Improvement of Thrust Characteristics of Helicon Plasma Thruster using Local Gas Fueling Method
NASA Astrophysics Data System (ADS)
Kuwahara, Daisuke; Amma, Kosuke; Ishigami, Yuichi; Igarashi, Akihiko; Nishimoto, Shinichi; Shinohara, Shunjiro; Miyazawa, Junichi
2017-10-01
A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. Here, a neutral particle, e.g., H2, Ar, and Xe works, as a fuel gas. In most cases, these gases are supplied into a discharge tube by the use of a simple nozzle. Therefore, the neutral particle fills a discharge tube homogenous. However, there are two problems in this configuration. First, there is a limitation of an electron density increase, due to a neutral particle depletion in the central region of the high-density helicon plasma. This limitation reduces the thrust performance directly. Second, the high-density plasma causes an erosion of an inner discharge tube wall. For the future MW class thruster, this problem will become serious because the particle and heat fluxes of the plasma will increase drastically. To solve above-mentioned problems, we have proposed local fueling methods for the high-density helicon plasma. In this presentation, we will show the methods and experimental results using a fueling tube, inserted in a plasma directly. This work is supported by JSPS KAKENHI Grant Number 16K17843 and NIFS Collaboration Research program (NIFSKBAF016).
Overview of NASA's Pulsed Plasma Thruster Development Program
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Kamhawi, Hani; Arrington, Lynn A.
2004-01-01
NASA's Pulsed Plasma Thruster Program consists of flight demonstration experiments, base research, and development efforts being conducted through a combination of in-house work, contracts, and collaborative programs. The program receives sponsorship from Energetics Project, the New Millennium Program, and the Small Business Innovative Research Program. The Energetics Project sponsors basic and fundamental research to increase thruster life, improve thruster performance, and reduce system mass. The New Millennium Program sponsors the in-orbit operation of the Pulsed Plasma Thruster experiment on the Earth Observing 1 spacecraft. The Small Business Innovative Research Program sponsors the development of innovative diamond-film capacitors, piezoelectric ignitors, and advanced fuels. Programmatic background, recent technical accomplishments, and future activities for each programmatic element are provided.
Burn Control in Fusion Reactors via Isotopic Fuel Tailoring
NASA Astrophysics Data System (ADS)
Boyer, Mark D.; Schuster, Eugenio
2011-10-01
The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).
Tritium proof-of-principle pellet injector: Phase 2
NASA Astrophysics Data System (ADS)
Fisher, P. W.; Gouge, M. J.
1995-03-01
As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase-2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and DT mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and DT extrusions; integrate, test and evaluate the extruder in a repeating, single-stage light gas gun sized for the ITER application (pellet diameter approximately 7-8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory requiring secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to thirteen pellets have been extruded at rates up to 1 Hz and accelerated to speeds of order 1.0-1.1 km/s using hydrogen propellant gas at a supply pressure of 65 bar. The pellets are typically 7.4 mm in diameter and up to 11 mm in length and are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first wall tritium inventories by a process called isotopic fueling where tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
One Dimensional Analysis of Inertially Confined Plasmas.
1982-03-01
Confinement Fuel Pellet’ - 3 2 General Flowchart for Program MOXNEX 8 3 General Program Organization of Subroutine ALPHA1 - 1J- 4 Values of <ov...is dumped in the current cell. Subprogram ALPHA1 calls 14 other subroutines to complete its tasks. General program organization is seen in Figure 3...OEROSITION T Figure 3. General Program Organization of Subroutine ALPHA1 6. Subroutine HTFLX. This subroutine computes the energy transfer
Revitalizing Fusion via Fission Fusion
NASA Astrophysics Data System (ADS)
Manheimer, Wallace
2001-10-01
Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000
NASA Astrophysics Data System (ADS)
Nozaki, Tomohiro; Gutsol, Alexander
2011-07-01
This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma-generated reactive species are used to initiate chemical reactions at unexpectedly lower temperatures than conventional thermochemical reactions, leading to non-equilibrium product distribution or creating unconventional reaction pathways. When non-thermal plasma is combined with catalysts, a synergistic effect is frequently observed. Such unique properties of non-thermal plasma are expected to contribute excellent control over process parameters that meet the need for energy saving, environment protection, and material preservation. This special issue consists of eleven peer-reviewed papers including two invited publications. Professors Alexander Fridman and Alexander Rabinovich from Drexel University, and Dr Gutsol from the Chevron Energy Technology Company present a critical review of various industry-oriented practical plasma fuel conversion processes. Professor Richard Mallinson from University of Oklahoma describes his recent project on E85 (85%-ethanol/15%-gasoline) upgrading using non-thermal plasma and catalyst hybrid reactor, and highlights the synergistic effect on fuel conversion processes. Other papers focus on plasma/catalyst hybrid reactions for methane dry (CO2) reforming, plasma synthesis of carbon suboxide polymer from CO, the gas-to-liquid (GTL) process using a non-thermal plasma-combined micro-chemical reactor, and molecular beam characterization of plasma-generated reactive species. Much research regarding plasma catalysis is ongoing worldwide, but there is plenty of room for further development of plasma fuel processing, which could eventually provide a viable and flexible solution in future energy and material use. Finally, we would like to thank all symposium participants for their active discussion. We appreciate the sponsorship of the Division of Fuel Chemistry of the American Chemical Society. We express special thanks to the program chair of the Fuel Chemistry Division, Professor Chang-jun Liu at Tianjin University, for his dedication to the success of the symposium. We particularly express our appreciation to the Editorial Board of Journal of Physics D: Applied Physics for publication of the special issue.
Exploring magnetized liner inertial fusion with a semi-analytic model
McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...
2016-01-01
In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Exploring magnetized liner inertial fusion with a semi-analytic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, R. D.; Slutz, S. A.; Vesey, R. A.
In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Exploring magnetized liner inertial fusion with a semi-analytic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.
In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Kong, Peter C.; Detering, Brent A.
2003-08-19
Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.
Kong, Peter C.; Detering, Brent A.
2004-10-19
Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.
Fusion energy division annual progress report, period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less
Plasma torch for ignition, flameholding and enhancement of combustion in high speed flows
NASA Technical Reports Server (NTRS)
O'Brien, Walter F. (Inventor); Billingsley, Matthew C. (Inventor); Sanders, Darius D. (Inventor); Schetz, Joseph A. (Inventor)
2009-01-01
Preheating of fuel and injection into a plasma torch plume fro adjacent the plasma torch plume provides for only ignition with reduced delay but improved fuel-air mixing and fuel atomization as well as combustion reaction enhancement. Heat exchange also reduced erosion of the anode of the plasma torch. Fuel mixing atomization, fuel mixture distribution enhancement and combustion reaction enhancement are improved by unsteady plasma torch energization, integral formation of the heat exchanger, fuel injection nozzle and plasma torch anode in a more compact, low-profile arrangement which is not intrusive on a highspeed air flow with which the invention is particularly effective and further enhanced by use of nitrogen as a feedstock material and inclusion of high pressure gases in the fuel to cause effervescence during injection.
Beam heated linear theta-pinch device for producing hot plasmas
Bohachevsky, Ihor O.
1981-01-01
A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.
Ablation study of tungsten-based nuclear thermal rocket fuel
NASA Astrophysics Data System (ADS)
Smith, Tabitha Elizabeth Rose
The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.
Fuel injector utilizing non-thermal plasma activation
Coates, Don M [Santa Fe, NM; Rosocha, Louis A [Los Alamos, NM
2009-12-01
A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-07-30
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-01-01
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routinemore » investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m -3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.« less
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Combs, S. K.; Foust, C. R.; Milora, S. L.
Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1 to 2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3 to 5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2 to 3 km/s.
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Refined Calculations of Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Schmit, Paul; Knapp, Patrick; Hansen, Stephanie; Gomez, Matthew; Hahn, Kelly; Sinars, Daniel; Peterson, Kyle; Slutz, Stephen; Sefkow, Adam; Awe, Thomas; Harding, Eric; Jennings, Christopher
2014-10-01
Diagnosing the degree of magnetic flux compression at stagnation in magneto-inertial fusion (MIF) is critical for charting the performance of any MIF concept. In pure deuterium plasma, the transport of high-energy tritons produced by the aneutronic DD fusion reaction depends strongly on the magnetic field. The tritons probe and occasionally react with the fuel, emitting secondary DT neutrons. We show that the DT/DD neutron yield ratio and the secondary DT neutron spectra can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The amount of fuel-pusher mix also can be constrained by secondary reactions. We discuss the sensitivity to plasma inhomogeneities of the calculations and outline methods to relate secondary yields to alpha particle energy deposition in ignition-relevant experiments employing DT fuel. We compare our calculations to recent tests of the Magnetized Liner Inertial Fusion (MagLIF) concept on the Z Pulsed Power Facility. Supported in part by the SNL Truman Fellowship, which is part of the LDRD Program, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of SNL under its U.S. DoE Contract No. DE-AC04-94AL85000.
Efficiency of a hybrid-type plasma-assisted fuel reformation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, I.B.; Serbin, S.I.; Lux, S.M.
2008-12-15
The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existingmore » and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.« less
NASA Astrophysics Data System (ADS)
Hu, Zhenhua; Li, Cong; Xiao, Qingmei; Liu, Ping; Fang, Ding; Mao, Hongmin; Wu, Jing; Zhao, Dongye; Ding, Hongbin; Luo, Guang-Nan; EAST Team
2017-02-01
Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylor, Larry R.; Meitner, Steven J.
Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuelmore » atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.« less
NASA Astrophysics Data System (ADS)
Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.
2010-03-01
Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.
A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures
NASA Astrophysics Data System (ADS)
Fuh, Che A.; Wu, Wei; Wang, Chuji
2017-11-01
A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.
PNNL Delivers Expertise, Technology to Biofuels Start-up, InEnTec
Surma, Jeff
2017-12-09
Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.
Plasma promoted manufacturing of hydrogen and vehicular applications
NASA Astrophysics Data System (ADS)
Bromberg, Leslie
2003-10-01
Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.
Plasma sprayed ceria-containing interlayer
Schmidt, Douglas S.; Folser, George R.
2006-01-10
A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.
Fusion policy advisory committee named
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Department of Energy Secretary James Watkins has announced the formation of new Fusion Policy Advisory Committee which will recommend a policy for conducting DOE's fusion energy research program. Issues that will be considered by the committee include the balance of research activities within the programs, the timing of experiments to test the burning of plasma fuel, the International Thermonuclear Experimental Reactor, and the development of laser technologies, DOE said. Watkins said that he would be entirely open to the committee's advice.
Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He
NASA Astrophysics Data System (ADS)
Honig, Arnold; Sandorfi, Andrew
2007-06-01
An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tTokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of ˜15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at ˜108 K plasma core temperatures (˜5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactorfusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It will be introduced into the reactor by loading at high pressure into a thick-walled ICF-type polymer shell for injection into the plasma core with a room temperature injection gun. Based on current experience, polarizations of both D and 3He of ˜55% are projected, producing a fusion yield increase of about 15%. A collaboration is being developed for implementing this experiment at the DIII-D Ttokamak experiment at San Diego, operated by General Atomics for the U.S. Department of Energy. Calculations indicate a 10% fusion yield increase in the 14.6 MeV protons from the D-3He reaction will provide a statistically significant test of polarization retention in the plasma. Injection of the polarized fuels into a 4He or 1H plasma improves the discrimination of the effects of polarized fuels. Details of the HD fuel preparation, of the polarization processes, and of the injection into the plasma will beare presented. If the expected fusion reaction yield increase indicative of polarization retention is detected, a route to significantly improved second generation D-3He fusion would be established, as well as confidence to undertake the more difficult polarization of tritium, which would offer important cost savings and improved prospects of ignition in the ITER program.
NASA Astrophysics Data System (ADS)
Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.
2008-06-01
Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.
Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...
2015-04-22
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.D. Levine; V.L. Finley
1998-03-01
The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.« less
2009-11-04
plasma enhanced combustion in flow reactors and flames Motivation •Nano‐ particles are known to be ionized more easily than molecules and atoms (due to...aluminum nano‐ particles at high temperature (~1100 K), providing a strong driving force for ion transport •Nano‐ particles are chemically and catalytically...active in plasma •Functionalized nano‐ particles may enhance the effectiveness of plasma Functionalized graphene sheet colloids enhance fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neame, G.R.; Gardiner, D.P.; Mallory, R.W.
1995-12-31
This paper describes an experimental study in which the potential for fuel economy improvements with EGR was investigated using an automotive V6 engine. Steady state engine dynamometer tests were run at 2,000 rpm and 200 kPa Brake Mean Effective Pressure (BMEP). The engine was fueled with gasoline, methanol or natural gas. Plasma jet ignition was evaluated as a means of improving EGR tolerance. EGR tolerance with methanol was found to be better than with gasoline, while natural gas showed the poorest EGR tolerance. Plasma jet ignition extended EGR limits for all three fuels. Fuel economy benefits were realized with naturalmore » gas and gasoline at low EGR rates and without EGR but plasma jet ignition provided no improvements with methanol until over 10% EGR was used. Plasma jet ignition made stable operation possible with methanol at 40% EGR, where fuel economy improvements were ultimately limited by the slow burning associated with the high EGR rate. Both slow burning and high cyclic variation affected gasoline at high EGR rates, while stability limits to spark advance with natural gas caused fuel economy to degrade at relatively low EGR rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, L. B.; Donohoe, S. P.; Jones, M. H.
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
Particle transport in DIII-D plasmas
NASA Astrophysics Data System (ADS)
Kress, Peter; Mordijck, Saskia
2017-10-01
By analyzing the plasma opacity and density evolution during the ELM cycle in DIII-D H-mode plasmas in which the amount of gas fueling was altered, we find evidence for an inward particle pinch at the plasma edge which seems to become more pronounced at higher density. Furthermore, at the plasma edge we find a correlation between the pedestal density and opacity, which measures neutral penetration depth. The changes in edge opacity during an ELM cycle were calculated by using a detailed time history of measured plasma profiles. At the same time, the density evolution during an ELM cycle was investigated. We find that if the edge density increases through an increase in gas fueling, then opacity increases and neutral fueling penetration depth decreases. We also find that density at the top of the pedestal recovers faster following an ELM when the overall density level is higher, leading to a hollow profile inside of the pedestal top. All these results indicate that there must be an inward particle pinch in the pedestal which will be crucial in the fueling of future burning plasma devices. Supported by US DOE DE-SC0007880, DIII-D Grant Number DE-FC02-04ER54698.
Plasma Torch Development Activities at Archimedes
NASA Astrophysics Data System (ADS)
Davis Lee, W.; Agnew, Steve; Chamberlin, Fred; Hilsabeck, Terry; Meekins, Mike; Plaisted, Ryan; Putvinski, Sergei; Umstadter, Karl; Yung, Shui
2004-11-01
The Archimedes Demonstration Unit (ADU) is a large scale implementation (L ≃ 4.0 m, a ≃ 0.37 m) of the plasma mass filter. The filter concept uses perpendicular \\overrightarrowE and \\overrightarrowB fields to separate material by atomic mass at high throughputs, with applications to nuclear waste remediation. Fueling the filter plasma with molten waste is one of the fundamental challenges of the ADU program, and this has been achieved using an inductively coupled plasma torch. Experiments have been performed with molten NaOH, a primary constituent of the waste to be treated. The melt is pumped to the bottom of the torch and nebulized using a 20 kHz sonic source. The nebulized NaOH mist is then evaporated by the torch and injected into the central region of the ADU. Vapor jet characteristics and ionization rates have been measured. The experimental setup and data will be presented.
NASA Astrophysics Data System (ADS)
Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.
2012-10-01
Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
NASA Technical Reports Server (NTRS)
Sumner, I. E.; Ruckle, D. L.
1980-01-01
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.
Development of a Tritium Extruder for ITER Pellet Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.J. Gouge; P.W. Fisher
As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder andmore » is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular cylinders. Tritium and D-T pellets have been produced in experiments at the Los Alamos National Laboratory Tritium Systems Test Assembly. About 38 g of tritium have been utilized in the experiment. The tritium was received in eight batches, six from product containers and two from the Isotope Separation System. Two types of runs were made: those in which the material was only extruded and those in which pellets were produced and fired with deuterium propellant. A total of 36 TZ runs and 28 D-T runs have been made. A total of 36 pure tritium runs and 28 D-T mixture runs were made. Extrusion experiments indicate that both T2 and D-T will require higher extrusion forces than D2 by about a factor of two.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephey, L.; Bader, A.; Effenberg, F.
Tmore » he edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τ p * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. he fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. he X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τ p * and τ p decrease by 10 % – 25 % depending on plasma density. he τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. hese findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. his process is also effective for the control of effective helium exhaust times, as τ p , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τ p , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. Finally, however, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.« less
Stephey, L.; Bader, A.; Effenberg, F.; ...
2018-05-29
Tmore » he edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τ p * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. he fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. he X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τ p * and τ p decrease by 10 % – 25 % depending on plasma density. he τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. hese findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. his process is also effective for the control of effective helium exhaust times, as τ p , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τ p , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. Finally, however, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.« less
NASA Astrophysics Data System (ADS)
Stephey, L.; Bader, A.; Effenberg, F.; Schmitz, O.; Wurden, G. A.; Anderson, D. T.; Anderson, F. S. B.; Biedermann, C.; Dinklage, A.; Feng, Y.; Frerichs, H.; Fuchert, G.; Geiger, J.; Harris, J. H.; König, R.; Kornejew, P.; Krychowiak, M.; Lore, J. D.; Unterberg, E. A.; Waters, I.; W7-X Team
2018-06-01
The edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τp * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. The fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. The X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τp * and τp decrease by 10 % - 25 % depending on plasma density. The τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. These findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. This process is also effective for the control of effective helium exhaust times, as τp , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τp , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. However, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.
Amendt, Peter; Landen, O L; Robey, H F; Li, C K; Petrasso, R D
2010-09-10
The observation of large, self-generated electric fields (≥10(9) V/m) in imploding capsules using proton radiography has been reported [C. K. Li, Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D3He [J. R. Rygg, Phys. Plasmas 13, 052702 (2006)] and (DT)3He [H. W. Herrmann, Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl, Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit.
Diffusive tunneling for alleviating Knudsen-layer reactivity reduction under hydrodynamic mix
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua
2017-10-01
Hydrodynamic mix will produce small features for intermixed deuterium-tritium fuel and inert pusher materials. The geometrical characteristics of the mix feature have a large impact on Knudsen layer yield reduction. We considered two features. One is planar structure, and the other is fuel cells segmented by inert pusher material which can be represented by a spherical DT bubble enclosed by a pusher shell. The truly 3D fuel feature, the spherical bubble, has the largest degree of yield reduction, due to fast ions being lost in all directions. The planar fuel structure, which can be regarded as 1D features, has modest amount of potential for yield degradation. While the increasing yield reduction with increasing Knudsen number of the fuel region is straightforwardly anticipated, we also show, by a combination of direct simulation and simple model, that once the pusher materials is stretched sufficiently thin by hydrodynamic mix, the fast fuel ions diffusively tunnel through them with minimal energy loss, so the Knudsen layer yield reduction becomes alleviated. This yield recovery can occur in a chunk-mixed plasma, way before the far more stringent, asymptotic limit of an atomically homogenized fuel and pusher assembly. Work supported by LANL LDRD program.
Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi
2015-06-01
A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.
Induction simulation of gas core nuclear engine
NASA Technical Reports Server (NTRS)
Poole, J. W.; Vogel, C. E.
1973-01-01
The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.
Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion
NASA Astrophysics Data System (ADS)
Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.
1992-01-01
Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.
Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Caspary, Kyle Jonathan
Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.
NASA Technical Reports Server (NTRS)
Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.
2017-01-01
Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...
2016-03-04
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA
2008-10-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-10-10
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2013-06-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2016-07-05
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-10-31
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-04-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA
2009-08-04
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-03-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geissel, Matthias; Awe, Thomas James; Bliss, David E.
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
Lu, Chun [Monroeville, PA
2012-04-24
A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)
NASA Astrophysics Data System (ADS)
Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa
2017-10-01
The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.
NASA Astrophysics Data System (ADS)
Kesner, J.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.
2006-10-01
The levitated dipole experiment (LDX) is a new research facility that is investigating plasma confinement and stability in a dipole magnetic field configuration as a possible catalyzed DD fusion power source that would avoid the burning of tritium. We report the production of high beta plasma confined by a laboratory superconducting dipole using neutral gas fueling and electron cyclotron resonance heating (ECRH). The pressure results from a population of anisotropic energetic trapped electrons that is sustained by microwave heating provided sufficient neutral gas is supplied to the plasma. The trapped electron beta was observed to be limited by the hot electron interchange (HEI) instability, but when the neutral gas was programmed so as to maintain the deuterium gas pressure near 0.2 mPa, the fast electron pressure increased by more than a factor of ten and the resulting stable high beta plasma was maintained quasi-continuously for up to 14 seconds. Low frequency (<10 kHz) fluctuations are sometimes observed at low neutral base pressure.
Partially Ionized Plasmas, Including the Third Symposium on Uranium Plasmas
NASA Technical Reports Server (NTRS)
Krishnan, M.
1976-01-01
Fundamentals of both electrically and fission generated plasmas are discussed. Research in gaseous fuel reactors using uranium hexafluoride is described and other partially ionized plasma applications are discussed.
NASA Astrophysics Data System (ADS)
Waldbillig, D.; Kesler, O.
A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2003-12-16
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2007-02-20
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-02-07
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
2014-01-01
W.F. O’Brien, J.A. Schetz - Plasma torch atomizer-igniter for supersonic combustion of liquid hydrocarbon fuels // AIAA Paper 2006-7970. 6. H. Do...A. Deminsky, I. V. Kochetov, A. P. Napartovich, S. B. Leonov, - “Modeling of Plasma Assisted Combustion in Premixed Supersonic Gas Flow...1 Ignition and Flameholding in a Supersonic Combustor by an Electrical Discharge Combined with a Fuel Injector K. V. Savelkin 1 , D. A
Partially ionized plasmas including the third symposium on uranium plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, M.
1976-09-01
Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.
Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander
2003-05-13
Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; ...
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Southwestern Institute of Physics, Chengdu 610041; Wang, Z. H., E-mail: zhwang@swip.ac.cn
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heatmore » and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
From pure fusion to fusion-fission Demo tokamaks
NASA Astrophysics Data System (ADS)
Mirnov, S. V.
2013-04-01
The major requirements for pure fusion tokamak reactors and tokamak-based fusion neutron sources (FNS) are analyzed together with possible paths from the present-day tokamak towards the FNS tokamak. The FNS are of interest for traditional fission reactors as a method of waste management by burning of long-lived transuranic radionuclides (minorities) and fission fuel breeding. The Russian fission community places several hard requirements on the quality of FNS suitable for the first step of the investigation program of minority burning and breeding. They are (a) a steady-state regime of neutron production (more than 80% of the operational time), (b) a neutron power flux density greater than >0.2 MW m-2, (c) a total surface integrated neutron power >10 MW. Among the different FNS projects, based on magnetically confined plasmas, only ‘classical tokamak’ is most likely to fulfill these requirements in the nearest future. Some of the most important improvements of the ‘classical tokamak’ needed for successful realization of the FNS are (1) decrease in Zeff (probably, by making use of lithium as a part of plasma-facing components), (2) He removal and closed loop DT fuel circulation, (3) increase in the energy of stationary injected neutral tritium beams up to 150-170 keV and (4) control of impurity contamination at the plasma center (probably, by local RF heating). These key issues are discussed.
Field aligned flows driven by neutral puffing at MAST
NASA Astrophysics Data System (ADS)
Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.
2018-06-01
Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.
Low current plasmatron fuel converter having enlarged volume discharges
Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei
2005-04-19
A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.
Low current plasmatron fuel converter having enlarged volume discharges
Rabinovich, Alexander [Swampscott, MA; Alexeev, Nikolai [Moscow, RU; Bromberg, Leslie [Sharon, MA; Cohn, Daniel R [Chestnut Hill, MA; Samokhin, Andrei [Moscow, RU
2009-10-06
A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.
Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?
NASA Astrophysics Data System (ADS)
Strelkov, V. S.
2017-12-01
This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion can be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1-10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Sherman, V. E.
2016-08-15
The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result ofmore » using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.« less
Spent nuclear fuel recycling with plasma reduction and etching
Kim, Yong Ho
2012-06-05
A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.
Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less
Emission abatement system utilizing particulate traps
Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander
2004-04-13
Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.
2013-07-01
31st ICPIG, July 14-19, 2013, Granada , Spain Kinetic Studies of Plasma Chemical Fuel Oxidation in Nanosecond Pulsed Discharges by Single and...31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013 14. ABSTRACT Single and two photon Laser Induced Fluorescence (LIF) spectroscopy is used for...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 31st ICPIG, July 14-19, 2013, Granada , Spain preheat the fuel-air mixture to the furnace
Plasma-enhanced mixing and flameholding in supersonic flow
Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.
2015-01-01
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434
Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device.
Sakamoto, Ryuichi; Motojima, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi
2013-08-01
A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing mode and real-time control mode, allows the build-up and sustainment of high density plasma around the density limit. The pellet injector has demonstrated stable operation characteristics during the past three years of LHD experiments.
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Advanced Concept Exploration for Fast Ignition Science Program, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang
The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends criticallymore » on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.« less
NASA Astrophysics Data System (ADS)
Mahdavi, M.; Khodadadi Azadboni, F.
2012-08-01
This paper examines the burn characteristics for inertial confinement D/3 He fuel pellets with different concentrations of Helium-3. It is shown that the Helium-3 relative density of the fuel mixture plays a significant role in determining the burn characteristics and fuel gain. In spite of the safety of the plasma degeneracy of D/3 He fuel with fraction of y = 0.2 (y: Helium-3 content parameter), ignition of fuel is impossible. In design fuel extra to safety should be considered fractional burn-up and fuel gain. The main contribution of this research is to show that the plasma degeneracy of equimolar mixture of D/3 He fuel lowers the ignition temperature and increases fuel gain. The results indicate that a ≤ 0.3 is difficult to ignite reasonable driver energy. A fuel gain of 378 can be obtained with a D/3 He fuel with fraction of y = 0.33, and areal density (ρ R) of 12 g/cm2. It is found that the fuel gain of an equimolar D/3 He fuel at temperature of 70 keV and ρ R value of 8.5 g/cm2 is 480. This value gain is higher by about 22% than the case of the pellets (y = 0.33).
Development of Augmented Spark Impinging Igniter System for Methane Engines
NASA Technical Reports Server (NTRS)
Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.
2017-01-01
The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kesler, Olivera
2012-06-01
Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.
Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; ...
2015-09-21
The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less
NASA Astrophysics Data System (ADS)
Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.
1992-07-01
The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.
Laser Plasma Microthruster Performance Evaluation
NASA Astrophysics Data System (ADS)
Luke, James R.; Phipps, Claude R.
2003-05-01
The micro laser plasma thruster (μLPT) is a sub-kilogram thruster that is capable of meeting the Air Force requirements for the Attitude Control System on a 100-kg class small satellite. The μLPT uses one or more 4W diode lasers to ablate a solid fuel, producing a jet of hot gas or plasma which creates thrust with a high thrust/power ratio. A pre-prototype continuous thrust experiment has been constructed and tested. The continuous thrust experiment uses a 505 mm long continuous loop fuel tape, which consists of a black laser-absorbing fuel material on a transparent plastic substrate. When the laser is operated continuously, the exhaust plume and thrust vector are steered in the direction of the tape motion. Thrust steering can be avoided by pulsing the laser. A torsion pendulum thrust stand has been constructed and calibrated. Many fuel materials and substrates have been tested. Best performance from a non-energetic fuel material was obtained with black polyvinyl chloride (PVC), which produced an average of 70 μN thrust and coupling coefficient (Cm) of 190 μN/W. A proprietary energetic material was also tested, in which the laser initiates a non-propagating detonation. This material produced 500 μN of thrust.
NASA Astrophysics Data System (ADS)
Neff, A. L.; Allain, J. P.; Morgan, T. W.
2017-10-01
In a burning fusion plasma, the materials on the walls of the plasma vessel will have a significant effect on the performance of the plasma. Any amount of high Z wall material that is eroded will contaminate and cool the plasma and may lead to a disruption. Additionally, if the material retains or reflects fuel it can affect the stability of the plasma. A high recycling wall that retains minimal fuel will allow better control of the fuel inventory, especially tritium, in the walls. In contrast, a low recycling wall leads to improved plasma performance by preventing instabilities in the plasma. We have observed that when 5% He is added to D ions during low flux (1017 m-2s-1) dual ion beam irradiation the amount of D retained in the Li film diminishes. This conclusion is based on the reduction of a XPS peak (at 533 eV) associated with D retention in Li films. To further investigate this phenomenon, we have continued the dual beam studies in IGNIS (Ion-Gas-Neutral Interactions with Surfaces) by varying the energy and concentration of He to D. Additionally, we exposed lithiated W to sequential D and He plasmas (1024 m-2s-1 flux) in Magnum PSI at DIFFER. With XPS, we analyzed the chemistry of the Li films and determined changes in retention. These results will be presented. Work supported by DOE contract DE-SC0010719.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
Plasma-enhanced mixing and flameholding in supersonic flow.
Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B
2015-08-13
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Roman, W. C.; Jaminet, J. F.
1972-01-01
Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
Plasma flame for mass purification of contaminated air with chemical and biological warfare agents
NASA Astrophysics Data System (ADS)
Uhm, Han S.; Shin, Dong H.; Hong, Yong C.
2006-09-01
An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.
2011-05-01
fuel oxygenate MBTE Adapted from Davis, 2007 4 ( 1 ) A multimedia environmental perspective built on a product life cycle framework is essential. (2...Picatinney Arsenal Nanotechnology Research Center: Radiofrequency (RF) Induction Plasma reactor (Tekna Plasma Systems) pilot plant Synthesis Challenges: ( 1 ...Genotoxicity in vivo and in vitro, secondary to ROS (?)23 BUILDING STRONG® CEA: Lessons Learned with fuel oxygenate MBTE Adapted from Davis, 2007 24 ( 1
Inertial fusion program and national laser users facility program
NASA Astrophysics Data System (ADS)
1995-01-01
This is the 1994 annual report for the University of Rochester, Laboratory for Laser Energetics. The report is presented as a series of research type reports. The titles emphasize the breadth of work carried out. They are: stability analysis of unsteady ablation fronts; characterization of laser-produced plasma density profiles using grid image refractometry; transport and sound waves in plasmas with light and heavy ions; three-halves-harmonic radiation from long-scale-length plasmas revisited; OMEGA upgrade status report; target imaging and backlighting diagnosis; effect of electron collisions on ion-acoustic waves and heat flow; particle-in-cell code simulations of the interaction of gaussian ultrashort laser pulses with targets of varying initial scale lengths; characterization of thick cryogenic fuel layers: compensation for the lens effect using convergent beam interferometry; compact, multijoule-output, Nd:Glass, large-aperture ring amplifier; atomic force microscopy observation of water-induced morphological changes in Y2O3 monolayer coatings; observation of longitudinal acceleration of electrons born in a high-intensity laser focus; spatial intensity nonuniformities of an OMEGA beam due to nonlinear beam propagation; calculated X-ray backlighting images of mixed imploded targets; evaluation of cosmic rays for use in the monitoring of the MEDUSA scintillator-photomultiplier diagnostic array; highly efficient second-harmonic generation of ultra-intense Nd:Glass laser pulses multiple cutoff wave numbers of the ablative Rayleigh-Taylor instability; ultrafast, all-silicon light modulator; angular dependence of the stimulated Brillouin scattering in homogeneous plasma; and femtosecond excited-state dynamics of a conjugated ladder polymer.
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions § 80.610...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions § 80.610...
Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.H. Kim; C.T. Lee; C.B. Lee
2013-10-01
Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less
Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells.
Show, Yoshiyuki; Ueno, Yutaro
2017-01-31
Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.
Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells
Show, Yoshiyuki; Ueno, Yutaro
2017-01-01
Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864
NASA Astrophysics Data System (ADS)
Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; Mao, H.; Ding, F.; Brezinsek, S.; Liang, Y.; Ding, H.; Luo, G.; Linsmeier, C.; EAST Team
2017-12-01
A laser based method combined with spectroscopy, such as laser-induced breakdown spectroscopy (LIBS) and laser-induced ablation spectroscopy (LIAS), is a promising technology for plasma-wall interaction studies. In this work, we report the development of in situ laser-based diagnostics (LIBS and LIAS) for the assessment of static and dynamic fuel retention on the first wall without removing the tiles between and during plasma discharges in the Experimental Advanced Superconducting Tokamak (EAST). The fuel retention on the first wall was measured after different wall conditioning methods and daily plasma discharges by in situ LIBS. The result indicates that the LIBS can be a useful tool to predict the wall condition in EAST. With the successful commissioning of a refined timing system for LIAS, an in situ approach to investigate fuel retention is proposed.
Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; ...
2017-09-25
A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awe, T. J.; Shelton, K. P.; Sefkow, A. B.
A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1977-01-01
Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.
Cavity temperature and flow characteristics in a gas-core test reactor
NASA Technical Reports Server (NTRS)
Putre, H. A.
1973-01-01
A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaita, Robert; Boyle, Dennis; Gray, Timothy
Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less
Experience on divertor fuel retention after two ITER-Like Wall campaigns
NASA Astrophysics Data System (ADS)
Heinola, K.; Widdowson, A.; Likonen, J.; Ahlgren, T.; Alves, E.; Ayres, C. F.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Guillemaut, C.; Jepu, I.; Krat, S.; Lahtinen, A.; Matthews, G. F.; Mayer, M.; Contributors, JET
2017-12-01
The JET ITER-Like Wall experiment, with its all-metal plasma-facing components, provides a unique environment for plasma and plasma-wall interaction studies. These studies are of great importance in understanding the underlying phenomena taking place during the operation of a future fusion reactor. Present work summarizes and reports the plasma fuel retention in the divertor resulting from the two first experimental campaigns with the ITER-Like Wall. The deposition pattern in the divertor after the second campaign shows same trend as was observed after the first campaign: highest deposition of 10-15 μm was found on the top part of the inner divertor. Due to the change in plasma magnetic configurations from the first to the second campaign, and the resulted strike point locations, an increase of deposition was observed on the base of the divertor. The deuterium retention was found to be affected by the hydrogen plasma experiments done at the end of second experimental campaign.
Stopping power in D6Li plasmas for target ignition studies
NASA Astrophysics Data System (ADS)
Cortez, Ross J.; Cassibry, Jason T.
2018-02-01
The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.
Haman, François; Peronnet, François; Kenny, Glen P; Doucet, Eric; Massicotte, Denis; Lavoie, Carole; Weber, Jean-Michel
2004-01-01
Carbohydrates (CHO) can play an important thermogenic role during shivering, but the effect of their availability on the use of other oxidative fuels is unclear. Using indirect calorimetry and tracer methods ([U-13C]glucose ingestion), we have determined the specific contributions of plasma glucose, muscle glycogen, proteins, and lipids to total heat production (Hprod) in men exposed to cold for 2-h (liquid-conditioned suit perfused with 10 degrees C water). Measurements were made after low-CHO diet and exercise (Lo) and high-CHO diet without exercise (Hi). The size of CHO reserves had no effect on Hprod but a major impact on fuel selection before and during shivering. In the cold, a complete shift from lipid oxidation for Lo (53, 28, and 19% Hprod for lipids, CHO, and proteins, respectively) to CHO-based metabolism for Hi (23, 65, and 12% Hprod for lipids, CHO, and proteins, respectively) was observed. Plasma glucose oxidation remains a minor fuel under all conditions (<13% Hprod), falling to 7% Hprod for Lo. Therefore, adjusting plasma glucose oxidation to compensate for changes in muscle glycogen oxidation is not a strategy used for maintaining heat production. Instead, proteins and lipids share responsibility for this compensation. We conclude that humans can show remarkable flexibility in oxidative fuel selection to ensure that heat production is not compromised during sustained cold exposure.
Fueling the Flames: Mammalian Programmed Necrosis in Inflammatory Diseases
Chan, Francis Ka-Ming
2012-01-01
Programmed necrosis or necroptosis is an inflammatory form of cell death driven by TNF-like death cytokines, toll-like receptors, and antigen receptors. Unlike necrosis induced by physical trauma, a dedicated pathway is involved in programmed necrosis. In particular, a kinase complex composed of the receptor interacting protein kinase 1 (RIPK1) and RIPK3 is a central step in necrotic cell death. Assembly and activation of this RIPK1–RIPK3 “necrosome” is critically controlled by protein ubiquitination, phosphorylation, and caspase-mediated cleavage events. The molecular signals cumulate in formation of intracellular vacuoles, organelle swelling, internal membrane leakage, and eventually plasma membrane rupture. These morphological changes can result in spillage of intracellular adjuvants to promote inflammation and further exacerbate tissue injury. Because of the inflammatory nature of necrosis, it is an attractive pathway for therapeutic intervention in acute inflammatory diseases. PMID:23125016
Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeKalb, E.L. and Edelson, M. C.
1987-08-01
Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlasmore » of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.« less
78 FR 45983 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Programs for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; withdrawal... withdrawing draft NUREG-2154, ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities,'' based... determine whether a submittal for a Corrective Action Program (CAP), voluntarily submitted by fuel cycle...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... standard Jet A aviation fuel in most aircraft could significantly reduce fuel transport distances and... Mobility Fuel Purchasing Programs AGENCY: Defense Logistics Agency Energy (DLA Energy), DoD. ACTION... fuel purchase programs. DLA Energy currently operates two programs for mobility fuel contracts, Direct...
NASA Technical Reports Server (NTRS)
Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.
2018-01-01
Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.
López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A
2015-08-01
Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach. © The Author(s) 2015.
Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels
NASA Astrophysics Data System (ADS)
Takali, S.; Fabry, F.; Rohani, V.; Cauneau, F.; Fulcheri, L.
2014-11-01
Most thermal power plants need an auxiliary power source to (i) heat-up the boiler during start up phases before reaching autonomy power and (ii) sustain combustion at low load. This supplementary power is commonly provided with high LHV fossil fuel burners which increases operational expenses and disables the use of anti-pollutant filters. A Promising alternative is under development and consists in high temperature plasma assisted AC electro-burners. In this paper, the development of a new 100 kW three phase plasma torch with graphite electrodes is detailed. This plasma torch is working at atmospheric pressure with air as plasma gas and has three-phase power supply and working at 680 Hz. The nominal air flow rate is 60 Nm3.h-1 and the outlet gas temperature is above 2 500 K. At the beginning, graphite electrodes erosion by oxidizing medium was studied and controlling parameters were identified through parametric set of experiments and tuned for optimal electrodes life time. Then, a new 3-phase plasma torch design was modelled and simulated on ANSYS platform. The characteristics of the plasma flow and its interaction with the environing elements of the torch are detailed hereafter.
The study of the plasma jets of lead and silver simulating spent nuclear fuel components
NASA Astrophysics Data System (ADS)
Antonov, N. N.; Gavrikov, A. V.; Smirnov, V. P.; Liziakin, G. D.; Usmanov, R. A.; Vorona, N. A.; Timirkhanov, R. A.
2018-01-01
One of the tasks that must be solved to develop a spent nuclear fuel (SNF) plasma separation method is a creation of plasma source of substances simulating SNF components. Plasma of the diffuse arc discharge in a magnetic field with an incandescent cathode was considered in this paper, as such source. The discharge was initiated in a model substances vapor (lead and silver). Evaporation was carried out by crucible induction heating. Current- voltage characteristics of the discharge were obtained. Spectral analysis of the plasma jets radiation and double probe characteristics measurements in the area behind the anode were carried out. The minimum potential difference between the anode and cathode reached a value of about 7 V at current of about 1 A. When the potential difference in the discharge gap was close to 30 V (4.5 A) and 10 V (5.2 A) electron temperature in the plasma jet was 5-7 eV and 1-3 eV, respectively. Plasma density in jets took the value from 1011 cm-3 to 1012 cm-3. The obtained results indicate the possibility of using this type of discharge for the SNF plasma separation method approbation.
Vacuum plasma spray applications on liquid fuel rocket engines
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.
1992-01-01
The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.
α Heating in a Stagnated Z-pinch
NASA Astrophysics Data System (ADS)
Appelbe, Brian; Chittenden, Jeremy
2009-01-01
A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear α particles which are confined by the strong magnetic field of the Z-pinch.
3D Field Modifications of Core Neutral Fueling In the EMC3-EIRENE Code
NASA Astrophysics Data System (ADS)
Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Feng, Yuehe; Kaye, Stanley; Maingi, Rajesh; Soukhanovskii, Vsevolod
2017-10-01
The application of 3-D magnetic field perturbations to the edge plasmas of tokamaks has long been seen as a viable way to control damaging Edge Localized Modes (ELMs). These 3-D fields have also been correlated with a density drop in the core plasmas of tokamaks; known as `pump-out'. While pump-out is typically explained as the result of enhanced outward transport, degraded fueling of the core may also play a role. By altering the temperature and density of the plasma edge, 3-D fields will impact the distribution function of high energy neutral particles produced through ion-neutral energy exchange processes. Starved of the deeply penetrating neutral source, the core density will decrease. Numerical studies carried out with the EMC3-EIRENE code on National Spherical Tokamak eXperiment-Upgrade (NSTX-U) equilibria show that this change to core fueling by high energy neutrals may be a significant contributor to the overall particle balance in the NSTX-U tokamak: deep core (Ψ < 0.5) fueling from neutral ionization sources is decreased by 40-60% with RMPs. This work was funded by the US Department of Energy under Grant DE-SC0012315.
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
Wang, Li; Yi, Yanhui; Wu, Chunfei; Guo, Hongchen; Tu, Xin
2017-10-23
The conversion of CO 2 with CH 4 into liquid fuels and chemicals in a single-step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one-step process from CO 2 and CH 4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50-60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH 4 and CO 2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
1982-09-08
low thrust, long duration power device, the plasma engine 6 has certain distinct advantages. For a chemical fuel rocket engine , a thrust of M.’)1...PLASMA ENGINES.CU) UNCLASSZICD FTO-ZIftS)T-0636-98 NL * UUUUU UUMile ~ FTD-ID(RS)T-0636-82 FOREIGN TECHNOLOGY DIVISION q 14 PLASMA ENGINES bv Sung...8 September 1982 MICROFICHE NR: FTD-82-C-001198 PLASMA ENGINES By: Sung Yuyang English pages: 7 Source: Hangkong Zhishi, March 1982, pp. 12-13 Country
Thrush, A B; Antoun, G; Nikpay, M; Patten, D A; DeVlugt, C; Mauger, J-F; Beauchamp, B L; Lau, P; Reshke, R; Doucet, É; Imbeault, P; Boushel, R; Gibbings, D; Hager, J; Valsesia, A; Slack, R S; Al-Dirbashi, O Y; Dent, R; McPherson, R; Harper, M-E
2018-01-01
Background/Objectives: Inter-individual variability in weight loss during obesity treatment is complex and poorly understood. Here we use whole body and tissue approaches to investigate fuel oxidation characteristics in skeletal muscle fibers, cells and distinct circulating protein biomarkers before and after a high fat meal (HFM) challenge in those who lost the most (obese diet-sensitive; ODS) vs the least (obese diet-resistant; ODR) amount of weight in a highly controlled weight management program. Subjects/Methods: In 20 weight stable-matched ODS and ODR women who previously completed a standardized clinical weight loss program, we analyzed whole-body energetics and metabolic parameters in vastus lateralis biopsies and plasma samples that were obtained in the fasting state and 6 h after a defined HFM, equivalent to 35% of total daily energy requirements. Results: At baseline (fasting) and post-HFM, muscle fatty acid oxidation and maximal oxidative phosphorylation were significantly greater in ODS vs ODR, as was reactive oxygen species emission. Plasma proteomics of 1130 proteins pre and 1, 2, 5 and 6 h after the HFM demonstrated distinct group and interaction differences. Group differences identified S-formyl glutathione hydratase, heat shock 70 kDA protein 1A/B (HSP72), and eukaryotic translation initiation factor 5 (eIF5) to be higher in ODS vs ODR. Group-time differences included aryl hydrocarbon interacting protein (AIP), peptidylpropyl isomerase D (PPID) and tyrosine protein-kinase Fgr, which increased in ODR vs ODS over time. HSP72 levels correlated with muscle oxidation and citrate synthase activity. These proteins circulate in exosomes; exosomes isolated from ODS plasma increased resting, leak and maximal respiration rates in C2C12 myotubes by 58%, 21% and 51%, respectively, vs those isolated from ODR plasma. Conclusions: Findings demonstrate distinct muscle metabolism and plasma proteomics in fasting and post-HFM states corresponding in diet-sensitive vs diet-resistant obese women. PMID:29151592
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2005-0161; FRL-9169-9] RIN 2060-AQ31 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY...: June 24, 2010. Lisa P. Jackson, Administrator. PART 80--REGULATION OF FUELS AND FUEL ADDITIVES 0...
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion.
Ren, G; Yan, J; Liu, J; Lan, K; Chen, Y H; Huo, W Y; Fan, Z; Zhang, X; Zheng, J; Chen, Z; Jiang, W; Chen, L; Tang, Q; Yuan, Z; Wang, F; Jiang, S; Ding, Y; Zhang, W; He, X T
2017-04-21
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15} W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion
NASA Astrophysics Data System (ADS)
Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.
2017-04-01
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
Importance of helium-3 for the future
NASA Technical Reports Server (NTRS)
Kulcinski, Gerald L.
1989-01-01
Relevant plasma physics principles of thermonuclear research; the state of plasma physics as it pertains to the D-He(3) cycle; the technological benefits of the D-He(3) fuel cycle; the availability of He(3); and its location, methods of extraction and cost are discussed. A perspective on the rate of progress toward the goal of heating the confined plasma fuel to sufficiently high temperatures at high enough densities and for long enough times to cause substantial fusion of the atoms to take place is given in graphical form. The main technological advantages resulting from the D-He(3) fuel cycle, when compared with the DT cycle, are as follows: (1) increased electrical conversion efficiency; (2) reduced radiation damage to reactors; (3) reduced radioactive waste; (4) an increased level of safety in case of an accident; (5) the lower cost of electricity; and (6) the shorter time to commercialization. An account is given of mining He(3) on the Moon.
Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, H.S.
1979-03-01
This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCImore » far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2.« less
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.
2018-05-01
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. Studies of such effects are left for future work.
NASA Astrophysics Data System (ADS)
Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.
2017-07-01
Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
NASA Astrophysics Data System (ADS)
Benoved, Nir; Kesler, O.
Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.
Physics of neutral gas jet interaction with magnetized plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhanhui; Xu, Xueqiao; Diamond, Patrick; Xu, Min; Duan, Xuru; Yu, Deliang; Zhou, Yulin; Shi, Yongfu; Nie, Lin; Ke, Rui; Zhong, Wulv; Shi, Zhongbing; Sun, Aiping; Li, Jiquan; Yao, Lianghua
2017-10-01
It is critical to understand the physics and transport dynamics during the plasma fuelling process. Plasma and neutral interactions involve the transfer of charge, momentum, and energy in ion-neutral and electron-neutral collisions. Thus, a seven field fluid model of neutral gas jet injection (NGJI) is obtained, which couples plasma density, heat, and momentum transport equations together with neutrals density and momentum transport equations of both molecules and atoms. Transport dynamics of plasma and neutrals are simulated for a complete range of discharge times, including steady state before NGJI, transport during NGJI, and relaxation after NGJI. With the trans-neut module of BOUT + + code, the simulations of mean profile variations and fueling depths during fueling have been benchmarked well with other codes and also validated with HL-2A experiment results. Both fast component (FC) and slow component (SC) of NGJI are simulated and validated with the HL-2A experimental measurements. The plasma blocking effect on the FC penetration is also simulated and validated well with the experiment. This work is supported by the National Natural Science Foundation of China under Grant No. 11575055.
Liquid-Phase Electrical Discharges: Fundamental Mechanisms and Applications
NASA Astrophysics Data System (ADS)
Franclemont, Joshua
The increased demand in alternative energy in recent decades has generated significant interest in cleaner fuel sources including hydrogen and syngas (hydrogen and carbon monoxide). Hydrogen and syngas are both primarily produced through the steam reforming of hydrocarbons, specifically natural gas. Although other processes are known, the cheapest source of these fuels is currently through the heating of natural gas in the presence of steam and a catalyst. However, due to the emissions associated with the steam reforming of natural gas and the lack of low cost, efficient, and reliable onboard hydrogen storage technologies for fuel cell powered vehicles, attention has been focused on plasma-assisted reforming of hydrocarbons. Plasma processes can be implemented onboard and are able to directly reform liquid hydrocarbons and alcohols without external heating or catalysts. In addition to hydrogen and syngas, the plasma-assisted reforming of hydrocarbons and alcohols offers other desirable products such as C2 gases (ethane, ethylene, and acetylene), methanol and ethanol. The primary goal of this study is to investigate the fundamental chemical reactions occurring during plasma-assisted reforming of liquid hydrocarbons and alcohols using streamer-like pulsed electrical discharges. Due to the relatively unexplored field of chemical reactions in liquid plasmas, the focus of this study is on elucidating chemical pathways responsible for the formation of hydrogen, syngas, and other products during the direct reforming of liquid methanol, glycerol, and pentane as model species.
NASA Astrophysics Data System (ADS)
Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.
2013-03-01
A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.
Issues and Potential Program on Denatured Fuel Utilization.
1978-12-01
HTGR fuel develop - ment program ; 4. coated particles of (U,Th)02 have been extensively tested as potential HTGR fuels . A detailed summary of the...current scrap and waste treatment requirements. dBase case for all HTGR (Prismatic Fuel Element) cases based on data in "Summary Program Plan...Alternate Program for HTGR Fuel Recycle," April 11, 1975, Draft. 19 a --- AC8NCi09 The principal factors that result in a nominally-higher cost for
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
Chen, C Y; Yu, D L; Feng, B B; Yao, L H; Song, X M; Zang, L G; Gao, X Y; Yang, Q W; Duan, X R
2016-09-01
On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.
This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.
Hellesen, C; Skiba, M; Dzysiuk, N; Weiszflog, M; Hjalmarsson, A; Ericsson, G; Conroy, S; Andersson-Sundén, E; Eriksson, J; Binda, F
2014-11-01
The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.
NASA Astrophysics Data System (ADS)
Hellesen, C.; Skiba, M.; Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.
2014-11-01
The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.; Caves, Robert M.
1964-01-01
An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.
Semi-analytic model of plasma-jet-driven magneto-inertial fusion
Langendorf, Samuel J.; Hsu, Scott C.
2017-03-01
A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less
NASA Technical Reports Server (NTRS)
Hofer, O. C.
1982-01-01
Closed cycle, CW waveform and short wavelength laser devices are desirable characteristics for laser propulsion. The choice of specific wavelengths for hydrogen fuel affects the operational conditions under which a laser supported absorption (LSA) wave is initiated and maintained. The mechanisms of initiating and maintaining LSA waves depend on the wavelength of the laser. Consequently, the shape and size of the hot core plasma is also dependent on wavelength and pressure. Detailed modeling of these mechanisms must be performed before their actual significance can be ascertained. Inverse bremsstrahlung absorption mechanism is the dominant mechanism for coupling energy into the plasma, but other mechanisms which are wavelength dependent can dictate the LSA wave plasma initiation and maintenance conditions. Multiphoton mechanisms become important at visible or shorter wavelengths. These are important mechanisms in creating the initial H2 gas breakdown and supplying the precursor electrons required to sustain the plasma.
Low NO/x/ heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1980-01-01
The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Low NO(x) heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1979-01-01
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
International nuclear fuel cycle fact book. Revision 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
1986-01-01
The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.
Vacuum application of thermal barrier plasma coatings
NASA Technical Reports Server (NTRS)
Holmes, R. R.; Mckechnie, T. N.
1988-01-01
Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil (as... associated with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil (as... associated with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
1992-02-01
Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.
1986 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1986-10-01
Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)
Relativistic laser channeling in plasmas for fast ignition
NASA Astrophysics Data System (ADS)
Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.
2007-12-01
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel sold, offered for sale...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel produced or imported from...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel sold, offered for sale...
Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems
2010-04-30
microporous liquid which has a very large ratio of the plasma-liquid contact surface to the plasma volume. As is known the ultrasonic (US) cavitation is a very...effective method for creating micropores in liquid [17]. Therefore, the DGCLW with additional US pumping is also very interesting for research and...electrodes. Another PLS reactor was prepared with the DGCLW working with the air flow in the liquid under the induced microporous
Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio
2018-03-01
The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; van der Meiden, H. J.; Mayoral, M.-L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; de Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar, Ž.; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch.; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, S.; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W. M.; Voitkans, A.; von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; PFC contributors, WP
2017-11-01
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.
Implementation of alternative bio-based fuels in aviation: The Clean Airports Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shauck, M.E.; Zanin, M.G.
1997-12-31
The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% ofmore » the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... infrastructure, nonroad equipment, and emerging technologies related to those electric drive vehicles. As... for investment in an emerging technology relating to any'' of the enumerated electric drive vehicles... Fuel Transportation Program (AFTP or Program), by including EISA-specified electric drive vehicles and...
Near-zero emissions combustor system for syngas and biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongho, Kim; Rosocha, Louis
2010-01-01
A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. Inmore » this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.« less
Physics and potentials of fissioning plasmas for space power and propulsion
NASA Technical Reports Server (NTRS)
Thom, K.; Schwenk, F. C.; Schneider, R. T.
1976-01-01
Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.
Wang, Li; Yi, Yanhui; Wu, Chunfei; Guo, Hongchen
2017-01-01
Abstract The conversion of CO2 with CH4 into liquid fuels and chemicals in a single‐step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one‐step process from CO2 and CH4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50–60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH4 and CO2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process. PMID:28842938
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...
McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.
1985-01-15
An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.
Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacout, A. M.; Billone, M. C.
2016-09-16
The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less
UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.
2018-02-01
The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havrilla, George Joseph; Gonzalez, Jhanis
2015-06-10
The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less
NASA Astrophysics Data System (ADS)
Pajares, Andres; Schuster, Eugenio
2016-10-01
Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.
NASA Astrophysics Data System (ADS)
Ennajdaoui, Aboubakr; Roualdes, Stéphanie; Brault, Pascal; Durand, Jean
A plasma polymerization process using a continuous glow discharge has been implemented for preparing proton conducting membranes from trifluoromethane sulfonic acid and styrene. The chemical and physical structure of plasma membranes has been investigated using FTIR and SEM. The films are homogeneous with a good adhesion on commercial gas diffusion layer (E-Tek ®). Their deposition rate can be increased with increasing flow rate and input power. The thermogravimetric analysis under air of plasma polymers has showed a thermal stability up to 140 °C. Compared to the pulsed glow discharge studied in a previous paper, the continuous glow discharge has enabled to enhance the proton conductivity of membranes by a factor 3 (up to 1.7 mS cm -1). Moreover, the low methanol permeability (methanol diffusion coefficient down to 5 × 10 -13 m 2 s -1) of membranes has been confirmed by this study. In an industrial context, a reactor prototype has been developed to manufacture by plasma processes all active layers of fuel cell cores to be integrated in original compact PEMFC or DMFC.
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
10 CFR 490.504 - Use of alternative fueled vehicle credits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... Prepare an Environmental Assessment Regarding DLA Energy's Mobility Fuel Purchasing Programs AGENCY... Assessment Regarding DLA Energy's Mobility Fuel Purchasing Programs. SUMMARY: The Defense Logistics Agency is... deployment of fuels and other energy sources. DLA Energy's action, to purchase mobility fuels for the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steward, Darlene; Sears, Ted
The Energy Policy Act (EPAct) of 1992, with later amendments, was enacted with the goal of reducing U.S. petroleum consumption by building a core market for alternative fuels and vehicles. The U.S. Department of Energy manages three federal programs related to EPAct; the Sustainable Federal Fleets Program, the State and Alternative Fuel Provider Program, and Clean Cities. Federal agencies and State and Alternative Fuel Provider Fleets are required to submit annual reports that document their compliance with the legislation. Clean Cities is a voluntary program aimed at building partnerships and providing technical expertise to encourage cities to reduce petroleum usemore » in transportation. This study reviews the evolution of these three programs in relation to alternative fuel and vehicle markets and private sector adoption of alternative fueled vehicles to assess the impact of the programs on reduction in petroleum use and greenhouse gas emissions both within the regulated fleets and through development of alternative fuel and vehicle markets. The increased availability of alternative fuels and use of alternative fuels in regulated fleets is expected to improve cities' ability to respond to and quickly recover from both local disasters and short- and long-term regional or national fuel supply interruptions. Our analysis examines the benefits as well as potential drawbacks of alternative fuel use for the resiliency of U.S. cities.« less
NASA Astrophysics Data System (ADS)
Isnard, H.; Aubert, M.; Blanchet, P.; Brennetot, R.; Chartier, F.; Geertsen, V.; Manuguerra, F.
2006-02-01
Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr + ions are converted into ZrO +, whereas Sr + ions are not reactive. A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.
Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion
2012-09-21
including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeer, P.; Durbin, E.
1982-01-01
The 20 invited papers presented at the world conference on alternative fuel entitled 'Methane - fuel for the future' form the basis of this book. Papers discuss: the availability of alternative fuels (natural gas, biomass conversion to methane, methane from coal conversion); technological adaptions for alternative fuels (e.g. natural gas fueled engines, methane and diesel engines); commercial experience with alternative fuel programs. (e.g. retailing of methane); and some national programs for alternative fuels. One paper has been abstracted separately.
76 FR 18066 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program CFR Correction In Title 40 of the Code of Federal Regulations, Parts 72 to 80, revised as of July 1, 2010, on page 1160, in Sec. 80.1466, in paragraph (h)(1), the equation is...
Annual Report to Congress: Federal Alternative Motor Fuels Programs (4th : 1995)
DOT National Transportation Integrated Search
1995-07-01
This annual report to Congress presents the current status of the alternative : fuel programs being conducted across the country in accordance to the : Alternative Motor Fuels Act of 1988. These programs, which represent the most : comprehensive data...
Separation of mixtures of chemical elements in plasma
NASA Astrophysics Data System (ADS)
Dolgolenko, D. A.; Muromkin, Yu A.
2017-10-01
This paper reviews proposals on the plasma processing of radioactive waste (RW) and spent nuclear fuel (SNF). The chemical processing of SNF based on the extraction of its components from water solutions is rather expensive and produces new waste. The paper considers experimental research on plasma separation of mixtures of chemical elements and isotopes, whose results can help evaluate the plasma methods of RW and SNF reprocessing. The analysis identifies the difference between ionization levels of RW and SNF components at their transition to the plasma phase as a reason why all plasma methods are difficult to apply.
Production and study of high-beta plasma confined by a superconducting dipole magneta)
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A.; Mauel, M. E.; Ortiz, E.; Boxer, A. C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.
2006-05-01
The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4GHz, and a population of energetic electrons, with mean energies above 50keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.
Status of commercial fuel cell powerplant system development
NASA Technical Reports Server (NTRS)
Warshay, Marvin
1987-01-01
The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Fear, J. S.
1982-01-01
In connection with increases in the cost of fuels and the reduced availability of high quality petroleum crude, a modification of fuel specifications has been considered to allow acceptance of poorer quality fuels. To obtain the information upon which a selection of appropriate fuels for aircraft can be based, the Broad Specification Fuels Combustion Technology program was formulated by NASA. A description is presented of program-related investigations conducted by an American aerospace company. The specific objective of Phase I of this program has been to evaluate the impact of the use of broadened properties fuels on combustor design through comprehensive combustor rig testing. Attention is given to combustor concepts, experimental evaluation, results obtained with single stage combustors, the stage combustor concept, and the capability of a variable geometry combustor.
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera
2013-06-01
Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.
NASA Astrophysics Data System (ADS)
Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.
2013-09-01
The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.
Lee, Kelly A; Tell, Lisa A; Mohr, F Charles
2012-12-01
Adult mallard ducks (Anas platyrhynchos) were orally dosed with bunker C fuel oil for 5 days, and five different inflammatory markers (haptoglobin, mannan-binding lectin, ceruloplasmin, unsaturated iron-binding capacity, and plasma iron) were measured in blood plasma prior to and 8, 24, 48, and 72 hr following exposure. In order to contrast the response to fuel oil with that of a systemic inflammatory response, an additional five ducks were injected intramuscularly with bacterial lipopolysaccharide (LPS). Oil-treated birds had an inflammatory marker profile that was significantly different from control and LPS-treated birds, showing decreases in mannan-binding lectin-dependent hemolysis and unsaturated iron-binding capacity, but no changes in any of the other inflammatory markers. Birds treated with oil also exhibited increased liver weights, decreased body and splenic weights, and decreased packed cell volume.
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
Fuels irradiation testing for the SP-100 program
NASA Technical Reports Server (NTRS)
Makenas, Bruce J.; Hales, Janell W.; Ward, Alva L.
1991-01-01
An SP-100 fuel pin irradiation testing program is well on the way to providing data for performance correlations and demonstrating the lifetime and safety of the fuel system of the compact lithium-cooled reactor. Key SP-100 fuel performance issues addressed are the need for low fuel swelling and low fission gas release to minimize cladding strain, and the need for barrier integrity to prevent fuel/cladding chemical interaction. This paper provides a description of the irradiation test program that addresses these key issues and summarizes recent results of posttest examinations including data obtained at 6 atom percent goal burnup.
Fuel cell energy service Enron`s commerical program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, M.W.
1996-04-01
Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.
Thermochemical Processes in Plasma Aerodynamics
2006-06-01
hydrocarbon fuel possesses not only much lower induction time but also more effective potential in thermodynamic combustion cycle (more complete exergy ... Internal Plasma- Assisted Combustion, AIAA Paper 2004-1014. Proc. 42 "d AIAA Aerospace Sciences Meeting & Exhibit, 4-8 January 2004, Reno, NV, P. 10 2...Vystavkin N, Sukovatkin N, Serov Yu, Savischenko N, Yuriev A., External and Internal Plasma- Assisted Combustion AIAA Paper 2003-6240. Proc. 41st
Systematic analysis of advanced fusion fuel in inertial fusion energy
NASA Astrophysics Data System (ADS)
Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.
1997-04-01
Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.
Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Leal, David A.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar; Leal-Quiros, E.
2006-12-01
Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.
Status of shuttle fuel cell technology program.
NASA Technical Reports Server (NTRS)
Rice, W. E.; Bell, D., III
1972-01-01
The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.
Tier 3 Certification Fuel Impacts Test Program
The recent Tier 3 regulations for light duty vehicles introduced a new certification fuel designed to be more characteristic of current market fuels. A laboratory test program was conducted to measure differences in CO2 and fuel economy between the current and future certificatio...
Renewable Fuel Standard Program (RFS1): Final Rule Additional Resources
The final rule of fuels and fuel additives: renewable fuel standard program is published on May 1, 2007 and is effective on September 1, 2007. You will find the links to this final rule and technical amendments supporting this rule.
NASA Astrophysics Data System (ADS)
Lin, Yung-Hsu
The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.
Observation of the hot electron interchange instability in a high beta dipolar confined plasma
NASA Astrophysics Data System (ADS)
Ortiz, Eugenio Enrique
In this thesis the first study of the high beta, hot electron interchange (HEI) instability in a laboratory, dipolar confined plasma is presented. The Levitated Dipole Experiment (LDX) is a new research facility that explores the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. In initial experiments long-pulse, quasi-steady state microwave discharges lasting more than 10 sec have been produced with equilibria having peak beta values of 20%. Creation of high-pressure, high beta plasma is possible only when intense HEI instabilities are stabilized by sufficiently high background plasma density. LDX plasma exist within one of three regimes characterized by its response to heating and fueling. The observed HEI instability depends on the regime and can take one of three forms: as quasiperiodic bursts during the low density, low beta plasma regime, as local high beta relaxation events in the high beta plasma regime, and as global, intense energy relaxation bursts, both in the high beta and afterglow plasma regimes. Measurements of the HEI instability are made using high-impedance, floating potential probes and fast Mirnov coils. Analysis of these signals reveals the extent of the transport during high beta plasmas. During intense high beta HEI instabilities, fluctuations at the edge significantly exceed the magnitude of the equilibrium field generated by the high beta electrons and energetic electron confinement ends in under 100 musec. For heated plasmas, one of the consequences of the observed high beta transport is the presence of hysteresis in the neutral gas fueling required to stabilize and maintain the high beta plasma. Finally, a nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI instability has been adapted for LDX and compared to experimental observations.
Production and Study of High-Beta Plasma Confined by a Superconducting Dipole Magnet
NASA Astrophysics Data System (ADS)
Garnier, Darren
2005-10-01
The Levitated Dipole Experiment (LDX)http://psfcwww2.psfc.mit.edu/ldx/ is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, MHD stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally-peaked plasma pressure that exceeds the local magnetic pressure (β> 1), and the absence of magnetic shear allows particle and energy confinement to decouple. In this presentation, the first experiments using the LDX facility are reported. Long-pulse, quasi-steady state microwave discharges lasting up to 12 seconds have been produced that are consistent with equilibria having peak beta values of 10%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports and later the coil will be magnetically levitated. The plasma was created by multi- frequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominated the plasma pressure. Creation of high-pressure, high-beta plasma is only possible when intense hot electron interchange instabilities are stabilized sufficiently by a high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma-fueling rate and confinement times are sufficiently long. External shaping coils are seen to modify the outer plasma boundary and affect the transition.
Development of helium electron cyclotron wall conditioning on TCV
NASA Astrophysics Data System (ADS)
Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team
2018-02-01
JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T = 1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.
Plasmolysis for efficient CO2 -to-fuel conversion
NASA Astrophysics Data System (ADS)
van Rooij, Gerard
2015-09-01
The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.
40 CFR 80.1453 - What are the product transfer document (PTD) requirements for the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., other than ethanol, that is not registered as motor vehicle fuel under 40 CFR part 79, the PTD which is... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel... each occasion when any party transfers ownership of renewable fuels or separated RINs subject to this...
A burner for plasma-coal starting of a boiler
NASA Astrophysics Data System (ADS)
Peregudov, V. S.
2008-04-01
Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Taylor, C. H.; Moore, J. S.
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
Alternative Fuel Vehicle (AFV) Revolving Loan Program The Mississippi Alternative Fuel School Bus and Municipal Motor Vehicle Revolving Loan Program provides zero-interest loans for public school districts and municipalities to cover the incremental cost to purchase alternative fuel school buses and
National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.
DOT National Transportation Integrated Search
2011-10-01
This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...
Fuel Cell Research and Development for Future NASA Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa
2006-01-01
NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.
77 FR 27277 - FTA Supplemental Fiscal Year 2012 Apportionments, Allocations, and Program Information
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... allocates Section 5309 Bus and Bus Facilities funds to bus testing and the Fuel Cell program. Tables... Fuel Cell program. FTA will issue a supplemental notice at a later date if additional contract... allocated CA, GA, MA E2012-BUSP-018 Fuel Cell Bus Program..... $13,500,000 PA E2012-BUSP-019 Bus Testing 3...
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
Alternate-fueled transport aircraft possibilities
NASA Technical Reports Server (NTRS)
Aiken, W. S.
1977-01-01
The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
METHOD OF INITIATING AND SUSTAINING AN ENERGETIC PLASMA FOR NEUTRON PRODUCTION
Bell, P.R.; Mackin, R.J. Jr.; Simon, A.
1961-08-22
A method for producing an energetic plasma for neutron production and for faeling this plasma once it is formed is described. The plasma is initially fonmed as set forth in U. S. Patent No. 2,969,308. After the plasma is formed, cold neutral particles with an energy of at least 1 Kev are injected in a radial directinn and transverse to the axis of the device. These cold particles are substituted for the molecular ion injection and are used for fueling the plasma device on a continuous regulated basis in order to maintain a reaction temperature of about 60 Kev for producing neutrons. (AE C)
Study of Plasma Behavior during ECRH Injection in the GAMMA 10 SMBI Experiments
NASA Astrophysics Data System (ADS)
Maidul Islam, Md.; Nakashima, Yousuke; Kobayashi, Shinji; Nishino, Nobuhiro; Ichimura, Kazuya; Iijima, Takaaki; Shahinul Islam, Md.; Yokodo, Takayuki; Lee, Guanyi; Yoshimoto, Tsubasa; Yamashita, Sotaro; Yoshikawa, Masayuki; Kohagura, Junko; Hirata, Mafumi; Minami, Ryutaro; Kariya, Tsuyoshi; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Imai, Tsuyoshi
2018-01-01
Establishment of fueling system is one of the critical issues for the future fusion reactors. Fueling experiment supersonic molecular beam injection (SMBI) have been carried out in the central-cell of GAMMA 10. In GAMMA 10, electron cyclotron resonance heating (ECRH) is used at plug/barrier-cells for the formation of the axial confining potential. Recently, ECRH was applied during SMBI to plug the loss particles and increased the plasma density in the central-cell compared to without ECRH. This result suggests that the particles are confined during SMBI due to the injection of ECRH at plug/barrier-cells in GAMMA 10.
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
Cryogenic pellet production developments for long-pulse plasma operation
NASA Astrophysics Data System (ADS)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.
2014-01-01
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.
Antimatter Driven P-B11 Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Kammash, Terry; Martin, James; Godfroy, Thomas
2002-01-01
One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.
Cryogenic pellet production developments for long-pulse plasma operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at amore » rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.« less
NASA Astrophysics Data System (ADS)
Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James
2017-12-01
A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.
USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY
The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...
Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in
Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program in Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E -mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in Rochester, New York
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
DOE Hydrogen & Fuel Cell Overview
2011-01-13
Overview of Combined Heat+Power PowerElectricity Natural Gas Heat + Cooling Natural Gas or Biogas ...Fuel Cell Technologies Program eere.energy.gov Source: US DOE 10/2010 Biogas Benefits: Preliminary Analysis Stationary fuel...with the national grid. Source: US DOE 1/2011 6 | Fuel Cell Technologies Program eere.energy.gov Biogas Resource Example
Contingent valuation of fuel hazard reduction treatments
John B. Loomis; Armando Gonzalez-Caban
2008-01-01
This chapter presents a stated preference technique for estimating the public benefits of reducing wildfires to residents of California, Florida, and Montana from two alternative fuel reduction programs: prescribed burning, and mechanical fuels reduction. The two fuel reduction programs under study are quite relevant to people living in California, Florida, and...
Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment
Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...
2017-07-05
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less
Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Majeski, R.; Schmitt, J. C.
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less
Fissioning uranium plasmas and nuclear-pumped lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Thom, K.
1975-01-01
Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.
Analysis of staged Z-pinch implosion trajectories from experiments on Zebra
NASA Astrophysics Data System (ADS)
Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.
2017-10-01
The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.A. Wigeland
Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and themore » resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.« less
Automotive fuel economy program
DOT National Transportation Integrated Search
2002-09-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet and the activities of the National Highway Traffic Safety Administration (NHTSA) during 2001. Included in this report is a section summariz...
Automotive fuel economy program
DOT National Transportation Integrated Search
2003-09-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet and the activities of the National Highway Traffic Safety Administration (NHTSA) during 2002. Included in this report is a section summariz...
Automotive fuel economy program
DOT National Transportation Integrated Search
2005-01-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet during 2004, and the activities of the National Highway Traffic Safety Administration (NHTSA) to date, including a section summarizing curr...
NASA Technical Reports Server (NTRS)
1975-01-01
The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.
2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
40 CFR 88.205-94 - California Pilot Test Program Credits Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Program to meet the clean-fuel vehicle sales requirements through the use of credits. Participation in... be generated by any of the following means: (i) Sale of qualifying clean-fuel vehicles earlier than... requirements of paragraph (g) of this section. (ii) Sale of a greater number of qualifying clean-fuel vehicles...
NASA Technical Reports Server (NTRS)
Delaney, C. L.
1984-01-01
The test and evaluation program on shale derived fuel being conducted by the Air Force is intended to accomplish the minimum amount of testing necessary to assure both the safe use of shale oil derived turbine fuels in operational USAF aircraft and its compatibility with USAF handling systems. This program, which was designed to take advantage of existing R&D testing programs, began in 1981. However, due to a problem in acquiring the necessary fuel, the testing program was suspended until July 1983 when an additional sample of shale derived fuel was received. Tentatively, the Air Force is planning to make three relatively minor revisions to the procurement specifications requirements for the production shale derived fuel. These are: (1) Aromatic Contest (min) - 9% (by volume); (2) Nitrogen (max - 20 ppm by weight); and (3) Antioxidants - 9.1 g/100 gal (U.S.)
NASA Technical Reports Server (NTRS)
Warshay, Marvin; Prokopius, Paul
1996-01-01
Though the fuel cell was invented in 1839, it was not until the early 1960's that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration's dual-use application policy.
Laser controlled flame stabilization
Early, James W.; Thomas, Matthew E.
2001-01-01
A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.
A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)
NASA Astrophysics Data System (ADS)
Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem
2015-11-01
Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.
Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.
Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.
Ion distribution in the hot spot of an inertial confinement fusion plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; Guo, Zehua; Berk, Herb
2012-10-01
Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2018-04-01
Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.
Automotive fuel economy program
DOT National Transportation Integrated Search
2004-11-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet during 2003, and the activities of the National Highway Traffic Safety Administration (NHTSA) to date. Included in this report is a section...
NASA Astrophysics Data System (ADS)
Stoneking, Matthew
2017-10-01
The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Program Description § 2903.6 Project types. OEPNU intends to award continuation grants to successful Biodiesel Fuel Education Program applicants. A continuation...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Program Description § 2903.6 Project types. OEPNU intends to award continuation grants to successful Biodiesel Fuel Education Program applicants. A continuation...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Program Description § 2903.6 Project types. OEPNU intends to award continuation grants to successful Biodiesel Fuel Education Program applicants. A continuation...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Program Description § 2903.6 Project types. OEPNU intends to award continuation grants to successful Biodiesel Fuel Education Program applicants. A continuation...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Program Description § 2903.6 Project types. OEPNU intends to award continuation grants to successful Biodiesel Fuel Education Program applicants. A continuation...
Carbide fuel pin and capsule design for irradiations at thermionic temperatures
NASA Technical Reports Server (NTRS)
Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.
1973-01-01
The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.
AGR-1 Compact 1-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul Andrew
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less
AGR-1 Compact 5-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul; Harp, Jason; Winston, Phil
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, will be publicly available only in hard copy. Publicly available docket materials are available either... materials, as provided in 40 CFR part 2. IV. Renewable Fuel Standard (RFS2) Program Amendments EPA is taking...
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... fuel vapor emissions which are five or less total grams per test as measured by the current Federal... control devices (canister, purge system, etc.) related to control of evaporative emissions, the fuel vapor...
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-04-01
A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.
NASA Astrophysics Data System (ADS)
Voronchev, V. T.; Kukulin, V. I.
2000-12-01
A brief survey of nuclear-physics aspects of the problems of controlled thermonuclear fusion is given. Attention is paid primarily to choosing and analyzing an optimal composition of a nuclear fuel, reliably extrapolating the cross sections for nuclear reactions to the region of low energies, and exploring gamma-ray methods (as a matter of fact, very promising methods indeed) for diagnostics of hot plasmas (three aspects that are often thought to be the most important ones). In particular, a comparative nuclear-physics analysis of hydrogen, DT, and DD thermonuclear fuels and of their alternatives in the form of D3He, D6Li, DT6Li, H6Li, H11B, and H9Be is performed. Their advantages and disadvantages are highlighted; a spin-polarized fuel is considered; and the current status of nuclear data on the processes of interest is analyzed. A procedure for determining cross sections for nuclear reactions in the deep-subbarrier region is discussed. By considering the example of low-energy D+6Li interactions, it is shown that, at ion temperatures below 100 keV, the inclusion of nuclear-structure factors leads to an additional enhancement of the rate parameters <σv> for the ( d, pt) and ( d, nτ) channels by 10-40%. The possibility of using nuclear reactions that lead to photon emission as a means for determining the ion temperature of a thermonuclear plasma is discussed.
The US Army Foreign Comparative Test fuel cell program
NASA Astrophysics Data System (ADS)
Bostic, Elizabeth; Sifer, Nicholas; Bolton, Christopher; Ritter, Uli; Dubois, Terry
The US Army RDECOM initiated a Foreign Comparative Test (FCT) Program to acquire lightweight, high-energy dense fuel cell systems from across the globe for evaluation as portable power sources in military applications. Five foreign companies, including NovArs, Smart Fuel Cell, Intelligent Energy, Ballard Power Systems, and Hydrogenics, Inc., were awarded competitive contracts under the RDECOM effort. This paper will report on the status of the program as well as the experimental results obtained from one of the units. The US Army has interests in evaluating and deploying a variety of fuel cell systems, where these systems show added value when compared to current power sources in use. For low-power applications, fuel cells utilizing high-energy dense fuels offer significant weight savings over current battery technologies. This helps reduce the load a solider must carry for longer missions. For high-power applications, the low operating signatures (acoustic and thermal) of fuel cell systems make them ideal power generators in stealth operations. Recent testing has been completed on the Smart Fuel Cell A25 system that was procured through the FCT program. The "A-25" is a direct methanol fuel cell hybrid and was evaluated as a potential candidate for soldier and sensor power applications.
NASA Astrophysics Data System (ADS)
Askari, Omid
This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma composition and thermodynamic properties. The method was applied to compute the thermodynamic properties of hydrogen/air and methane/air plasma mixtures for a wide range of temperatures (1,000-100,000 K), pressures (10-6-100 atm) and different equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function. A new differential-based multi-shell model was developed in conjunction with Schlieren photography to measure laminar burning speed and to study the flame instabilities for different alternative fuels such as syngas and GTL. Flame instabilities such as cracking and wrinkling were observed during flame propagation and discussed in terms of the hydrodynamic and thermo-diffusive effects. Laminar burning speeds were measured using pressure rise data during flame propagation and power law correlations were developed over a wide range of temperatures, pressures and equivalence ratios. As a part of this work, the effect of EGR addition and substitution of nitrogen with helium in air on flame morphology and laminar burning speed were extensively investigated. The effect of cell formation on flame surface area of syngas fuel in terms of a newly defined parameter called cellularity factor was also evaluated. In addition to that the experimental onset of auto-ignition and theoretical ignition delay times of premixed GTL/air mixture were determined at high pressures and low temperatures over a wide range of equivalence ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregson, Michael Warren; Mo, Tin; Sorenson, Ken Bryce
The authors provide a detailed overview of an on-going, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy-density device. The program participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research program. Sandia National Laboratoriesmore » has the lead role for conducting this research program; test program support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. The authors provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. They focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests, and briefly summarize similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods.« less
2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Timber markets and fuel treatments in the western US
Karen L. Abt; Jeffrey P. Prestemon
2006-01-01
We developed a model of interrelated timber markets in the U.S. West to assess the impacts of large-scale fuel reduction programs on these markets, and concomitant effects of the market on the fuel reduction programs. The linear programming spatial equilibrium model allows interstate and international trade with western Canada and the rest of the world, while...
2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.
General aviation energy-conservation research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1977-01-01
The major thrust of NASA's nonturbine general aviation engine programs is directed toward (1) reduced specific fuel consumption, (2) improved fuel tolerance; and (3) emission reduction. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose total fuel costs are as much as 30% lower than today's conventional engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.
Properties of Fuels Employed in a Gas Turbine Combustor Program.
1983-09-01
potence nateonale PROPERTIES OF FUELS EMPLOYED IN A GAS TURBINE COMBUSTOR PROGRAM by .J.R. Coleman and L.D. Gallop JAN 1O t84’ La.I DEFENCE ROSOARCH...ESTABLISHMENT OTTAWA T~INCAMNTE M4 1-05 - ottwa , National Dibense3 Detence nationale PROPERTIES OF FUELS EMPLOYED IN A GAS TURBINE COMBUSTOR PROGRAM by...made of the physical and chemical properties of sixteen fuels employed in an aircraft gas turbine combustor programme. Several of these are specification
Optical spectra of coal gasification products in the RF plasmatron
NASA Astrophysics Data System (ADS)
Fedorovich, S. D.; Burakov, I. A.; Dudolin, A. A.; Markov, A. A.; Khtoo Naing, Aung; Ulziy, Batsamboo; Kavyrshin, D. I.
2017-11-01
The use of solid fuel gasification process is relevant to the regions where there is no opportunity to use natural gas as the main fuel. On the territory of the Russian Federation such regions are largely the Urals, Siberia and the Far East. In order to reduce the harmful effects on the environment solid fuel with high sulfur content, ash content and moisture are subjected to gasification process. One of the major problems of this process is to produce syngas with a low calorific value. For conventional types of gasification (gasification), the value of this quantity ranges 8 - 10 MJ / m3. The use of plasma gasification increases the calorific value of 12 - 16 MJ / m3 which allows the most efficient use of the syngas. The reason for the increase of the value lies in the change of temperature in the reaction zone. A significant rise in temperature in the reaction zone leads to an increase in methane formation reactions constant value, which allows to obtain a final product with a large calorific value. The HFI-plasma torch coal temperature reaches 3000 ° C, and the temperature of coal gasification products can reach 8000 ° C. The aim is to develop methods for determining the composition of the plasma gasification products obtained optical spectra. The Kuznetsky coal used as the starting material. Received and decrypted gasification products optical spectra in a wavelength range from 220 to 1000 nm. Recommendations for the use of the developed method for determining the composition of the plasma gasification products. An analysis of the advantages of using plasma gasification as compared with conventional gasification and coal combustion.
Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2015-11-01
The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellesen, C.; Skiba, M., E-mail: mateusz.skiba@physics.uu.se; Dzysiuk, N.
2014-11-15
The fuel ion ratio n{sub t}/n{sub d} is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., n{sub t}/n{sub d} = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands thatmore » a DT spectrometer has to fulfill to be able to determine n{sub t}/n{sub d} with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.« less
NASA Astrophysics Data System (ADS)
Hanada, K.; Yoshida, N.; Honda, T.; Wang, Z.; Kuzmin, A.; Takagi, I.; Hirata, T.; Oya, Y.; Miyamoto, M.; Zushi, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Watanabe, O.; Onchi, T.; Kuroda, K.; Long, H.; Watanabe, H.; Tokunaga, K.; Higashijima, A.; Kawasaki, S.; Nagata, T.; Takase, Y.; Fukuyama, A.; Mitarai, O.
2017-12-01
Fully non-inductive plasma maintenance was achieved by a microwave of 8.2 GHz and 40 kW for more than 1 h 55 min with a well-controlled plasma-facing wall (PFW) temperature of 393 K, using a hot wall in the middle-sized spherical tokamak QUEST, until the discharge was finally terminated by the uncontrollability of the density. The PFW was composed of atmospheric plasma-sprayed tungsten and stainless steel. The hot wall plays an essential role in reducing the amount of wall-stored hydrogen and facilitates hydrogen recycling. The behaviour of fuel hydrogen in the PFW was investigated by monitoring the injection and evacuation of hydrogen into and from the plasma-producing vessel. A fuel particle balance equation based on the presence of a hydrogen transport barrier between the deposited layer and the substrate was applied to the long-duration discharges. It was found that the model could readily predict the observed behaviour in which a higher wall temperature likely gives rise to faster wall saturation.
Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas
NASA Astrophysics Data System (ADS)
Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; Boswell, M.; Fowler, M. M.; Grim, G.; Klein, A.; Rundberg, R. S.; Wilhelmy, J. B.; Wilson, D.; Cerjan, C.; Schneider, D.; Sepke, S. M.; Tonchev, A.; Yeamans, C.
2015-08-01
We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ( En> 15 MeV) component of the neutron spectrum was found to be about 10-4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ˜ 0.6) and electron degenerate (θFermi/θe˜ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.
Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas
Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; ...
2015-08-06
We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF (E n > 15 MeV) component of the neutron spectrum was found to be about 10 –4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ~more » 0.6) and electron degenerate (θ Fermi/θ e~ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. In conclusion, we find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.« less
NASA Technical Reports Server (NTRS)
Latham, Tom
1991-01-01
The nuclear light bulb engine is a closed cycle concept. The nuclear light bulb concept provides containment by keeping the nuclear fuel fluid mechanically suspended in a cylindrical geometry. Thermal heat passes through an internally cooled, fused-silica, transparent wall and heats hydrogen propellant. The seeded hydrogen propellant absorbs radiant energy and is expanded through a nozzle. Internal moderation was used in the configuration which resulted in a reduced critical density requirement. This result was supported by criticality experiments. A reference engine was designed that had seven cells and was sized to fit in what was then predicted to be the shuttle bay mass and volume limitations. There were studies done of nozzle throat cooling schemes to remove the radiant heat. Elements of the nuclear light bulb program included closed loop critical assembly tests done at Los Alamos with UF6 confined by argon buffer gas. It was shown that the fuel region could be seeded with constituents that would block UV radiation from the uranium plasma. A combination of calculations and experiments showed that internal moderation produced a critical mass reduction. Other aspects of the research are presented.
An experimental investigation of rubbing interaction in labyrinth seals at cryogenic temperature
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.
1985-01-01
An experimental program was carried out to address issues related to the observed cracking of the titanium knife edges on the labyrinth seals of the high pressure fuel pump (HPFP) in the Space Shuttle main engine (SSME). Thermal shock experiments were carried out using a jet specimen with geometry similar to the knife edge geometry. These tests demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates. Alternative materials were also experimentally evaluated. These tests provide information which can be used to design improved labyrinth seals for the HPFP of the SSME. In particular, plasma-sprayed aluminum-graphite was found to be significantly better than aluminum alloy seals used at present from the standpoint of rub performance. Ion nitriding of the titanium alloy knife edges was also found to improve rub performance compared with the untreated baseline knife edge material.
NASA Astrophysics Data System (ADS)
Combs, S. K.
1993-07-01
During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures (≂10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of ≂1-2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1-40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice. A few two-stage pneumatic systems (single-shot) have recently been installed on tokamak experiments. This article reviews the equipment and instruments that have been developed for pellet injection with emphasis on recent advances. Prospects for future development are addressed, as are possible applications of this technology to other areas of research.
Mobilizable RDF/d-RDF burning program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemann, K.; Campbell, J.
1982-03-01
The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would thenmore » be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.« less
NASA Astrophysics Data System (ADS)
Sio, H.
2017-10-01
During the last few years, an increasing number of experiments have shown that kinetic and multi-ion-fluid effects do impact the performance of an ICF implosion. Observations include: increasing yield degradation as the implosion becomes more kinetic; thermal decoupling between ion species; anomalous yield scaling for different fuel mixtures; ion diffusion; and fuel stratification. The common theme in these experiments is that the results are based on time-integrated nuclear observables that are affected by an accumulation of effects throughout the implosion, which complicate interpretation of the data. A natural extension of these studies is therefore to conduct time-resolved measurements of multiple nuclear-burn histories to explore the dynamics of kinetic/multi-ion effects in the fuel and their impact on the implosion performance. This was accomplished through simultaneous, high-precision measurements of the relative timing of the onset, bang time and duration of DD, D3He, DT and T3He burn from T3He (with trace D) or D3He gas-filled implosions using the new Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. As the different reactions have different temperature sensitivities, Ti(t) was determined from the data. Uniquely to the PXTD, several x-ray emission histories (in different energy bands) were also measured, from which a spatially averaged Te(t) was also determined. The inferred Ti(t) and Te(t) data have been used to experimentally explore ion-electron equilibration rates and the Coulomb Logarithm for various plasma conditions. Finally, the implementation and use of PXTD, which represents a significant advance at OMEGA, have laid the foundation for implementing a Te(t) measurement in support of the main cryogenic DT programs at OMEGA and the NIF. This work was supported in part by the US DOE, LLE, LLNL, and DOE NNSA SSGF.
Advanced ceramic coating development for industrial/utility gas turbines
NASA Technical Reports Server (NTRS)
Vogan, J. W.; Stetson, A. R.
1982-01-01
A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.
2013 Renewable Fuel Standards for Renewable Fuel Standard Program (RFS2) Final Rulemaking
EPA is establishing the volume requirements and associated percentage standards that apply under the RFS2 program in calendar year 2013 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests
DOT National Transportation Integrated Search
2017-12-31
The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...
2014 Renewable Fuel Standards under Renewable Fuel Standard Program: Notice of Proposed Rulemaking
EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS2 program in calendar year 2014 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
Gaseous fuel nuclear reactor research
NASA Technical Reports Server (NTRS)
Schwenk, F. C.; Thom, K.
1975-01-01
Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.
Fuel cell systems program plan, FY 1990
NASA Astrophysics Data System (ADS)
1989-10-01
A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.
2012-09-01
Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ... Ester ( FAME ) fuel creates both cold weather and water- based operational issues. The Fischer-Tropsch (FT) process produces liquid fuels from “syngas,” a
Nuclear system that burns its own wastes shows promise
NASA Technical Reports Server (NTRS)
Atchison, K.
1975-01-01
A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.
Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; ...
2017-06-14
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less
Proton exchange membrane fuel cell technology for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swathirajan, S.
1996-04-01
Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less
78 FR 23832 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... Fuels and Alternative Fueled Vehicles AGENCY: Federal Trade Commission (FTC or Commission). ACTION... Alternative Fuels and Alternative Fueled Vehicles'') to consolidate the FTC's alternative fueled vehicle (AFV...) established federal programs to encourage the development of alternative fuels and alternative fueled vehicles...
Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed
2016-08-31
The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
Kinetic Effects in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Kagan, Grigory
2014-10-01
Sharp background gradients, inevitably introduced during ICF implosion, are likely responsible for the discrepancy between the predictions of the standard single-fluid rad-hydro codes and the experimental observations. On the one hand, these gradients drive the inter-ion-species transport, so the fuel composition no longer remains constant, unlike what the single-fluid codes assume. On the other hand, once the background scale is comparable to the mean free path, a fluid description becomes invalid. This point takes on special significance in plasmas, where the particle's mean free path scales with the square of this particle's energy. The distribution function of energetic ions may therefore be far from Maxwellian, even if thermal ions are nearly equilibrated. Ironically, it is these energetic, or tail, ions that are supposed to fuse at the onset of ignition. A combination of studies has been conducted to clarify the role of such kinetic effects on ICF performance. First, transport formalism applicable to multi-component plasmas has been developed. In particular, a novel ``electro-diffusion'' mechanism of the ion species separation has been shown to exist. Equally important, in drastic contrast to the classical case of the neutral gas mixture, thermo-diffusion is predicted to be comparable to, or even much larger than, baro-diffusion. By employing the effective potential theory this formalism has then been generalized to the case of a moderately coupled plasma with multiple ion species, making it applicable to the problem of mix at the shell/fuel interface in ICF implosion. Second, distribution function for the energetic ions has been found from first principles and the fusion reactivity reduction has been calculated for hot-spot relevant conditions. A technique for approximate evaluation of the distribution function has been identified. This finding suggests a path to effectively introducing the tail modification effects into mainline rad-hydro codes, while being in good agreement with the first principle based solution. This work was partially supported by the Laboratory Directed Research and Development (LDRD) program of LANL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Birky, A.; Gohlke, David
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in whichmore » there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle expenditures in the same year ranges from $6 billion to $24 billion (2015$).« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Phosphoric acid fuel cell power plant system performance model and computer program
NASA Technical Reports Server (NTRS)
Alkasab, K. A.; Lu, C. Y.
1984-01-01
A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.
Greg Winter; Christine Vogt; Sarah McCaffrey
2006-01-01
Many wildland fire managers, concerned about public acceptance of local fuels management programs, want to better communicate with local residents about these programs. Research at diverse study sites shows wildland-urban interface (WUI) residents rely on common factors to decide whether or not to support particular fuels management approaches such as prescribed...
An Empirical Investigation of USAF Logistics Readiness Officer Mission Sets
2013-03-01
parts, engine repair and 7 spare utilization, fuel cell and fuel system related repairs, heavy maintenance and inspection functions, and aircraft...provide additional mission sets. Fuels Management, Program Management, Acquisitions Management, and Depot Maintenance were suggested once each as...being mentioned by 2.5 percent ( Fuels Management, Program Management, Acquisitions Management, and Depot Maintenance) and 5 percent (Human Capital
QUAD+ BWR Fuel Assembly demonstration program at Browns Ferry plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doshi, P.K.; Mayhue, L.T.; Robert, J.T.
1984-04-01
The QUAD+ fuel assembly is an improved BWR fuel assembly designed and manufactured by Westinghouse Electric Corporation. The design features a water cross separating four fuel minibundles in an integral channel. A demonstration program for this fuel design is planned for late 1984 in cycle 6 of Browns Ferry 2, a TVA plant. Objectives for the design of the QUAD+ demonstration assemblies are compatibility in performance and transparency in safety analysis with the feed fuel. These objectives are met. Inspections of the QUAD+ demonstration assemblies are planned at each refueling outage.
2010-08-01
ALTERNATIVE FUEL SYSTEM ICING INHIBITOR FOR JP-8 FUEL 5a. CONTRACT NUMBER F33615-03-2-2347 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F...Government. The authors would like to acknowledge funding support from the DoD Reduction of Total Ownership Cost program through Ed Wells of ASC...following individuals contributed substantially to the success of this program : Rex Cash of the 540 ACSS/GFLBB, Travis Whitmer of Boeing IDS, Tedd Biddle of
LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS
The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...
Broad Specification Fuels Combustion Technology Program, Phase 2
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Jeroszko, R. A.; Kennedy, J. B.
1990-01-01
An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P&W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.
2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-10-01
This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
In the course of work as a land manager, you will no doubt be involved in developing programs to achieve various objectives, including the improvement of fuels management on private lands. This fact sheet describes six steps that will help you plan and conduct a successful program.
2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.
2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2012-09-01
This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.
2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-09-01
This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.
Onboard Plasmatron Hydrogen Production for Improved Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi
2005-12-31
A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less
Probing RFP Density Limits and the Interaction of Pellet Fueling and NBI Heating on MST
NASA Astrophysics Data System (ADS)
Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.
2013-10-01
Pellet fueling on MST has previously achieved Greenwald fractions of up to 1.5 in 200 kA improved confinement discharges. Additionally, pellet fueling to densities above the Greenwald limit in 200 kA standard discharges resulted in early termination of the plasma, but pellet size was insufficient to exceed the limit for higher current discharges. To this end, the pellet injector on MST has been upgraded to increase the maximum fueling capability by increasing the size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, to accommodate pellets of up to 4.0 mm in diameter. These 4.0 mm pellets are capable of triggering density limit terminations for MST's peak current of 600 kA. An unexpected improvement in the pellet speed and mass control was also observed compared to the smaller diameter pellets. Exploring the effect of increased density on NBI particle and heat deposition shows that for MST's 1 MW tangential NBI, core deposition of 25 keV neutrals is optimized for densities of 2-3 × 1019 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. An observed toroidal deflection of pellets injected into NBI heated discharges is consistent with asymmetric ablation due to the fast ion population. In 200 kA improved confinement plasmas with NBI heating, pellet fueling has achieved a Greenwald fraction of 2.0. Work supported by US DoE.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.
Toward a national fuels mapping strategy: Lessons from selected mapping programs
Loveland, Thomas R.
2001-01-01
The establishment of a robust national fuels mapping program must be based on pertinent lessons from relevant national mapping programs. Many large-area mapping programs are under way in numerous Federal agencies. Each of these programs follows unique strategies to achieve mapping goals and objectives. Implementation approaches range from highly centralized programs that use tightly integrated standards and dedicated staff, to dispersed programs that permit considerable flexibility. One model facilitates national consistency, while the other allows accommodation of locally relevant conditions and issues. An examination of the programmatic strategies of four national vegetation and land cover mapping initiatives can identify the unique approaches, accomplishments, and lessons of each that should be considered in the design of a national fuel mapping program. The first three programs are the U.S. Geological Survey Gap Analysis Program, the U.S. Geological Survey National Land Cover Characterization Program, and the U.S. Fish and Wildlife Survey National Wetlands Inventory. A fourth program, the interagency Multiresolution Land Characterization Program, offers insights in the use of partnerships to accomplish mapping goals. Collectively, the programs provide lessons, guiding principles, and other basic concepts that can be used to design a successful national fuels mapping initiative.
Tritium pellet injector for the tokamak fusion test reactor
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Baylor, L. R.; Combs, S. K.; Fisher, P. W.; Foust, C. R.; Milora, S. L.
The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the FY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability.
Tests of blending and correlation of distillate fuel properties
NASA Technical Reports Server (NTRS)
Erwin, J.; Bowden, J. N.
1982-01-01
The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.
DOT National Transportation Integrated Search
2011-12-20
This report presents the results of the successful ethanol fuel demonstration program conducted from September 2007 to September 2010. This project was a part of the U.S. Department of Transportation (DOT) Alternative Fuels and Life Cycle Engineering...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.
The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less
Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine
NASA Technical Reports Server (NTRS)
Prok, G. M.; Kim, W. S.
1984-01-01
A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.
Effect of the self-pumped limiter concept on the tritium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, P.A.; Sze, D.K.; Hassanein, A.
1988-01-01
The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.
Alternative Fuels Data Center: City of Chicago Program Encourages Petroleum
Displacement and Collaboration Between Departments City of Chicago Program Encourages Petroleum : City of Chicago Program Encourages Petroleum Displacement and Collaboration Between Departments on Facebook Tweet about Alternative Fuels Data Center: City of Chicago Program Encourages Petroleum
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-01-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-03-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
EXFILE: A program for compiling irradiation data on UN and UC fuel pins
NASA Technical Reports Server (NTRS)
Mayer, J. T.; Smith, R. L.; Weinstein, M. B.; Davison, H. W.
1973-01-01
A FORTRAN-4 computer program for handling fuel pin data is described. Its main features include standardized output, easy access for data manipulation, and tabulation of important material property data. An additional feature allows simplified preparation of input decks for a fuel swelling computer code (CYGRO-2). Data from over 300 high temperature nitride and carbide based fuel pin irradiations are listed.
Natural Gas Vehicle Cylinder Safety, Training and Inspection Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hank Seiff
2008-12-31
Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators andmore » training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.« less
7 CFR 2903.1 - Applicability of regulations.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.1 Applicability of regulations. (a) The regulations of this part only apply to Biodiesel Fuel Education Program grants awarded... determined by the Secretary), and the public about the benefits of biodiesel fuel use. Eligibility is limited...
7 CFR 2903.1 - Applicability of regulations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.1 Applicability of regulations. (a) The regulations of this part only apply to Biodiesel Fuel Education Program grants awarded... determined by the Secretary), and the public about the benefits of biodiesel fuel use. Eligibility is limited...
7 CFR 2903.1 - Applicability of regulations.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.1 Applicability of regulations. (a) The regulations of this part only apply to Biodiesel Fuel Education Program grants awarded... determined by the Secretary), and the public about the benefits of biodiesel fuel use. Eligibility is limited...
7 CFR 2903.1 - Applicability of regulations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.1 Applicability of regulations. (a) The regulations of this part only apply to Biodiesel Fuel Education Program grants awarded... determined by the Secretary), and the public about the benefits of biodiesel fuel use. Eligibility is limited...
7 CFR 2903.1 - Applicability of regulations.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.1 Applicability of regulations. (a) The regulations of this part only apply to Biodiesel Fuel Education Program grants awarded... determined by the Secretary), and the public about the benefits of biodiesel fuel use. Eligibility is limited...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-09-01
This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.
Parabolic lithium mirror for a laser-driven hot plasma producing device
Baird, James K.
1979-06-19
A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...
Code of Federal Regulations, 2014 CFR
2014-07-01
... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...
Code of Federal Regulations, 2011 CFR
2011-07-01
... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...
Code of Federal Regulations, 2012 CFR
2012-07-01
... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...
Code of Federal Regulations, 2010 CFR
2010-07-01
... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... and Security Act of 2007 (EISA) to reduce the use of fossil fuels and encourage increased production... renewable fuel to replace or reduce the quantity of fossil fuel present in transportation fuel. Under EPA's... quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.526 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.523 [Reserved] ...
Fuels Registration, Reporting, and Compliance Help
Information about the requirements for registration and health effects testing of new fuels or fuel additives and mandatory registration for fuels reporting and about mandatory reporting forms for parties regulated under EPA fuel programs.
Design of a uranium-dioxide powder spheroidization system by plasma processing
NASA Astrophysics Data System (ADS)
Cavender, Daniel
The plasma spheroidization system (PSS) is the first process in the development of a tungsten-uranium dioxide (W-UO2) ceramic-metallic (cermet) fuel for nuclear thermal rocket (NTR) propulsion. For the purposes of fissile fuel retention, UO2 spheroids ranging in size from 50 - 100 micrometers (μm) in diameter will be encapsulated in a tungsten shell. The PSS produces spherical particles by melting angular stock particles in an argon-hydrogen plasma jet where they become spherical due to surface tension. Surrogate CeO 2 powder was used in place of UO2 for system and process parameter development. Stock and spheroidized powders were micrographed using optical and scanning electron microscopy and evaluated by statistical methods to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders showed a statistically significant improvement in spherocity, with greater that 60% of the examined particles having an irregularity parameter of equal to or lower than 1.2, compared to stock powder.
Research on heating, instabilities, turbulence and RF emission from electric field dominated plasmas
NASA Astrophysics Data System (ADS)
Roth, J. R.; Alexeff, Igor
1989-07-01
This contract has supported four research programs: (1) a program of research on plasma turbulence; (2) a program of research on plasma heating by collisional magnetic pumping; (3) a research program on the Orbitron submillimeter maser; and (4) the initial phase of a program on plasma cloaking of military targets for protection against radar and directed microwave energy weapons. Progress in these areas is documented in the text of this final report and in the twenty archival publications included in the appendices to this report. In addition to the above four research areas, work was continued on plasma diagnostic development, and the development of new state-of-the-art data analysis and reduction methods, including software development for online reduction of Langmuir probe, capacitive probe, and other diagnostic information. Also being developed is the capability to analyze electrostatic potential fluctuations by the methods of nonlinear dynamics. An important part of the research program was the training of graduate and undergraduate research assistants in state-of-the-art methods in the fields of high temperature plasma physics, plasma diagnostics, communications, and related areas.
78 FR 11903 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for public comment... ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities.'' The draft NUREG provides guidance to... a fuel cycle facility is acceptable. DATES: Comments may be submitted by April 22, 2013. Comments...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagawa, T.; Sakagami, H.; Nagatomo, H.
In inertial confinement fusion, the implosion process is important in forming a high-density plasma core. In the case of a fast ignition scheme using a cone-guided target, the fuel target is imploded with a cone inserted. This scheme is advantageous for efficiently heating the imploded fuel core; however, asymmetric implosion is essentially inevitable. Moreover, the effect of cone position and opening angle on implosion also becomes critical. Focusing on these problems, the effect of the asymmetric implosion, the initial position, and the opening angle on the compression rate of the fuel is investigated using a three-dimensional pure hydrodynamic code.
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...
40 CFR 80.1361 - What penalties apply under the gasoline benzene program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...
40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1361 - What penalties apply under the gasoline benzene program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...
40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...
40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...
40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.1361 - What penalties apply under the gasoline benzene program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...
40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...
40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...
40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...
40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...
40 CFR 80.1361 - What penalties apply under the gasoline benzene program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...
40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...
40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...
40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...
40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...
40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...
40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...
40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...
40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...
40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...
40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...
40 CFR 80.1361 - What penalties apply under the gasoline benzene program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...
40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...
40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...
40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...
40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...
40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...
40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...
40 CFR 80.190 - Who must register with EPA under the sulfur program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who are...
40 CFR 80.190 - Who must register with EPA under the sulfur program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who are...
40 CFR 80.190 - Who must register with EPA under the sulfur program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who are...
40 CFR 80.190 - Who must register with EPA under the sulfur program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who are...
40 CFR 80.190 - Who must register with EPA under the sulfur program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfur program? 80.190 Section 80.190 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur General Information § 80.190 Who must register with EPA under the sulfur program? (a) Refiners and importers who are...
First wall for polarized fusion reactors
Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.
1988-01-01
Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.
NASA Astrophysics Data System (ADS)
Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera
2013-12-01
Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
General aviation internal-combustion engine research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1978-01-01
An update is presented of non-turbine general aviation engine programs. The program encompasses conventional, lightweight diesel and rotary engines. It's three major thrusts are: (1) reduced SFC's; (2) improved fuels tolerance; and (3) reduced emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.534 [Reserved] ...
Basic elements of light water reactor fuel rod design. [FUELROD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, J.; Eckart, R.
1981-06-01
Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less
The fuel tax compliance unit : an evaluation and analysis of results.
DOT National Transportation Integrated Search
2004-01-01
Kentucky utilized TEA-21 federal funds to create an innovative pilot program to identify the best practices and methods for auditing taxpayers of transportation related taxes. This program involved a four-year experimental program called the Fuel Tax...
Skidder load capacity and fuel consumption HP-41C program
Ross A. Phillips
1983-01-01
This program gives the log weight that the skidder can move and gives fuel consumption either in liters or gallons per turn. Slope of the skid trail, skidder weight, and skid distance must be entered into the program.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE
EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...
40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting...
40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting...
Neutron Spectroscopy on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Knauer, J. P.
2012-10-01
The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.
An experiment on the dynamics of ion implantation and sputtering of surfaces
NASA Astrophysics Data System (ADS)
Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
An experiment on the dynamics of ion implantation and sputtering of surfaces.
Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
Propagation of Plasma Bunches through a Transverse Magnetic Barrier
NASA Astrophysics Data System (ADS)
Bishaev, A. M.; Gavrikov, M. B.; Kozintseva, M. V.; Savel'ev, V. V.
2018-01-01
The injection of a plasma bunch into a multipolar trap can be applied to fill the trap with a plasma. The injection of the bunch into a tokamak-like trap can be considered an additional means for controlling the processes of plasma heating and fuel delivery to the central zone of a thermonuclear reactor. In both cases, the bunch is injected normally to the magnetic field of the trap. It has been shown theoretically, experimentally, and by numerical simulation that the depth of plasma bunch penetration into the magnetic field varies in direct proportion to the bunch energy and in inverse proportion to the magnetic pressure and the cross-sectional area of the plasma bunch. The data of this work allow researchers to estimate the values of plasma bunch parameters at which the bunch will be trapped. As a result, the process of plasma bunch trapping has been optimized.
Improved confinement in highly powered high performance scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.
DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less
Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER
NASA Astrophysics Data System (ADS)
Brezinsek, S.; JET-EFDA contributors
2015-08-01
The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.
Improved confinement in highly powered high performance scenarios on DIII-D
Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.; ...
2017-06-09
DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less
Modeling of non-thermal plasma in flammable gas mixtures
NASA Astrophysics Data System (ADS)
Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.
2008-07-01
An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations for charged particles (electrons, positive and negative ions), and with the electric circuit equation. The electric circuit comprises power supply, ballast resistor connected in series with the discharge and capacity. Rate coefficients for electron-assisted reactions were calculated from solving the two-term spherical harmonic expansion of the Boltzmann equation. Such an approach allows us to describe influence of thermal chemistry reactions (burning) on the discharge characteristics. Results of comparison between the discharge and thermal ignition effects for mixtures of hydrogen or ethylene with dry air will be reported. Effects of acceleration of ignition by discharge plasma will be analyzed. In particular, the role of singlet oxygen produced effectively in the discharge in ignition speeding up will be discussed.
1989-12-01
SPENT FUEL REPROCESSING COULD ALSO BE EMPLOYED IRRADIATION EXPERIENCE - EXTREMELY LIMITED - JOINT US/UK PROGRAM (ONGOING) - TUI/KFK PROGRAM (CANCELED...only the use of off-the-shelf technologies. For example, conventional fuel technology (uranium dioxide), conventional thermionic conversion...advanced fuel (Americium oxide, A1TI2O3) and advanced thermionic conversion. Concept C involves use of an advanced fuel (Americium oxide, Arri203
Progress of the RERTR program in 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
2002-03-07
This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualificationmore » of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from foreign research reactors had been received by that date by the U.S. under the FRR SNF acceptance policy. The RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the U.S. FRR SNF Acceptance Program. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less
Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments
Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy
2016-01-01
The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...
Fuels Management-How to Measure Success: Conference Proceedings
Patricia L. Andrews; Bret W. Butler
2006-01-01
Fuels management programs are designed to reduce risks to communities and to improve and maintain ecosystem health. The International Association of Wildland Fire initiated the 1st Fire Behavior and Fuels Conference to address development, implementation, and evaluation of these programs. The focus was on how to measure success. Over 500 participants from several...
Alternative Fuel Vehicle Conversion Grant Program The Ohio Environmental Protection Agency will administer a one-time, $5 million grant program to replace or convert Class 7 and Class 8 diesel or gasoline time. Maximum grant awards will be 50% of the fuel components of the new vehicle or 50% of the cost of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, K.
This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehiclesmore » (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.« less
Alternative aircraft fuels technology
NASA Technical Reports Server (NTRS)
Grobman, J.
1976-01-01
NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section, a...
40 CFR 80.1270 - Who may generate benzene credits under the ABT program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...
40 CFR 80.1270 - Who may generate benzene credits under the ABT program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...
40 CFR 80.1270 - Who may generate benzene credits under the ABT program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...
40 CFR 80.1270 - Who may generate benzene credits under the ABT program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...
40 CFR 80.1270 - Who may generate benzene credits under the ABT program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Stoeffler, R. C.
1972-01-01
Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.
40 CFR 80.528-80.529 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
....528-80.529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements §§ 80.528-80.529...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
40 CFR 610.10 - Program purpose.
Code of Federal Regulations, 2012 CFR
2012-07-01
... DEVICES Test Procedures and Evaluation Criteria General Provisions § 610.10 Program purpose. (a) The... standardized procedures, the performance of various retrofit devices applicable to automobiles for which fuel... statistical analysis of data from vehicle tests, the evaluation program will determine the effects on fuel...
National Jet Fuels Combustion Program - overall program integration and analysis, Area #7.
DOT National Transportation Integrated Search
2017-01-01
The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...
Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renfro, David G; Chandler, David; Cook, David Howard
2014-11-01
Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully convertedmore » using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present studies used current analytical tools to evaluate the various alternate designs for cycle length, scientific performance (e.g., neutron scattering), and steady-state and transient thermal performance using both safety limit and nominal parameter assumptions. The studies concluded that a new reference design combining a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone will allow successful conversion of HFIR. Future collaboration with the program will reveal whether the new reference design can be fabricated reliably and affordably. Following this feedback, additional studies using state-of-the-art developmental analytical tools are proposed to optimize the design of the fuel zone radial contour and the amount and location of both types of neutron absorbers to further flatten thermal peaks while maximizing the performance of the reactor.« less
Low Emissions RQL Flametube Combustor Test Results
NASA Technical Reports Server (NTRS)
Chang, Clarence T.; Holdeman, James D.
2001-01-01
The overall objective of this test program was to demonstrate and evaluate the capability of the Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept for HSR applications. This test program was in support of the Pratt & Whitney and GE Aircraft Engines HSR low-NOx Combustor Program. Collaborative programs with Parker Hannifin Corporation and Textron Fuel Systems resulted in the development and testing of the high-flow low-NOx rich-burn zone fuel-to-air ratio research fuel nozzles used in this test program. Based on the results obtained in this test program, several conclusions can be made: (1) The RQL tests gave low NOx and CO emissions results at conditions corresponding to HSR cruise. (2) The Textron fuel nozzle design with optimal multiple partitioning of fuel and air circuits shows potential of providing an acceptable uniform local fuel-rich region in the rich burner. (3) For the parameters studied in this test series, the tests have shown T3 is the dominant factor in the NOx formation for RQL combustors. As T3 increases from 600 to 1100 F, EI(NOx) increases approximately three fold. (4) Factors which appear to have secondary influence on NOx formation are P4, T4, infinity(sub rb), V(sub ref,ov). (5) Low smoke numbers were measured for infinity(sub rb) of 2.0 at P4 of 120 psia.