX goal of 8 mg of argon at 50 km/s. HyperV was ultimately successful in this effort, demonstrating 10.8 mg at 52.8 km/s and 7.5 mg at 62.4 km/s with the Mark2 MiniRailgun.« less

  15. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.

    PubMed

    Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten

    2017-06-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.

  16. Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies

    NASA Astrophysics Data System (ADS)

    Song, Jiaojian; Guo, Jinjia; Tian, Ye; Lu, Yuan; Zheng, Ronger

    2017-10-01

    With the hope of applying LIBS to solid target detection in deep-sea, the influences of laser focus to sample distance (LFTSD) on the plasma characteristics were investigated using spectra-image approach with the laser energies at sub- and super- threshold irradiance of solution. The experimental results show that LFTSD is a critical parameter which can directly influence the plasma shapes, by changing the laser fluence on sample surface. The plasma is divided into two parts under pre-focus condition, while the plasma only forms at the surface of Cu target under de-focus condition. Moreover, the "seed electron" generated from Cu sample can reduce the breakdown threshold of the solution. By comparing the laser energy, it seems to be inefficient by using super-threshold energy due to the plasma shielding effect of the liquid. High quality spectra can be observed by using lower laser energy and longer gate delay (25 mJ and 1000 ns, in this work).

  17. Numerical study on the variation of pressure on India Bhabha Atomic Research Center (BARC) and Imperial College plasma focus machines

    NASA Astrophysics Data System (ADS)

    Singh, Arwinder; Heoh, Saw Sor; Sing, Lee

    2017-03-01

    In this paper, we use Lee's 5 phase model code to configure both the India Bhabha Atomic Research Center (BARC) Plasma focus machine operating in the pressure (P0) range from 1 Torr to 14 Torr as well as the Imperial College Plasma Focus Machine operating in the pressure (P0) range from 0.5 Torr to 6 Torr to compare the computational neutron yield to the experimental neutron yield as well as to obtain the relationship between axial speed va, radial shock speed vs, piston speed vp and pinch temperature with P0 for these machines.

  18. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  19. Development of GEM detector for plasma diagnostics application: simulations addressing optimization of its performance

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.

    2017-12-01

    The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.

  20. Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q-distributed electrons

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad

    2016-07-01

    The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.

  1. Paul Ion Trap as a Diagnostic for Plasma Focus

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.

    2010-02-01

    The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.

  2. The circuit parameters measurement of the SABALAN-I plasma focus facility and comparison with Lee Model

    NASA Astrophysics Data System (ADS)

    Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.

    The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.

  3. Results of using the NSTX-U Plasma Control System for scenario development

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team

    2016-10-01

    To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  4. Betatron x-ray radiation in the self-modulated wakefield acceleration regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-05-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation in the self modulated regime of laser wakefield acceleration. We observed multi keV Betatron x-rays from a self-modulated laser wakefield accelerator. The experiment was performed at the Jupiter Laser Facility, LLNL, by focusing the Titan short pulse beam (4-150 J, 1 ps) onto the edge of a Helium gas jet at electronic densities around 1019 cm-3. For the first time on this laser system, we used a long focal length optic, which produced a laser normalized potential a0 in the range 1-3. Under these conditions, electrons are accelerated by the plasma wave created in the wake of the light pulse. As a result, intense Raman satellites, which measured shifts depend on the electron plasma density, were observed on the laser spectrum transmitted through the target. Electrons with energies up to 200 MeV, as well as Betatron x-rays with critical energies around 20 keV, were measured. OSIRIS 2D PIC simulations confirm that the electrons gain energy both from the plasma wave and from their interaction with the laser field.

  5. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  6. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device

    NASA Astrophysics Data System (ADS)

    Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.

    2018-06-01

    Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.

  7. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  8. Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemyslaw; Jarocki, Roman; Fiedorowicz, Henryk; Limpouch, Jiri

    2018-01-01

    Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm) laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis) range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE), the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.

  9. Diamond growth on copper rods from polymer composite nanofibres

    NASA Astrophysics Data System (ADS)

    Varga, M.; Potocky, S.; Tesarek, P.; Babchenko, O.; Davydova, M.; Kromka, A.

    2014-09-01

    The potential uses of diamond films can be found in a diverse range of industrial applications. However, deposition of diamond films onto some foreign materials is still not a simple task. Here we present the growth of adherent diamond films on copper rods with the focus on substrate pre-treatment by polyvinyl alcohol composite nanofibres. The primary role of the polymer fibres substantially act as a carbon source which enhances the diamond nucleation and accelerates a homogenous CVD growth. Diamond growth was carried out in pulsed linear antenna microwave chemical vapour deposition system, which is characterized by cold plasma due to larger distance of hot plasma region from the substrate, at various gas compositions. The large distance between plasma source and the substrate holder also allows the uniform deposition of diamond on a large number of substrates with complex geometry (3D objects) as well as for the vertically positioned substrates. Moreover, the inhomogeneity in diamond film thickness deposited on vertically positioned substrates was suppressed by using polyvinyl alcohol nanofibre textile. Combination of PVA polymer fibres use together with this unique deposition system leads to a successful overcoating of the copper rods by continuous diamond film without the film cracking or delamination. We propose that the sequence of plasma-chemical reactions enhances the transformation of certain number of carbon atoms into the sp3-bonded form which further are stabilized by atomic hydrogen coming from plasma.

  10. Plasma Interactions with Mixed Materials and Impurity Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs ofmore » future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.« less

  11. Triton burnup in plasma focus plasmas

    NASA Astrophysics Data System (ADS)

    Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi

    1995-04-01

    Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3

  12. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  13. Studying the fate of non-volatile organic compounds in a commercial plasma air purifier.

    PubMed

    Schmid, Stefan; Seiler, Cornelia; Gerecke, Andreas C; Hächler, Herbert; Hilbi, Hubert; Frey, Joachim; Weidmann, Simon; Meier, Lukas; Berchtold, Christian; Zenobi, Renato

    2013-07-15

    Degradation of non-volatile organic compounds-environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)-in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0m s(-1) (3200Lmin(-1)), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10Lmin(-1). Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10Hz or 50Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative "degradation" efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O., E-mail: onkarmangla@gmail.com; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles ismore » found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark

    Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.

  16. Spatially-Selective Membrane Permeabilization Induced by Cell-Solution Electrode Atmospheric Pressure Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro

    2015-09-01

    Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.

  17. 2D model of plasma current sheath propagation in a Mather type plasma focus device

    NASA Astrophysics Data System (ADS)

    Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil

    2018-06-01

    Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.

  18. The TSS-1R Electrodynamic Tether Experiment: Scientific and Technological Results

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Raitt, John

    1998-01-01

    The bi-national, US-Italian, Tethered Satellite System (TSS) program was designed to provide a unique opportunity to explore certain space plasma- electrodynamic processes and the orbital mechanics of a gravity-gradient stabilized system of two satellites linked by a long conducting tether. The second flight, TSS-LR, was launched February 22, 1996 on STS-75 and satellite deployment began at MET 3/00:27. A unique data set was obtained over the next five hours, as the tether was deployed to a length of 19695 meters, which has allowed significant science to be accomplished. This presentation will focus on electrodynamic processes generated by the tether--in particular, the collection of electrical current from the ionospheric plasma. Of particular significance is an apparent transition of the physics of current collection when the potential of the collecting body becomes greater than the ram energy of the ionospheric atomic oxygen ions. Previous theoretical models of current collection were electrostatic--assuming that the orbital motion of the system, which is highly subsonic with respect to electron thermal motion, was un- important. This may still be acceptable for the case of relatively slow-moving sounding rockets. However, the TSS-LR results show that motion relative to the plasma must be accounted for in orbiting systems.

  19. Evidence for gain on the C VI 182 A transition in a radiation-cooled selenium/Formvar plasma

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Brown, C. M.; Feldman, U.; Richardson, M.; Behring, W. E.

    1985-01-01

    Thin plastic foils coated with selenium have been irradiated using from 4 to 8 beams of the OMEGA laser in a line focus configuration. Spectra were recorded using a 3 meter spectrograph that viewed the plasma along the line focus. Based on a comparison of the intensities of the spectral lines from plasmas with lengths of 1.7, 3.4, 6.8, and 13.6 mm, the C VI n = 3 to 2 transition at 182 A was anomalously intense in the spectra from the longer plasmas. Calculations indicate that the carbon plasma was cooled by radiation from the highly-charged selenium plasma in a time that was smaller than the expansion time of the plasma. These plasma conditions are favorable for the occurrence of population inversions between the n = 2 and 3 levels of C VI resulting from recombination and cascading from higher levels. The measured gain coefficient for the C VI 182 A transition is 3/cm, and this corresponds to a gain-length product of 4 in the longest plasma.

  20. Time-resolved characteristics of deuteron-beam generated by plasma focus discharge.

    PubMed

    Lim, Lian-Kuang; Yap, Seong-Ling; Bradley, D A

    2018-01-01

    The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1-3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic.

  1. Time-resolved characteristics of deuteron-beam generated by plasma focus discharge

    PubMed Central

    Bradley, D. A.

    2018-01-01

    The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1–3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic. PMID:29309425

  2. Laser Heating in a Dense Plasma Focus.

    DTIC Science & Technology

    The report is divided in two parts. In the first part an account is given of the measurement of the momentum distribution of the deuterons ejected from a dense plasma focus . The results show the existence of a pronounced non-Maxwellian distribution and a small population of deuterons accelerated to the voltage of the condenser bank. In the second part theoretical calculation of laser heating establish the presence of large density gradient which probably accounts for the large currents detected in such plasmas. (Author)

  3. Convex Curved Crystal Spectograph for Pulsed Plasma Sources.

    DTIC Science & Technology

    The geometry of a convex curved crystal spectrograph as applied to pulsed plasma sources is presented. Also presented are data from the dense plasma focus with particular emphasis on the absolute intensity of line radiations.

  4. Physical and biological mechanisms of nanosecond- and microsecond-pulsed FE-DBD plasma interaction with biological objects

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil

    2013-09-01

    Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.

  5. Physics in Europe--A Data File of Selected Research.

    DTIC Science & Technology

    1984-06-18

    Negev Sapir Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 1025 CPBICF laser plasma soft x-ray refractometry France...CPBICF laser plasma Schlieren diagnostic France 623 CPBICF laser plasma self focusing numerics UK 1025 CPBICF laser plasma soft x-ray refractometry

  6. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  7. Spatiotemporal control of laser intensity

    NASA Astrophysics Data System (ADS)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.

    2018-05-01

    The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.

  8. Nonlinear mixing of electromagnetic waves in plasmas.

    PubMed

    Stefan, V; Cohen, B I; Joshi, C

    1989-01-27

    Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.

  9. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  10. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.

  11. Comparison of measured and computed radial trajectories of plasma focus devices UMDPF1 and UMDPF0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. H.; Yap, S. L., E-mail: yapsl@um.edu.my; Lim, L. K.

    In published literature, there has been scant data on radial trajectory of the plasma focus and no comparison of computed with measured radial trajectory. This paper provides the first such comparative study. We compute the trajectories of the inward-moving radial shock and magnetic piston of UMDPF1 plasma focus and compare these with measured data taken from a streak photograph. The comparison shows agreement with the measured radial trajectory in terms of average speeds and general shape of trajectory. This paper also presents the measured trajectory of the radially compressing piston in another machine, the UMDPF0 plasma focus, confirming that themore » computed radial trajectory also shows similar general agreement. Features of divergence between the computed and measured trajectories, towards the end of the radial compression, are discussed. From the measured radial trajectories, an inference is made that the neutron yield mechanism could not be thermonuclear. A second inference is made regarding the speeds of axial post-pinch shocks, which are recently considered as a useful tool for damage testing of fusion-related wall materials.« less

  12. Characterization of Atmospheric Pressure Plasma Torch and the Surface Interaction for Material Removal

    NASA Astrophysics Data System (ADS)

    McWilliams, Anthony Joseph

    An atmospheric pressure plasma torch has been developed and characterized for removal of organic based coatings. The focus of the Strategic Environmental Research & Development Program (SERDP) project WP-1762, that funded the bulk of this dissertation work, is removal of paint from US Navy vessels. The goal is to develop a novel technology for coating removal that is capable of reducing the amount of environmental waste produced during the commonly used grit blasting process. The atmospheric pressure air plasma torch was identified as having the capacity to remove the paint systems while using only compressed air and electricity as a media-less removal system with drastically reduced waste generation. Any improvements to the existing technology need to be based on scientific knowledge and thus the plasma removal mechanisms or material warranted investigation. The removal of material does not show a strong relation to the plasma parameters of power, frequency, and gas flow, nor is there a strong relation to the presences of inorganic fillers impeding or altering the removal rates. The underlying removal mechanisms also do not show a strong correlation to the rotational temperature of the plasma but do show a strong correlation to the optical emission intensity. Primarily, the emission from atomic oxygen and molecular nitrogen were identified significant contributors and were investigated further. The plasma feed gas was then varied from the nitrogen and oxygen ratio present in ambient air to pure nitrogen to identify the effect of oxygen on the removal mechanism. From these experiments it was concluded that the oxygen present in air does contribute to the overall removal mechanism; however, it is not the sole contributing factor with the other major factor being nitrogen.

  13. Aerosol Beam Focused-Laser Induced Plasma Spectrometer (ABF-LIPS) Continuous Emissions Multi-Metals Analyzer

    DTIC Science & Technology

    2012-06-01

    heating are possible, but will add to system cost. 6.5 LESSONS LEARNED Reliable spiking of the airstream with metals proved to be a challenge . Based on...designed to allow calibration of the CEMS by use of standard solutions, filters, etc that challenge the pollutant analyzer part of the CEMS (and as much...of the whole system as possible), but which do not challenge the entire CEMS, including the sampling interface. Satisfactory response of the entire

  14. Laser-optical measurements of the velocities of the plasma jets formed from different gases in a kilojoule-range plasma focus facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polukhin, S. N., E-mail: snpol@lebedev.ru; Dzhamankulov, A. M.; Gurei, A. E.

    The velocities of the plasma jets formed from Ne, N{sub 2}, Ar, and Xe gases in plasma focus facilities were determined by means of laser-optical shadowgraphy of the shock waves generated at the jet leading edge. In spite of the almost tenfold ratio between the atomic weights of these gases, the outflow velocities of the plasma jets formed in experiments with these gases differ by less than twice, in the range of (0.7–1.1) × 10{sup 7} cm/s under similar discharge conditions. The energies of the jet ions were found to vary from 0.7 keV for nitrogen to 4 keV formore » xenon.« less

  15. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  16. The Physics Performance Of The Front Steering Launcher For The ITER ECRH Upper Port

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, M.; Chavan, R.; Nikkola, P.

    2005-09-26

    The capability of any given e.m.-wave plasma heating system to be utilized for physics applications depends strongly on the technical properties of the launching antenna (or launcher). An effective ECH launcher must project a small mm-wave beam spot size far into the plasma and 'steer' the beam across a large fraction of the plasma cross section (along the resonance surface). Thus the choice in the launcher concept and design may either severely limit or enhance the capability of a heating system to be effectively applied for physics applications, such as sawtooth stabilization, control of the Neoclassical Tearing Mode (NTM), Edgemore » Localized Mode (ELM) control, etc. Presently, two antenna concepts are under consideration for the ITER upper port ECH launcher: front steering (FS) and remote steering (RS) launchers. The RS launcher has the technical advantage of easier maintenance access to the steering mirror, which is isolated from the torus vacuum. The FS launcher places the steering mirror near the plasma increasing the technical challenges, but significantly enhancing the focusing and steering capabilities of the launcher, offering a threefold increase in NTM stabilization efficiency over the RS launcher as well as the potential for application to other critical physics issues such as ELM or sawtooth control.« less

  17. Coupling of laser energy into plasma channels

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-04-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.

  18. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less

  19. Material exposure effects in a simulated low-Earth orbit environment

    NASA Astrophysics Data System (ADS)

    Maldonado, C.; McHarg, G.; Asmolova, O.; Andersen, G.; Rodrigues, S.; Ketsdever, A.

    2016-11-01

    Spacecraft operating in low-Earth orbit (LEO) are subjected to a number of hazardous environmental constituents that can lead to decreased system performance and reduced operational lifetimes. Due to their thermal, optical, and mechanical properties, polymers are used extensively in space systems; however they are particularly susceptible to material erosion and degradation as a result of exposure to the LEO environment. The focus of this research is to examine the material erosion and mass loss experienced by the Novastrat 500 polyimide due to exposure in a simulated LEO environment. In addition to the polymer samples, chrome, silver and gold specimens will be examined to measure the oxidation rate and act as a control specimen, respectively. A magnetically filtered atomic oxygen plasma source has previously been developed and characterized for the purpose of simulating the low-Earth orbit environment. The plasma source can be operated at a variety of discharge currents and gas flow rates, of which the plasma parameters downstream of the source are dependent. The characteristics of the generated plasma were examined as a function of these operating parameters to optimize the production of O+ ions with energy relevant to LEO applications, where the ram energy of the ions due to the motion of the satellite relative to the LEO plasma is high (e.g. 7800 m/s, which corresponds to approximately 5 eV of kinetic energy for O+ ions). The plasma downstream of the source consists of streaming ions with energy of approximately 5 eV and an ion species fraction that is approximately 90% O+.

  20. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Elise

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-tracemore » concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C + with 12C 1H + comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.« less

  1. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    NASA Astrophysics Data System (ADS)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  2. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David

    2014-09-24

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge on low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify the mechanisms by which low and atmospheric pressure plasmamore » (APP) deactivates endotoxic biomolecules. Additionally, we wanted to understand how deactivation processes depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish these objectives. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of model endotoxic biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic modifications in biomolecules. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) were accompanied by these biological effects. One of the most important findings in this work is that the significant deactivation and surface modification can occur with minimal etching using radical species. However, if radical fluxes and corresponding etch rates are relatively high, for example, at atmospheric pressure, inactivation of endotoxic biomolecule film may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.« less

  3. Reflector for efficient coupling of a laser beam to air or other fluids

    DOEpatents

    Kare, Jordin T.

    1992-01-01

    A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shockwaves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment.

  4. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  5. Vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    With the use of a power integral formulation, a study is made of the vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma. Expressions for the ray patterns are initially developed that apply for arbitrary values of driving frequency, static magnetic-field strength, plasma density, and composition. These expressions are subsequently specialized to vlf/elf radiation in a plasma modeled on the magnetosphere. A series of representative pattern plots are presented for frequencies between the proton and electron gyrofrequencies. These patterns illustrate the fact that focusing effects that arise from the geometrical properties of the refractive index surface tend to dominate the radiation distribution over the entire range from the electron gyrofrequency to 4.6 times the proton gyrofrequency. It is concluded that focusing effects should be of significant importance in the design of a vlf/elf satellite transmitting system in the magnetosphere.

  6. Comparative study of X-ray emission from plasma focus relative to different preionization schemes

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.

    2017-07-01

    A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.

  7. Advances and challenges in the field of plasma polymer nanoparticles

    PubMed Central

    Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847

  8. Advances and challenges in the field of plasma polymer nanoparticles.

    PubMed

    Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  9. Electron Bernstein Wave Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B.; Bell, G. L.; Bers, A.; Bigelow, T. S.; Carter, M. D.; Harvey, R. W.; Ram, A. K.; Rasmussen, D. A.; Smirnov, A. P.; Wilgen, J. B.; Wilson, J. R.

    2003-12-01

    Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to ˜ 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving ⩾ 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high β NSTX plasmas.

  10. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rácz, E.; Földes, I. B.; Ryć, L.

    2006-01-01

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5ṡ1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4μm Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  11. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  12. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    NASA Astrophysics Data System (ADS)

    Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.

    2017-01-01

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.

  13. Enhanced target normal sheath acceleration based on the laser relativistic self-focusing

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.

    2014-06-01

    The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.

  14. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1988-04-15

    plasma focus (DPF) device was evaluated for the feasibility of blue-green and near ultraviolet laser pumping. As the result of optimizing the operating conditions of DPF and laser system, the maximum untuned laser output exceeded 4.0mJ corresponding to the energy density 8.3J/liter which is much higher than the typical flashlamp dye laser. The spectral irradiance of DPF at the absorption bands for LD390 and LD490 were 5.5W/sq cm-nm, 0.3W.sq cm-nm, respectively. Due to the lower pump power of DPF at 355nm than the threshold of LD390, the laser pumping of LD390 dye was not

  15. Optimisation of X-ray emission from a laser plasma source for the realisation of microbeam in sub-keV region.

    PubMed

    Di Paolo Emilio, M; Festuccia, R; Palladino, L

    2015-09-01

    In this work, the X-ray emission generated from a plasma produced by focusing Nd-YAG laser beam on the Mylar and Yttrium targets will be characterised. The goal is to reach the best condition that optimises the X-ray conversion efficiency at 500 eV (pre-edge of the Oxigen K-shell), strongly absorbed by carbon-based structures. The characteristics of the microbeam optical system, the software/hardware control and the preliminary measurements of the X-ray fluence will be presented. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells.

    PubMed

    Morré, D M; Morre, D J

    2000-06-23

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum

  17. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum

  18. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  19. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  20. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Electrondriven processes in polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKoy, Vincent

    2017-03-20

    This project developed and applied scalable computational methods to obtain information about low-energy electron collisions with larger polyatomic molecules. Such collisions are important in modeling radiation damage to living systems, in spark ignition and combustion, and in plasma processing of materials. The focus of the project was to develop efficient methods that could be used to obtain both fundamental scientific insights and data of practical value to applications.

  2. Fabrication of nanometer single crystal metallic CoSi2 structures on Si

    NASA Technical Reports Server (NTRS)

    Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)

    1991-01-01

    Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.

  3. Metabolic and Regulatory Systems in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.

  4. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, J.; Zuo, G. Z.; Hu, J. S.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thinmore » flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.« less

  5. Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2017-11-01

    The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.

  6. Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion

    NASA Astrophysics Data System (ADS)

    Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.

    1992-01-01

    Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.

  7. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    DOE PAGES

    Wang, S. Z.; Zhu, K.; Huang, S.; ...

    2016-01-05

    As a new device, we designed plasma window to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managedmore » to generate arc discharge with argon gas experimentally. Our result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Furthermore, theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less

  8. F-region and Topside Plasma Response During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Fedrizzi, M.; Maruyama, N.; Richards, P.; Fang, T. W.; Codrescu, M.

    2015-12-01

    The noon to dusk mid-latitudes sector appears to be a preferred region for substantial rise in plasma density during elevated geomagnetic activity. Previous the plasma density increase in this sector was referred to as the "dusk effect" and more recently the "storm enhanced density". Certainly in some longitude sectors, if the increase in magnetospheric convection occurs at the appropriate Universal Time, the activity does not need to be particularly strong to produce a significant increase in plasma content, such as during the February 27th 2014 event when Kp reached only 6 but there was substantial loss of the FAA WAAS system. The March 2015 St. Patrick's Day storm was considerably more intense with respect to Kp and Dst, and different in timing and duration, so the response and longitude sectors affected were quite different. Numerical simulation of the St. Patrick's Day storm with a coupled thermosphere-ionosphere model (CTIPe) and a stand-alone ionosphere-plasmasphere code (IPE) can be used to understand the physical processes in the plasma and neutral response. In particular the focus is on the vertical distribution of the plasma from the F-region to the topside. The models can be used to assess the impact of electric fields, meridional neutral winds, and solar illumination aiding plasma buildup and storage, neutral composition creating depletions, and magnetospheric convection creating structure.

  9. Mechanistic insights into the impact of Cold Atmospheric Pressure Plasma on human epithelial cell lines

    NASA Astrophysics Data System (ADS)

    Dezest, Marlène; Chavatte, Laurent; Bourdens, Marion; Quinton, Damien; Camus, Mylène; Garrigues, Luc; Descargues, Pascal; Arbault, Stéphane; Burlet-Schiltz, Odile; Casteilla, Louis; Clément, Franck; Planat, Valérie; Bulteau, Anne-Laure

    2017-01-01

    Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.

  10. Focusing experiments in plasma coaxial railguns

    NASA Astrophysics Data System (ADS)

    Driga, M. D.; Cook, R. W.; Thelen, R. F.

    1986-11-01

    Results are reported from experiments on focusing of plasma fired from a coaxial electromagnetic gun (CEMG). The plasma used, obtained by exploding a metallic fuse at the gun breech, comprised metal vapor, metallic liquid droplets and small chunks of solid metal. An azimuthal current, and thereby an axial field, was introduced at the breech of the CEMG by a solenoid. Previous studies indicated that the field would cause vaporized metal to form into a self-stabilizing toroidal plasma. Test shots instrumented with Languir probes and pick-up coils did not reveal the presence of toroidal plasma rings. However, post-mortem of the 30 cm rail showed that only one-third of the 3 mg Al fuse metal remained in the bore. Further, a toroidal hole was punched in a diagnostic screen at the bore exit after one shot.

  11. EFFECTS OF LASER RADIATION ON MATTER: Influence of fluctuations of the size and number of surface microdefects on the thresholds of laser plasma formation

    NASA Astrophysics Data System (ADS)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1990-08-01

    An analysis is made of the influence of the statistical scatter of the size of thermally insulated microdefects and of their number in the focusing spot on the threshold energies of plasma formation by microsecond laser pulses interacting with metal surfaces. The coordinates of the laser pulse intensity and the surface density of the laser energy are used in constructing plasma formation regions corresponding to different numbers of microdefects within the focusing spot area; the same coordinates are used to represent laser pulses. Various threshold and nonthreshold plasma formation mechanisms are discussed. The sizes of microdefects and their statistical characteristics deduced from limited experimental data provide a consistent description of the characteristics of plasma formation near polished and nonpolished surfaces.

  12. Conceptual design of the EU DEMO EC-system: main developments and R&D achievements

    NASA Astrophysics Data System (ADS)

    Granucci, G.; Aiello, G.; Alberti, S.; Avramidis, K. A.; Braunmüller, F.; Bruschi, A.; Chelis, J.; Franck, J.; Figini, L.; Gantenbein, G.; Garavaglia, S.; Grossetti, G.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Kalaria, P.; Latsas, G.; Moro, A.; Pagonakis, I. Gr.; Peponis, D.; Poli, E.; Rispoli, N.; Rzesnicki, T.; Scherer, T.; Strauss, D.; Thumm, M.; Tigelis, I.; Tsironis, C.; Wu, C.; Franke, T.; Tran, M. Q.

    2017-11-01

    For the development of a DEMOnstration Fusion Power Plant the design of auxiliary heating systems is a key activity in order to achieve controlled burning plasma. The present heating mix considers electron cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) with a target power to the plasma of about 50 MW for each system. The main tasks assigned to the EC system are plasma breakdown and assisted start-up, heating to L-H transition and plasma current ramp up to burn, MHD stability control and assistance in plasma current ramp down. The consequent requirements are used for the conceptual design of the EC system, from the RF source to the launcher, with an extensive R&D program focused on relevant technologies to be developed. Gyrotron: the R&D and Advanced Developments on EC RF sources are targeting for gyrotrons operating at 240 GHz, considered as optimum EC Current Drive frequency in case of higher magnetic field than for the 2015 EU DEMO1 baseline. Multi-purpose (multi-frequency) and frequency step-tunable gyrotrons are under investigation to increase the flexibility of the system. As main targets an output power of significantly above 1 MW (target: 2 MW) and a total efficiency higher than 60% are set. The principle feasibility at limits of a 236 GHz, conventional-cavity and, alternatively, of a 238 GHz coaxial-cavity gyrotron are under investigation together with the development of a synthetic diamond Brewster-angle window technology. Advanced developments are on-going in the field of multi-stage depressed collector technologies. Transmission line (TL): different TL options are under investigation and a preliminary study of an evacuated quasi-optical multiple-beam TL, considered for a hybrid solution, is presented and discussed in terms of layout, dimensions and theoretical losses. Launcher: remote steering antennas have been considered as a possible launcher solution especially under the constraints to avoid movable mirrors close to the plasma. With dedicated beam tracing calculations, the deposition locations coverage and the wave absorption efficiency have been investigated, considering a selection of frequencies, injection angles and launching points. An option for the EC system structure is proposed in clusters, in order to allow the necessary redundancy and flexibility to guarantee the required EC power in the different phases of the plasma pulse. Number and composition of the clusters are analysed to have high availability and therefore maximum reliability with a minimum number of components.

  13. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  14. Laser Scattering from the Dense Plasma Focus.

    DTIC Science & Technology

    plasma focus (DPF) illuminated by a pulse of laser light. Scattering was observable from 10 nanoseconds prior to arrival of the collapse on axis and for an additional 50 nanoseconds. The frequency spectrum is markedly asymmetric about the laser frequency, a feature which is inconsistent with spectral expectations based on thermal particle distributions even if particle drifts or waves excitations are included. A model is postulated which attributes the asymmetry to lateral displacement of scattering region from the axis of the focus. Analysis based on this model yields

  15. Simultaneous imaging electron- and ion-feature Thomson scattering measurements of radiatively heated Xe.

    PubMed

    Pollock, B B; Meinecke, J; Kuschel, S; Ross, J S; Shaw, J L; Stoafer, C; Divol, L; Tynan, G R; Glenzer, S H

    2012-10-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 μm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 μm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 μm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 μm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.

  16. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    NASA Astrophysics Data System (ADS)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  17. The plasma membrane calcium pumps: focus on the role in (neuro)pathology.

    PubMed

    Brini, Marisa; Carafoli, Ernesto; Calì, Tito

    2017-02-19

    The plasma membrane Ca 2+ ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It is organized in the plasma membrane with ten transmembrane helices and two main cytosolic loops, one of which contains the catalytic center. It also contains a long C-terminal tail that houses the binding site for calmodulin, the main regulator of the activity of the pump. The pump also contains a number of other regulators, among them acidic phospholipids, kinases, and numerous protein interactors. Separate genes code for 4 basic pump isoforms in mammals, additional isoform complexity being generated by the alternative splicing of primary transcripts. Pumps 1 and 4 are expressed ubiquitously, pumps 2 and 3 are tissue restricted, with preference for the nervous system. In essentially all cells, the pump coexists with much more powerful systems that clear Ca 2+ from the cytosol, e.g. the SERCA pump and the Na + /Ca 2+ exchanger. Its role in the global regulation of cellular Ca 2+ homeostasis is thus quantitatively marginal: its main function is the regulation of Ca 2+ signaling in selected sub-plasma membrane microdomains where Ca 2+ modulated interactors also reside. Malfunctions of the pump linked to genetic mutations are now described with increasing frequency, the disease phenotypes being especially severe in the nervous system where isoforms 2 and 3 predominate. The analysis of the pump defects suggests that the disease phenotypes are likely to be related to the imperfect modulation of Ca 2+ signaling in selected sub-plasma membrane microdomains, leading to the defective control of the activity of important Ca 2+ dependent interactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Toward a global multi-scale heliophysics observatory

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.

    2017-12-01

    We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.

  19. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. This work was supported by KAKENHI (22340170).

  20. Numerical experiments on neutron yield and soft x-ray study of a ˜100 kJ plasma focus using the current profile fitting technique

    NASA Astrophysics Data System (ADS)

    Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.

    2014-07-01

    Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.

  1. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been developed to study these instabilities. The results of the investigations that identify the instability growth rates, levels of saturations, and conditions for quiescent beam propagation will also be discussed. [1] E.A. Startsev and R.C. Davidson, Phys.Plasmas 10, 4829 (2003). [2] E.A. Startsev, R.C. Davidson and H. Qin, Phys.Rev. ST Accel. Beams 8,124201 (2005).

  2. Rocket experiment METS Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  3. Rocket experiment METS - Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  4. Simulation study on the spatial and temporal characteristics of focused microwave beam discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2018-01-01

    This paper reports a simulation study on a focused microwave (frequency 9.4 GHz, pulse width 2.5 μs, and peak electric field 1.2 kV/cm) discharge in 200 Pa nitrogen. A one-dimensional (1D) fluid model is based on the wave equation for the microwave field propagating through the gas breakdown plasma, the continuity equations for electron, ion and neutral particle densities, and the energy balance equations for mean electron temperature, and nitrogen vibrational and translational temperatures. These equations are numerically solved in a self-consistent manner with a simplified plasma chemistry set, in which the reaction rates involving electrons are calculated from the electron energy distribution function (EEDF) using a two-term expansion method. The spatial and temporal characteristics of the focused microwave breakdown in nitrogen are demonstrated, which include the amplitude of the microwave electric field, and the densities and temperatures of the plasma components. The temporal evolution of the plasma electron density agrees reasonably well with that measured with a microwave interferometer. The spatial-temporal distributions of metastable states are discussed on the plasma chemistry and the character of mean electron temperature. The spatially integrated N2(C3) density shows similar trends with the measured temporal intensity of optical emission spectroscopy, except for a time delay of 100-300 ns. The quantitative discrepancies are explained in light of limitations of the 1D model with a two-term expansion of EEDF. The theoretical model is found to describe the gas breakdown plasma generated by focused microwave beams at least qualitatively.

  5. Robe Development for Electrical Conductivity Analysis in an Electron Gun Produced Helium Plasma

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Bitteker, Leo; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The use of magnetohydrodynamic (MHD) power conversion systems, potentially coupled with a fission power source, is currently being investigated as a driver for an advanced propulsion system, such as a plasma thruster. The efficiency of a MHD generator is strongly dependent on the electrical conductivity of the fluid that passes through the generator; power density increases as fluid conductivity increases. Although traditional MHD flows depend on thermal ionization to enhance the electrical conductivity, ionization due to nuclear interactions may achieve a comparable or improved conductivity enhancement while avoiding many of the limitations inherent to thermal ionization. Calculations suggest that nuclear-enhanced electrical conductivity increases as the neutron flux increases; conductivity of pure He-3 greater than 10 mho/m may be achievable if exposed to a flux greater than 10(exp 12) neutrons/cm2/s.) However, this remains to be demonstrated experimentally. An experimental facility has been constructed at the Propulsion Research Center at the NASA Marshall Space Flight Center, using helium as the test fluid. High energy electrons will be used to simulate the effects of neutron-induced ionization of helium gas to produce a plasma. These experiments will be focused on diagnosis of the plasma in a virtually static system; results will be applied to future tests with a MHD system. Initial experiments will utilize a 50 keV electron gun that can operate at up to a current of 200 micro A. Spreading the electron beam over a four inch diameter window results in an electron flux of 1.5x 10(exp 13) e/sq cm/s. The equivalent neutron flux that would produce the same ionization fraction in helium is 1x10(exp 12) n/sq cm/s. Experiments will simulate the neutron generated plasma modeled by Bitteker, which takes into account the products of thermal neutron absorption in He-3, and includes various ion species in estimating the conductivity of the resulting plasma. Several different probes will be designed and implemented to verify the plasma kinetics model. System parameters and estimated operating ranges are summarized. The predicted ionization fraction, electron density, and conductivity levels are provided in for an equivalent neutron flux of 1x10(exp 12) n/cm2/s. Understanding the complex plasma kinetics throughout a MHD channel is necessary to design an optimal power conversion system for space propulsion applications. The proposed experiments seek to fully characterize the helium plasma and to determine the reliability of each measurement technique, such that they may be applied to more advanced MHD studies. The expected value of each plasma parameter determined from theoretical models will be verified experimentally by several independent techniques to determine the most reliable method of obtaining each parameter. The results of these experiments will be presented in the final paper.

  6. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments frommore » interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.« less

  7. Production of hard X rays in a plasma focus

    NASA Technical Reports Server (NTRS)

    Newman, C. E.; Petrosian, V.

    1975-01-01

    A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.

  8. Dense Plasma Focus Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Shengtai; Jungman, Gerard

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  9. Influence of Laser Radiation Power Density on the Intensity of Spectral Lines for Main Components in a Clay Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.

    2018-05-01

    We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.

  10. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design.

    PubMed

    Poulin, Patrick

    2015-07-01

    A basic assumption in pharmacokinetics-pharmacodynamics research is that the free drug concentration is similar in plasma and tissue, and, hence, in vitro plasma data can be used to estimate the in vivo condition in tissue. However, in a companion manuscript, it has been demonstrated that this assumption is violated for the ionized drugs. Nonetheless, these observations focus on in vitro static environments and do not challenge data with an in vivo dynamic system. Therefore, an extension from an in vitro to an in vivo system becomes the necessary next step. The objective of this study was to perform theoretical simulations of the free drug concentration in tissue and plasma by using a physiologically based pharmacokinetics (PBPK) model reproducing the in vivo conditions in human. Therefore, the effects of drug ionization, lipophilicity, and clearance have been taken into account in a dynamic system. This modeling exercise was performed as a proof of concept to demonstrate that free drug concentration in tissue and plasma may also differ in a dynamic system for passively permeable drugs that are ionized at the physiological pH. The PBPK model simulations indicated that free drug concentrations in tissue cells and plasma significantly differ for the ionized drugs because of the pH gradient effect between cells and interstitial space. Hence, a rule of thumb for potentially performing more accurate PBPK/PD modeling is suggested, which states that the free drug concentration in tissue and plasma will differ for the ionizable drugs in contrast to the neutral drugs. In addition to the pH gradient effect for the ionizable drugs, lipophilicity and clearance effects will increase or decrease the free drug concentration in tissue and plasma for each class of drugs; thus, higher will be the drug lipophilicity and clearance, lower would be the free drug concentration in plasma, and, hence, in tissue, in a dynamic in vivo system. Therefore, only considering the value of free fraction in plasma derived from a static in vitro environment might be biased to guide drug design (the old paradigm), and, hence, it is recommended to use a PBPK model to reproduce more accurately the in vivo condition in tissue (the new paradigm). This newly developed approach can be used to predict free drug concentration in diverse tissue compartments for small molecules in toxicology and pharmacology studies, which can be leveraged to optimize the pharmacokinetics drivers of tissue distribution based upon physicochemical and physiological input parameters in an attempt to optimize free drug level in tissue. Overall, this present study provides guidance on the application of plasma and tissue concentration information in PBPK/PD research in preclinical and clinical studies, which is in accordance with the recent literature. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presencemore » of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.« less

  12. Studying the Generation Stage of a Plasma Jet in a Plasma Focus Discharge

    NASA Astrophysics Data System (ADS)

    Polukhin, S. N.; Gurei, A. E.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Kharrasov, A. M.

    2017-12-01

    A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is 1 mm, its electron density is more than 2 × 1019 cm-3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm-3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3-5 times and almost merges together with the leading edge of the shock wave.

  13. Interferometry using subnanosecond pulses from TEA nitrogen lasers.

    PubMed

    Schmidt, H; Salzmann, H; Strohwald, H

    1975-09-01

    The applicability of TEA nitrogen lasers emitting at 3371 A for high speed optical plasma interferometry of short lived plasmas is demonstrated. Interferograms of the dense phase of a 30-kJ plasma focus are obtained with an exposure time of less than 500 psec.

  14. Advanced Design Concepts for Dense Plasma Focus Devices at LLNL

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea

    2017-10-01

    The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  15. Characteristics of a DC-Driven Atmospheric Pressure Air Microplasma Jet

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    2008-08-01

    A dc-driven atmospheric pressure air plasma jet has been investigated for some applications, such as local dental treatment, the inner surface treatment of capillaries, stimuli for microorganisms, and the local cleaning of semiconductor devices. The main experimental results are as follows. The discharge in the pulsed mode occurs repetitively despite of the dc input, and the pulsed mode transfers to the continuous mode as the current exceeds a threshold. The measured emission spectrum from the arc column of the air discharge reveals that most energy of activated electrons is used for the excitation of N2 (second positive system bands) and part of the energy for the dissociation of O2. The length of the plasma torch depends on the tube length, inner gap distance, and flow rate. The maximum torch length of about 40 mm is obtained under certain conditions. The spatial distributions of plasma gas temperature are measured and confirmed by the visualization of the gas flow using Schlieren images. Furthermore, surface treatment and decolorization using the generated plasma torch are carried out, focusing on industrial applications.

  16. ICPP: Beltrami fields in plasmas -- H-mode boundary layers and high beta equilibria

    NASA Astrophysics Data System (ADS)

    Yoshida, Zensho

    2000-10-01

    The Beltrami fields, eigenfunctions of the curl operator, represent essential characteristics of twisted, spiral, chiral or helical structures in various vector fields. Amongst diverse applications of the theory of Beltrami fields, the present paper focuses on the self-organized states of plasmas. The Taylor relaxed state is the principal example of self-organized Beltrami fields. Suppose that a plasma is produced in an external magnetic field (harmonic field). If we do not apply any drive, the plasma will disappear and the system will relax into the harmonic magnetic field. When we drive a current and sustain the total helicity, the plasma relaxes into the Taylor state and achieves the Beltrami magnetic field. When a strong flow is implemented to a plasma, self-organized states becomes qualitatively different from the conventional relaxed stats. The two-fluid effect induces a coupling among the flow, magnetic field, electric field and the pressure, resulting in a "singular perturbation" to the MHD system. To invoke this effect, one must supply a driving force to sustain a strong flow. It is equivalent to giving an internal electric field or applying a steep gradient in pressure, because these fields are tightly coupled. In the two-fluid model, the Beltrami condition demands that the vorticity parallels the flow in both electron and ion fluids. We find that a superposition of two Beltrami magnetic fields (and also two Beltrami flows) solves the simultaneous two-fluid Beltrami conditions [1]. Despite this simple mathematical structure, the set of solutions contains field configurations that are far richer than the conventional theory. The hydrodynamic pressure of a shear flow yields a diamagnetic state that is suitable for confining a high-beta plasma. The H-mode boundary layer is an example, which is spontaneously generated by the core plasma pressure [2]. Active control of shear flow will significantly extend the scope of such self-organized states [3]. [1] S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998). [2] S. M. Mahajan and Z. Yoshida, Phys. Plasmas 7, 635 (2000). [3] Z. Yoshida et al., in Non-Neutral Plasma Physics III (ed. J.J. Bollinger, AIP, 1999), 397.

  17. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    NASA Technical Reports Server (NTRS)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  18. Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.

  19. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  20. Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: Observations of laser-produced-plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.; Camacho-Lopez, S.

    2010-11-15

    This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, {lambda}=532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 {mu}J, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher onmore » previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].« less

  1. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  2. The inverse skin effect in the Z-pinch and plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usenko, P. L., E-mail: otd4@expd.vniief.ru; Gaganov, V. V.

    The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.

  3. Modelling of the internal dynamics and density in a tens of joules plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel

    2012-01-15

    Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.

  4. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  5. Field repair of coated columbium Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1972-01-01

    The requirements for field repair of coated columbian panels were studied, and the probable cause of damage were identified. The following types of repair methods were developed, and are ready for use on an operational system: replacement of fused slurrey silicide coating by a short processing cycle using a focused radiant spot heater; repair of the coating by a glassy matrix ceramic composition which is painted or sprayed over the defective area; and repair of the protective coating by plasma spraying molybdenum disilicide over the damaged area employing portable equipment.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Pablo R.; Rempel, Erico L.; Barroso, Joaquim J.

    We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle, and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge of chaos persists after the interior crisis, when the global attractor of the system increases its size in the phase space.

  7. Summary of initial results from the Magnetized Dusty Plasma Experiment (MDPX) device

    NASA Astrophysics Data System (ADS)

    Thomas, Edward

    2015-11-01

    Dusty (or complex) plasmas are four-component plasma systems consisting of electrons, ions, neutral atoms and charged, solid particulates. These particulates, i.e., the ``dust,'' become charged through interactions with the surrounding plasma particles and are therefore fully coupled to the background. The study of dusty plasmas began with astrophysical studies and has developed into a distinct area of plasma science with contributions to industrial, space, and fundamental plasma science. However, the vast majority of the laboratory studies are performed without the presence of a magnetic field. This is because, compared to the masses of the electrons and ions, the dust particles are significantly more massive and therefore the charge-to-mass ratio of the dust is very small. As a result, large (B > 1 T) magnetic fields are required to achieve conditions in which the dynamics of electrons, ions, and dust particles are dominated by the magnetic field. This presentation will provide a brief description of the design of the large bore (50 cm diameter x 158 cm long), multi-configuration, 4-Tesla class, superconducting magnet and integrated plasma chamber optimized for the study of dusty plasmas at high magnetic field - the MDPX device. The presentation will then focus on initial results of measurements made using MDPX - including observations of a new type of imposed ordered structures formed by the dust particles in a magnetized plasma, E x B driven flows of the particles, and observations of instabilities. This work is a collaboration of the author with Uwe Konopka (Auburn), Robert L. Merlino (Univ. of Iowa), Marlene Rosenberg (UCSD), and the MDPX team at Auburn University. Construction of the MDPX device was supported by the NSF-MRI program. Operations are supported by the NSF and DOE.

  8. Improving Hall Thruster Plume Simulation through Refined Characterization of Near-field Plasma Properties

    NASA Astrophysics Data System (ADS)

    Huismann, Tyler D.

    Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.

  9. Method and apparatus for reducing coherence of high-power laser beams

    DOEpatents

    Moncur, Norman K.; Mayer, Frederick J.

    1978-01-01

    Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.

  10. Plasma cleaning of nanoparticles from EUV mask materials by electrostatics

    NASA Astrophysics Data System (ADS)

    Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.

    2008-03-01

    Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.

  11. Reflector for efficient coupling of a laser beam to air or other fluids

    DOEpatents

    Kare, J.T.

    1992-10-06

    A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shock waves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment. 10 figs.

  12. Characterization of polymeric nanoparticles for intravenous delivery: Focus on stability.

    PubMed

    Oliveira, Claudia L; Veiga, Francisco; Varela, Carla; Roleira, Fernanda; Tavares, Elisiário; Silveira, Isabel; Ribeiro, Antonio J

    2017-02-01

    The nano-bio interaction has been of increased focus in the past years but very limited results have been obtained for polymeric nanoparticles (NP). Not only is needed to broaden the results obtained with model NP towards other nano-materials used for clinical application but the colloidal stability of NP as a variable consequence of the formation of the protein corona has been significantly understated. The lack and heterogeneity of assays to study NP stability and represent the biological environment call for the standardization of assays to improve the representativeness and comparability of results. In this paper, uncoated and PAH-coated PLGA NP have been prepared and characterized in regard to their potential for intravenous administration. The comparative study of the stability of NP in three media used to represent the biological environment-bovine serum albumin (BSA) solution, mouse and human plasma - revealed that both formulations were unstable in human plasma as opposed to the results obtained for other media. This unexpected behavior in plasmas of different origins could be correlated with a significant variation of the amount of proteins adsorbed to NP and, ultimately, with an approximately 6-fold difference in total protein concentration between the plasma samples. These results suggest that inter-species variation could impact on the colloidal stability of NP and enhance the need to understand the correlation between biological media and identify protocol-related interferences which, altogether, may evidence a relevant factor compromising in vitro- in vivo correlation and the translation of delivery systems aimed at intravenous administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    PubMed

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  14. Uranium plasma radiates in the UV spectrum

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1973-01-01

    Description of an experiment designed to produce and spectroscopically analyze a simulated gas core reactor plasma in the spectral range from 300 to 1300 A. The plasma was produced by focusing the radiation of a Q-spoiled ruby laser onto the flat surface of a pure U-238 specimen.

  15. Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications.

    PubMed

    Vasudev, Milana C; Anderson, Kyle D; Bunning, Timothy J; Tsukruk, Vladimir V; Naik, Rajesh R

    2013-05-22

    Chemical vapor deposition (CVD) has been used historically for the fabrication of thin films composed of inorganic materials. But the advent of specialized techniques such as plasma-enhanced chemical vapor deposition (PECVD) has extended this deposition technique to various monomers. More specifically, the deposition of polymers of responsive materials, biocompatible polymers, and biomaterials has made PECVD attractive for the integration of biotic and abiotic systems. This review focuses on the mechanisms of thin-film growth using low-pressure PECVD and current applications of classic PECVD thin films of organic and inorganic materials in biological environments. The last part of the review explores the novel application of low-pressure PECVD in the deposition of biological materials.

  16. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  17. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  18. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  19. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  20. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  1. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  2. Space and time resolved emission of hard X-rays from a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.

  3. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  4. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice.

    PubMed

    Ito, Tatsuo; Kubo, Masayuki; Nagaoka, Kenjiro; Funakubo, Narumi; Setiawan, Heri; Takemoto, Kei; Eguchi, Eri; Fujikura, Yoshihisa; Ogino, Keiki

    2018-02-01

    Obesity is a risk factor for vascular endothelial cell dysfunction characterized by low-grade, chronic inflammation. Increased levels of arginase I and concomitant decreases in L-arginine bioavailability are known to play a role in the pathogenesis of vascular endothelial cell dysfunction. In the present study, we focused on changes in the systemic expression of arginase I as well as L-arginine metabolism in the pre-disease state of early obesity prior to the onset of atherosclerosis. C57BL/6 mice were fed a control diet (CD; 10% fat) or high-fat diet (HFD; 60% fat) for 8 weeks. The mRNA expression of arginase I in the liver, adipose tissue, aorta, and muscle; protein expression of arginase I in the liver and plasma; and systemic levels of L-arginine bioavailability and NO 2 - were assessed. HFD-fed mice showed early obesity without severe disease symptoms. Arginase I mRNA and protein expression levels in the liver were significantly higher in HFD-fed obese mice than in CD-fed mice. Arginase I levels were slightly increased, whereas L-arginine levels were significantly reduced, and these changes were followed by reductions in NO 2 - levels. Furthermore, hepatic arginase I levels positively correlated with plasma arginase I levels and negatively correlated with L-arginine bioavailability in plasma. These results suggested that increases in the expression of hepatic arginase I and reductions in plasma L-arginine and NO 2 - levels might lead to vascular endothelial dysfunction in the pre-disease state of early obesity.

  5. The electromagnetic ram action of the plasma focus as a paradigm for the generation of cosmic rays and the gigantic jets in active galaxies

    NASA Technical Reports Server (NTRS)

    Bostick, W. H.; Nardi, V.

    1985-01-01

    Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.

  6. The electromagnetic Ram action of the plasma focus as a paradigm for the generation of cosmic rays and the gigantic jets in active galaxies

    NASA Astrophysics Data System (ADS)

    Bostick, W. H.; Nardi, V.

    1985-08-01

    Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.

  7. Design a 10 kJ IS Mather Type Plasma Focus for Solid Target Activation to Produce Short-Lived Radioisotopes 12C(d,n)13N

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.

    2010-10-01

    A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.

  8. Detection efficiency vs. cathode and anode separation in cylindrical vacuum photodiodes used for measuring x-rays from plasma focus device.

    PubMed

    Borthakur, T K; Talukdar, N; Neog, N K; Rao, C V S; Shyam, A

    2011-10-01

    A qualitative study on the performance of cylindrical vacuum photodiodes (VPDs) for x-ray detection in plasma focus device has been carried out. Various parameters of VPD such as electrode's diameter, electrode's separation, and its sensitivity are experimentally tested in plasma focus environment. For the first time it is found experimentally that the electrode-separation in the lateral direction of the two coaxial electrodes of cylindrical VPD also plays an important role to increase the efficiency of the detector. The efficiency is found to be highest for the detector with smaller cathode-anode lateral gap (1.5 mm) with smaller photo cathode diameter (10 mm). A comparison between our VPD with PIN (BPX-65) diode as an x-ray detector has also been made.

  9. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus.

    PubMed

    Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  10. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.

    2016-01-15

    As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generatemore » arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less

  11. Electron Bernstein Wave Emission Studies on the TJ-II Stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B; Fernandez, A.; Cappa, A.

    2009-01-01

    Electron Bernstein Wave (EBW) heating is important for high-beta plasma experiments and will be used for heating over-dense plasmas on TJ-II. TJ-II is a medium sized Heliac operating at CIEMAT in Madrid, whose plasmas are created and heated by ECH via two 300 kW gyrotrons at second harmonic X-mode (53.2 GHz), with additional heating provided by two neutral beam injectors. Theoretical work has shown that the most suitable scheme for launching EBWs in TJ-II is O-X-B mode conversion, which has acceptable heating efficiency for central densities above 1.2 x 1019 m-3.[1] A system based on a 28 GHz-100ms diode gyrotronmore » will be used to deliver 300 kW through a corrugated waveguide. The microwave heating beam will be directed and focused by a steering mirror located inside the vacuum vessel. Prior to the heating experiments, measurement of the thermal EBW emission (EBE) from the plasma is being made to help determine the optimum launch angle for EBW mode conversion, and also to provide an indication of the electron temperature evolution in over-dense plasmas. A dual-polarized quad-ridged broadband horn is used to measure the EBW emission and polarization at 28 GHz. Initial measurements indicate that the emission in under-dense plasmas corresponds to oblique electron cyclotron emission (ECE) and then converts to EBE when the plasma becomes over-dense during neutral beam injection.« less

  12. Measurement realities of current collection in dynamic space plasma environments

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1990-01-01

    Theories which describe currents collected by conducting and non-conducting bodies immersed in plasmas have many of their concepts based upon the fundamentals of sheath-potential distributions and charged-particle behavior in superimposed electric and magnetic fields. Those current-collecting bodies (or electrodes) may be Langmuir probes, electric field detectors, aperture plates on ion mass spectrometers and retarding potential analyzers, or spacecraft and their rigid and tethered appendages. Often the models are incomplete in representing the conditions under which the current-voltage characteristics of the electrode and its system are to be measured. In such cases, the experimenter must carefully take into account magnetic field effects and particle anisotropies, perturbations caused by the current collection process itself and contamination on electrode surfaces, the complexities of non-Maxwellian plasma distributions, and the temporal variability of the local plasma density, temperature, composition and fields. This set of variables is by no means all-inclusive, but it represents a collection of circumstances guaranteed to accompany experiments involving energetic particle beams, plasma discharges, chemical releases, wave injection and various events of controlled and uncontrolled spacecraft charging. Here, an attempt is made to synopsize these diagnostic challenges and frame them within a perspective that focuses on the physics under investigation and the requirements on the parameters to be measured. Examples include laboratory and spaceborne applications, with specific interest in dynamic and unstable plasma environments.

  13. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  14. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.

  15. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  16. Near-zero emissions combustor system for syngas and biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. Inmore » this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.« less

  17. Coupling of Plasmas and Liquids

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander David

    Plasma-liquids have exciting applications to several important socioeconomic areas, including agriculture, water treatment, and medicine. To realize their application potential, the basic physical and chemical phenomena of plasma-liquid systems must be better understood. Additionally, system designs must be optimized in order to maximize fluxes of critical plasma species to the liquid phase. With objectives to increase understanding of these systems and optimize their applications, we have performed both comprehensive modeling and experimental work. To date, models of plasma-liquids have focused on configurations where diffusion is the dominant transport process in both gas and liquid phases. However, convection plays a key role in many popular plasma source designs, including jets, corona discharges, and torches. In this dissertation, we model momentum, heat, and neutral species mass transfer in a convection-dominated system based on a corona discharge. We show that evaporative cooling produced by gas-phase convection can lead to a significant difference between gas and liquid phase bulk temperatures. Additionally, convection induced in the liquid phase by the gas phase flow substantially increases interfacial mass transfer of hydrophobic species like NO and NO2. Finally, liquid kinetic modeling suggests that concentrations of highly reactive species like OH and ONOOH are several orders of magnitude higher at the interface than in the solution bulk. Subsequent modeling has focused on coupling discharge physics with species transport at and through the interface. An assumption commonly seen in the literature is that interfacial loss coefficients of charged species like electrons are equal to unity. However, there is no experimental evidence to either deny or support this assumption. Without knowing the true interfacial behavior of electrons, we have explored the effects on key plasma-liquid variables of varying interfacial parameters like the electron and energy surface loss coefficients. Within a reasonable range for these parameters, we have demonstrated that the electron density on the gas phase side of the interface can vary by orders of magnitude. Significant effects can also be seen on the gas phase interfacial electron energy. Electron density and energy will play important roles in determining gas phase chemistry in more complex future models; this will in turn feed back into the liquid phase chemistry. To remove this uncertainty in interfacial behavior, we recommend finer scale atomistic or molecular dynamics simulations. Efficient coupling of the highly non-linear discharge physics equations to liquid transport required creation of a new simulation code named Zapdos, built on top of the MOOSE framework. The operation and capabilities of the code are described in this work. Moreover, changes made to the MOOSE framework allowing coupling of physics across subdomain boundaries, necessary for plasma-liquid coupling, are also detailed. In the latter half of this work, we investigate experimental optimization and characterization of plasma-liquid interactions surrounding a unique very high frequency (VHF) plasma discharge. Several geometric configurations are considered. In the most promising set-up, the discharge is pointed upwards and water is pumped through the source's inner conductor until it forms a milimeter thick water layer on top of the powered electrode. This maximizes the amount of charged and neutral species flux received by the aqueous phase as well as the amount of water vapor created in the gas phase. Additionally, the configuration eliminates electrode damage by providing an infinitely renewable liquid surface layer. The presence of large amounts of water vapor and OH radicals is confirmed by optical emission and broadband absorption spectroscopy. Characterization of liquid phase species like NO-3 , NO-2 , and H2O2 is carried out through ion chromatography (IC) and colorimetric measurements. After detailing the design and characterization of our plasma-liquid systems, we illustrate their applications to plant fertilization and wastewater disinfection. In a four-week collaborative experiment with the NCSU greenhouse, plants that received plasma-treated water grew significantly larger than plants that received tap water. This is directly attributable to the approximately hundred mg/L of NO-3 dissolved into solution by the plasma. The VHF source also proved effective at removing several aqueous contaminants designated harmful to humans by the EPA. Air plasma treatment of solutions contaminated with 1,4-dioxane showed log reduction times competitive with other advanced oxidative processes (AOP). Argon treatment of dixoane was an order of magnitude more effective in terms of log reduction time, although the associated costs are significantly higher. Perfluorooctanesulfonic acid (PFOS) proved resistant to several VHF design iterations. However, the water electrode design introduced in the passage above achieved a log reduction in low level PFOS concentrations over the course of twenty five minutes, suggesting that it may be viable as an advanced technology for degradation of persistent perfluorinated compounds. (Abstract shortened by ProQuest.).

  18. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    PubMed

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  19. Operational characteristics of a high voltage dense plasma focus

    NASA Astrophysics Data System (ADS)

    Woodall, D. M.

    1985-11-01

    A high voltage dense plasma focus powered by a single stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120 kV, energy--20 kJ, short circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The outer electrode diameter is 10.16 cm. Rundown length is about 10 cm, corresponding to a bank quarter period of about 900 millohms ns. Rundown L is about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and related topics. Theoretical motivation for high voltage operation is presented. The design, construction and operation of this device are discussed in detail. Results and analysis of measurements obtained are presented. Device operation was investigated primarily at 80 kV (9 kJ), with a gas fill of about 1 torr H2, plus 3-5 percent A. The following diagnostics were used: gun voltage and current measurements; filtered, time resolved x ray PIN measurements of the pinch region; time integrated x ray pinhole photographs of the pinch region; fast frame visible light photographs of the sheath during rundown; and B probe measurements of the current sheath shortly before collapse.

  20. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less

  1. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    DTIC Science & Technology

    2014-06-01

    Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of

  2. Magnetospheric radio and plasma wave research - 1987-1990

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  3. A plasma lens for a linear collider final focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norem, J.; Cline, D.B.; Cole, B.

    High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.

  4. The PLX- α Plasma Guns: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Brockington, S.; Case, A.; Cruz, E.; Luna, M.; Thio, Y. C. Francis; LANL PLX-α Team

    2017-10-01

    The ALPHA coaxial plasma guns are being developed to support a 60-gun scaling study of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF). Seven complete guns have been delivered to LANL with 6 guns currently undergoing simultaneous test firings on PLX. The guns are designed to operate over a range of parameters: 0.5-5.0 mg of Ar, Ne, N2, Kr, and Xe; 20-60 km/s; 2 × 1016 cm-3 muzzle density; and up to 7.5 kJ stored energy per gun. Each coaxial gun incorporates a fast dense gas injection and triggering system, a compact low-weight pfn with integral sparkgap switching, and a contoured coaxial gap to suppress the blow-by instability. Optimizing parameter scans performed at HyperV have achieved : 4 mg at >50 km/s and length of 10 cm. Peak axial density 30 cm from the muzzle is 2 ×1016 cm-3. We will provide an overview of the experimental results, along with plans for further improvements in reliability, maintainability, fabricability, and plasma jet performance, with the latter focused on further improvements in the fast gas valve and the ignitors. This work supported by the ARPA-E ALPHA Program under contract DE-AR0000566 and Strong Atomics, LLC.

  5. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  6. On the improvement of signal repeatability in laser-induced air plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  7. Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Bsat, Suzan; Speirs, Andrew; Huang, Xiao

    2016-08-01

    The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.

  8. Ion acceleration in a plasma focus

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1974-01-01

    The electric and magnetic fields associated with anomalous diffusion to the axis of a linear plasma discharge are used to compute representative ion trajectories. Substantial axial acceleration of the ions is demonstrated.

  9. Plasma phenomena at magnetic neutral points

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1975-01-01

    A model of the plasma focus is considered, in which large axial electric fields are induced by the imploding current sheet during the final few nanoseconds of the collapse phase. This field provides a mechanism for creation of a beam of electrons of highly suprathermal energies. For this beam, the bremsstrahlung radiation is calculated, which is expected either from electron-deuteron collisions in the focused plasma itself or from the beam as it reaches the walls of the device. Comparison with experimental results indicates that the walls are the more likely source of these hard X-rays and also find qualitative agreement of the expected angular distribution of X-rays with experiment.

  10. Filamentation in the pinched column of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-03-01

    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.

  11. Plasma Metamaterials for Arbitrary Complex-Amplitude Wave Filters

    DTIC Science & Technology

    2013-09-10

    plasmas as reflectors , 4 absorbers, 4,5 and antennae 6 of electromagnetic waves. In contrast with the other materials in these devices, parameters...are controlled using launching antenna and high-power wave sources. One of the fundamental facts we have learned in microwave plasmas is that...metamaterials.” 29 In this report, we demonstrate the functional composites of plasmas and metamaterials, and the focusing point is verification of

  12. Plasma based optical guiding of an amplitude-modulated electromagnetic beam

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2015-06-01

    We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.

  13. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  14. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  15. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, S.; Badar, M. A.; Shafiq, M.

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves suchmore » as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.« less

  16. Investigation of Laser Based Thomson Scattering

    DTIC Science & Technology

    2015-06-04

    laser liquid interaction has the potential to provide sources of energetic ions and fission products such as neutrons . The development of strong...by the production of heavy water d-d fusion and the production of neutrons . Finally, in section VII the tight focusing of light by a 2π mirror is...laser system is estimated to be 10 -15 , using cross- polarization modulation and two plasma mirrors. These parameters allow prepulse expansion to be

  17. Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents.

    PubMed

    Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S

    2018-06-02

    The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.

  18. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  19. Simultaneous imaging electron- and ion-feature Thomson scattering measurements of radiatively heated Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, B. B.; University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093; Meinecke, J.

    2012-10-15

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {mu}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {mu}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accuratemore » determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {mu}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {mu}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20{+-}4 at up to 200 eV electron temperatures.« less

  20. Spatial and Time Dynamics of Non-Linear Vortices in Plasma Lens for High-Current Ion Beam Focusing

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexei A.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Tretyakov, Vitalij N.

    2002-11-01

    It is known from numerical simulation (see, for example, [1]) and from experiments (see, for example, [2]), that an electron density bunches as discrete vortices are long - living structures in vacuum. However, in laboratory experiments [2] it has been shown that the vortices are changed faster, when they are submersed in electrons, distributed around them. The charged plasma lens intended for a focussing of high-current ion beams, has the same crossed configuration of a radial electrical and longitudinal magnetic field [3], as only electron plasma. In this lens the vortical turbulence is excited [3]. The vortex - bunch and vortex - hole are rotated in the inverse directions in system of their rest. The instability development in initially homogeneous plasma causes that the vortices are excited by pairs. Namely, if the vortex - bunch of electrons is generated, near the vortex - hole of electrons is also generated. It is shown, that in nonuniform plasma the vortices behave is various in time. Namely, the vortex - bunch goes to area of larger electron density, and the vortex - hole goes to area of smaller electron density. The speed of the vortex - hole is less than speed of the vortex - bunch. It is shown, that the electron vortices, generated in the plasma lens, can result in to formation of spiral distribution of electron density. The physical mechanism of coalescence of electron vortices - bunches is proposed. 1.Driscoll C.F. et al. Plasma Phys. Contr. Fus. Res. 3 (1989) 507. 2.Kiwamoto Y. et al. Non-neutral plasma physics. Princeton. 1999. P. 99-105. 3.Goncharov A. et al. Plasma Phys. Rep. 20 (1994) 499.

  1. Charging and performance of the CubeSTAR satellite studied by numerical simulations

    NASA Astrophysics Data System (ADS)

    Miloch, Wojciech; Bekkeng, Tore André; Lindem, Torfinn

    2012-07-01

    A good understanding of spacecraft-plasma interaction is important for all space missions and experiments. The spacecraft potential is determined by the plasma, photoemission and other currents [1]. A charged object can significantly disturb the surrounding plasma, and lead to wake formation. The wake features, such as ion focusing, can influence the measurements of the plasma by the instruments onboard. A study of this problem using analytical models is difficult and can not account for all phenomena. This has encouraged use of numerical models for self-consistent studies of the plasma-object interactions on a detailed kinetic level [2][3]. With three-dimensional particle-in-cell (PIC) simulations [3][4], we address the spacecraft-plasma interaction in various plasma environments, and account for the self-consistent charging of the spacecraft by plasma and photoemission currents. As a specific case, we consider the interactions between plasma and a CubeSTAR satellite. CubeSTAR is a nano-satellite for the space weather studies being constructed in Norway, with the launch scheduled for year 2013. With a novel Langmuir probe system [5], it will measure the absolute electron densities with a high spatial resolution, allowing for studies of small scale plasma irregularities. We perform a systematic study of the role of the wakefield on the measurements with the Langmuir probes onboard the CubeSTAR for the plasma conditions relevant for the planned polar orbit. The simulation results are of relevance also for other spacecraft missions. [1] Whipple E C, Rep. Prog. Phys. 44, 1197 (1981). [2] Roussel J F and Berthelier J J, J. Geophys. Res. 109, A01104 (2004). [3] Yaroshenko V V et al., J. Geophys. Res. 116, A12218 (2011). [4] Miloch W J Kroll M and Block D 2010 Phys. Plasmas 17, 103703 (2010). [5] Bekkeng T A et al. Meas. Sci. Technol. 21, 085903 (2010).

  2. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  3. Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B. M.; Wilson, J. R.; Wilgen, J. B.; Bell, G. L.; Bigelow, T. S.; Rasmussen, D. A.; Ram, A. K.; Bers, A.; Harvey, R. W.

    2002-11-01

    Recent studies of EBWs, via mode conversion (MC) to X-mode electromagnetic radiation on the CDX-U and NSTX spherical torus (ST) plasmas, support the use of EBWs to measure the Te profile and allow local heating and current drive in ST plasmas. An in-vessel antenna with a local adjustable limiter has successfully controlled the density scale length at the MC layer in CDX-U increasing the MC by an order of magnitude to ˜ 100%. A similar technique on NSTX has so far increased MC efficiency fivefold to ˜ 50%. Both results are in good agreement with theoretical predictions. Experiments focused on achieving >= 80% MC on NSTX are planned for the coming year. Ray tracing and Fokker-Planck modeling support the design of a ˜ 1 MW EBW heating and current drive system for NSTX that will assist plasma startup, locally heat electrons, drive non-inductive current and may suppress tearing modes or other MHD that limit high β operation.

  4. Identification of hydrogenlike and heliumlike transitions in the spectrum of laser-produced magnesium plasmas

    NASA Technical Reports Server (NTRS)

    Moreno, J. C.; Goldsmith, S.; Griem, H. R.; Cohen, Leonard; Knauer, J.

    1990-01-01

    Nonresonance spectral lines of Mg XII and Mg XI emitted by magnesium laser-produced plasmas have been observed in the extreme-vacuum-ultraviolet region and their transitions classified. As many as eight beams of the Omega laser system of the Laboratory for Laser Energetics at the University of Rochester were linearly focused onto magnesium-coated flat targets to produce linear plasma radiation sources from 3 to 6 mm long. The spectra were photographed end-on with a grazing-incidence spectrograph. The identified Mg XII lines are classified as 2s-3p, 2p-3d, 2s-4p, 2p-4d, and 3d-4f transitions. The identified Mg XI lines are classified as 1s2s-1s3p, 1s2p-1s3d, 1s2p-1s4d, 1s3p-1s4d, and 1s3d-1s4f.

  5. FPGA based charge acquisition algorithm for soft x-ray diagnostics system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.

    2015-09-01

    Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.

  6. Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.

    PubMed

    P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar

    2017-05-01

    Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of very compact soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Korobkin, Dmitriy Vladlenovich

    1999-10-01

    A powerful subpicosecond laser system, based on solid state (Ti:Al 2O3) front end and gas excimer (KrF*) amplifiers, has been developed. It is capable of producing 40-50 mJ pulses at 248 nm (285 fs pulse duration) with 2 Hz repetition rate. That radiation can be focused to intensities greater than 1017 W/cm2 and cause the optical field ionization of lithium. The system was used in experiments on gain generation in hydrogen-like Li III. Lasing action in hydrogen-like Li III 2-1 transition to ground state (13.5 nm) has been demonstrated for the first time. Gain G = 11 cm-1 in 5-mm long plasma column, created in LiF microcapillary, was measured. The observed gain-length product was GL = 5.5. In another set of experiments an inversion population between levels n = 3 and n = 2 in hydrogen-like BV was created using a low-energy compact laser system at 1 Hz repetition rate. Gain G = 17 cm-1 at 26.2 nm was measured in 3 mm long B2O3 microcapillary, which corresponds to GL = 5.1. The entire experimental setup can be fit on a single medium size optical table. Also propagation of laser radiation through plasma, created in microcapillaries has been investigated at various experimental conditions. Real-time plasma probing with low intensity HeNe laser beam has been performed.

  8. Summary Report on Controlled Thermonuclear Synthesis,

    DTIC Science & Technology

    stellarator and the tokamak. Adiabatic magnetic traps are also briefly discussed, as well as the plasma focus . The paper is a very brief generalization of the current state of high-temperature plasma physics. (Author)

  9. Calibration of a high harmonic spectrometer by laser induced plasma emission.

    PubMed

    Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M

    2009-08-17

    We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America

  10. Gamma ray measurements with photoconductive detectors using a dense plasma focus.

    PubMed

    May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  11. Dynamics of ions generated by 2.3 kJ UNU/ICTP plasma focus device

    NASA Astrophysics Data System (ADS)

    Tangitsomboon, P.; Ngamrungroj, D.; Chandrema, E.; Mongkolnavin, R.

    2017-09-01

    UNU/ICTP Plasma Focus Device has been used as an ions source in many applications. In this paper, the full dynamic range of argon ions produced by the Plasma Focus Device from its initial phase through to beyond the focussing phase of the plasma is shown experimentally. The average speed of the ions is determined by measuring time taken for ions to reach different positions using magnetic probes and ion probes. Also, by adapting a well-established computational model that represents the dynamics of plasma in such device, it is also possible to determine the speed of these ions up to the point where the movement of the plasma sheath under the Lorentz force is completed. However, it was found that the speed determined by the computational model is higher in comparison with the values obtained experimentally at all different operating pressures. The ions’ speed found for operating pressure of 0.5 mbar, 1.0 mbar, 1.5 mbar and 2.0 mbar were 5.16 ± 0.04 cm/μs, 4.24 ± 0.04 cm/μs, 3.81 ± 0.03cm/μs and 3.16 ± 0.04 cm/μs respectively. These correspond to the ion energy of 551.38 ± 8.55 eV, 372.29 ± 7.02 eV, 300.61 ± 4.73 eV and 206.79 ± 5.24 eV.

  12. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  13. The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease.

    PubMed

    Winkler, Anne M; Koepsell, Scott A

    2015-11-01

    The purpose of this review is to discuss the use of convalescent plasma for the treatment of emerging infectious diseases, focusing on the recent use for the treatment of Ebola virus disease (EVD). Ebola convalescent plasma has been used as a therapy for treatment of EVD during the 2014 West Africa epidemic. Several cases from the United States and Europe have been recently published, in addition to multiple ongoing clinical trials in the United States and West Africa. Even more recently, convalescent plasma has been used for treatment of individuals with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Although the first reports of successful treatment with passive immune therapy date back to the early 1900s, convalescent plasma has materialized as a possible therapy for patients who develop infection from one of the emerging infectious diseases such as EVD or MERS-CoV, although the efficacy of such therapy has yet to be proven in clinical trials.

  14. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  15. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  16. Terahertz generation by relativistic ponderomotive focusing of two co-axial Gaussian laser beams propagating in ripple density plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Subodh; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P.

    Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yieldmore » of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.« less

  17. Diagnostics of ion beam generated from a Mather type plasma focus device

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Ngoi, S. K.; Wong, C. S.; Yap, S. L.

    2014-03-01

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 1011 per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  18. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dergachev, A A; Kandidov, V P; Shlenov, S A

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  20. Pacifichem 2000 Symposium on Plasma Chemistry and Technology for Green Manufacturing, Pollution Control and Processing Applications

    DTIC Science & Technology

    2001-03-19

    Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on

Top