Improved confinement in highly powered high performance scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.
DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less
Improved confinement in highly powered high performance scenarios on DIII-D
Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.; ...
2017-06-09
DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
The HyperV 8000 μg, 50 km/s Plasma Railgun for PLX
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Messer, Sarah; Wu, Linchun; Witherspoon, F. Douglas
2012-10-01
HyperV has developed a gas fed, pulsed, plasma railgun which accelerates 8000 μg of argon to 50 km/s meeting the performance requirements originally specified for the Plasma Liner Experiment (PLX). The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas, pre-ionizes it electro-thermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems. Measurements of momentum, pressure, magnetic field, and other optical diagnostics will also be discussed as well as plans for upcoming experimentation to increase performance even further. Work supported by USDOE under DE-FG02-05ER54810 and DE-FG02-08ER85114.
High Current Systems for HyperV and PLX Plasma Railguns
NASA Astrophysics Data System (ADS)
Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.
2011-10-01
HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.
Li, Jian; Milne, Robert W.; Nation, Roger L.; Turnidge, John D.; Coulthard, Kingsley; Valentine, Jason
2002-01-01
A simple and sensitive high-performance liquid chromatographic method is described for the determination of colistimethate sodium in plasma and urine. The accuracy and reproducibility was within 10.1 and 11.2% with rat plasma and urine, respectively. Several commonly coadministered antibacterial agents do not interfere with the assay. PMID:12234867
Microfabrication of high performance optical diaphragm by plasma ion beam etching technology
NASA Astrophysics Data System (ADS)
Mestreau, Agnes; Bernardet, Henri; Dancoing, Guy; Godechot, Xavier; Pezant, Christian; Stenger, Vincent; Cousin, Bernard; Etcheto, Pierre; Otrio, Georges
2018-04-01
This paper, "Microfabrication of high performance optical diaphragm by plasma ion beam etching technology," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extension of the operational regime of the LHD towards a deuterium experiment
NASA Astrophysics Data System (ADS)
Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.
2017-10-01
As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
Kramer, S; Blaschke, G
2001-02-10
A sensitive high-performance liquid chromatographic method has been developed for the determination of the beta2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid-liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher 100 RP 18 and a LiChrospher RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.
2015-03-26
THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish; Rhodes, Terry L.; Burrell, Keith H.
A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high-performance DIII-D tokamak plasma discharges. These LCOs are localized and comprised of density turbulence, gradient drives, and E X B velocity shear damping ( E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E X B velocity shear. Reported here for the first time, a unique spatiotemporal variation of the local E X B velocity which is foundmore » to be essential for the existence of this system. The LCO system is quasi-stationary, existing from 3 to 12 plasma energy confinement times (~30 to 900 LCO cycles) limited by hardware constraints. In conclusion, this plasma system appears to contribute strongly to the edge transport in these high-performance and transient-free plasmas as evident from oscillations in transport relevant edge parameters at LCO timescale.« less
Barada, Kshitish; Rhodes, Terry L.; Burrell, Keith H.; ...
2018-03-27
A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high-performance DIII-D tokamak plasma discharges. These LCOs are localized and comprised of density turbulence, gradient drives, and E X B velocity shear damping ( E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E X B velocity shear. Reported here for the first time, a unique spatiotemporal variation of the local E X B velocity which is foundmore » to be essential for the existence of this system. The LCO system is quasi-stationary, existing from 3 to 12 plasma energy confinement times (~30 to 900 LCO cycles) limited by hardware constraints. In conclusion, this plasma system appears to contribute strongly to the edge transport in these high-performance and transient-free plasmas as evident from oscillations in transport relevant edge parameters at LCO timescale.« less
Coaxial plasma thrusters for high specific impulse propulsion
NASA Technical Reports Server (NTRS)
Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen
1991-01-01
A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Yumi; Hattori, Nozomu; Miyatake, Naomasa
Zinc oxide (ZnO) thin films have attracted significant attention for application in thin film transistors (TFTs) due to their specific characteristics, such as high mobility and transparency. In this paper, the authors fabricated TFTs with ZnO thin films as channel layers deposited by plasma-assisted atomic layer deposition (PAALD) at 100 Degree-Sign C using two different plasma sources, water (H{sub 2}O-plasma) and oxygen gas (O{sub 2}-plasma), as oxidants, and investigated the effects of the plasma sources on TFT performances. The TFT with ZnO channel layer deposited with H{sub 2}O-plasma indicated higher performances such as a field effect mobility ({mu}) of 1.1more » cm{sup 2}/Vs. Analysis of the ZnO films revealed that the residual carbon in the film deposited with H{sub 2}O-plasma was lower than that of O{sub 2}-plasma. In addition, the c-axis preferred orientation was obtained in the case of the ZnO film deposited with H{sub 2}O-plasma. These results suggest that it is possible to fabricate high-performance ZnO TFTs at low temperatures by PAALD with H{sub 2}O-plasma.« less
Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.
2005-01-01
NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.
Markus, C Rob; Olivier, Berend; de Haan, Edward H F
2002-06-01
Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects. We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects. Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either alpha-lactalbumin (alpha-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio. A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the alpha-lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019). Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in alpha-lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.
Experimental results on plasma interactions with large surfaces at high voltages
NASA Technical Reports Server (NTRS)
Grier, N. T.
1980-01-01
Multikilowatt power levels for future payloads can be more efficiently generated using solar arrays operating in the kilovolt range. This implies that large areas of the array at high operating voltages will be exposed to the space plasma environment. The resulting interactions of these high voltage surfaces with space plasma environments can seriously impact the performance of the satellite system. The plasma-surface interaction phenomena were studied in tests performed in two separate vacuum chambers, a 4.6 m diameter by 19.2 long chamber and a 20 m diameter by 27.4 m long chamber. The generated plasma density was approximately 1x10 to the 4th power/cu cm. Ten solar array panels, each with areas of 1400 sq cm were used in the tests. Nine of the solar panels were tested as a composite unit in the form of a 3x3 solar panel matrix. The results from all the tests confirmed small sample tests results: insulators were found to enhance the plasma coupling current for high positive bias and arcing was found to occur at high negative bias.
NASA Astrophysics Data System (ADS)
Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In
2017-07-01
In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.
NASA Astrophysics Data System (ADS)
Yang, Liu; Yang, Zhongcun; Wan, Jianing; Liu, Hao
2016-10-01
For the safety of electronic equipment, a double-layer barrier of cylindrical plasma array was designed, and its protective performance to high-power microwave (HPM) were analyzed and the protective performance experiment was conducted. Combining the density distribution characteristic of the discharge plasma, the shielding effectiveness of the double-layer plasma on 6GHz HPM pulse was studied. The experiment results indicate that the protective effectiveness of two layers plasma array is better than that of one layer. Two layers plasma array can make the peak electric field of transmission waveform less than interference threshold of electronic equipment to achieve better protection effectiveness. Transmission attenuation of one layer and two layers plasma array to HPM can reach -6.6066dB and -24.9357dB. The results also show that for the existence of multiple reflection, even the plasma electron density is not high enough, it can realize a strong attenuation. The experiment results in this paper are of great significance in protecting against HPM and electromagnetic pulse.
Ono, I; Matsuda, K; Kanno, S
1996-04-12
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1-20 micrograms/ml. The limit of quantitation of I, in plasma, was 0.05 microgram/ml. The recovery of spiked I (0.5 microgram/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 microgram/ml) compared to drug-free plasma was 4.3% (n = 8).
Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster
2014-06-01
Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of
NASA Astrophysics Data System (ADS)
Wirtz, M.; Bardin, S.; Huber, A.; Kreter, A.; Linke, J.; Morgan, T. W.; Pintsuk, G.; Reinhart, M.; Sergienko, G.; Steudel, I.; De Temmerman, G.; Unterberg, B.
2015-11-01
Experiments were performed in three different facilities in order to investigate the impact of combined steady state deuterium plasma exposure and ELM-like thermal shock events on the performance of ultra high purity tungsten. The electron beam facility JUDITH 1 was used to simulate pure thermal loads. In addition the linear plasma devices PSI-2 and Pilot-PSI have been used for successive as well as simultaneous exposure where the transient heat loads were applied by a high energy laser and the pulsed plasma operation, respectively. The results show that the damage behaviour strongly depends on the loading conditions and the sequence of the particle and heat flux exposure. This is due to hydrogen embrittlement and/or a higher defect concentration in the tungsten near surface region due to supersaturation of hydrogen. The different results in terms of damage formation from both linear plasma devices indicate that also the plasma parameters such as particle energy, flux and fluence, plasma impurities and the pulse shape have a strong influence on the damage performance. In addition, the different loading methods such as the scanning with the electron beam in contrast to the homogeneous exposure by the laser leads to an faster increase of the surface roughness due to plastic deformation.
Current drive at plasma densities required for thermonuclear reactors.
Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A
2010-08-10
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
Optical Pumping of High Power Lasers with an Array of Plasma Pinches.
1986-04-01
Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.
2014-01-01
During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.
Integrated Plasma Control for Alternative Plasma Shape on EAST
NASA Astrophysics Data System (ADS)
Xiao, Bingjia
2017-10-01
To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.
Miniature ion thruster ring-cusp discharge performance and behavior
NASA Astrophysics Data System (ADS)
Dankongkakul, Ben; Wirz, Richard E.
2017-12-01
Miniature ion thrusters are an attractive option for a wide range of space missions due to their low power levels and high specific impulse. Thrusters using ring-cusp plasma discharges promise the highest performance, but are still limited by the challenges of efficiently maintaining a plasma discharge at such small scales (typically 1-3 cm diameter). This effort significantly advances the understanding of miniature-scale plasma discharges by comparing the performance and xenon plasma confinement behavior for 3-ring, 4-ring, and 5-ring cusp by using the 3 cm Miniature Xenon Ion thruster as a modifiable platform. By measuring and comparing the plasma and electron energy distribution maps throughout the discharge, we find that miniature ring-cusp plasma behavior is dominated by the high magnetic fields from the cusps; this can lead to high loss rates of high-energy primary electrons to the anode walls. However, the primary electron confinement was shown to considerably improve by imposing an axial magnetic field or by using cathode terminating cusps, which led to increases in the discharge efficiency of up to 50%. Even though these design modifications still present some challenges, they show promise to bypassing what were previously seen as inherent limitations to ring-cusp discharge efficiency at miniature scales.
NASA Astrophysics Data System (ADS)
Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team
2016-10-01
Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.
High beta-N experiments at JET
NASA Astrophysics Data System (ADS)
Challis, Clive
2007-11-01
JET has investigated the performance potential and limitations of highly triangular plasmas relevant to fully non-inductive tokamak operation. The q-profile shape has been varied from cases with highly negative core magnetic shear to low shear with q0 close to 1, allowing the effect on confinement and stability to be studied. Operation with beta-N above the no-wall `limit' has been demonstrated for durations comparable with the resistive time and direct measurements of the no-wall beta have been developed as a tool for systematic performance optimization. Regimes have been developed with ITBs at reduced plasma current and toroidal field (1.2-1.5MA/2.3-2.7T) to obtain high values of beta-N and beta-P with either impurity seeding or quasi-double-null plasma configurations used to mitigate ELMs. The importance of the q-profile shape for performance optimization has been demonstrated in plasmas without ITBs (1.2MA/1.8T) with low values of minimum q (1-2) providing access to the highest beta-N (above 3).
NASA Astrophysics Data System (ADS)
Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei
2015-09-01
A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.
Effects of active recovery during interval training on plasma catecholamines and insulin.
Nalbandian, Harutiun M; Radak, Zsolt; Takeda, Masaki
2018-06-01
BACKGROUNDː Active recovery has been used as a method to accelerate the recovery during intense exercise. It also has been shown to improve performance in subsequent exercises, but little is known about its acute effects on the hormonal and metabolic profile. The aim of this research was to study the effects of active recovery on plasma catecholamines and plasma insulin during a high-intensity interval exercise. METHODSː Seven subjects performed two high-intensity interval training protocols which consisted of three 30-second high-intensity bouts (constant intensity), separated by a recovery of 4 minutes. The recovery was either active recovery or passive recovery. During the main test blood samples were collected and plasma insulin, plasma catecholamines and blood lactate were determined. Furthermore, respiratory gasses were also measured. RESULTSː Plasma insulin and blood lactate were significantly higher in the passive recovery trial, while plasma adrenaline was higher in the active recovery. Additionally, VO2 and VCO2 were significantly more increased during the active recovery trials. CONCLUSIONSː These results suggest that active recovery affects the hormonal and metabolic responses to high-intensity interval exercise. Active recovery produces a hormonal environment which may favor lipolysis and oxidative metabolism, while passive recovery may be favoring glycolysis.
Wyss, R; Bucheli, F
1988-12-02
During method development for the determination of either isotretinoin, tretinoin and their 4-oxo-metabolites, or etretinate, acitretin and 13-cis-acitretin in plasma using high-performance liquid chromatography and column switching, recovery problems arose, when undiluted plasma samples were injected directly onto the precolumn. These recovery problems may be due to the strong binding of the retinoids to different plasma proteins. Measures to overcome this strong protein binding, such as variation of the injection solution composition and the purge mobile phase, were systematically investigated. Best recoveries were obtained by diluting of plasma with 9 mM sodium hydroxide-acetonitrile (8:2, v/v) and protein precipitation with ethanol for the isotretinoin and etretinate series, respectively, in combination with the use of a purge mobile phase containing ammonium acetate and 10-20% acetonitrile. Less effective was the use of a longer precolumn or heating of the precolumn.
Determination of boldine in plasma by high-performance liquid chromatography.
Speisky, H; Cassels, B K; Nieto, S; Valenzuela, A; Nuñez-Vergara, L J
1993-02-26
A sensitive method for the determination of boldine in blood plasma is described. The procedure involves a direct pH-buffered chloroform extraction of boldine from blood plasma, followed by its assay under isocratic conditions by HPLC with UV detection. The extraction recovery is excellent, and sensitivity and precision of the method are very high, when applied to plasma samples containing pharmacologically relevant concentrations of boldine.
Advanced Plasma Shape Control to Enable High-Performance Divertor Operation on NSTX-U
NASA Astrophysics Data System (ADS)
Vail, Patrick; Kolemen, Egemen; Boyer, Mark; Welander, Anders
2017-10-01
This work presents the development of an advanced framework for control of the global plasma shape and its application to a variety of shape control challenges on NSTX-U. Operations in high-performance plasma scenarios will require highly-accurate and robust control of the plasma poloidal shape to accomplish such tasks as obtaining the strong-shaping required for the avoidance of MHD instabilities and mitigating heat flux through regulation of the divertor magnetic geometry. The new control system employs a high-fidelity model of the toroidal current dynamics in NSTX-U poloidal field coils and conducting structures as well as a first-principles driven calculation of the axisymmetric plasma response. The model-based nature of the control system enables real-time optimization of controller parameters in response to time-varying plasma conditions and control objectives. The new control scheme is shown to enable stable and on-demand plasma operations in complicated magnetic geometries such as the snowflake divertor. A recently-developed code that simulates the nonlinear evolution of the plasma equilibrium is used to demonstrate the capabilities of the designed shape controllers. Plans for future real-time implementations on NSTX-U and elsewhere are also presented. Supported by the US DOE under DE-AC02-09CH11466.
Simulation Study of Structure and Properties of Plasma Liners for the PLX- α Project
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team
2017-10-01
Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier code in support of the Plasma Liner Experiment-ALPHA (PLX- α) project. Physics models include radiation, physical diffusion, plasma-EOS models, and an anisotropic diffusion model that mimics deviations from fully collisional hydrodynamics in outer layers of plasma jets. Detailed structure and non-uniformity of plasma liners of due to primary and secondary shock waves have been studies as well as averaged quantities of ram pressure and Mach number. Synthetic data from simulations have been compared with available experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Numerical studies of the sensitivity of liner properties to experimental errors in the initial masses of jets and the synchronization of plasma gun valves have also been performed. Supported by the ARPA-E ALPHA program.
NASA Astrophysics Data System (ADS)
Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.
2018-03-01
A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.
Experimental Results of OH Regime Investigation in Globus-M Spherical Torus
NASA Astrophysics Data System (ADS)
Golant, Victor; Gusev, Vasily; Levin, Roman; Petrov, Yuriy; Sakharov, Nikolay
2001-10-01
Plasma parameters were measured in novel spherical torus Globus-M in highly shaped plasmas with aspect ratio, A > 1.5, elongation, k < 1.9, triangularity < 0.5. Plasma column was created by direct induction method with the currents up to Ip 0.3 MA in the magnetic field, Bt - 0.08 - 0.5 T. In Globus-M spherical torus plasma column is closely fitted into the vacuum vessel and wall conditioning technology described in [1] was used to achieve good plasma performance. Plasma experiments were focused around achievement of ultimate OH regimes allowed by power supplies. The operational limits of the device were investigated. In the regime with extreme low q(cy1) < 1 and high normalized current > 4, the plasma current of almost 100kA was sustained transiently in low magnetic field 800 Gs. The first results on stability analysis with numerical code are presented. The runaway electrons behavior was studied in spherical tokamak conditions. Influence of plasma current and density ramp-up speeds, MHD events on plasma performance and stability was demonstrated. Magnetic reconstruction was performed with EFIT version adopted for PC simulations. Plans for auxiliary heating and current drive are discussed. 1. V.K. Gusev, …, V.E. Golant, et al., Nucl. Fusion 41, No 7, (2001), to be published
Results from core-edge experiments in high Power, high performance plasmas on DIII-D
Petrie, T. W.; Fenstermacher, M. E.; Holcomb, C. T.; ...
2016-12-24
Here, significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND) hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q ⊥ P) ∝ [P SOL x I P] 0.92 for P SOL = 8-19 MW and I P = 1.0–1.4 MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-Dmore » plasmas may be problematical at high power and H98 (≥ 1.5) due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q ⊥ P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot”) but also that heating near the slot opening is a significant source for impurity contamination of the core.« less
Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation
NASA Astrophysics Data System (ADS)
Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.
2018-06-01
The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N > 3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.
Improved confinement in highly powered high performance scenarios on DIII-D
NASA Astrophysics Data System (ADS)
Petrie, T. W.; Osborne, T.; Fenstermacher, M. E.; Ferron, J.; Groebner, R.; Grierson, B.; Holcomb, C.; Lasnier, C.; Leonard, A.; Luce, T.; Makowski, M.; Turco, F.; Solomon, W.; Victor, B.; Watkins, J.
2017-08-01
DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4-1.8, and β N = 2.5-4.0. The ion B × \
PANDORA, a new facility for interdisciplinary in-plasma physics
NASA Astrophysics Data System (ADS)
Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.
2017-07-01
PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.
Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project
NASA Astrophysics Data System (ADS)
Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration
2017-10-01
The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r<1 cm, and tstable >20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.
Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
NASA Astrophysics Data System (ADS)
Walker, Jonathan; Heinrich, Jonathon; Font, Gabriel; Ebersohn, Frans; Garrett, Michael
2017-10-01
A 100 kW class lanthanum-hexaboride plasma source is under continuing development for the Lockheed Martin Compact Fusion Reactor program. The current experiment, T4B, has become a test bed for plasma source operation with the goal of creating a high density plasma target for neutral beam heating. We present operation and performance of different plasma source geometries, results of plasma source coupling, and future plasma source development plans. ©2017 Lockheed Martin Corporation. All Rights Reserved.
Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2003-01-01
To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.
NASA Astrophysics Data System (ADS)
Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro
The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.
Hoffman, Justin T; Rossi, Steven S; Espina-Quinto, Rowena; Letendre, Scott; Capparelli, Edmund V
2013-04-01
Previously published methods for determination of efavirenz (EFV) in human dried blood spots (DBS) use costly and complex liquid chromatography/mass spectrometry. We describe the validation and evaluation of a simple and inexpensive high-performance liquid chromatography method for EFV quantification in human DBS and dried plasma spots (DPS), using ultraviolet detection appropriate for resource-limited settings. One hundred microliters of heparinized whole blood or plasma were spotted onto blood collection cards, dried, punched, and eluted. Eluates are injected onto a C-18 reversed phase high-performance liquid chromatography column. EFV is separated isocratically using a potassium phosphate and acetonitrile mobile phase. Ultraviolet detection is at 245 nm. Quantitation is by use of external calibration standards. Following validation, the method was evaluated using whole blood and plasma from HIV-positive patients undergoing EFV therapy. Mean recovery of drug from DBS is 91.5%. The method is linear over the validated concentration range of 0.3125-20.0 μg/mL. A good correlation (Spearman r = 0.96) between paired plasma and DBS EFV concentrations from the clinical samples was observed, and hematocrit level was not found to be a significant determinant of the EFV DBS level. The mean observed C DBS/C plasma ratio was 0.68. A good correlation (Spearman r = 0.96) between paired plasma and DPS EFV concentrations from the clinical samples was observed. The mean percent deviation of DPS samples from plasma samples is 1.68%. Dried whole blood spot or dried plasma spot sampling is well suited for monitoring EFV therapy in resource-limited settings, particularly when high sensitivity is not essential.
Hidau, Mahendra Kumar; Kolluru, Srikanth; Palakurthi, Srinath
2018-02-01
A sensitive and selective RP-HPLC method has been developed and validated for the quantification of a highly potent poly ADP ribose polymerase inhibitor talazoparib (TZP) in rat plasma. Chromatographic separation was performed with isocratic elution method. Absorbance for TZP was measured with a UV detector (SPD-20A UV-vis) at a λ max of 227 nm. Protein precipitation was used to extract the drug from plasma samples using methanol-acetonitrile (65:35) as the precipitating solvent. The method proved to be sensitive and reproducible over a 100-2000 ng/mL linearity range with a lower limit of quantification (LLQC) of 100 ng/mL. TZP recovery was found to be >85%. Following analytical method development and validation, it was successfully employed to determine the plasma protein binding of TZP. TZP has a high level of protein binding in rat plasma (95.76 ± 0.38%) as determined by dialysis method. Copyright © 2017 John Wiley & Sons, Ltd.
Development of a High Energy Density Capacitor for Plasma Thrusters.
1980-10-01
AD-A091 839 MAXWELL LAOS INC SAN DIEGO CA FIG 81/3 DEVELOPMENT OF A HIGH ENERGY DENSITY CAPACITOR FOR PLASMA THRUS--ETC(U) OCT 80 A RAMRUS FO*611-77...of the program was the investigation of certain capacitor impregnants and their influence on high energy density capacitors which are employed in...PERIOD 1704,60~ 13 DEVELOPMENT OF A HIGH ENERGY DENSITY CAPA- Final Technical Report CITOR FOR PLASMA THRUSTERS July 1977 - May 1980 6 PERFORMING
Enhanced confinement in electron cyclotron resonance ion source plasma.
Schachter, L; Stiebing, K E; Dobrescu, S
2010-02-01
Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.
NASA Astrophysics Data System (ADS)
Hur, Min Young; Verboncoeur, John; Lee, Hae June
2014-10-01
Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.
Megavolt, Multigigawatt Pulsed Plasma Switch
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Choi, Sang H.; Song, Kyo D.
1996-01-01
Plasma switch proposed for use in high-voltage, high-current pulse power system. Designed not only to out-perform conventional spark-gap switch but also relatively compact and lightweight. Features inverse-pinch configuration to prevent constriction of current sheets into filaments, plus multiple-ring-electrode structure to resist high-voltage breakdown.
Plasma skin regeneration technology.
Bogle, M A
2006-09-01
Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.
Effects of high Z probe on plasma behavior in HT-6M tokamak
NASA Astrophysics Data System (ADS)
Li, J.; Gong, X.; Luo, L.; Yin, F. X.; Noda, N.; Wan, B.; Xu, W.; Gao, X.; Yin, F.; Jiang, J. G.; Wu, Z.; Zhao, J. Y.; Wu, M.; Liu, S.; Han, Y.
1997-02-01
Molybdenum and tungsten probes have been tested in HT-6M tokamak under various discharge conditions aiming to find out the conditions in which high Z PFC can be used without serious degradation of core plasma performance. In normal OH discharges, the degradation of core plasma performance was found only when the probe was inserted beyond 3.0 cm inside the last closed flux surface (LCFS). The plasma performance did not change with positive biasing to the probe, whereas central Te degraded during negative biasing of -100 V. The insertion of the Mo probe to 1.5 cm inside the LCFS made a change in the threshold power of the L-H transition in EOH discharges. These results suggest a certain operation range of the H-mode in the EOH discharge with the Mo probe in HT-6M.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1999-08-24
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1997-07-08
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process
NASA Astrophysics Data System (ADS)
Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka
2015-09-01
Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying
2017-09-01
The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.
Air Force Research Laboratory High Power Electric Propulsion Technology Development
2009-10-27
Plasmas in a Coaxial Double Theta Pinch, “ Doctoral Dissertation, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 2008. [6...surpasses the level of DARPA FAST goals. Several evolving propulsion concepts may enable a viable high-power plasma propulsion device suitable for...of PEPL) 5 performance operation with multiple cathodes or in a single- shared cathode configuration [4]. However, the local plasma properties
The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield
NASA Astrophysics Data System (ADS)
Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco
2017-10-01
Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.
Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi
2014-06-01
A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.
Lithium As Plasma Facing Component for Magnetic Fusion Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masayuki Ono
The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less
High-performance liquid chromatographic determination of ambroxol in human plasma.
Nobilis, M; Pastera, J; Svoboda, D; Kvêtina, J; Macek, K
1992-10-23
Ambroxol has been determined in biological fluids using a rapid and sensitive high-performance liquid chromatographic method. The samples prepared from plasma by liquid-liquid extraction were analysed on reversed-phase silica gel by competing-ion chromatography with ultraviolet detection. The method was applied to the determination of ambroxol levels in twelve healthy volunteers after oral administration of 90 mg of ambroxol in tablets of Mucosolvan and Ambrosan.
Uney, Kamil; Altan, Feray; Elmas, Muammer
2011-02-01
Cefquinome has a broad spectrum of antibacterial activity and was developed especially for use in animals. A simple and sensitive high-performance liquid chromatography (HPLC) method with UV-visible detection for quantification of cefquinome concentrations in sheep plasma was developed and validated. Separation of cefquinome from plasma components was achieved on a Phenomenex Gemini C(18) column (250 mm by 4.6 mm; internal diameter [i.d.], 5 μm). The mobile phase consisted of acetonitrile and 0.1% trifluoroacetic acid in water and was delivered at a rate of 0.9 ml/min. A simple and rapid sample preparation involved the addition of methanol to 200 μl of plasma to precipitate plasma proteins followed by direct injection of 50 μl of supernatant into the high-performance liquid chromatography system. The linearity range of the proposed method was 0.02 to 12 μg/ml. The intraday and interday coefficients of variation obtained from cefquinome were less than 5%, and biases ranged from -3.76% to 1.24%. Mean recovery based on low-, medium-, and high-quality control standards ranged between 92.0 and 93.9%. Plasma samples were found to be stable in various storage conditions (freeze-thaw, postpreparative, short-term, and long-term stability). The method described was found to be readily available, practicable, cheap, rapid, sensitive, precise, and accurate. It was successfully applied to the study of the pharmacokinetics of cefquinome in sheep. This method can be very useful and an alternate to performing pharmacokinetic studies in the determination of cefquinome for clinical use.
Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.
Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping
2018-04-25
Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.
Determination of vitamin E in human plasma by high-performance liquid chromatography.
Cooper, J D; Thadwal, R; Cooper, M J
1997-03-07
The use of selective protein precipitation to enhance the recovery of vitamin E from plasma, by minimising binding with very-low-density lipoproteins, is reported. The procedure employed treatment of plasma with magnesium chloride and tungstate, followed by methanol protein precipitation. Separation of vitamin E was performed using reversed-phase high-performance liquid chromatography of the methanol extracts with subsequent UV detection of the compound. Using this technique the procedure was observed to be specific for vitamin E and linear over the range 1.0 to 40.0 micrograms/ml. The within-run imprecision (C.V.) at three different supplemented plasma vitamin E concentrations of 5.0, 10.0 and 20.0 micrograms/ml was 4.51, 3.33 and 2.58%, respectively, and the between-run imprecision (C.V.) estimated to be 5.19, 3.69 and 3.67%, respectively. With the same supplemented plasma vitamin E concentrations, the overall accuracy (bias) of the procedure, using an albumin matrix for calibration, was estimated to be 6.0, -5.0 and -3.5%, respectively, and the recovery of vitamin E from six different spiked plasma samples estimated to be 98.2 +/- 2.6%.
plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry
NASA Astrophysics Data System (ADS)
Venkattraman, Ayyaswamy; Verma, Abhishek Kumar
2016-09-01
As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.
Microscopic analysis of nanostructured plasma coatings
NASA Astrophysics Data System (ADS)
Ageev, E. V.; Altukhov, A. Yu; Ageeva, E. V.; Khardikov, S. V.
2018-03-01
In the course of the study, it was found that plasma nanocomposite coating obtained from a mixture of powders of BRS, VK8 and nichrome with a portable plasma device “ALPES-02M” has high performance properties, which significantly expands the scope of its application.
Ion thruster performance model
NASA Technical Reports Server (NTRS)
Brophy, J. R.
1984-01-01
A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.
A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.
Robitaille, Line; Hoffer, L John
2016-04-21
In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.
Jing, Chang-Wen; Wang, Zhuo; Cao, Hai-Xia; Ma, Rong; Wu, Jian-Zhong
2014-01-01
The aim of the research was to explore a cost effective, fast, easy to perform, and sensitive method for epidermal growth factor receptor (EGFR) mutation testing. High resolution melting analysis (HRM) was introduced to evaluate the efficacy of the analysis for dectecting EGFR mutations in exons 18 to 21 using formalin-fixed paraffin-embedded (FFPE) tissues and plasma free DNA from 120 patients. The total EGFR mutation rate was 37.5% (45/120) detected by direct sequencing. There were 48 mutations in 120 FFPE tissues assessed by HRM. For plasma free DNA, the EGFR mutation rate was 25.8% (31/120). The sensitivity of HRM assays in FFPE samples was 100% by HRM. There was a low false-positive mutation rate but a high false-negative rate in plasma free DNA detected by HRM. Our results show that HRM analysis has the advantage of small tumor sample need. HRM applied with plasma free DNA showed a high false-negative rate but a low false-positive rate. Further research into appropriate methods and analysis needs to be performed before HRM for plasma free DNA could be accepted as an option in diagnostic or screening settings.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh
A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David
2016-10-01
Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.
Suzuki, Hidenobu; Gen, Keishi
2012-03-01
Blonanserin is a second-generation antipsychotic that was developed in Japan. We investigated the relationships between plasma concentration, the plasma anti-5-HT(2A) activity/anti-D₂ activity (S/D) ratio and extrapyramidal symptoms (EPS) in blonanserin dosing. The subjects were 29 outpatients with schizophrenia. We assessed EPS using the Drug-Induced Extrapyramidal Symptoms Scale (DIEPSS). The plasma concentrations were measured by high performance liquid chromatography, and the plasma anti-D₂ and anti-5-HT(2A) activities were measured by [³H]-spiperone and [³H]-ketanserin radioreceptor assays. The results revealed that there were significant correlations between both the plasma concentration and the DIEPSS total score (P<0.05). A negative correlative tendency was found between the S/D ratio and the DIEPSS total score. Furthermore, the plasma concentrations were divided into a low plasma concentration group and a high plasma concentration group, and the S/D ratios were divided into a low S/D ratio group and a high S/D ratio group. We then compared each group based on the DIEPSS total scores. The score in the high plasma concentration-low S/D ratio group was significantly higher than in the high plasma concentration-high S/D ratio, low plasma concentration-high S/D ratio and low plasma concentration-low S/D ratio groups (P<0.05 for all). These findings indicate that the incidence of EPS during treatment with blonanserin is mainly determined by plasma concentration, but the incidence of EPS may be inhibited when anti-5HT(2A) activity is predominant over anti-D₂ activity. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.
Bhatti, M M; Hanson, G D; Schultz, L
1998-03-01
The Bioanalytical Chemistry Department at the Madison facility of Covance Laboratories, has developed and validated a simple and sensitive method for the simultaneous determination of phenytoin (PHT), carbamazepine (CBZ) and 10,11-carbamazepine epoxide (CBZ-E) in human plasma by high-performance liquid chromatography with 10,11 dihydrocarbamazepine as the internal standard. Acetonitrile was added to plasma samples containing PHT, CBZ and CBZ-E to precipitate the plasma proteins. After centrifugation, the acetonitrile supernatant was transferred to a clean tube and evaporated under N2. The dried sample extract was reconstituted in 0.4 ml of mobile phase and injected for analysis by high-performance liquid chromatography. Separation was achieved on a Spherisorb ODS2 analytical column with a mobile phase of 18:18:70 acetonitrile:methanol:potassium phosphate buffer. Detection was at 210 nm using an ultraviolet detector. The mean retention times of CBZ-E, PHT and CBZ were 5.8, 9.9 and 11.8 min, respectively. Peak height ratios were fit to a least squares linear regression algorithm with a 1/(concentration)2 weighting. The method produces acceptable linearity, precision and accuracy to a minimum concentration of 0.050 micrograms ml-1 in human plasma. It is also simple and convenient, with no observable matrix interferences.
Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien
2010-11-01
Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.
NASA Astrophysics Data System (ADS)
Takenaka, Kosuke; Endo, Masashi; Uchida, Giichiro; Setsuhara, Yuichi
2018-04-01
This work demonstrated the low-temperature control of the oxidation of Amorphous InGaZnOx (a-IGZO) films using inductively coupled plasma as a means of precisely tuning the properties of thin film transistors (TFTs) and as an alternative to post-deposition annealing at high temperatures. The effects of the plasma treatment of the as-deposited a-IGZO films were investigated by assessing the electrical properties of TFTs incorporating these films. A TFT fabricated using an a-IGZO film exposed to an Ar-H2-O2 plasma at substrate temperatures as low as 300 °C exhibited the best performance, with a field effect mobility as high as 42.2 cm2 V-1 s-1, a subthreshold gate voltage swing of 1.2 V decade-1, and a threshold voltage of 2.8 V. The improved transfer characteristics of TFTs fabricated with a-IGZO thin films treated using an Ar-H2-O2 plasma are attributed to the termination of oxygen vacancies around Ga and Zn atoms by OH radicals in the gas phase.
Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G
2015-01-01
The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). In patients with glioma, those with a high contrast transfer coefficient have lower survival than those with low parameters. © 2015 by American Journal of Neuroradiology.
Rivera, Manuel; Rahaman, Mostafizur; Zhou, Andrew F.; Mohammed Alzuraiqi, Waleed; Feng, Peter
2017-01-01
High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors. PMID:29257098
Advanced electric propulsion and space plasma contactor research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1986-01-01
A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.
Chatterjee, Pratishtha; Goozee, Kathryn; Sohrabi, Hamid R; Shen, Kaikai; Shah, Tejal; Asih, Prita R; Dave, Preeti; ManYan, Candice; Taddei, Kevin; Chung, Roger; Zetterberg, Henrik; Blennow, Kaj; Martins, Ralph N
2018-01-01
The disruption of neurofilament, an axonal cytoskeletal protein, in neurodegenerative conditions may result in neuronal damage and its release into the cerebrospinal fluid and blood. In Alzheimer's disease (AD), neurofilament light chain (NFL), a neurofilament subunit, is elevated in the cerebrospinal fluid and blood. Investigate the association of plasma NFL with preclinical-AD features, such as high neocortical amyloid-β load (NAL) and subjective memory complaints, and cognitive performance in cognitively normal older adults. Plasma NFL concentrations were measured employing the single molecule array platform in participants from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort, aged 65- 90 years. Participants underwent a battery of neuropsychological testing to evaluate cognitive performance and were categorized as low NAL (NAL-, n = 65) and high NAL (NAL+, n = 35) assessed via PET, and further stratified into subjective memory complainers (SMC; nNAL- = 51, nNAL+ = 25) and non-SMC (nNAL- = 14, nNAL+ = 10) based on the Memory Assessment Clinic- Questionnaire. Plasma NFL inversely correlated with cognitive performance. No significant difference in NFL was observed between NAL+ and NAL- participants; however, within APOEɛ4 non-carriers, higher NAL was observed in individuals with NFL concentrations within quartiles 3 and 4 (versus quartile 1). Additionally, within the NAL+ participants, SMC had a trend of higher NFL compared to non-SMC. Plasma NFL is inversely associated with cognitive performance in elderly individuals. While plasma NFL may not reflect NAL in individuals with normal global cognition, the current observations indicate that onset of axonal injury, reflected by increased plasma NFL, within the preclinical phase of AD may contribute to the pathogenesis of AD.
Plasma Structure and Behavior of Miniature Ring-Cusp Discharges
NASA Astrophysics Data System (ADS)
Mao, Hann-Shin
Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume analysis on the plasma electrons. Balancing the plasma electron generation and loss yielded nominal values used in miniature ion thrusters. This result was ultimately used to develop a design tool for miniature discharges. This tool was used to perform a parametric evaluation on the magnet field configuration of the research mode. By understanding the plasma behavior, significant improvements over the baseline configuration were obtained with relatively minor changes, thus revealing the importance of plasma structure on the performance of miniature ring-cusp discharges.
NASA Technical Reports Server (NTRS)
Britt, E. J.
1978-01-01
The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.
Investigation of tin-lithium eutectic as a liquid plasma facing material
NASA Astrophysics Data System (ADS)
Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar
2016-10-01
Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.
Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie
2018-02-02
Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.
Instabilities and turbulence in highly ionized plasmas in a magnetic field
NASA Technical Reports Server (NTRS)
Jennings, W. C.
1972-01-01
Physical mechanisms were considered which are responsible for plasma turbulence and the establishment of necessary conditions for energy exchange and transfer in the frequency spectrum. In addition, work was performed to better understand the drift instability in the highly inhomogeneous Rensselaer arc, and methods to suppress this instability using feedback stabilization techniques. Correlation techniques were refined to study plasma turbulence, the diffusion wave technique for monitoring cross-field diffusion was extended to include regimes of high turbulence levels, and a technique for coupling stabilizing RF power to the Rensselaer arc was developed.
Vertzoni, M V; Reppas, C; Archontaki, H A
2006-07-24
An isocratic high-performance liquid chromatographic method with detection at 240 nm was developed, optimized and validated for the determination of ketoconazole in canine plasma. 9-Acetylanthracene was used as internal standard. A Hypersil BDS RP-C18 column (250 mm x 4.6 mm, 5 microm particle size), was equilibrated with a mobile phase composed of methanol, water and diethylamine 74:26:0.1 (v/v/v). Its flow rate was 1 ml/min. The elution time for ketoconazole and 9-acetylanthracene was approximately 9 and 8 min, respectively. Calibration curves of ketoconazole in plasma were linear in the concentration range of 0.015-10 microg/ml. Limits of detection and quantification in plasma were 5 and 15 ng/ml, respectively. Recovery was greater than 95%. Intra- and inter-day relative standard deviation for ketoconazole in plasma was less than 3.1 and 4.7%, respectively. This method was applied to the determination of ketoconazole plasma levels after administration of a commercially available tablet to dogs.
Transport studies in high-performance field reversed configuration plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.
2016-05-15
A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less
Experiments and PIC simulations on liquid crystal plasma mirrors for pulse contrast enhancement
NASA Astrophysics Data System (ADS)
Cochran, G. E.; Poole, P. L.; Krygier, A.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Heery, R.; Purcell, J.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.
2016-10-01
High pulse contrast is crucial for performing many experiments on high intensity lasers in order to minimize modification of the target surface by pre-pulse. This is often achieved through the use of solid dielectric plasma mirrors which can limit laser shot rates. Liquid crystal films, originally developed as variable thickness ion acceleration targets, have been demonstrated as effective plasma mirrors for pulse cleaning, reaching peak reflectivities over 70%. These films were used as plasma mirrors in an ion acceleration experiment on the Scarlet laser and the resultant increase in peak proton energy and change in acceleration direction will be discussed. Also presented here are novel 2D3V, LSP particle-in-cell simulations of dielectric plasma mirror operation. By including multiphoton ionization and dimensionality corrections, an excellent match to experiment is obtained over 4 decades in intensity. Analysis of pulse shortening and plasma critical surface behavior in these simulations will be discussed. Formation of thin films at 1.5 Hz will also be presented. Performed with support from the DARPA PULSE program through AMRDEC, from NNSA, and from OSC.
High mobility and high stability glassy metal-oxynitride materials and devices
NASA Astrophysics Data System (ADS)
Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun
2016-04-01
In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.
Plasma chamber testing of advanced photovoltaic solar array coupons
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1994-01-01
The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.
Baradaran, N; Shahir, M H; Asadi Kermani, Z
2017-08-01
1. An experiment was performed to elucidate the subsequent effects of high-non-phytate phosphorus (NPP) diets on growth performance, blood metabolites, bone characteristics and P retention of broilers fed on low-NPP grower diets. The 42-d study was designed as a 2 × 2 × 2 + 1 factorial, which included two starter NPP concentrations (4.5 and 5.5 g/kg; d 0-21), two grower NPP concentrations (1.5 and 2.3 g/kg; d 22-42), with or without phytase (1000 FTU/kg), with a reference diet containing an adequate NPP concentration over the course of the trial. 2. In the starter period, growth performance and P retention were not affected by experimental diets. The high-NPP diet increased plasma P concentration, increased tibia ash and tibia P contents and decreased plasma alkaline phosphatase (ALP) activity at d 21. 3. No significant interaction was observed between NPP concentrations in the starter and grower periods and phytase. The main effect data indicated that the increase in NPP concentration in the starter diets had no effects on growth performance in the grower period and overall. The high-NPP diet in the early stage of growth reduced plasma P concentration, plasma ALP activity and tibia ash content at d 42. The main effect data also showed that exogenous phytase increased body weight gain in the grower period and overall. 4. It can be concluded that feeding increased NPP diets have no effects on growth performance in the starter period. This feeding strategy results in negative effects on plasma P concentration and bone ash content at d 42. Also, exogenous phytase is effective in improving growth performance, bone characteristics and apparent P retention of growing broilers fed diets that are inadequate in phosphorus.
Warp-X: A new exascale computing platform for beam–plasma simulations
Vay, J. -L.; Almgren, A.; Bell, J.; ...
2018-01-31
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Warp-X: A new exascale computing platform for beam–plasma simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J. -L.; Almgren, A.; Bell, J.
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Hara, Shuuji; Uchiyama, Masanobu; Yoshinari, Masami; Matsumoto, Taichi; Jimi, Shiro; Togawa, Atsushi; Takata, Tohru; Takamatsu, Yasushi
2015-09-01
Linezolid is an antimicrobial agent for the treatment of multiresistant Gram-positive infections. A practical high-performance liquid chromatography method was developed for the determination of linezolid in human plasma and saliva. Linezolid and an internal standard (o-ethoxybenzamide) were extracted from plasma and saliva with ethyl acetate and analyzed on a Capcell Pak C18 MG column with UV detection at 254 nm. The calibration curve was linear through the range 0.5-50 µg/mL using a 200 μL sample volume. The intra- and interday precisions were all <6.44% for plasma and 5.60% for saliva. The accuracies ranged from 98.8 to 110% for both matrices. The mean recoveries of linezolid were 80.8% for plasma and 79.0% for saliva. This method was used to determine the plasma and saliva concentrations of linezolid in healthy volunteers who were orally administered a 600 mg dose of linezolid. Our liquid-liquid extraction procedure is easy and requires a small volume of plasma or saliva (200 μL). This small volume can be advantageous in clinical pharmacokinetic studies, especially if children participate. Copyright © 2015 John Wiley & Sons, Ltd.
Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz
2011-04-01
In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.
PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations
NASA Astrophysics Data System (ADS)
Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.
2017-12-01
Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.
Wu, Chien-Hung; Huang, Bo-Wen; Chang, Kow-Ming; Wang, Shui-Jinn; Lin, Jian-Hong; Hsu, Jui-Mei
2016-06-01
The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (μ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7).
A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer
NASA Astrophysics Data System (ADS)
Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei
2017-12-01
In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, D.; Gammino, S.; Celona, L.
2012-02-15
Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
Near-infrared spectroscopy for burning plasma diagnostic applications.
Soukhanovskii, V A
2008-10-01
Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma
NASA Astrophysics Data System (ADS)
Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.
2018-03-01
Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.
ISS Plasma Interaction: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.
2004-01-01
Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.
2014-11-01
We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.
Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters
NASA Astrophysics Data System (ADS)
Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori
2016-09-01
A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.
High-current plasma contactor neutralizer system
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.
1989-01-01
A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.
Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao
2018-04-01
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mode conversion at density irregularities in the LAPD
NASA Astrophysics Data System (ADS)
Kersten, Kristopher; Cattell, Cynthia; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Steve
2010-11-01
Mode conversion of electrostatic plasma oscillations to electromagnetic radiation is commonly observed in space plasmas as Type II and III radio bursts. Much theoretical work has addressed the phenomenon, but due to the transient nature and generation location of the bursts, experimental verification via in situ observation has proved difficult. The Large Plasma Device (LAPD) provides a reproducible plasma environment that can be tailored for the study of space plasma phenomena. A highly configurable axial magnetic field and flexible diagnostics make the device well suited for the study of plasma instabilities at density gradients. We present preliminary results of mode conversion studies performed at the LAPD. The studies employed an electron beam source configured to drive Langmuir waves towards high density plasma near the cathode discharge. Internal floating potential probes show the expected plasma oscillations ahead of the beam cathode, and external microwave antenna signals reveal a strong band of radiation near the plasma frequency that persists into the low density plasma afterglow.
Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Tynan, G R; Froula, D H
2010-10-01
We present simultaneous Thomson-scattering measurements of light scattered from ion-acoustic and electron-plasma fluctuations in a N(2) gas jet plasma. By varying the plasma density from 1.5×10(18) to 4.0×10(19) cm(-3) and the temperature from 100 to 600 eV, we observe the transition from the collective regime to the noncollective regime in the high-frequency Thomson-scattering spectrum. These measurements allow an accurate local measurement of fundamental plasma parameters: electron temperature, density, and ion temperature. Furthermore, experiments performed in the high densities typically found in laser produced plasmas result in scattering from electrons moving near the phase velocity of the relativistic plasma waves. Therefore, it is shown that even at low temperatures relativistic corrections to the scattered power must be included.
Shrestha, Rojeet; Hui, Shu-Ping; Imai, Hiromitsu; Hashimoto, Satoru; Uemura, Naoto; Takeda, Seiji; Fuda, Hirotoshi; Suzuki, Akira; Yamaguchi, Satoshi; Hirano, Ken-Ichi; Chiba, Hitoshi
2015-09-01
Capric acid (FA10:0, decanoic acid) is a medium-chain fatty acid abundant in tropical oils such as coconut oil, whereas small amounts are present in milk of goat, cow, and human. Orally ingested FA10:0 is transported to the liver and quickly burnt within it. Only few reports are available for FA10:0 concentrations in human plasma. Fasting (n = 5, male/female = 3/2, age 31 ± 9.3 years old) and non-fasting (n = 106, male/female = 44/62, age 21.9 ± 3.2 years old) blood samples were collected from apparently healthy Japanese volunteers. The total FA10:0 in the plasma were measured by high-performance liquid chromatography after derivatization with 2-nitrophenylhydrazine followed by UV detection. Inter and intra-assay coefficient of variation of FA10:0 assay at three different concentrations ranged in 1.7-3.9 and 1.3-5.4%, respectively, with an analytical recovery of 95.2-104.0%. FA10:0 concentration was below detection limit (0.1 µmol/L) in each fasting human plasma. FA10:0 was not detected in 50 (47.2%) of 106 non-fasting blood samples, while 29 (27.4%) plasma samples contained FA10:0 less than or equal to 0.5 µmol/L (0.4 ± 0.1), and 27 (25.5%) contained it at more than 0.5 µmol/L (0.9 ± 0.3). A half of the non-fasting plasma samples contained detectable FA10:0. This simple, precise, and accurate high-performance liquid chromatography method might be useful for monitoring plasma FA10:0 during medium-chain triglycerides therapy. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr
2014-10-06
Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.
NASA Astrophysics Data System (ADS)
Liu, Runru; Wen, Dongdong; Zhang, Xueyu; Wang, Dejun; Yang, Qiang; Yuan, Beilei; Lü, Wei
2018-06-01
In this work, three-Dimensional nitrogen-doped graphene/MnO2 (NG/MnO2) was prepared by plasma treatment, which provides a high specific surface area due to porous structure and exhibits enhanced supercapacitor performance. The advantage of NG/MnO2 electrode was obvious compared with reduced graphene oxide/MnO2 (RGO/MnO2) which was prepared by traditional hydrothermal method, such as improved electrochemical property and better cycling stability. The specific capacitance of NG/MnO2 at the scan rate of 5 mV s‑1 (393 F g‑1) is higher than that of RGO/MnO2 (260 F g‑1). In addition, NG/MnO2 showed higher durability with 90.2% capacitance retention than that of RGO/MnO2 (82%) after 5000 cycles. Such cheap and high-performance supercapacitor electrodes are available by our feasible plasma treatment, which give promise in large-scale commercial energy storage devices.
Mitigation of divertor heat loads by strike point sweeping in high power JET discharges
NASA Astrophysics Data System (ADS)
Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET
2017-12-01
Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.
Improving the Stability of High-Performance Multilayer MoS2 Field-Effect Transistors.
Liu, Na; Baek, Jongyeol; Kim, Seung Min; Hong, Seongin; Hong, Young Ki; Kim, Yang Soo; Kim, Hyun-Suk; Kim, Sunkook; Park, Jozeph
2017-12-13
In this study, we propose a method for improving the stability of multilayer MoS 2 field-effect transistors (FETs) by O 2 plasma treatment and Al 2 O 3 passivation while sustaining the high performance of bulk MoS 2 FET. The MoS 2 FETs were exposed to O 2 plasma for 30 s before Al 2 O 3 encapsulation to achieve a relatively small hysteresis and high electrical performance. A MoO x layer formed during the plasma treatment was found between MoS 2 and the top passivation layer. The MoO x interlayer prevents the generation of excess electron carriers in the channel, owing to Al 2 O 3 passivation, thereby minimizing the shift in the threshold voltage (V th ) and increase of the off-current leakage. However, prolonged exposure of the MoS 2 surface to O 2 plasma (90 and 120 s) was found to introduce excess oxygen into the MoO x interlayer, leading to more pronounced hysteresis and a high off-current. The stable MoS 2 FETs were also subjected to gate-bias stress tests under different conditions. The MoS 2 transistors exhibited negligible decline in performance under positive bias stress, positive bias illumination stress, and negative bias stress, but large negative shifts in V th were observed under negative bias illumination stress, which is attributed to the presence of sulfur vacancies. This simple approach can be applied to other transition metal dichalcogenide materials to understand their FET properties and reliability, and the resulting high-performance hysteresis-free MoS 2 transistors are expected to open up new opportunities for the development of sophisticated electronic applications.
Ding, T L; Benet, L Z
1979-07-21
Using 1-ml plasma samples, levels of 6-mercaptopurine (6MP) as low as 5 ng/ml and azathioprine (AZA) as low as 40 ng/ml can be detected using a high-performance liquid chromatography reversed-phase column procedure following extraction. Both compounds were stable in frozen plasma for seven weeks. AZA stability in blood was temperature dependent; the half-lives of AZA breakdown to 6MP at 37 degrees were 28 and 46 min in blood drawn from two rhesus monkeys. Plasma levels of 6MP were measured in a rhesus monkey following 6MP (1.47 mg/kg) and AZA (3 mg/kg) intravenous administration. 6MP levels were also measured in three renal transplant patients on daily 50- and 100-mg AZA doses. Peak levels (45-75 ng/ml) were reached within an hour and 6MP levels were detected for up to 7 h.
Modeling multi-GeV class laser-plasma accelerators with INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Bulanov, Stepan; Geddes, Cameron; Esarey, Eric; Leemans, Wim
2016-10-01
Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. Understanding and optimizing the performance of LPAs requires detailed numerical modeling of the nonlinear laser-plasma interaction. We present simulation results, obtained with the computationally efficient, PIC/fluid code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde), concerning present (multi-GeV stages) and future (10 GeV stages) LPA experiments performed with the BELLA PW laser system at LBNL. In particular, we will illustrate the issues related to the guiding of a high-intensity, short-pulse, laser when a realistic description for both the laser driver and the background plasma is adopted. Work Supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
Thrust and Performance Study of Micro Pulsed Plasma Thrusters
2010-03-01
Due to the high- voltage potential, numerous electrons are able to collect in a small area. As the collection of the electrons grows, the ...quasi- neutral plasma removes the need to have a second emitter of free electrons to neutralize the plasma like in the Hall thrusters. PPTs and µPPTs...surface of the cathode. The micro-protrusions
1992-02-01
Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
USDA-ARS?s Scientific Manuscript database
Orosomucoid (ORM) is the most prevalent serum protein in the newborn pig. The present study was designed to determine if plasma ORM at birth can be used to predict the relative performance of piglets within a litter between birth and weaning using a highly sensitive ELISA specific for pig ORM. Sec...
Plasma Surface Modification of Polyaramid Fibers for Protective Clothing
NASA Astrophysics Data System (ADS)
Widodo, Mohamad
2011-12-01
The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the formation carboxylic and phenyl amine groups, which may provide additional active sites for grafting by way of hydrogen abstraction from the latter. Further analysis of XPS data, however, showed that macroradicals and active sites of grafting were formed at least at one of the carbon atoms in the aromatic ring. A reduction of microbial activity up to 3-log reduction was achieved by plasma treated Kevlar grafted by either diallyl diammonium chloride (DADMAC) or 3- ((trimethoxysilyl)-propyl) dimethylammonium chloride (TMS), with the latter being the one with better performance. It was found that high antimicrobial activity was obtained by the combination of high RF power, short time of exposure, and low concentration of monomer. Of the three processing methods studied, the one with immersion method produced higher graft yield. However, one-step plasma graft-polymerization with pad-dry method has proven itself more interesting due to its potential for an open continuous process. This research has been successful in producing effective antimicrobial properties on Kevlar fabric by plasma-initiated and plasma-controlled graft polymerization, which is unprecedented. The design of experiments showed that better results with higher order of log reduction can be obtained by process optimization, e.g. by using response surface methods. It would also be very beneficial to continue the research for the development of plasma graft-polymerization process with more rigorous design, which involves the use of crosslinker and antimicrobial monomers with different chemistry. A study that involves the development of a robust design for processes that perform consistently as intended under a wide range of user's conditions and yet produce high-level performance with high reliability would also be advantageous. The major implication of the findings from this research for the finishing of Kevlar is that a wide array of different surface functionalities may become more readily available now than ever. Plasma technology has made surface chemistry functionalization of Kevlar more straightforward and easier to perform, which opens new avenues for achieving functional and multifunctional Kevlar fabrics using a fast, more economic and environmentally friendly continuous process for niche market such as military applications and protective clothing for emergency responders.
Novel aspects of plasma control in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, D.; Jackson, G.; Walker, M.
2015-02-15
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less
Novel aspects of plasma control in ITER
Humphreys, David; Ambrosino, G.; de Vries, Peter; ...
2015-02-12
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less
Jonkers, R E; Oosterhuis, B; ten Berge, R J; van Boxtel, C J
1982-12-10
A relatively simple assay with improved reliability and sensitivity for measuring levels of 6-mercaptopurine in human plasma is presented. After extraction of the compound and the added internal standard with phenyl mercury acetate, samples were separated by ion-pair reversed-phase high-performance liquid chromatography. On-line the analytes were oxidized to fluorescent products and detected in a flow-fluorimeter. The within-day coefficient of variation was 3.8% at a concentration of 25 ng/ml. The lower detection limit was 2 ng/ml when 1.0 ml of plasma was used. Mercaptopurine concentration versus time curves of two subjects after a single oral dose of azathioprine are shown.
Rozio, M; Fracasso, C; Riva, A; Morazzoni, P; Caccia, S
2005-02-25
A reverse-phase high-performance liquid chromatography method was developed for the determination of hyperforin and its reduced derivatives octahydrohyperforin and tetrahydrohyperforin in rodent plasma. The procedure includes solid-phase extraction from plasma using the Baker 3cc C8 cartridge, resolution on the Symmetry Shield RP8 column (150 mm x 4.6 mm, i.d. 3.5 microm) and UV absorbance detection at 300 nm. The assay was linear over a wide range, with an overall coefficient of variation less than 10% for all compounds. The precision and accuracy were within acceptable limits and the limit of quantitation was sufficient for studies preliminarily assessing the disposition of tetrahydrohyperforin and octahydrohyperforin in the mouse and rat.
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro
2015-09-01
Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.
Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.
Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua
2018-06-21
Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (<2 ms), high detectivity (3.6 × 1013 Jones) and very large photoconductive gain (>106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.
Ptácek, Pavel; Klíma, Josef; Macek, Jan
2009-03-15
A high-performance liquid chromatographic method with fluorescence detection for the determination of itopride in human plasma is reported. The sample preparation was based on liquid-liquid extraction of itopride from plasma with t-butylmethylether and dichloromethane (70:30, v/v) mixture followed by a back extraction of the analyte to the phosphate buffer (pH 3.2). Liquid chromatography was performed on an octadecylsilica column (55 mm x 4 mm, 3 microm particles), the mobile phase consisted of acetonitrile-triethylamine-15 mM dihydrogenpotassium phosphate (14.5:0.5:85, v/v/v), pH of the mobile phase was adjusted to 4.8. The run time was 3 min. The fluorimetric detector was operated at 250/342 nm (excitation/emission wavelength). Naratriptan was used as the internal standard. The limit of quantitation was 9.5 ng/ml using 0.5 ml of plasma. The method precision and inaccuracy were less than 8%. The assay was applied to the analysis of samples from a bioequivalence study.
Polarimetric Thomson scattering for high Te fusion plasmas
NASA Astrophysics Data System (ADS)
Giudicotti, L.
2017-11-01
Polarimetric Thomson scattering (TS) is a technique for the analysis of TS spectra in which the electron temperature Te is determined from the depolarization of the scattered radiation, a relativistic effect noticeable only in very hot (Te >= 10 keV) fusion plasmas. It has been proposed as a complementary technique to supplement the conventional spectral analysis in the ITER CPTS (Core Plasma Thomson Scattering) system for measurements in high Te, low ne plasma conditions. In this paper we review the characteristics of the depolarized TS radiation with special emphasis to the conditions of the ITER CPTS system and we describe a possible implementation of this diagnostic method suitable to significantly improve the performances of the conventional TS spectral analysis in the high Te range.
Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.
2003-01-01
The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.
Xu, Y; Zhou, S W; Tang, J L; Huang, L Q
2001-11-01
The aim of this study was to establish an high performance liquid chromatographic method for determining acyclovir (ACV) concentration in mouse plasma and tissues. A solution of 0.25 mL 60 g/L perchloric acid and 0.25 mL acetonitrile was added into 0.2 mL plasma or 0.2 g tissues to precipitate proteins. Following centrifugation, the supernatant obtained was injected into a reversed-phase column. Operating conditions were Hypersil ODS column(250 mm x 4.6 mm i.d., 5 microns), methanol-water-acetic acid(1:99:0.5, volume ratio) solution as mobile phase at a flow rate of 1.5 mL/min, UV detection at 252 nm. The detection limit of ACV concentration in plasma was 20 micrograms/L and that in tissues was 50 ng/g. The standard curves for ACV were linear in plasma and homogenate of tissues (r > 0.99). The precision of the method was good and the recoveries of ACV were higher than 97.5%. So this method is rapid, accurate and convenient for determination of ACV concentrations in plasma and tissues.
Converging Resonance Cones in the LAPTAG plasma
NASA Astrophysics Data System (ADS)
Katz, Cami; Ha, Chris; Gekelman, Walter; Pribyl, Patrick; Agmon, Nathan; Wise, Joe; Baker, Bob
2013-10-01
The LAPTAG laboratory is a high school outreach effort that has a 1.5m long 50 cm diameter magnetized plasma device. The plasma is produced by an ICP source (1X109 < n < 5X1011 cm-3) and has computer controlled data acquisition. Ring antennas are used to produce converging resonance cones. The experiment was performed in the quiescent plasma afterglow. The electrostatic cones were produced by rf applied to the rings (80 < f < 120 MHz), where fRF < f
High energy electron acceleration with PW-class laser system
NASA Astrophysics Data System (ADS)
Nakanii, N.; Kondo, K.; Mori, Y.; Miura, E.; Yabuuchi, T.; Tsuji, K.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.; Makino, K.; Yamane, T.; Miyamoto, S.; Horikawa, K.; Kimura, K.; Takeda, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.
2008-06-01
We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ˜1019 cm-3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment.
Surface hardening of cutting elements agricultural machinery vibro arc plasma
NASA Astrophysics Data System (ADS)
Sharifullin, S. N.; Adigamov, N. R.; Adigamov, N. N.; Solovev, R. Y.; Arakcheeva, K. S.
2016-01-01
At present, the state technical policy aimed at the modernization of worn equipment, including agriculture, based on the use of high-performance technology called nanotechnology. By upgrading worn-out equipment meant restoring it with the achievement of the above parameters passport. The existing traditional technologies are not suitable for the repair of worn-out equipment modernization. This is especially true of imported equipment. Out here alone - is the use of high-performance technologies. In this paper, we consider the use of vibro arc plasma for surface hardening of cutting elements of agricultural machinery.
NASA Astrophysics Data System (ADS)
Linke, J.
2006-04-01
The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.
NASA Astrophysics Data System (ADS)
Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao
2017-10-01
UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.
Plasma glutamine and upper respiratory tract infection during intensified training in swimmers.
Mackinnon, L T; Hooper, S L
1996-03-01
The purposes of this study were to determine the effects of 4 wk of intensified training on resting plasma glutamine concentration, and to determine whether changes in plasma glutamine concentration relate to the appearance of upper respiratory tract infection (URTI) in swimmers during intensified training. Resting plasma glutamine concentration was measured by high performance liquid chromatography in 24 elite swimmers (8 male, 16 female, ages 15-26 yr) during 4 wk of intensified training (increased volume). Symptoms of overtraining syndrome (OT) were identified in eight swimmers (2 male, 6 female) based on decrements in swim performance and persistent high fatigue ratings; non-overtrained subjects were considered well-trained (WT). Ten of 24 swimmers (42%, 1 OT and 9 WT) exhibited URTI during the study. Plasma glutamine concentration increased significantly (P = 0.04, ANOVA) over the 4 wk, but the increase was significant only in WT swimmers (P < 0.05, post-hoc analysis). Compared with WT, plasma glutamine was significantly lower in OT at the mid-way timepoint only (P < 0.025, t-test with Bonferroni correction). There was no significant difference in glutamine levels between athletes who developed URTI and those who did not. These data suggest that plasma glutamine levels may not necessarily decrease during periods of intensified training, and that the appearance of URTI is not related to changes in plasma glutamine concentration in overtrained swimmers.
Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank
2017-10-04
Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.
Propagation of electron beams in space
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Okuda, H.
1988-01-01
Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.
Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamada, Y.; Fujita, T.; Ishida, S.
2002-09-15
Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (Q{sub DT}{sup eq} up to 1.25) and a high fusion triple product n{sub D}(0){tau}{sub E}T{sub i}(0) = 1.5 x 10{sup 21} m{sup -3}skeV, JT-60U has demonstrated the integrated performance of highmore » confinement, high {beta}{sub N}, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-{beta}{sub p}) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-{beta}{sub p} mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-{beta}{sub p} mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD events on confinement such as sawteeth and ELMs. Through these studies, JT-60U has demonstrated applicability of the high confinement modes to ITER and the steady-state tokamak reactors.« less
Plasma Doping—Enabling Technology for High Dose Logic and Memory Applications
NASA Astrophysics Data System (ADS)
Miller, T.; Godet, L.; Papasouliotis, G. D.; Singh, V.
2008-11-01
As logic and memory device dimensions shrink with each generation, there are more high dose implants at lower energies. Examples include dual poly gate (also referred to as counter-doped poly), elevated source drain and contact plug implants. Plasma Doping technology throughput and dopant profile benefits at these ultra high dose and lower energy conditions have been well established [1,2,3]. For the first time a production-worthy plasma doping implanter, the VIISta PLAD tool, has been developed with unique architecture suited for precise and repeatable dopant placement. Critical elements of the architecture include pulsed DC wafer bias, closed-loop dosimetry and a uniform low energy, high density plasma source. In this paper key performance metrics such as dose uniformity, dose repeatability and dopant profile control will be presented that demonstrate the production-worthiness of the VIISta PLAD tool for several high dose applications.
A simple high performance liquid chromatography method for determination of rebamipide in rat urine.
Cooper, Dustin L; Harirforoosh, Sam
2014-01-01
Rebamipide is a mucoprotective agent commonly used to prevent nonsteriodal anti-inflammatory drug-induced gastrointenstinal side effects [1]. Human plasma and urine analysis of rebamipide utilizing high performance liquid chromatography (HPLC) have been reported [2]. Recently, we reported on the plasma levels of rebamipide in presense or absence of celecoxib or diclofenac in rats [3] using a modified HPLC method of detection developed by Jeoung et al. [4]. To tailor the method towards use in urinary rebamipide extraction and analysis, the following modifications were made:•To compensate for high concentrations of rebamipide found in urine, a new rebamipide stock solution was prepared with a final concentration of 50,000 ng/mL.•Rat urine calibration standards were obtained within the range of 50-1000 ng/mL and 1000-50,000 ng/mL.•Plasma samples were replaced with urine samples.
NASA Astrophysics Data System (ADS)
Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou
2018-05-01
Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.
Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure
NASA Astrophysics Data System (ADS)
Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira
2013-11-01
Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.
Design of a High-Energy, Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Thio, Y. C. F.; Cassibry, J. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Design details of a proposed high-energy (approx. 50 kJ/pulse), two-stage pulsed plasma thruster are presented. The long-term goal of this project is to develop a high-power (approx. 500 kW), high specific impulse (approx. 7500 s), highly efficient (approx. 50%),and mechanically simple thruster for use as primary propulsion in a high-power nuclear electric propulsion system. The proposed thruster (PRC-PPT1) utilizes a valveless, liquid lithium-fed thermal plasma injector (first stage) followed by a high-energy pulsed electromagnetic accelerator (second stage). A numerical circuit model coupled with one-dimensional current sheet dynamics, as well as a numerical MHD simulation, are used to qualitatively predict the thermal plasma injection and current sheet dynamics, as well as to estimate the projected performance of the thruster. A set of further modelling efforts, and the experimental testing of a prototype thruster, is suggested to determine the feasibility of demonstrating a full scale high-power thruster.
Spectroscopic Study of a Pulsed High-Energy Plasma Deflagration Accelerator
NASA Astrophysics Data System (ADS)
Loebner, Keith; Underwood, Thomas; Mouratidis, Theodore; Cappelli, Mark
2015-11-01
Observations of broadened Balmer lines emitted by a highly-ionized transient plasma jet are presented. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged broadening data for a complete cross section of the plasma jet, and the data is Abel inverted to derive the radial plasma density distribution. This measurement is performed over narrow gate widths and at multiple axial positions to provide high spatial and temporal resolution. A streak camera coupled to a spectrometer is used to obtain continuous-time broadening data over the entire duration of the discharge event (10-50 microseconds). Analyses of discharge characteristics and comparisons with previous work are discussed. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program, as well as the National Defense Science Engineering Graduate Fellowship.
Evaluation of a handheld point-of-care analyser for measurement of creatinine in cats.
Reeve, Jenny; Warman, Sheena; Lewis, Daniel; Watson, Natalie; Papasouliotis, Kostas
2017-02-01
Objectives The aim of the study was to evaluate whether a handheld creatinine analyser (StatSensor Xpress; SSXp), available for human patients, can be used to measure creatinine reliably in cats. Methods Analytical performance was evaluated by determining within- and between-run coefficient of variation (CV, %), total error observed (TE obs , %) and sigma metrics. Fifty client-owned cats presenting for investigation of clinical disease had creatinine measured simultaneously, using SSXp (whole blood and plasma) and a reference instrument (Konelab, serum); 48 paired samples were included in the study. Creatinine correlation between methodologies (SSXp vs Konelab) and sample types (SSXp whole blood vs SSXp plasma ) was assessed by Spearman's correlation coefficient and agreement was determined using Bland-Altman difference plots. Each creatinine value was assigned an IRIS stage (1-4); correlation and agreement between Konelab and SSXp IRIS stages were evaluated. Results Within-run CV (4.23-8.85%), between-run CV (8.95-11.72%), TE obs (22.15-34.92%) and sigma metrics (⩽3) did not meet desired analytical requirements. Correlation between sample types was high (SSXp whole blood vs SSXp plasma ; r = 0.89), and between instruments was high (SSXp whole blood vs Konelab serum ; r = 0.85) to very high (SSXp plasma vs Konelab serum ; r = 0.91). Konelab and SSXp whole blood IRIS scores exhibited high correlation ( r = 0.76). Packed cell volume did not significantly affect SSXp determination of creatinine. Bland-Altman difference plots identified a positive bias for the SSXp (7.13 μmol/l SSXp whole blood ; 20.23 μmol/l SSXp plasma ) compared with the Konelab. Outliers (1/48 whole blood; 2/48 plasma) occurred exclusively at very high creatinine concentrations. The SSXp failed to identify 2/21 azotaemic cats. Conclusions and relevance Analytical performance of the SSXp in feline patients is not considered acceptable. The SSXp exhibited a high to very high correlation compared with the reference methodology but the two instruments cannot be used interchangeably. Improvements in the SSXp analytical performance are needed before its use can be recommended in feline clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, M.; Taylor, C. N.; Pawelko, R. J.
2016-04-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
NASA Astrophysics Data System (ADS)
Dechana, A.; Thamboon, P.; Boonyawan, D.
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.
Dechana, A; Thamboon, P; Boonyawan, D
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.
Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-02-01
Chemerin is an adipose tissue-derived adipokine thought to decrease insulin sensitivity and increase cardiometabolic risk. This study aimed to assess the association of chemerin with cardiometabolic risk and physical performance and examine its response to high-intensity interval training (HIIT). Eighteen young men have been applied a HIIT program during 8 weeks. Plasma chemerin together with several cardiometabolic factors and physical performance indices were determined before and after the training program. Plasma chemerin and insulin were assessed using immunoenzymatic methods. The homeostasis model assessment (HOMA-IR) index was calculated as an estimate of insulin resistance. Basal plasma chemerin was positively correlated with body mass index (r=0.782, p<0.001), body fat (r=0.767, p<0.001), total (r=0.686, p=0.002) and LDL (r=0.587, p=0.010) cholesterol, triglycerides (r=0.775, p<0.001), HOMA-IR (r=0.673, p=0.002) and C-reactive protein (r=0.765, p<0.001). With regards to physical performance, chemerin was negatively correlated with maximal oxygen uptake (r=-0.572, p=0.013) and squat jump (r=-0.627, p=0.005), but positively related to 10-m sprint (r=0.716, p=0.001) and 30-m sprint (r=0.667, p=0.002) times. HIIT program resulted in significant improvements in body composition, plasma lipids and insulin sensitivity. However, no significant change was detected for plasma chemerin in response to HIIT (134±50.7 ng/mL vs. 137±51.9 ng/mL, p=0.750). Basal plasma chemerin is associated with cardiometabolic health and physical performance in young men. Following HIIT, cardiometabolic health and physical performance had improved, but no significant change had occurred for plasma chemerin.
Quantitative Determination of Levonorgestrel in Fish Plasma using UPLC-MS/MS
In this study, a sensitive high-performance liquid chromatography electrospray tandem mass spectrometric method was developed for the determination of levonorgestrel in fish plasma using levonorgestrel-d6 as an internal standard (IS). In the laboratory, the fish cunner, (Tautogol...
Dependence of the source performance on plasma parameters at the BATMAN test facility
NASA Astrophysics Data System (ADS)
Wimmer, C.; Fantz, U.
2015-04-01
The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).
NASA Astrophysics Data System (ADS)
Focsa, C.; Gurlui, S.; Nica, P.; Agop, M.; Ziskind, M.
2017-12-01
We present a short overview of studies performed in our research groups over the last decade on the characterization of transient plasma plumes generated by laser ablation in various temporal regimes, from nanosecond to femtosecond. New results are also presented along with this overview, both being placed in the context of similar studies performed by other investigators. Optical (fast gate intensified CCD camera imaging and space- and time-resolved emission spectroscopy) and electrical (mainly Langmuir probe) methods have been applied to experimentally explore the dynamics of the plasma plume and its constituents. Peculiar effects as plume splitting and sharpening or oscillations onset have been evidenced in vacuum at high laser fluence. New theoretical approaches have been developed to account for the experimental observations.
Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster
NASA Technical Reports Server (NTRS)
Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2014-01-01
In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.
Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Jacobson, David (Technical Monitor)
2004-01-01
This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.
Degradation of α-Naphthol by Plasma in Aqueous Solution
NASA Astrophysics Data System (ADS)
Gao, Jin-zhang; Hu, Zhong-ai; Wang, Xiao-yan; Hou, Jing-guo; Lu, Xiao-quan; Kang, Jing-wan
2001-02-01
Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis (CGDE). The results showed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphthol disappearance caused by plasma was proposed according to the detected intermediate products.
Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D
Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...
2015-01-12
Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-12-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...
2015-12-22
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
Development of GEM gas detectors for X-ray crystal spectrometry
NASA Astrophysics Data System (ADS)
Chernyshova, M.; Czarski, T.; Dominik, W.; Jakubowska, K.; Rzadkiewicz, J.; Scholz, M.; Pozniak, K.; Kasprowicz, G.; Zabolotny, W.
2014-03-01
Two Triple Gas Electron Multiplier (Triple-GEM) detectors were developed for high-resolution X-ray spectroscopy measurements for tokamak plasma to serve as plasma evolution monitoring in soft X-ray region (SXR). They provide energy resolved fast dynamic plasma radiation imaging in the SXR with 0.1 kHz frequency. Detectors were designed and constructed for continuous data-flow precise energy and position measurement of plasma radiation emitted by metal impurities, W46+ and Ni26+ ions, at 2.4 keV and 7.8 keV photon energies, respectively. High counting rate capability of the detecting units has been achieved with good position resolution. This article presents results of the laboratory and tokamak experiments together with the system performance under irradiation by photon flux from the plasma core.
Research methods of plasma stream interaction with heat-resistant materials
NASA Astrophysics Data System (ADS)
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Chinnov, V. F.; Demirov, N. A.; Kavyrshin, D. I.; Ageev, A. G.; Khromov, M. A.
2016-11-01
An experimental automated system was designed and constructed for studying the parameters and characteristics of non-stationary interacting system high-enthalpy-plasma stream-investigated sample: enthalpy of plasma in the incident stream; speed and temperature of plasma stream; temperature of electrons and heavy particles, ionic composition and their spatial distribution; heat flux incident on the sample (kW/cm2); surface temperature of the sample; ablation of the sample material, and others. Measurements of achievable plasma heat flux levels are carried out by calorimetry of plasma streams incident on the surface of multisection copper calorimeter. Determination of acceleration characteristics for profiled plasma torch nozzle, as well as the gas flow rate is produced by measuring the total pressure using the Pitot tube. Video visualization of interacting system is carried out using synchronized high-speed cameras. Micropyrometry of the selected zone on the sample surface is carried out by high-speed, three-wavelength pyrometer. To measure the rate of mass loss of the sample, in addition to the weighing method of evaluation the methods of laser knife and two-position stereoscopy are used. Plasma and sample emission characteristics are performed with two separate spectrometers.
NASA Astrophysics Data System (ADS)
Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.
2018-02-01
A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.
Plasma detachment in divertor tokamaks
NASA Astrophysics Data System (ADS)
Leonard, A. W.
2018-04-01
Observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasma E× B drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.
NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment.
Chatraie, Maedeh; Torkaman, Giti; Khani, Mohammadreza; Salehi, Hossein; Shokri, Babak
2018-04-04
According to high incidence and prevalence of pressure ulcers worldwide, the purpose of this study is using of non-thermal atmospheric plasma as a novel therapy for pressure ulcers. Cold plasma was produced by applying a high-voltage (5 kV) and high-frequency (25 kHz), to helium gas. Under general anesthesia and sterile conditions, two circular magnets were used to create pressure ulcers on the dorsal skin of adult rats. The wounds were divided randomly into control and plasma-treated groups. Animals in the plasma-treated group received plasma radiation for 5 days, each day 3 times and every time 60 s. Mechanical assays were performed to determine plasma effects on the mechanical strength of the repaired tissue. The results showed that mechanical strength of repaired wound in the plasma-treated group was significantly higher than that in the control group (p < 0.05). In addition, evidence from histological studies indicates a significantly accelerated wound re-epithelialization in comparison with the control group; angiogenesis and fibrosis (collagen synthesis) were also significantly increased and the inflammation phase of wound healing was shorter in the plasma-treated group. The plasma treatment also resulted in significant wound contraction and acceleration of wound healing. The findings of present study indicate the effects of cold plasma on pressure ulcer treatment.
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
Ono, I; Matsuda, K; Kanno, S
1997-05-09
A simple, rapid and sensitive two column-switching high-performance liquid chromatographic (HPLC) method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (AY4166, I) and its seven metabolites in human plasma and urine. Measurements of I and its metabolites were carried out by two column-switching HPLC, because metabolites were classified into two groups according to their retention times. After purification of plasma samples using solid-phase extraction and direct dilution of urinary samples, I and each metabolite were injected into HPLC. The calibration graphs for plasma and urinary samples were linear in the ranges 0.1 to 10 microg ml(-1) and 0.5 to 50 microg ml(-1), respectively. Recoveries of I and its seven metabolites were over 88% by the standard addition method and the relative standard deviations of I and its metabolites were 1-6%.
Lampen, P; Neumeyer, J L; Baldessarini, R J
1988-04-29
The dopamine receptor agonist R(-)N-n-propylnorapomorphine (NPA) and its proposed pro-drug R(-)10,11-methylenedioxy-N-n-propylnoraporphine (MDO-NPA) were isolated simultaneously from monkey plasma using a solid-phase extraction procedure. R(-)Apomorphine (APO) and R(-)10,11-methylenedioxyaporphine (MDO-APO) were added as internal standards, and separation and quantification were by high-performance liquid chromatography with electrochemical or ultraviolet detection of the free catechol and MDO compounds, respectively. The detection limits for NPA and MDO-NPA in plasma were 0.5 and 10 ng/ml and the coefficient of variation (S.D./mean) within assays and between days of assays for both drugs was 5.6% or less. Quantification of plasma levels of NPA and MDO-NPA was possible at ranges of 2-1000 and 40-5000 ng/ml, respectively, including concentrations found after intravenous administration of these agents.
Design of a new nozzle for direct current plasma guns with improved spraying parameters
NASA Astrophysics Data System (ADS)
Jankovic, M.; Mostaghimi, J.; Pershin, V.
2000-03-01
A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.
Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...
2015-05-26
For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less
NASA Astrophysics Data System (ADS)
Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun
2017-01-01
The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.
Tungsten dust impact on ITER-like plasma edge
Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...
2015-01-12
The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less
Bhargava, Darpan; Deshpande, Ashwini; Thomas, Shaji; Sharma, Yogesh; Khare, Piush; Sahu, Sanjeev Kumar; Dubey, Suyash; Pandey, Ankit; Sreekumar, K
2016-09-01
To determine systemic absorption of dexamethasone by detection of plasma concentration using high performance liquid chromatography following its administration along with local anesthetic agent as a mixture via pterygomandibular space. A prospective randomized double-blind clinical study was undertaken to analyze the plasma concentration of dexamethasone after intra-space pterygomandibular injection along with local anesthesia. The study was performed as per split mouth model where the mandibular quadrant allocation was done on a random basis considering each of the 30 patients is included in the two study interventions (SS and CS). For the study site (SS) procedures, dexamethasone was administered as a mixture (2 % lignocaine with 1:200,000 epinephrine and 4 mg dexamethasone) intra-space. In the control site (CS) procedures, a regular standard inferior alveolar nerve block was administered, and dexamethasone was given as intramuscular injection. The plasma dexamethasone determination was done in venous blood 30- and 60-min post injection using high performance liquid chromatography (HPLC). The clinical parameters like pain; swelling; and mouth opening on the first, third, and seventh post-operative day were analyzed and compared. No significant difference was found in the clinical parameters assessed; comparative evaluation showed less swelling in the SS interventions. The plasma concentration of dexamethasone for the CS interventions was 226 ± 47 ng/ml at 30-min and 316 ± 81.6 ng/ml at 60-min post injection, and for SS, it was 221 ± 81.6 ng/ml at 30-min and 340 ± 105 ng/ml at 60-min post injection. On inter-site (CS and SS) comparison, no statistically significant difference was ascertained in dexamethasone plasma concentration at 30-min post injection (P = 0.77) and at 60-min post injection. (P = 0.32). Intra-space (pterygomandibular space) administration of dexamethasone can achieve statistically similar plasma concentration of the drug as when the same dose is administered intramuscularly with demonstration of similar clinical effects.
Markus, C Rob; Verschoor, E; Firk, C; Kloek, J; Gerhardt, C C
2010-10-01
Reduced brain serotonin function is involved in stress-related disturbances and may particularly occur under chronic stress. Although serotonin production directly depends on the availability of its plasma dietary amino acid precursor tryptophan (TRP), previously described effects of tryptophan-rich food sources on stress-related behavior are rather modest. Recently, an egg protein hydrolysate (EPH) was developed that showed a much greater effect on brain TRP availability than pure TRP and other TRP-food sources and therefore may be more effective for performance under stress. The aim of the present study was to investigate the effects of EPH compared to placebo protein on plasma amino acids, stress coping and performance in subjects with high and low chronic stress vulnerabilities. In a placebo-controlled, double-blind, crossover study, 17 participants with high and 18 participants with low chronic stress vulnerabilities were monitored for mood and performance under acute stress exposure either following intake of EPH or placebo. EPH significantly increased plasma TRP availability for uptake into the brain, decreased depressive mood in all subjects and improved perceptual-motor and vigilance performance only in low chronic stress-vulnerable subjects. The acute use of a TRP-rich egg protein hydrolysate (EPH) is an adequate method to increase plasma TRP for uptake into the brain and may be beneficial for perceptual-motor and vigilance performance in healthy volunteers. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Manipulating Energetic Ion Velocity Space to Control Instabilities and Improve Tokamak Performance
NASA Astrophysics Data System (ADS)
Pace, David C.
2017-10-01
The first-ever demonstration of independent current (I) and voltage (V) control of high power neutral beams in tokamak plasma shots has successfully reduced the prevalence of instabilities and improved energetic ion confinement in experiments at the DIII-D tokamak. Energetic ions drive Alfvén eigenmode (AE) instabilities through a resonant energy exchange that can increase radial diffusion of the ions, thereby reducing beam heating and current drive efficiency. This resonance is incredibly sensitive to the ion velocity and orbit topology, which then allows changes in beam voltage (keeping the injected power constant through compensating changes in current) to remove nearly all instability drive. The implementation of temporal control of beam current and voltage allows for a reduction in the resonant energetic ion velocity space while maintaining the ability to inject maximum power. DIII-D low confinement (L-mode) plasmas demonstrate a nearly complete avoidance of AE activity in plasmas with 55 kV beam injection compared to the many AEs that are observed in plasmas featuring similar total beam power at 70 kV. Across the experimental range of beam settings, resulting increases in beam divergence have been inconsequential. High performance steady-state scenarios featuring equilibria that are conducive to dense arrays of Alfvén waves benefit the most from instability control mechanisms. One such scenario, the so-called high qmin scenario, demonstrates improved confinement and equilibrium evolution when the injected beam voltage begins at lower values (i.e., fewer resonances) and then increases as the plasma reaches its stationary period. These results suggest a future in which plasma confinement and performance is improved through continuous feedback control of auxiliary heating systems such that the energetic ion distribution is constantly adapted to produce an optimal plasma state. Work supported by US DOE under DE-FC02-04ER54698.
Eckhoff, C; Nau, H
1990-08-01
Human plasma was analyzed by high performance liquid chromatography for the presence of retinoic acid and 4-oxoretinoic acid isomers. Peaks that coeluted with the reference compounds all-trans-retinoic acid, 13-cis-retinoic acid, and 13-cis-4-oxoretinoic acid were routinely observed in human plasma. These retinoids were unequivocally identified by the following methods: comigration with reference compounds under several high performance liquid chromatographic conditions; comparison of ultraviolet spectra with those of reference compounds; derivatization with diazomethane and coelution of the methyl esters with reference compounds in a high performance liquid chromatographic system as well as in a gas chromatography system with a mass selective detector. In vitro formation of 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid as artifacts during the analytical procedure was excluded by control experiments. The mean plasma concentrations of the vitamin A metabolites in ten male volunteers were: all-trans-retinoic acid: 1.32 +/- 0.46 ng/ml; 13-cis-retinoic acid: 1.63 +/- 0.85 ng/ml; and 13-cis-4-oxoretinoic acid: 3.68 +/- 0.99 ng/ml. After oral dosing with vitamin A (833 IU/kg body weight) in five male volunteers, mean plasma all-trans-retinoic acid increased to 3.92 +/- 1.40 ng/ml and 13-cis-retinoic acid increased to 9.75 +/- 2.18 ng/ml. Maximal plasma 13-cis-4-oxoretinoic acid concentrations (average 7.60 +/- 1.45 ng/ml) were observed 6 h after dosing which was the last time point in this study. Concentrations of all-trans-4-oxoretinoic acid were low or not detectable. Our findings suggest that, in addition to all-trans-retinoic acid, 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid are present in normal human plasma as metabolites of vitamin A.
NASA Astrophysics Data System (ADS)
Karmakar, Anupam; Kumar, Naveen; Shvets, Gennady; Polomarov, Oleg; Pukhov, Alexander
2008-12-01
A new model describing the Weibel instability of a relativistic electron beam propagating through a resistive plasma is developed. For finite-temperature beams, a new class of negative-energy magnetosound waves is identified, whose growth due to collisional dissipation destabilizes the beam-plasma system even for high beam temperatures. We perform 2D and 3D particle-in-cell simulations and show that in 3D geometry the Weibel instability persists even for collisionless background plasma. The anomalous plasma resistivity in 3D is caused by the two-stream instability.
Cognitive style, alprazolam plasma levels, and treatment response in panic disorder.
Uhlenhuth, E H; Starcevic, Vladan; Qualls, Clifford; Antal, Edward J; Matuzas, William; Javaid, Javaid I; Barnhill, Jamie
2008-01-01
This study investigated an anxiety-prone cognitive style (measured by the Anxious Thoughts and Tendencies Questionnaire, AT&T) as a predictor of the acute response to increasing alprazolam plasma levels in panic disorder. Panic disorder patients (n=26) were treated with escalating doses of alprazolam for 4 weeks, then a fixed dose of 1 mg four times a day for 4 weeks. At 0, 1, 2, 3, 4, 6, and 8 weeks, trough alprazolam plasma levels; clinical, self-report, and performance measures; and vital signs were assessed. Panic attack data were from daily diaries. The repeated response measures were analyzed in relation to alprazolam plasma levels using SAS GENMOD, with patients classified as high or low on the baseline AT&T. Panic attacks, anticipatory anxiety, fear, avoidance, overall agoraphobia, the Hamilton Anxiety Rating Scale, and clinicians' global ratings improved with increasing alprazolam plasma levels. Hopkins Symptom Checklist-90 Anger-Hostility; Profile of Mood States Vigor, Confusion, and Friendliness; and speed and accuracy of performance worsened. Patients with high AT&T scores were worse throughout the study on situational panics, fear, avoidance, overall agoraphobia, the Hamilton Anxiety Rating Scale, the Hamilton Rating Scale for Depression, and Clinical Global Improvement; most Hopkins Symptom Checklist-90 clusters; Profile of Mood States Anxiety, Depression, and Confusion; and Continuous Performance Task omissions. We conclude that in panic disorder: (1) alprazolam has a broad spectrum of clinical activity related to plasma levels in individual patients; (2) sedation, disinhibition, and performance deficits may persist for at least a month after dose escalation ends; (3) marked anxiety-prone cognitions predict more symptoms throughout treatment, but do not modify the response to alprazolam and therefore should not influence the choice of alprazolam as treatment. Published 2007 Wiley-Liss, Inc.
Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin
2016-03-01
Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has become the standard of care in the management of HIV-infected patients. There are several commercially available assays that have been implemented for the detection of HIV-1 RNA in plasma. Here, the new Hologic Aptima® HIV-1 Quant Dx assay (Aptima HIV) was compared to the Roche COBAS® TaqMan® HIV-1 Test v2.0 for use with the High Pure System (HPS/CTM). The performance characteristics of the assays were assessed using commercially available HIV reference panels, dilution of the WHO 3rd International HIV-1 RNA International Standard (WHO-IS) and plasma from clinical specimens. Assay performance was determined by linear regression, Deming correlation analysis and Bland-Altman analysis. Testing of HIV-1 reference panels revealed excellent agreement. The 61 clinical specimens quantified in both assays were linearly associated and strongly correlated. The Aptima HIV assay offers performance comparable to that of the HPS/CTM assay and, as it is run on a fully automated platform, a significantly improved workflow.
NASA Astrophysics Data System (ADS)
Medvedev, Nickolay S.; Shaverina, Anastasiya V.; Tsygankova, Alphiya R.; Saprykin, Anatoly I.
2018-04-01
The paper presents а comparison of analytical performances of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for trace analysis of high purity bismuth and bismuth oxide. Matrix effects in the ICP-MS and ICP-AES methods were studied as a function of Bi concentration, ICP power and nebulizer flow rate. For ICP-MS the strong dependence of the matrix effects versus the atomic mass of analytes was observed. For ICP-AES the minimal matrix effects were achieved for spectral lines of analytes with low excitation potentials. The optimum degree of sample dilution providing minimum values of the limits of detection (LODs) was chosen. Both methods let us to reach LODs from n·10-7 to n·10-4 wt% for more than 50 trace elements. For most elements the LODs of ICP-MS were lower in comparison to ICP-AES. Validation of accuracy of the developed techniques was performed by "added-found" experiments and by comparison of the results of ICP-MS and ICP-AES analysis of high-purity bismuth oxide.
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)
2001-01-01
This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.
Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing
NASA Astrophysics Data System (ADS)
Makhneva, Ekaterina; Obrusník, Adam; Farka, Zdeněk; Skládal, Petr; Vandenbossche, Marianne; Hegemann, Dirk; Zajíčková, Lenka
2018-01-01
Stable carboxyl-rich plasma polymers (PPs) were deposited onto the gold surface of surface plasmon resonance (SPR) chips under conditions that were chosen based on lumped kinetic model results. Carboxyl-rich films are of high interest for bio-applications thanks to their high reactivity, allowing the formation of covalent linkages between biomolecules and a surface. Accordingly, the monoclonal antibody, specific to human serum albumin (HSA), was immobilized and the performance of SPR immunosensors was evaluated by the immunoassay flow test. The developed sensors performed high level of stability and provided selective and high response to the HSA antigen solutions. The achieved results confirmed that the presented methodologies for the grafting of biomolecules on the gold surfaces have great potential for biosensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vacri, M. L. di; Nisi, S.; Balata, M.
2013-08-08
The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Levelmore » Assay) of the LNGS underground lab using HPGe detectors.« less
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
NASA Astrophysics Data System (ADS)
Neff, A. L.; Allain, J. P.; Morgan, T. W.
2017-10-01
In a burning fusion plasma, the materials on the walls of the plasma vessel will have a significant effect on the performance of the plasma. Any amount of high Z wall material that is eroded will contaminate and cool the plasma and may lead to a disruption. Additionally, if the material retains or reflects fuel it can affect the stability of the plasma. A high recycling wall that retains minimal fuel will allow better control of the fuel inventory, especially tritium, in the walls. In contrast, a low recycling wall leads to improved plasma performance by preventing instabilities in the plasma. We have observed that when 5% He is added to D ions during low flux (1017 m-2s-1) dual ion beam irradiation the amount of D retained in the Li film diminishes. This conclusion is based on the reduction of a XPS peak (at 533 eV) associated with D retention in Li films. To further investigate this phenomenon, we have continued the dual beam studies in IGNIS (Ion-Gas-Neutral Interactions with Surfaces) by varying the energy and concentration of He to D. Additionally, we exposed lithiated W to sequential D and He plasmas (1024 m-2s-1 flux) in Magnum PSI at DIFFER. With XPS, we analyzed the chemistry of the Li films and determined changes in retention. These results will be presented. Work supported by DOE contract DE-SC0010719.
NASA Technical Reports Server (NTRS)
Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.;
2015-01-01
Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.
Plasma gun with coaxial powder feed and adjustable cathode
NASA Technical Reports Server (NTRS)
Zaplatynsky, Isidor (Inventor)
1991-01-01
An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.
NASA Astrophysics Data System (ADS)
Shesterikov, I.; Von Stechow, A.; Grulke, O.; Stenzel, R.; Klinger, T.
2017-07-01
A fast-swept Langmuir probe capable to be biased at a high voltages has been constructed and successfully operated at the VINETA-II magnetic reconnection experiment. The presented circuit has two main features beneficial for fast transient parameter changes in laboratory experiments as, e.g., plasma guns or magnetic reconnection: the implementation simplicity and the high voltage sweep range. This work presents its design and performance for time-dependent measurements of VINETA-II plasmas. The probe is biased with a sinusoidal voltage at a fixed frequency. Current - voltage characteristics are measured along the falling and rising slopes of the probe bias. The sweep frequency is fsweep= 150 kHz. The spatiotemporal evolution of radial plasma profiles is obtained by evaluation of the probe characteristics. The plasma density measurements agree with those derived from a microwave interferometer, demonstrating the reliability of the measurements. As a model plasma system, a plasma gun discharge with typical pulse times of 60 μ s is chosen.
Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells.
Bao, Xichang; Zhu, Qianqian; Wang, Ting; Guo, Jing; Yang, Chunpeng; Yu, Donghong; Wang, Ning; Chen, Weichao; Yang, Renqiang
2015-04-15
A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under the illumination of AM 1.5G (100 mW/cm(2)). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2 plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics.
Sugimoto, Hiroshi; Kakehi, Masaaki; Satomi, Yoshinori; Kamiguchi, Hidenori; Jinno, Fumihiro
2015-10-01
We developed a highly sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method with an atmospheric pressure chemical ionization interface to determine 24S-hydroxycholesterol, a major metabolite of cholesterol formed by cytochrome P450 family 46A1, in human plasma without any derivatization step. Phosphate buffered saline including 1% Tween 80 was used as the surrogate matrix for preparation of calibration curves and quality control samples. The saponification process to convert esterified 24S-hydroxycholesterol to free sterols was optimized, followed by liquid-liquid extraction using hexane. Chromatographic separation of 24S-hydroxycholesterol from other isobaric endogenous oxysterols was successfully achieved with gradient mobile phase comprised of 0.1% propionic acid and acetonitrile using L-column2 ODS (2 μm, 2.1 mm id × 150 mm). This assay was capable of determining 24S-hydroxycholesterol in human plasma (200 μL) ranging from 1 to 100 ng/mL with acceptable intra- and inter-day precision and accuracy. The potential risk of in vitro formation of 24S-hydroxycholesterol by oxidation from endogenous cholesterol in human plasma was found to be negligible. The stability of 24S-hydroxycholesterol in relevant solvents and human plasma was confirmed. This method was successfully applied to quantify the plasma concentrations of 24S-hydroxycholesterol in male and female volunteers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brouwer-Brolsma, Elske M; Dhonukshe-Rutten, Rosalie A M; van Wijngaarden, Janneke P; van de Zwaluw, Nikita L; in 't Veld, Paulette H; Wins, Sophie; Swart, Karin M A; Enneman, Anke W; Ham, Annelies C; van Dijk, Suzanne C; van Schoor, Natasja M; van der Velde, Nathalie; Uitterlinden, Andre G; Lips, Paul; Kessels, Roy P C; Steegenga, Wilma T; Feskens, Edith J M; de Groot, Lisette C P G M
2015-07-01
First, the association between serum 25-hydroxyvitamin D (25[OH]D) and cognitive performance was examined. Second, we assessed whether there was evidence for an interplay between 25(OH)D and glucose homeostasis in the association with cognitive performance. Associations were studied using cross-sectional data of 776 (3 domains) up to 2722 (1 domain) Dutch community-dwelling older adults, aged 65 years or older. Serum 25(OH)D, plasma glucose, and insulin concentrations were obtained. Cognitive performance was assessed with an extensive cognitive test battery. Prevalence ratios (PRs) were calculated to quantify the association between 25(OH)D and cognition; poor performance was defined as the worst 10% of the distribution of the cognitive scores. The overall median MMSE score was 29 (IQR 28-30). Higher serum 25(OH)D was associated with better attention and working memory, PR 0.50 (95% CI 0.29-0.84) for the third serum 25(OH)D tertile, indicating a 50% lower probability of being a poor performer than participants in the lowest tertile. Beneficial trends were shown for 25(OH)D with executive function and episodic memory. Serum 25(OH)D was not associated with plasma glucose or insulin. Plasma insulin only modified the association between serum 25(OH)D and executive function (P for interaction: .001), suggesting that the improvement in executive function with high 25(OH)D concentrations is stronger in participants with high plasma insulin concentrations compared with those with low plasma insulin concentrations. Higher 25(OH)D concentrations significantly associated with better attention and working memory performance. This study does not demonstrate an interplay between serum 25(OH)D and glucose homeostasis in the association with cognitive performance. Copyright © 2015 AMDA - The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Diagnostic-management system and test pulse acquisition for WEST plasma measurement system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Juszczyk, B.; Zabolotny, W.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.; Mazon, D.; Malard, P.
2014-11-01
This paper describes current status of electronics, firmware and software development for new plasma measurement system for use in WEST facility. The system allows to perform two dimensional plasma visualization (in time) with spectrum measurement. The analog front-end is connected to Gas Electron Multiplier detector (GEM detector). The system architecture have high data throughput due to use of PCI-Express interface, Gigabit Transceivers and sampling frequency of ADC integrated circuits. The hardware is based on several years of experience in building X-ray spectrometer system for Joint European Torus (JET) facility. Data streaming is done using Artix7 FPGA devices. The system in basic configuration can work with up to 256 channels, while the maximum number of measurement channels is 2048. Advanced firmware for the FPGA is required in order to perform high speed data streaming and analog signal sampling. Diagnostic system management has been developed in order to configure measurement system, perform necessary calibration and prepare hardware for data acquisition.
Louveau, B; Fernandez, C; Zahr, N; Sauvageon-Martre, H; Maslanka, P; Faure, P; Mourah, S; Goldwirt, L
2016-12-01
A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP 8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin. Copyright © 2016 John Wiley & Sons, Ltd.
Cavedal, Luiz E; Mendes, Fabiana D; Domingues, Claudia C; Patni, Anil K; Monif, Tausif; Reyar, Simrit; Pereira, Alberto Dos S; Mendes, Gustavo D; De Nucci, Gilberto
2007-01-01
A rapid, sensitive and specific method for quantifying clonazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using a hexane/diethylether (20 : 80, v/v) solution. The extracts were analysed by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on a Jones Genesis C8 4 microm analytical column (100 x 2.1 mm i.d.). The method had a chromatographic run time of 3.0 min and a linear calibration curve over the range 0.5-50 ng/ml (r2 > 0.9965). The limit of quantification was 0.5 ng/ml. This HPLC/MS/MS procedure was used to assess the bioequivalence of two clonazepam 2 mg tablet formulations (clonazepam test formulation from Ranbaxy Laboratories Ltd and Rivotril from Roche Laboratórios Ltda as standard reference formulation). Copyright 2006 John Wiley & Sons, Ltd.
Long pulse high performance plasma scenario development for the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.
2006-05-01
The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.
NASA Astrophysics Data System (ADS)
Kaise, Toshikazu
Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzic, David
The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejectionmore » was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.« less
Zobiak, Bernd; Failla, Antonio Virgilio
2018-03-01
Understanding the cellular processes that occur between the cytosol and the plasma membrane is an important task for biological research. Till now, however, it was not possible to combine fast and high-resolution imaging of both the isolated plasma membrane and the surrounding intracellular volume. Here, we demonstrate the combination of fast high-resolution spinning disk (SD) and total internal reflection fluorescence (TIRF) microscopy for specific imaging of the plasma membrane. A customised SD-TIRF microscope was used with specific design of the light paths that allowed, for the first time, live SD-TIRF experiments at high acquisition rates. A series of experiments is shown to demonstrate the feasibility and performance of our setup. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Application of Plasma Waveguides to High Energy Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milchberg, Howard M
2013-03-30
The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysismore » of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.« less
Lamorde, Mohammed; Fillekes, Quirine; Sigaloff, Kim; Kityo, Cissy; Buzibye, Allan; Kayiwa, Joshua; Merry, Concepta; Nakatudde-Katumba, Lillian; Burger, David; de Wit, Tobias F Rinke
2014-09-01
In resource limited settings access to laboratory monitoring of HIV treatment is limited and therapeutic drug monitoring is generally unavailable. This study aimed to evaluate nevirapine concentrations in saliva using low-cost thin-layer chromatography (TLC) and nevirapine concentrations in plasma and saliva using high performance liquid chromatography (HPLC) methods; and to correlate nevirapine plasma concentrations to HIV treatment outcomes in Ugandan patients. Paired plasma and stimulated saliva samples were obtained from Ugandan, HIV-infected adults on nevirapine-based ART. Nevirapine concentrations were measured using a validated HPLC method and a novel TLC method. Plasma nevirapine concentrations <3.0 mg/L using HPLC were considered subtherapeutic. Negative/positive predictive values of different thresholds for subtherapeutic nevirapine concentrations in saliva were determined. Virologic testing and, if applicable, HIV drug resistance testing was performed. Median (interquartile range, IQR) age of 297 patients was 39.1 (32.8-45.2) years. Three hundred saliva and 287 plasma samples were available for analysis. Attempts failed to determine nevirapine saliva concentrations by TLC. Using HPLC, median (IQR) nevirapine concentrations in saliva and plasma were 3.40 (2.59-4.47) mg/L and 6.17 (4.79-7.96) mg/L, respectively. The mean (coefficient of variation,%) nevirapine saliva/plasma ratio was 0.58 (62%). A cut-off value of 1.60 mg/L nevirapine in saliva was associated with a negative/positive predictive value of 0.99/0.72 and a sensitivity/specificity of 87%/98% for predicting subtherapeutic nevirapine plasma concentrations, respectively. Only 5% (15/287) of patients had subtherapeutic nevirapine plasma concentrations, of which 3 patients had viral load results > 400 copies/mL. Patients with nevirapine concentrations in plasma <3.0 mg/L had an Odds Ratio of 3.29 (95% CI: 1.00 - 10.74) for virological failure (viral load >400 copies/mL). The low-cost TLC technique for monitoring nevirapine in saliva was unsuccessful but monitoring nevirapine saliva and plasma concentrations using HPLC was shown to be feasible in the research/specialist context in Uganda. Further optimization and validation is required for the low-cost TLC technique.
High-performance modeling of plasma-based acceleration and laser-plasma interactions
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri
2016-10-01
Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.
NASA Technical Reports Server (NTRS)
Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.
2015-01-01
An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.
Xie, Ying; Chen, Yi; Lin, Mei; Wen, Jun; Fan, Guorong; Wu, Yutian
2007-05-09
A high-performance liquid chromatographic method was developed and validated for the determination and pharmacokinetic study of oxypeucedanin hydrate and byak-angelicin after oral administration of Angelica dahurica extracts in mongrel dog plasma. The coumarin components and the internal standard isopsoralen were extracted from plasma samples with the mixture of tert-butyl methyl ether and n-hexane (4:1, v/v). Chromatographic separation was performed on a C(18) column (200 mm x 4.6mm, 5 microm) with the mobile phase acetonitrile-methanol-water-acetic acid (20:15:65:2, v/v/v/v) at a flow-rate of 1.0 ml/min. Only the peak of oxypeucedanin hydrate and byak-angelicin could be detected in dog plasma after oral administration of ethanol extracts of A. dahurica mainly containing xanthotoxol, osthenol, imperatorin, oxypeucedanin hydrate and byak-angelicin. The calibration curves of oxypeucedanin hydrate and byak-angelicin were linear over a range of 22.08-8830.00 and 6.08-2430.00 ng/ml in dog plasma, respectively. The quantification limit of oxypeucedanin hydrate and byak-angelicin in dog plasma was 22.08 and 6.08 ng/ml, respectively. The intra- and inter-day precision was less than 7.6% and 8.5% and the accuracy was from 91.9% to 106.1%. The lowest absolute recoveries of oxypeucedanin hydrate and byak-angelicin were 85.7% and 87.0%, respectively. The method was successfully applied to the pharmacokinetic studies of oxypeucedanin hydrate and byak-angelicin in dog plasma after oral administration of ethanol extracts from A. dahurica.
NASA Astrophysics Data System (ADS)
Lan, Chun-Kai; Chuang, Shang-I.; Bao, Qi; Liao, Yen-Ting; Duh, Jenq-Gong
2015-02-01
Atmospheric pressure Ar/N2 binary plasma jet irradiation has been introduced into the manufacturing process of lithium ions batteries as a facile, green and scalable post-fabrication treatment approach, which enhanced significantly the high-rate anode performance of lithium titanate (Li4Ti5O12). Main emission lines in Ar/N2 plasma measured by optical emission spectroscopy reveal that the dominant excited high-energy species in Ar/N2 plasma are N2*, N2+, N∗ and Ar∗. Sufficient oxygen vacancies have been evidenced by high resolution X-ray photoelectron spectroscopy analysis and Raman spectra. Nitrogen doping has been achieved simultaneously by the surface reaction between pristine Li4Ti5O12 particles and chemically reactive plasma species such as N∗ and N2+. The variety of Li4Ti5O12 particles on the surface of electrodes after different plasma processing time has been examined by grazing incident X-Ray diffraction. Electrochemical impedance spectra (EIS) confirm that the Ar/N2 atmospheric plasma treatment facilitates Li+ ions diffusion and reduces the internal charge-transfer resistance. The as-prepared Li4Ti5O12 anodes exhibit a superior capacity (132 mAh g-1) and excellent stability with almost no capacity decay over 100 cycles under a high C rate (10C).
Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M
2014-04-01
First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.
Effect of carbohydrate composition on fluid balance, gastric emptying, and exercise performance.
Cole, K J; Grandjean, P W; Sobszak, R J; Mitchell, J B
1993-12-01
This study examined the effects of serial feedings of different carbohydrate (CHO) solutions on plasma volume, gastric emptying (GE), and performance during prolonged cycling exercise. Solutions containing 6 g% glucose-sucrose (CHO-6GS), 8.3 g% high fructose corn syrup (CHO-8HF), 6.3 g% high fructose corn syrup + 2 g% glucose polymer (CHO-8HP), and a water placebo (WP) were compared. Ten trained male cyclists performed four cycling trials consisting of 105 min at 70% VO2max followed by a 15-min all-out, self-paced performance ride. Every 15 min the men consumed one of the four test solutions. Blood samples were taken before, during, and after exercise to determine blood glucose and plasma volume changes. There were no significant differences in performance, GE, or plasma volume changes between trials. Blood glucose was significantly elevated at the 105-min time-point in all CHO trials when compared to WP. The CHO-8HF and CHO-8HP drinks resulted in a significantly higher delivery of CHO to the intestine. Higher rates of CHO oxidation during the steady-state ride were observed only with the CHO-6GS drink.
Lee, Ji Sang; Chung, Yoon-Sok; Chang, Sun Young
2017-01-01
Pentosidine is an advanced glycation end-product (AGE) and fluorescent cross-link compound. A simple high-performance liquid chromatographic (HPLC) method was developed for the detection and quantification of pentosidine in human urine and plasma. The mobile phase used a gradient system to improve separation of pentosidine from endogenous peaks, and chromatograms were monitored by fluorescent detector set at excitation and emission wavelengths of 328 and 378 nm, respectively. The retention time for pentosidine was 24.3 min and the lower limits of quantification (LLOQ) in human urine and plasma were 1 nM. The intraday assay precisions (coefficients of variation) were generally low and found to be in the range of 5.19–7.49% and 4.96–8.78% for human urine and plasma, respectively. The corresponding values of the interday assay precisions were 9.45% and 4.27%. Accuracies (relative errors) ranged from 87.9% to 115%. Pentosidine was stable in a range of pH solutions, human urine, and plasma. In summary, this HPLC method can be applied in future preclinical and clinical evaluation of pentosidine in the diabetic patients. PMID:29181026
NASA Astrophysics Data System (ADS)
Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye
2016-10-01
Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.
Doyle, E; Fowles, S E; Summerfield, S; White, T J
2002-03-25
A method was developed for the determination of tafenoquine (I) in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with methanol containing [2H3(15N)]tafenoquine (II) to act as an internal standard. The supernatant was injected onto a Genesis-C18 column without any further clean-up. The mass spectrometer was operated in the positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring mode. The assay required 50 microl of plasma and was precise and accurate within the range 2 to 500 ng/ml. The average within-run and between-run relative standard deviations were < 7% at 2 ng/ml and greater concentrations. The average accuracy of validation standards was generally within +/- 4% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze-thaw cycles and samples can safely be stored for at least 8 months at approximately -70 degrees C. The method was very robust and has been successfully applied to the analysis of clinical samples from patients and healthy volunteers dosed with I.
Magnetic Nozzle and Plasma Detachment Experiment
NASA Technical Reports Server (NTRS)
Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher
2006-01-01
High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.
High Power Electric Propulsion Using The VASIMR VX-200: A Flight Technology Prototype
NASA Astrophysics Data System (ADS)
Bering, Edgar, III; Longmier, Benjamin; Glover, Tim; Chang-Diaz, Franklin; Squire, Jared; Brukardt, Michael
2008-11-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by a helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Thrust/specific impulse ratio control in the VASIMR is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the exhaust were studied using probes, gridded energy analyzers (RPA's), microwave interferometry and optical techniques. Results are summarize from high power ICRH experiments performed on the VX-100 using argon plasma during 2007, and on the VX-200 using argon plasma during 2008. The VX-100 has demonstrated ICRH antenna efficiency >90% and a total coupling efficiency of ˜75%. The rocket performance parameters inferred by integrating the moments of the ion energy distribution corresponds to a thrust of 2 N at an exhaust velocity of 20 km/s with the VX-100 device. The new VX-200 machine is described.
Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former
NASA Astrophysics Data System (ADS)
Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie
2015-04-01
Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.
Gokbulut, Cengiz; Di Loria, Antonio; Gunay, Necati; Masucci, Roberto; Veneziano, Vincenzo
2011-12-01
To investigate plasma disposition, concentration in the hair, and anthelmintic efficacy of eprinomectin after topical administration in donkeys. 12 donkeys naturally infected with strongyle nematodes. The pour-on formulation of eprinomectin approved for use in cattle was administered topically to donkeys at a dosage of 0.5 mg/kg. Heparinized blood samples and hair samples were collected at various times between 1 hour and 40 days after administration. Samples were analyzed via high-performance liquid chromatography with fluorescence detection. Fecal strongyle egg counts were performed by use of a modified McMaster technique before and at weekly intervals for 8 weeks after treatment. Plasma concentration and systemic availability of eprinomectin were relatively higher in donkeys, compared with values reported for other animal species. Concerning the anthelmintic efficacy against strongyle nematodes, eprinomectin was completely effective (100%) on days 7 and 14 and highly effective (> 99%) until the end of the study at 56 days after treatment. No abnormal clinical signs or adverse reactions were observed for any donkeys after treatment. Eprinomectin had excellent safety. The relatively high plasma concentration after topical administration could result in use of eprinomectin for the control and treatment of parasitic diseases in donkeys.
Plasma emission spectroscopy method of tumor therapy
Fleming, Kevin J.
1997-01-01
Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics.
Improvement of Thrust Characteristics of Helicon Plasma Thruster using Local Gas Fueling Method
NASA Astrophysics Data System (ADS)
Kuwahara, Daisuke; Amma, Kosuke; Ishigami, Yuichi; Igarashi, Akihiko; Nishimoto, Shinichi; Shinohara, Shunjiro; Miyazawa, Junichi
2017-10-01
A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. Here, a neutral particle, e.g., H2, Ar, and Xe works, as a fuel gas. In most cases, these gases are supplied into a discharge tube by the use of a simple nozzle. Therefore, the neutral particle fills a discharge tube homogenous. However, there are two problems in this configuration. First, there is a limitation of an electron density increase, due to a neutral particle depletion in the central region of the high-density helicon plasma. This limitation reduces the thrust performance directly. Second, the high-density plasma causes an erosion of an inner discharge tube wall. For the future MW class thruster, this problem will become serious because the particle and heat fluxes of the plasma will increase drastically. To solve above-mentioned problems, we have proposed local fueling methods for the high-density helicon plasma. In this presentation, we will show the methods and experimental results using a fueling tube, inserted in a plasma directly. This work is supported by JSPS KAKENHI Grant Number 16K17843 and NIFS Collaboration Research program (NIFSKBAF016).
Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.
Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim
2016-11-14
We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.
Lai, Y-C; Li, H-Y; Hung, C-S; Lin, M-S; Shih, S-R; Ma, W-Y; Hua, C-H; Chuang, L-M; Sung, F-C; Wei, J-N
2013-03-01
To evaluate whether homeostasis model assessment and high-sensitivity C-reactive protein improve the prediction of isolated post-load hyperglycaemia. The subjects were 1458 adults without self-reported diabetes recruited between 2006 and 2010. Isolated post-load hyperglycaemia was defined as fasting plasma glucose < 7 mmol/l and 2-h post-load plasma glucose ≥ 11.1 mmol/l. Risk scores of isolated post-load hyperglycaemia were constructed by multivariate logistic regression. An independent group (n = 154) was enrolled from 2010 to 2011 to validate the models' performance. One hundred and twenty-three subjects (8.28%) were newly diagnosed as having diabetes mellitus. Among those with undiagnosed diabetes, 64 subjects (52%) had isolated post-load hyperglycaemia. Subjects with isolated post-load hyperglycaemia were older, more centrally obese and had higher blood pressure, HbA(1c), fasting plasma glucose, triglycerides, LDL cholesterol, high-sensitivity C-reactive protein and homeostasis model assessment of insulin resistance and lower homeostasis model assessment of β-cell function than those without diabetes. The risk scores included age, gender, BMI, homeostasis model assessment, high-sensitivity C-reactive protein and HbA(1c). The full model had high sensitivity (84%) and specificity (87%) and area under the receiver operating characteristic curve (0.91), with a cut-off point of 23.81; validation in an independent data set showed 88% sensitivity, 77% specificity and an area under curve of 0.89. Over half of those with undiagnosed diabetes had isolated post-load hyperglycaemia. Homeostasis model assessment and high-sensitivity C-reactive protein are useful to identify subjects with isolated post-load hyperglycaemia, with improved performance over fasting plasma glucose or HbA(1c) alone. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
NASA Astrophysics Data System (ADS)
Fujishima, Tatsuya; Joglekar, Sameer; Piedra, Daniel; Lee, Hyung-Seok; Zhang, Yuhao; Uedono, Akira; Palacios, Tomás
2013-08-01
A BCl3 surface plasma treatment technique to reduce the resistance and to increase the uniformity of ohmic contacts in AlGaN/GaN high electron mobility transistors with a GaN cap layer has been established. This BCl3 plasma treatment was performed by an inductively coupled plasma reactive ion etching system under conditions that prevented any recess etching. The average contact resistances without plasma treatment, with SiCl4, and with BCl3 plasma treatment were 0.34, 0.41, and 0.17 Ω mm, respectively. Also, the standard deviation of the ohmic contact resistance with BCl3 plasma treatment was decreased. This decrease in the standard deviation of contact resistance can be explained by analyzing the surface condition of GaN with x-ray photoelectron spectroscopy and positron annihilation spectroscopy. We found that the proposed BCl3 plasma treatment technique can not only remove surface oxide but also introduce surface donor states that contribute to lower the ohmic contact resistance.
NASA Astrophysics Data System (ADS)
Okawa, H.; Akitsu, T.
2018-05-01
Plasma sterilization attracts an increasing attention as an alternative method for chemical sterilization. In this study, we investigate plasma sterilization for practical applications, particularly in dentistry and oral surgery [1]. Helium-diluted oxygen was excited by a dielectric barrier electrode at normal atmospheric pressure. Control of the neutral gas temperature was performed under the plasma sterilization. The relation between the intensity of the spectral emission from the excited oxygen atoms and bactericidal effect was investigated using Bacillus stearothermophilus and opportunistic infection bacterium. A comparison is performed with a low-frequency wide-gap discharge. Degradation and material conformity were investigated using the Tyvek unwoven fabric for the sterile package and soft-silicone resin, methyl-methacrylate powder filler used in the dental surgery.
Legaz, M E; Acitores, E; Valverde, F
1992-12-01
A high performance liquid chromatography (HPLC) method has been developed for measuring salicylic acid in the plasma and saliva of children with juvenile chronic arthritis (JCA). Samples were extracted with diethyl ether and, after drying, redissolved in methanol to be chromatographed. Quantitation of salicylic acid was performed by reverse phase HPLC on a spherisorb ODS-2 column, using methanol: water: acetic acid as mobile phase. Phenolic was monitored by absorbance at 237 nm. Linearity between the amount of mass injected and the response in the detector was determined. This method was applied to compare concentrations of salivary and plasma salicylic acid. The method also permitted the quantitation of salivary salicylate as a non-invasive, indirect method for monitoring the concentration of plasma salicylate in patients with JCA.
Structure and Properties of Sio2 Nanopowder Obtained From High-Silica Raw Materials by Plasma Method
NASA Astrophysics Data System (ADS)
Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.
2017-06-01
The paper presents a plasma-assisted generation of nanodisperse powder obtained from diatomite, a natural high-silica material. The structure and properties of the obtained material are investigated using the transmission electron microscopy, energy dispersive X-Ray spectroscopy, infrared and X-ray photoelectron spectroscopies, and Brunauer-Emmett-Teller method. It is clearly shown that the obtained SiO2 nanoparticles are spherical, polydisperse and represented in the form of agglomerates. The specific surface of this nanopowder is 32 m2/g. Thermodynamic modeling of the plasma-assisted process is used to obtain the equilibrium compositions of condensed and gaseous reaction products. The plasma process is performed within the 300-5000 K temperature range.
Chen, Jian; Wu, Hong; Xu, Guo-Bing; Dai, Miao-Miao; Hu, Shun-Li; Sun, Liang-Liang; Wang, Wei; Wang, Rong; Li, Shu-Pin; Li, Guo-Qiang
2015-04-10
A specific, sensitive and high throughput ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometric method (UHPLC-ESI-MS/MS) was established and validated to assay geniposide (GE), a promising anti-inflammatory drug, in adjuvant arthritis rat plasma: application to pharmacokinetic and oral bioavailability studies and plasma protein binding ability. Plasma samples were processed by de-proteinised with ice-cold methanol and separated on an ACQUITY UPLC™ HSS C18 column (100 mm × 2.1mm i.d., 1.8 μm particle size) at a gradient flow rate of 0.2 mL/min using acetonitrile-0.1% formic acid in water as mobile phase, and the total run time was 9 min. Mass detection was performed in selected reaction monitoring (SRM) mode with negative electro-spray ionization includes the addition of paeoniflorin (Pae) as an internal standard (IS). The mass transition ion-pair was followed as m/z 387.4 → 122.4 for GE and m/z 479.4 → 449.0 for IS. The calibration curves were linear over the concentration range of 2-50,000 ng/mL with lower limit of quantification of 2 ng/mL. The intra-day and inter-day precisions (RSD, %) of the assay were less than 8.4%, and the accuracy was within ± 6.4% in terms of relative error (RE). Extraction recovery, matrix effect and stability were satisfactory in adjuvant arthritis rat plasma. The UHPLC-ESI-MS/MS method was successfully applied to a pharmacokinetic study of GE after oral administration of depurated GE at 33, 66, 132 mg/kg and intravenous injection at 33, 66, 132 mg/kg in adjuvant arthritis (AA) rats. In addition, it was found that GE has rapid absorption and elimination, low absolute bioavailability, high plasma protein binding ability in AA rats after oral administration within the tested dosage range. It suggested that GE showed slow distribution into the intra- and extracellular space, and the binding rate was not proportionally dependent on plasma concentration of GE when the concentration of GE was below 5.0 μg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
Ringing After a High-Energy Collision: Ambipolar Oscillations During Impact Plasma Expansion
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.
2012-01-01
High-velocity impacts on the Moon and other airless bodies deliver energy and material to the lunar surface and exosphere. The target and i mpactor material may become vaporized and ionized to form a collision al plasma that expands outward and eventually becomes collisionless. In the present work, kinetic simulations of the later collision less stage of impact plasma expansion are performed. Attention is paid to characterizing "ambipolar oscillations" in which thermodynamic distur bances propagate outward to generate "ringing" within the expanding e lectron cloud, which could radiate an electromagnetic signature of lo cal plasma conditions. The process is not unlike a beam-plasma intera ction, with the perturbing electron population in the present case ac ting as a highly thermal "beam" that resonates along the expanding de nsity gradient. Understanding the electromagnetic aspects of impact p lasma expansion could provide insight into the lasting effects of nat ural, impact-generated currents on airless surfaces and charging haza rds to human exploration infrastructure and instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Raffray, A.R.; Chiocchio, S.
1995-12-31
This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC`s) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m{sup 2}) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM`s) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects themore » target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC`s clad with different PFM`s are discussed.« less
Klepper, C C; Isler, R C; Hillairet, J; Martin, E H; Colas, L; Ekedahl, A; Goniche, M; Harris, J H; Hillis, D L; Panayotis, S; Pegourié, B; Lotte, Ph; Colledani, G; Martin, V
2013-05-24
Fully dynamic Stark effect visible spectroscopy was used for the first time to directly measure the local rf electric field in the boundary plasma near a high-power antenna in high-performance, magnetically confined, fusion energy experiment. The measurement was performed in the superconducting tokamak Tore Supra, in the near field of a 1–3 MW, lower-hybrid, 3.7 GHz wave-launch antenna, and combined with modeling of neutral atom transport to estimate the local rf electric field amplitude (as low as 1–2 kV/cm) and direction in this region. The measurement was then shown to be consistent with the predicted values from a 2D full-wave propagation model. Notably the measurement confirmed that the electric field direction deviates substantially from the direction in which it is launched by the waveguides as it penetrates only a few cm radially inward into the plasma from the waveguides, consistent with the model.
NASA Astrophysics Data System (ADS)
Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger
2011-06-01
We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.
NASA Astrophysics Data System (ADS)
Kanevskii, M. F.; Stepanova, M. A.
1990-06-01
The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.
The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas
NASA Technical Reports Server (NTRS)
Mather, J. W.; Ahluwalia, H. S.
1988-01-01
The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.
Kiekens, Filip; Van Daele, Jeroen; Blancquaert, Dieter; Van Der Straeten, Dominique; Lambert, Willy E; Stove, Christophe P
2015-06-12
A stable isotope dilution LC-MS/MS method is the method of choice for the selective quantitative determination of several folate species in clinical samples. By implementing an integrated approach to determine both the plasma and red blood cell (RBC) folate status, the use of consumables and time remains limited. Starting from a single 300μl whole blood sample, the folate status in plasma and RBCs can be determined after separating plasma and RBCs and sequential washing of the latter with isotonic buffer, followed by reproducible lysis using an ammonium-based buffer. Acidification combines both liberation of protein bound folates and protein precipitation. Sample cleanup is performed using a 96-well reversed-phase solid-phase extraction procedure, similar for both plasma and RBC samples. Analyses are performed by UHPLC-MS/MS. Method validation was successfully performed based on EMA-guidelines and encompassed selectivity, carry-over, linearity, accuracy, precision, recovery, matrix effect and stability. Plasma and RBC folates could be quantified in the range of 1-150nmol/l and 5-1500nmol/l, respectively. This method allows for the determination of 6 folate monoglutamates in both plasma and RBCs. It can be used to determine short and long term folate status in both normal and severely deficient subjects in a single analytical sequence. Copyright © 2015 Elsevier B.V. All rights reserved.
High-performance computing-based exploration of flow control with micro devices.
Fujii, Kozo
2014-08-13
The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team
2017-12-01
The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.
van Tellingen, O; Kuijpers, A V; Beijnen, J H; Nooijen, W J; Bult, A
1993-01-01
We have investigated the pharmacokinetics of the investigational semi-synthetic vinca alkaloid vinorelbine (navelbine, NVB). The analyses have been performed by using a sensitive and selective method based on ion-exchange normal phase high-performance liquid chromatography with fluorescence detection combined with liquid-liquid extraction for sample clean-up. Pharmacokinetic studies were performed in male FVB mice receiving 12 mg/kg NVB through intravenous injection. The results have been compared to those obtained for vinblastine (VBL). The plasma pharmacokinetics of NVB can be described by a three compartment model. The elimination half-life is significantly longer and the plasma AUC values higher for NVB compared to VBL. This is reflected in tissues, where, 24 hr after drug administration, the concentration of NVB is 5 to 10-fold higher compared to VBL. Qualitatively, the tissue distribution and retention of the drugs is very similar. The drug concentrations in most tissues decline parallel with the circulating plasma levels, whereas prolonged retention is found in tissues of lymphatic and testicular origin. Deacetylation yielding deacetylnavelbine (DNVB) is the primary metabolic route for NVB. This cytotoxic metabolite accounts for a substantial part of the overall disposition of drug. Only 58% of the administered dose is excreted in the urine (17%) and faeces (41%) as NVB or DNVB. No other metabolites have been detected.
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.
2015-01-01
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma. PMID:25693799
Hoffman, Justin T; Rossi, Steven S; Espina-Quinto, Rowena; Letendre, Scott; Capparelli, Edmund V
2013-01-01
Background Previously published methods for determination of efavirenz (EFV) in human dried blood spots (DBS) employ costly and complex liquid chromatography/mass spectrometry. We describe the validation and evaluation of a simple and inexpensive high-performance liquid chromatography (HPLC) method for EFV quantification in human DBS and dried plasma spots (DPS), using ultraviolet (UV) detection appropriate for resource-limited settings. Methods 100μl of heparinized whole blood or plasma were spotted onto blood collection cards, dried, punched, and eluted. Eluates are injected onto a C-18 reversed phase HPLC column. EFV is separated isocratically using a potassium phosphate and ACN mobile phase. UV detection is at 245nm. Quantitation is by use of external calibration standards. Following validation, the method was evaluated using whole blood and plasma from HIV-positive patients undergoing EFV therapy. Results Mean recovery of drug from dried blood spots is 91.5%. The method is linear over the validated concentration range of 0.3125 – 20.0μg/mL. A good correlation (Spearman r=0.96) between paired plasma and DBS EFV concentrations from the clinical samples was observed, and hematocrit level was not found to be a significant determinant of the EFV DBS level. The mean observed CDBS/Cplasma ratio was 0.68. A good correlation (Spearman r=0.96) between paired plasma and DPS EFV concentrations from the clinical samples was observed. The mean percent deviation of DPS samples from plasma samples is 1.68%. Conclusions Dried whole blood spot or dried plasma spot sampling is well suited for monitoring EFV therapy in resource limited settings, particularly when high sensitivity is not essential. PMID:23503446
Simulation of Mini-Magnetospheric Plasma Propulsion (M2P2) Interacting with an External Plasma Wind
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Euripides, P.; Ziemba, T.; Slough, J.; Giersch, L.
2003-01-01
Substantial progress has been made over the last year in the development of the laboratory Mini-Magnetospheric Plasma Propulsion (M2P2) prototype. The laboratory testing has shown that that the plasma can be produced at high neutral gas efficiency, at high temperatures (a few tens of eV) with excellent confinement up to the point where chamber wall interactions dominate the physics. This paper investigates the performance of the prototype as it is opposed by an external plasma acting as a surrogate for the solar wind. The experiments were performed in 5ft diameter by 6ft long vacuum chamber at the University of Washington. The solar wind source comprised of a 33 kWe arc jet attached to a 200 kWe inductively generated plasma source. The dual plasma sources allow the interaction to be studied for different power levels, shot duration and production method. It is shown that plasma from the solar wind source (SWS) is able to penetrate the field of the M2P2 magnetic when no plasma is present. With operation of the M2P2 plasma source at only 1.5 kWe, the penetration of the SWS even at the highest power of operation at 200 kWe is stopped. This deflection is shown to be greatly enhanced over that produced by the magnet alone. In addition it is shown that with the presence of the SWS, M2P2 is able to produce enhanced magnetized plasma production out to at least 10 magnet radii where the field strength is only marginally greater than the terrestrial field. The results are consistent with the initial predictions that kWe M2P2 systems would be able to deflect several hundred kWe plasma winds to produce enhanced propulsion for a spacecraft.
Le Guellec, C; Gaudet, M L; Breteau, M
1998-11-20
We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.
Franco, Valentina; Mazzucchelli, Iolanda; Fattore, Cinzia; Marchiselli, Roberto; Gatti, Giuliana; Perucca, Emilio
2007-07-01
A rapid and simple high-performance liquid chromatographic method for the determination of the R-(-)- and S-(+)-enantiomers of the antiepileptic drug vigabatrin in human plasma is described. After adding the internal standard (1-aminomethyl-cycloheptyl-acetic acid), plasma samples (200 microL) are deproteinized with acetonitrile and the supernatant is derivatized with 2,4,6 trinitrobenzene sulfonic acid (TNBSA). Separation is achieved on a reversed-phase cellulose-based chiral column (Chiralcel-ODR, 250 mm x 4.6 mm i.d.) using 0.05 M potassium hexafluorophosphate (pH 4.5)/acetonitrile/ethanol (50:40:10 vol/vol/vol) as mobile phase at a flow-rate of 0.9 mL/min. Chromatographic selectivity is improved by concentrating the derivatives on High Performance Extraction Disk Cartridges prior to injection. Detection is at 340 nm. Calibration curves are linear (r(2)> or =0.999) over the range of 0.5-40 microg/mL for each enantiomer, with a limit of quantification of 0.5 microg/mL for both analytes. The assay is suitable for therapeutic drug monitoring and for single-dose pharmacokinetic studies in man.
High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process
NASA Astrophysics Data System (ADS)
Tailor, Satish; Modi, Ankur; Modi, S. C.
2018-04-01
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).
Simulation of plasma loading of high-pressure RF cavities
NASA Astrophysics Data System (ADS)
Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.
2018-01-01
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.
Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III
2003-01-01
An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.
Székely, Andrea; Szekrényes, Akos; Kerékgyártó, Márta; Balogh, Attila; Kádas, János; Lázár, József; Guttman, András; Kurucz, István; Takács, László
2014-08-01
Molecular heterogeneity of mAb preparations is the result of various co- and post-translational modifications and to contaminants related to the production process. Changes in molecular composition results in alterations of functional performance, therefore quality control and validation of therapeutic or diagnostic protein products is essential. A special case is the consistent production of mAb libraries (QuantiPlasma™ and PlasmaScan™) for proteome profiling, quality control of which represents a challenge because of high number of mAbs (>1000). Here, we devise a generally applicable multicapillary SDS-gel electrophoresis process for the analysis of fluorescently labeled mAb preparations for the high throughput quality control of mAbs of the QuantiPlasma™ and PlasmaScan™ libraries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak
NASA Astrophysics Data System (ADS)
Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min
2018-03-01
A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.
Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas
NASA Astrophysics Data System (ADS)
Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard
2016-03-01
Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.
Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies
NASA Astrophysics Data System (ADS)
A, K. MANDAL; R, K. DISHWAR; O, P. SINHA
2018-03-01
The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.
Kim, Jun Woo; Kim, Byungwoo; Park, Suk Won; Kim, Woong; Shim, Joon Hyung
2014-10-31
It is challenging to realize a conformal metal coating by atomic layer deposition (ALD) because of the high surface energy of metals. In this study, ALD of ruthenium (Ru) on vertically aligned carbon nanotubes (CNTs) was carried out. To activate the surface of CNTs that lack surface functional groups essential for ALD, oxygen plasma was applied ex situ before ALD. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed surface activation of CNTs by the plasma pretreatment. Transmission electron microscopy analysis with energy-dispersive x-ray spectroscopy composition mapping showed that ALD Ru grew conformally along CNTs walls. ALD Ru/CNTs were electrochemically oxidized to ruthenium oxide (RuOx) that can be a potentially useful candidate for use in the electrodes of ultracapacitors. Electrode performance of RuOx/CNTs was evaluated using cyclic voltammetry and galvanostatic charge-discharge measurements.
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
Performance analysis of gate all around GaAsP/AlGaSb CP-TFET
NASA Astrophysics Data System (ADS)
Lemtur, Alemienla; Sharma, Dheeraj; Suman, Priyanka; Patel, Jyoti; Yadav, Dharmendra Singh; Sharma, Neeraj
2018-05-01
Illustration of importance of gate all around (GAA) structure and hetero-junction formed by III-V semiconductor compounds has been analysed through GaAsP/AlGaSb CP-TFET (charge plasma tunnel field effect transistor). Charge plasma concept has been incorporated here to make this device more immune towards random dopant fluctuations (RDF). A high driving current of 1.28 ×10-5 A/μm and transconductance (gm) of 96.4 μS at supply voltages VGS = 1V and VDS = 0.5V is achieved. Further, implications of employing this device in analog/RF circuits have been supported with simulated results showing a high cut-off frequency of 34.5 THz and device efficiency of 3.45 MV-1. Apart from this, an insight of the linearity performances has also been included. Simultaneously, all the results are compared with a conventional gate all around charge plasma TFET.
Wu, Cuiqin; Yuan, Dongxing; Liu, Baomin
2006-12-01
An analytical method involving anion exchange high performance liquid chromatographic determination of vitellogenin (Vtg) in fish plasma after postcolumn fluorescence derivatization with o-phthalaldehyde (OPA) was developed. The retention time of Vtg was about 11 min. The reagent variables for derivatization were optimized. The fluorophore was excited at 335 nm and detected at 435 nm. A calibration curve was established ranging from 0.13 to 11.28 microg. The determination limit of Vtg was found to be as low as 0.13 microg. The spiked recovery was 93.6% and interassay variability was less than 4%. The method developed was used to determine Vtg in fish plasma obtained from red sea bream (Pagrosomus major), black porgy (Sparus macrocephalus) and skew band grunt (Hapalogenys nitens), without complicated sample pretreatment. The results confirmed that the method showed advantages of being simple, rapid, reproducible and sensitive.
High-performance liquid chromatographic assay for the determination of Aloe Emodin in mouse plasma.
Zaffaroni, M; Mucignat, C; Pecere, T; Zagotto, G; Frapolli, R; D'Incalci, M; Zucchetti, M
2003-10-25
An isocratic high-performance liquid chromatography (HPLC) method was developed and validated to determine Aloe Emodin (AE) in mouse plasma. The analysis required 0.3 ml of plasma and involves extraction with dichloromethane. The HPLC separation was carried out on Symmetry Shield RP18, a mobile phase of methanol-water-acetic acid (65:35:0.2) and fluorescence detection at lambda(ex)=410 nm and lambda(em)=510 nm. The retention time of AE was 11.7 min. The assay was linear from 10 to 1,000 ng/ml (r2 > or = 0.999), showed intra- and inter-day precision within 7.8 and 4.7%, and accuracy of 87.3-105.7%. Detection limit (LOD) and quantification limit (LOQ) were 4.5 and 5 ng/ml, respectively. The method was applied to determine for the first time the pharmacokinetic of AE in mice.
Plasma measurement by optical visualization and triple probe method under high-speed impact
NASA Astrophysics Data System (ADS)
Sakai, T.; Umeda, K.; Kinoshita, S.; Watanabe, K.
2017-02-01
High-speed impact on spacecraft by space debris poses a threat. When a high-speed projectile collides with target, it is conceivable that the heat created by impact causes severe damage at impact point. Investigation of the temperature is necessary for elucidation of high-speed impact phenomena. However, it is very difficult to measure the temperature with standard methods for two main reasons. One reason is that a thermometer placed on the target is instantaneously destroyed upon impact. The other reason is that there is not enough time resolution to measure the transient temperature changes. In this study, the measurement of plasma induced by high-speed impact was investigated to estimate temperature changes near the impact point. High-speed impact experiments were performed with a vertical gas gun. The projectile speed was approximately 700 m/s, and the target material was A5052. The experimental data to calculate the plasma parameters of electron temperature and electron density were measured by triple probe method. In addition, the diffusion behavior of plasma was observed by optical visualization technique using high-speed camera. The frame rate and the exposure time were 260 kfps and 1.0 μs, respectively. These images are considered to be one proof to show the validity of plasma measurement. The experimental results showed that plasma signals were detected for around 70 μs, and the rising phase of the wave form was in good agreement with timing of optical visualization image when the plasma arrived at the tip of triple probe.
Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad
2013-11-01
A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.
Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David
2011-08-01
Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties.
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-11
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties
NASA Astrophysics Data System (ADS)
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-01
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
Recent experimental results of KSTAR RF heating and current drive
NASA Astrophysics Data System (ADS)
Wang, S. J.; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.
2015-12-01
The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.
Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami
2013-01-01
Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.
Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.
Plasma emission spectroscopy method of tumor therapy
Fleming, K.J.
1997-03-11
Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics. 6 figs.
Plasma flow patterns in and around magnetosheath jets
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Hietala, Heli
2018-05-01
The magnetosheath is commonly permeated by localized high-speed jets downstream of the quasi-parallel bow shock. These jets are much faster than the ambient magnetosheath plasma, thus raising the question of how that latter plasma reacts to incoming jets. We have performed a statistical analysis based on 662 cases of one THEMIS spacecraft observing a jet and another (second) THEMIS spacecraft providing context observations of nearby plasma to uncover the flow patterns in and around jets. The following results are found: along the jet's path, slower plasma is accelerated and pushed aside ahead of the fastest core jet plasma. Behind the jet core, plasma flows into the path to fill the wake. This evasive plasma motion affects the ambient magnetosheath, close to the jet's path. Diverging and converging plasma flows ahead and behind the jet are complemented by plasma flows opposite to the jet's propagation direction, in the vicinity of the jet. This vortical plasma motion results in a deceleration of ambient plasma when a jet passes nearby.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).
Helicon Wave Physics Impacts on Electrodeless Thruster Design
NASA Technical Reports Server (NTRS)
Gilland, James H.
2007-01-01
Effective generation of helicon waves for high density plasma sources is determined by the dispersion relation and plasma power balance. Helicon wave plasma sources inherently require an applied magnetic field of .01-0.1 T, an antenna properly designed to couple to the helicon wave in the plasma, and an rf power source in the 10-100 s of MHz, depending on propellant choice. For a plasma thruster, particularly one with a high specific impulse (>2000 s), the physics of the discharge would also have to address the use of electron cyclotron resonance (ECR) heating and magnetic expansion. In all cases the system design includes an optimized magnetic field coil, plasma source chamber, and antenna. A preliminary analysis of such a system, calling on experimental data where applicable and calculations where required, has been initiated at Glenn Research Center. Analysis results showing the mass scaling of various components as well as thruster performance projections and their impact on thruster size are discussed.
Helicon Wave Physics Impacts on Electrodeless Thruster Design
NASA Technical Reports Server (NTRS)
Gilland, James
2003-01-01
Effective generation of helicon waves for high density plasma sources is determined by the dispersion relation and plasma power balance. Helicon wave plasma sources inherently require an applied magnetic field of .01-0.1 T, an antenna properly designed to couple to the helicon wave in the plasma, and an rf power source in the 10-100 s of MHz, depending on propellant choice. For a plasma thruster, particularly one with a high specific impulse (>2000 s), the physics of the discharge would also have to address the use of electron cyclotron resonance (ECR) heating and magnetic expansion. In all cases the system design includes an optimized magnetic field coil, plasma source chamber, and antenna. A preliminary analysis of such a system, calling on experimental data where applicable and calculations where required, has been initiated at Glenn Research Center. Analysis results showing the mass scaling of various components as well as thruster performance projections and their impact on thruster size are discussed.
Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model
NASA Astrophysics Data System (ADS)
Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji
2018-04-01
In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.
Cooke, Darren N; Thomasset, Sarah; Boocock, David J; Schwarz, Michael; Winterhalter, Peter; Steward, William P; Gescher, Andreas J; Marczylo, Timothy H
2006-09-20
Anthocyanins are potent antioxidants that may possess chronic disease preventive properties. Here, rapid, reliable, and reproducible solid-phase extraction, high-performance liquid chromatography (HPLC), and mass spectrometry techniques are described for the isolation, separation, and identification of anthocyanins in human plasma and urine. Recoveries of cyanidin-3-glucoside (C3G) were 91% from water, 71% from plasma, and 81% from urine. Intra- and interday variations for C3G extraction were 9 and 9.1% in plasma and 7.1 and 9.1% in urine and were less than 15% for all anthocyanins from a standardized bilberry extract (mirtoselect). Analysis of mirtoselect by HPLC with UV detection produced spectra with 15 peaks compatible with anthocyanin components found in mirtoselect within a total run time of 15 min. Chromatographic analysis of human urine obtained after an oral dose of mirtoselect yielded 19 anthocyanin peaks. Mass spectrometric analysis employing multiple reaction monitoring suggests the presence of unchanged anthocyanins and anthocyanidin glucuronide metabolites.
EBW H&CD Potential for Spherical Tokamaks
NASA Astrophysics Data System (ADS)
Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.
2011-12-01
Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-ß regimes, in which the usual EC O- and X- modes are cut-off. In this case, electron Bernstein waves (EBWs) seem to be the only option that can provide features similar to the EC waves—controllable localized heating and current drive (H&) that can be utilized for core plasma heating as well as for accurate plasma stabilization. We first derive an analytical expression for Gaussian beam OXB conversion efficiency. Then, an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX) is performed. Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.
Wyss, R; Bucheli, F
1988-02-26
A fully automated gradient high-performance liquid chromatographic method for the determination of isotretinoin, tretinoin and their 4-oxo metabolites in plasma was developed, using the column-switching technique. After dilution with an internal standard solution containing 20% acetonitrile, 0.5 ml of the sample was injected onto a precolumn (17 X 4.6 mm I.D.), filled with C18 Corasil 37-53 micron. Proteins and polar plasma components were washed out using 1% ammonium acetate-acetonitrile (9:1, v/v) as mobile phase 1. After valve switching, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm by UV detection. Using two coupled reversed-phase columns (125 mm long), the separation of cis and trans isomers was possible, and all four compounds could be quantified down to 2 ng/ml of plasma. The inter-assay precision in the concentration range 20-100 ng/ml was between 1.0 and 4.7% for all compounds.
Determination of Flurbiprofen in Human Plasma by High-Performance Liquid Chromatography.
Yilmaz, Bilal; Erdem, Ali Fuat
2015-10-01
A simple high-performance liquid chromatography method has been developed for determination of flurbiprofen in human plasma. The method was validated on an Ace C18 column using UV detection. The mobile phase was acetonitrile-0.05 M potassium dihydrogen phosphate solution (60:40, v/v) adjusted to pH 3.5 with phosphoric acid. The calibration curve was linear between the concentration range of 0.10-5.0 μg/mL. Intra- and inter-day precision values for flurbiprofen in plasma were <4.47, and accuracy (relative error) was better than 3.67%. The extraction recoveries of flurbiprofen from human plasma were between 93.0 and 98.9%. The limits of detection and quantification of flurbiprofen were 0.03 and 0.10 μg/mL, respectively. In addition, this assay was applied to determine the pharmacokinetic parameters of flurbiprofen in six healthy Turkish volunteers who had been given 100 mg flurbiprofen. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plasma contactor research, 1989
NASA Technical Reports Server (NTRS)
Williams, John D.
1990-01-01
The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.
NASA Astrophysics Data System (ADS)
Uttamsing Rajput, Rajendrasing; Alona, Khaustova; Loyan, Andriy V.
2017-03-01
Electric propulsion offers higher specific impulse compared to the chemical propulsion systems. It reduces the overall propellant mass and enables high operational lifetimes. Scientific Technological Center of Space Power and Energy (STC SPE), KhAI is involved in designing, manufacturing and testing of stationary plasma thrusters (SPT). Efforts are made to perform plasma diagnostics with corona and collisional radiative models (C-R model), as expected corona model falls short below 4 eV because of the heavy particle collisions elimination, whereas the C-R model's applicability is confirmed. Several tests are performed to analyze the electron temperature at various operational parameters of thruster like discharge voltage and mass flow rate. SPT-20M8 far and near-field plumes diagnostics are performed. Feasibility of C-R model by comparing its result to optical emission spectroscopy (OES) to investigate the electron temperature is validated with the probe measurements within the 10% of discrepancy.
Yamada, Miho; Lee, Xiao-Pen; Fujishiro, Masaya; Iseri, Ken; Watanabe, Makoto; Sakamaki, Hiroshi; Uchida, Naoki; Matsuyama, Takaaki; Kumazawa, Takeshi; Takahashi, Haruo; Ishii, Akira; Sato, Keizo
2018-01-01
A highly sensitive method was developed for the analysis of alendronate in human plasma and dialysate using MonoSpin™ SAX ® extraction and metal-free high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) following methylation with trimethylsilyldiazomethane. The chromatographic separation of the derivatives for alendronate and alendronate-d 6 was achieved on an L-column2 ODS metal-free column (50 mm × 2 mm i.d., particle size 3 µm) with a linear gradient elution system composed of 10 mM ammonium acetate (pH 6.8) and acetonitrile at a flow rate of 0.3 ml/min. Quantification was performed by multiple reaction monitoring (MRM) with positive-ion electrospray ionization (ESI). Distinct peaks were observed for alendronate and for the internal standard on each channel within 1 min. The regression equations showed good linearity within the ranges of 2.0-100 ng/0.5 ml for the plasma and 1.0-100 ng/0.5 ml for the dialysate, with the limits of detection at 1.0 ng/0.5 ml for the plasma and 0.5 ng/0.5 ml for the dialysate. Extraction efficiencies for alendronate for the plasma and dialysate were 41.1-51.2% and 63.6-73.4%, respectively. The coefficient of variation (CV) was ≤8.5%. The method was successfully applied to the analyses of real plasma and dialysate samples derived after intravenous administration of alendronate. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gallego, Sandra F.; Højlund, Kurt; Ejsing, Christer S.
2018-01-01
Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MSALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. [Figure not available: see fulltext.
Gallego, Sandra F; Højlund, Kurt; Ejsing, Christer S
2018-01-01
Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MS ALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. Graphical Abstract ᅟ.
Formation of Imploding Plasma Liners for HEDP and MIF Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel
Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the targetmore » plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km/s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding plasma liners. HyperV’s tasks focused on developing the plasma guns and associated pulse power systems required for the 30 gun experiment at LANL. Unfortunately, funding for the entire PLX collaborative project was terminated after only two years of the four year project due to program funding realignments which necessitated recompeting the project in midstream. Despite the loss of funding, HyperV installed two Mark1 guns and pulsed power systems on PLX, and jet characterization and merging experiments were subsequently successfully performed at LANL by the PLX Team. In parallel with those PLX experiments, HyperV continued its efforts to develop a plasma gun capable of meeting the PLX goal of 8 mg of argon at 50 km/s. HyperV was ultimately successful in this effort, demonstrating 10.8 mg at 52.8 km/s and 7.5 mg at 62.4 km/s with the Mark2 MiniRailgun.« less
Characterisation of Plasma Filled Rod Pinch electron beam diode operation
NASA Astrophysics Data System (ADS)
MacDonald, James; Bland, Simon; Chittenden, Jeremy
2016-10-01
The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.
Micromachined probes for laboratory plasmas
NASA Astrophysics Data System (ADS)
Chiang, Franklin Changta
As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.
Addressing the challenges of plasma-surface interactions in NSTX-U*
Kaita, Robert; Abrams, Tyler; Jaworski, Michael; ...
2015-04-01
The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamakmore » environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.« less
Kusaka, M; Setiabudy, R; Chiba, K; Ishizaki, T
1996-02-01
A simple high-performance liquid chromatographic (HPLC) assay method was developed for the measurement of proguanil (PG) and its major metabolites, cycloguanil (CG) and 4-chlorophenyl-biguanide (CPB), in human plasma and urine. The assay allowed the simultaneous determination of all analytes in 1 ml of plasma or 0.1 ml of urine. The detection limits of PG, CG, and CPB, defined as the signal-to-noise ratio of 3, were 1 and 5 ng/ml for plasma and urine samples, respectively. Recoveries of the analytes and the internal standard (pyrimethamine) were > 62% from plasma and > 77% from urine. Intra-assay and interassay coefficients of variation for all analytes in plasma and urine were < 10% except for the values of CG and CPB, which ranged from 10% to 15% at one or two concentrations among 4-5 concentrations studied. The clinical applicability of the method was assessed by the preliminary pharmacokinetic study of PG, CG, and CPB in six healthy volunteers with the individually known phenotypes (extensive and poor metabolizers) of S-mephenytoin 4'-hydroxylation, suggesting that individuals with a poor metabolizer phenotype of S-mephenytoin have a much lower capacity to bioactivate PG to CG compared with the extensive metabolizers.
Wang, Lei; Qiang, Wei; Li, Ying; Cheng, Zeneng; Xie, Mengmeng
2017-09-01
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL -1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research. Copyright © 2017 John Wiley & Sons, Ltd.
Kaddoumi, A; Kubota, A; Nakashima, M N; Takahashi, M; Nakashima, K
2001-10-01
A high performance liquid chromatographic method has been developed for the simultaneous determination of (+/-) fenfluramine (Fen) and phentermine (Phen) in addition to three other sympathomimetic amines-ephedrine (E), norephedrine (NE) and 2-phenylethylamine (2-PEA), using cyclohexylamine (CX) as an internal standard in plasma. The compounds were derivatized with 4-(4,5-diphenyl-1H-imidazole-2-yl)benzoyl chloride (DIB-Cl) to give the DIB-derivatives. The derivatives were then separated using an isocratic HPLC system with UV detection. The limits of detection for Fen, Phen, E, NE and 2-PEA in plasma ranged from 0.32 to 22.9 pmol on column at a signal-to-noise ratio of 3. The recoveries following alkaline extraction from plasma samples of known concentrations were found to be more than 94% for the studied compounds. This method might be useful for the screening of the studied sympathomimetic amines in human plasma samples in forensic as well as toxicological studies. Furthermore, the developed method was modified for the simultaneous determination of Fen and Phen in human and rat plasma using fluoxetine as an internal standard. The methods are reproducible and precise. Finally, the two drugs were administered intraperitoneally to rats in combination, and their plasma levels over the investigated time course were successfully determined. Copyright 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.
The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.
Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A.
2015-06-15
This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers andmore » induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of spatial disturbances. The results highlight the importance of accounting for spatial effects in the numerical computations when optical analyses of plasma lenses are pursued in this range of operating conditions.« less
Yagi, Shigeaki; Nishizawa, Manabu; Ando, Itiro; Oguma, Shiro; Sato, Emiko; Imai, Yutaka; Fujiwara, Masako
2016-08-01
A simple, rapid, and selective method for determination of plasma biotin was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After single-step protein precipitation with methanol, biotin and stable isotope-labeled biotin as an internal standard (IS) were chromatographed on a pentafluorophenyl stationary-phase column (2.1 × 100 mm, 2.7 μm) under isocratic conditions using 10 mm ammonium formate-acetonitrile (93:7, v/v) at a flow rate of 0.6 mL/min. The total chromatographic runtime was 5 min for each injection. Detection was performed in a positive electrospray ionization mode by monitoring selected ion transitions at m/z 245.1/227.0 and 249.1/231.0 for biotin and the IS, respectively. The calibration curve was linear in the range of 0.05-2 ng/mL using 300 μL of plasma. The intra- and inter-day precisions were all <7.1%. The accuracy varied from -0.7 to 8.2%. The developed UHPLC-MS/MS method was successfully applied to determine plasma biotin concentrations in hemodialysis patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Continuum kinetic modeling of the tokamak plasma edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.
2016-05-15
The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.
NASA Astrophysics Data System (ADS)
Dandl, R. A.; Guest, G. E.; Jory, H. R.
1990-12-01
The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.
The interaction of spacecraft high voltage power systems with the space plasma environment
NASA Technical Reports Server (NTRS)
Domitz, S.; Grier, N. T.
1974-01-01
Research work has shown that the interaction of a spacecraft and its high voltage power systems with the space plasma environment can result in harmful power loss and damage to insulators and metal surfaces. Insulator and solar panel tests were performed and flight tests are planned. High voltage power processing equipment was shown to be affected by power loss, and by transients due to plasma interactions. Power loss was determined to be roughly proportional to the square of the voltage and increases approximately as the square root of the area. Kapton, Teflon, and glass were found to be satisfactory insulating materials and it is concluded that for large space power stations should consider the effect of large pinhole currents.
HSX as an example of a resilient non-resonant divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, A.; Boozer, A. H.; Hegna, C. C.
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
HSX as an example of a resilient non-resonant divertor
Bader, A.; Boozer, A. H.; Hegna, C. C.; ...
2017-03-16
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
Study on Ferroelectric Thick Film Insulator Sleeve On Plasma Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Gustavo; Silva, Patricio; Moreno, Jose
The effect of ferroelectric lead germanate Pb5Ge3O11 (PGO) thick film in the alumina insulator sleeve of the 400 Joule Mather-type plasma focus device, PF-400J is studied. The breakdown phase along the insulator is fundamental for the formation of a homogeneous and symmetric current sheath, that is essential for a good plasma pinching, high neutron yield and X-ray emissions. For over several hundreds of electrical discharges, the films show good mechanical and electric performance. From the beginning the operating system is highly reproducible, shot to shot, with a clear definition of the plasma pinch on the axis of discharge. The grademore » of influence of the electron emission from the ferroelectric is experimentally studied.« less
Kushida, Hirotaka; Fukutake, Miwako; Tabuchi, Masahiro; Katsuhara, Takao; Nishimura, Hiroaki; Ikarashi, Yasushi; Kanitani, Masanao; Kase, Yoshio
2013-12-01
Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether were detected, but only geissoschizine methyl ether was detected in the brain. These results suggest that geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan. Copyright © 2013 John Wiley & Sons, Ltd.
Molecular dynamic simulation of weakly magnetized complex plasmas
NASA Astrophysics Data System (ADS)
Funk, Dylan; Konopka, Uwe; Thomas, Edward
2017-10-01
A complex plasma consists of the usual plasma components (electrons, ions and neutrals), as well as a heavier component made of solid, micrometer-sized particles. The particles are in general highly charged as a result of the interaction with the other plasma components. The static and dynamic properties of a complex plasma such as its crystal structure or wave properties are influenced by many forces acting on the individual particles such as the dust particle interaction (a screened Coulomb interaction), neutral (Epstein) drag, the particle inertia and various plasma drag or thermophoretic forces. To study the behavior of complex plasmas we setup an experiment accompanying molecular dynamic simulation. We will present the approach taken in our simulation and give an overview of experimental situations that we want to cover with our simulation such as the particle charge under microgravity condition as performed on the PK-4 space experiment, or to study the detailed influences of high magnetic fields. This work was supported by the US Dept. of Energy (DE-SC0016330), NSF (PHY-1613087) and JPL/NASA (JPL-RSA 1571699).
Results from an 8 Joule RMF-FRC Plasma Translation Experiment for Space Propulsion
NASA Astrophysics Data System (ADS)
Hill, Carrie; Uchizono, Nolan; Holmes, Michael
2017-10-01
Field-Reversed Configuration (FRC) thrusters are attractive for advanced in-space propulsion technology as their projected performance, low specific mass, and propellant flexibility offer significant benefits over state-of-the art thrusters. A benchtop experiment to evaluate FRC thruster behavior using a Rotating Magnetic Field (RMF) formation method was constructed at the Air Force Research Laboratory. This experiment generated an RMF-FRC in a conical geometry and accelerated the plasma into a field-free drift region, using 8 J of input energy. Downstream plasma probes in a time-of-flight array measured the exhaust contents of the plasma plume. Results from this diagnostic demonstrated that the ejected mass and ion exit velocities fell short of the desired specific impulse and momentum. Two high-speed cameras were installed to diagnose the gross plasma behavior from two perspectives. Results from these images are presented here. These images show that the plasma generated in the formation region for several different operating conditions was highly non-uniform and did not form a stable closed-field topology that is expected from RMF-FRC plasmas.
Mirfendereski, E; Jahanian, R
2015-02-01
The present study was carried out to investigate the effects of dietary supplementation of chromium-methionine (CrMet) and vitamin C (VC) on performance, immune response, and stress status of laying hens subjected to high stocking density. A total of 360 Hy-Line W-36 leghorn hens (at 26 wk old) were used in a 2×3×2 factorial arrangement that had 2 cage densities (5 and 7 hens per cage), 3 Cr levels (0, 500, and 1,000 ppb as CrMet), and 2 dietary VC levels (0 and 500 ppm as L-ascorbic acid). The trial lasted for 12 wk. The first 2 wk were for adaptation (26 to 28 wk of age), and the remaining 10 wk served as the main recording period. In addition to performance, immune response to Newcastle disease virus (NDV) was assessed at d 7 and 14 postvaccination. Also, the birds' stress status was evaluated by analyzing appropriate plasma metabolites. The results showed that hens in cages with higher stocking density had lower hen-day egg production, egg mass, and feed intake compared with those in normal density cages (P<0.05). Dietary CrMet supplementation caused significant increases in egg production and egg mass (P<0.01). There were significant Cr × VC interactions related to egg production and feed conversion efficiency (P<0.01); dietary CrMet supplementation was more effective in improving egg production and feed conversion ratio in VC-unsupplemented diets. Although plasma concentrations of triglycerides and high-density lipoproteins were not influenced by dietary treatments, supplemental CrMet decreased plasma cholesterol levels (P<0.05). Plasma insulin and glucose levels of hens kept at a density of 7 hens/cage were significantly higher than those of hens in normal cage density (P<0.01), and dietary CrMet supplementation decreased plasma concentrations of insulin (P<0.001) and glucose (P<0.01), with higher impacts in high stocking density-challenged hens. While high stocking density caused a marked increase in plasma corticosterone (P<0.01), both supplemental CrMet and VC decreased it to near normal levels. There were significant stocking density×Cr interactions related to plasma insulin and corticosterone concentrations (P<0.01); supplemental CrMet was more effective in lowering these hormones in high stocking density-challenged hens. The high stocking density challenge suppressed NDV antibody response (P<0.001), while dietary supplementation of CrMet improved antibody titers against NDV at d 14 post vaccination particularly in hens kept at a density of 7 hens/cage (P<0.01). From the present observations, it can be concluded that CrMet can improve laying performance largely because it alleviates harmful responses to stressful conditions. © 2015 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.
2016-11-01
Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W P; Burrell, K H; Casper, T A
2004-12-03
The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma
NASA Astrophysics Data System (ADS)
Rehmet, Christophe; Cao, Tengfei; Cheng, Yi
2016-04-01
Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.
Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D
2016-11-01
Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheftman, D., E-mail: dsheftman@trialphaenergy.com; Gupta, D.; Roche, T.
Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.
NASA Astrophysics Data System (ADS)
Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia
2018-03-01
Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.
Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M
2016-06-17
The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas
NASA Astrophysics Data System (ADS)
Rosenberg, Michael
2013-10-01
Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.
Izadi, Mohammad Reza; Ghardashi Afousi, Alireza; Asvadi Fard, Maryam; Babaee Bigi, Mohammad Ali
2018-02-01
Hypertension is the major risk factor for cardiovascular diseases and is one of the primary causes of morbidity and mortality worldwide. Apelin levels and NO bioavailability are impaired in older hypertensive patients. Exercise is an effective intervention for treating hypertension. Our purpose was to evaluate the effect of high-intensity interval training on blood pressure, apelin, and NOx plasma levels in older treated hypertensive individuals. Thirty treated hypertensive subjects (61.70 ± 5.78 years, 17 males, 13 females) were randomly divided into 6 weeks of high-intensity interval training (n = 15) and control (n = 15). The exercise training was conducted for three 35-min sessions a week (1.5-min interval at 85-90% of heart rate reserve [HRR] and 2 min active phase at 50-55% of HRR). Assessment of plasma apelin, nitrite/nitrate (NOx), and endothelin-1 (ET-1) was performed before and after the intervention. At the end of the study, apelin, and NOx plasma levels increased significantly in the high-intensity interval training (HIIT) group (P = 0.021, P = 0.003, respectively). Conversely, ET-1 plasma levels significantly decreased in the training group after the intervention (P = 0.015). Moreover, there was a positive correlation between the change of plasma apelin and change of plasma NOx (r = 0. 771, P = 0.0008). In addition, there was a negative correlation between the change of plasma ET-1, change of plasma apelin (r = - 0.595, P = 0.019), and variation of NOx (r = - 0.572, P = 0.025). This study indicates that, by increasing of apelin and NOx plasma levels, HIIT may be effective in reducing blood pressure.
Simulation of plasma loading of high-pressure RF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.; Samulyak, R.; Yonehara, K.
2018-01-11
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.
MHD limits and plasma response in high-beta hybrid operations in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Igochine, V.; Piovesan, P.; Classen, I. G. J.; Dunne, M.; Gude, A.; Lauber, P.; Liu, Y.; Maraschek, M.; Marrelli, L.; McDermott, R.; Reich, M.; Ryan, D.; Schneller, M.; Strumberger, E.; Suttrop, W.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team; The EUROfusion MST1 Team
2017-11-01
The improved H-mode scenario (or high β hybrid operations) is one of the main candidates for high-fusion performance tokamak operation that offers a potential steady-state scenario. In this case, the normalized pressure {{β }N} must be maximized and pressure-driven instabilities will limit the plasma performance. These instabilities could have either resistive ((m = 2, n = 1) and (3,2) neoclassical tearing modes (NTMs)) or ideal character (n = 1 ideal kink mode). In ASDEX Upgrade (AUG), the first limit for maximum achievable {{β }N} is set by the NTMs. The application of pre-emptive electron cyclotron current drive at the q = 2 and q = 1.5 resonant surfaces reduces this problem, so that higher values of {{β }N} can be reached. AUG experiments have shown that, in spite of the fact that hybrids are mainly limited by NTMs, the proximity to the no-wall limit leads to amplification of the external fields that strongly influence the plasma profiles. For example, rotation braking is observed throughout the plasma and peaks in the core. In this situation, even small external fields are amplified and their effect becomes visible. To quantify these effects, the plasma response to the magnetic fields produced by B-coils is measured as {{β }N} approaches the no-wall limit. These experiments and corresponding modeling allow the identification of the main limiting factors, which depend on the stabilizing influence of the conducting components facing the plasma surface, the existence of external actuators, and the kinetic interaction between the plasma and the marginally stable ideal modes. Analysis of the plasma reaction to external perturbations allowed us to identify optimal correction currents for compensating the intrinsic error field in the device. Such correction, together with the analysis of kinetic effects, will help to increase {{β }N} further in future experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, S.
2015-03-30
This paper describes the fundamental experimental data of the plasma surface modification of the polyimide using atmospheric pressure microwave plasma source. The experimental results were discussed from the point of view of the radical’s behavior, which significantly affects the modification mechanism. The purpose of the study is to examine how the value of the oxygen atom density will affect the hydrophilic treatment in the upstream region of the plasma where gas temperature is very high. The surface modification experiments were performed by setting the polyimide film sample in the downstream region of the plasma. The degree of the modification wasmore » measured by a water contact angle measurement. The water contact angle decreased less than 30 degrees within 1 second treatment time in the upstream region. Very high speed modification was observed. The reason of this high speed modification seems that the high density radical which contributes the surface modification exist in the upstream region of the plasma. This tendency is supposed to the measured relatively high electron density (~10{sup 15}cm{sup −3}) at the center of the plasma. We used the electric heating catalytic probe method for oxygen radical measurement. An absolute value of oxygen radical density was determined by catalytic probe measurement and the results show that ~10{sup 15}cm{sup −3} of the oxygen radical density in the upstream region and decreases toward downstream region. The experimental results of the relation of the oxygen radical density and hydrophilic modification of polyimide was discussed.« less
Boot, Christopher; Toole, Barry; Johnson, Sarah J; Ball, Stephen; Neely, Dermot
2017-01-01
Background Measurement of plasma metanephrines is regarded as one of the best screening tests for phaeochromocytoma/paraganglioma. Current guidelines recommend that samples are ideally collected in the supine position after 30 min rest and interpreted using supine reference ranges, in order to optimize the diagnostic performance of the test. Current practice in our centre is to collect samples for plasma metanephrines from seated patients. The aim of the study was to determine, if seated sampling for plasma metanephrines provides acceptable diagnostic performance in our centre. Methods Clinical and laboratory data of 113 patients, gathered over a four-year period 2010-2014, were reviewed. All had undergone preoperative plasma metanephrines measurement and had postoperative histopathology confirmation or exclusion of phaeochromocytoma/paraganglioma. Results Of 113 patients included in the study, 40 had a histological diagnosis of phaeochromocytoma/paraganglioma. The remaining 73 patients had an alternative adrenal pathology. The diagnostic sensitivity of normetanephrine or metanephrine above the upper limit of our in-house seated reference range was 93%. However, excluding three cases of paraganglioma determined clinically and biochemically to be non-functional raised the sensitivity to 100%. Diagnostic specificity was 90%. Applying published supine reference ranges made no difference to diagnostic sensitivity in this group of patients but decreased diagnostic specificity to 75%. Conclusions While these data are derived from a relatively small study population, they demonstrate acceptable diagnostic performance for seated plasma metanephrines as a screening test for phaeochromocytoma/paraganglioma. These data highlight a high diagnostic sensitivity for plasma metanephrines with seated sampling in our centre.
A Computational Framework for Efficient Low Temperature Plasma Simulations
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Venkattraman, Ayyaswamy
2016-10-01
Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.
Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure
NASA Astrophysics Data System (ADS)
Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie
2016-12-01
Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.
Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.
2013-01-01
Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147
Amini, Hossein; Shahmir, Badri; Ahmadiani, Abolhassan
2004-08-05
A simple and sensitive high-performance liquid chromatographic (HPLC) method with spectrophotometric detection was developed for the determination of moclobemide in human plasma. Plasma samples were extracted under basic conditions with dichloromethane followed by back-extraction into diluted phosphoric acid. Isocratic separation was employed on an ODS column (250 mm x 4.6 mm, 5 microm) at room temperature. The mobile phase consisted of 5 mM NaH2PO4-acetonitrile-triethylamine (1000:350:10 (v/v/v), pH 3.4). Analyses were run at a flow-rate of 1.0 ml/min and ultraviolet (UV) detection was carried out at 240 nm. The method was specific and sensitive with a quantification limit of 15.6 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 98.2%, while the intra- and inter-day coefficient of variation and percent error values of the assay method were all at acceptable levels. Linearity was assessed in the range of 15.6-2000 ng/ml in plasma with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailibility studies.
Plasma photonics in ICF & HED conditions
NASA Astrophysics Data System (ADS)
Michel, Pierre; Turnbull, David; Divol, Laurent; Pollock, Bradley; Chen, Cecilia Y.; Tubman, Eleanor; Goyon, Clement S.; Moody, John D.
2015-11-01
Interactions between multiple high-energy laser beams and plasma can be used to imprint refractive micro-structures in plasmas via the lasers' ponderomotive force. For example, Inertial confinement fusion (ICF) experiments at the National Ignition Facility already rely on the use of plasma gratings to redirect laser light inside an ICF target and tune the symmetry of the imploded core. More recently, we proposed new concepts of plasma polarizer and waveplate, based on two-wave mixing schemes and laser-induced plasma birefringence. In this talk, we will present new experimental results showing the first demonstration of a fully tunable plasma waveplate, which achieved near-perfect circular laser polarization. We will discuss further prospects for novel ``plasma photonics'' concepts based on two- and four-wave mixing, such as optical switches, bandpass filters, anti-reflection blockers etc. These might find applications in ICF and HED experiments by allowing to manipulate the lasers directly in-situ (i.e. inside the targets), as well as for the design of high power laser systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.
2015-11-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
High-speed and supersonic upward plasma drifts: multi-instrumental study
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.
2017-12-01
Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are required and that horizontal thermospheric winds play an important role in the occurrence of high-speed plasma flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
Serrano, Ana Belén; Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo
2015-01-01
A novel method for the simultaneous determination of enniatins A, A1, B and B1 and beauvericin, both in human urine and plasma samples, was developed and validated. The method consisted of a simple and easy pretreatment, specific for each matrix, followed by solid phase extraction (SPE) and detection by high performance liquid chromatography-tandem mass spectrometry with an electrospray ion source. The optimized SPE method was performed on graphitized carbon black cartridges after suitable dilution of the extracts, which allowed high mycotoxin absolute recoveries (76%–103%) and the removal of the major interferences from the matrix. The method was extensively evaluated for plasma and urine samples separately, providing satisfactory results in terms of linearity (R2 of 0.991–0.999), process efficiency (>81%), trueness (recoveries between 85% and 120%), intra-day precision (relative standard deviation, RSD < 18%), inter-day precision (RSD < 21%) and method quantification limits (ranging between 20 ng·L−1 and 40 ng·L−1 in plasma and between 5 ng·L−1 and 20 ng·L−1 in urine). Finally, the highly sensitive validated method was applied to some urine and plasma samples from different donors. PMID:26371043
Progress of the ELISE test facility: towards one hour pulses in hydrogen
NASA Astrophysics Data System (ADS)
Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team
2016-10-01
In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.
High-Z plasma facing components in fusion devices: boundary conditions and operational experiences
NASA Astrophysics Data System (ADS)
Neu, R.
2006-04-01
In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.
Channel optimization of high-intensity laser beams in millimeter-scale plasmas.
Ceurvorst, L; Savin, A; Ratan, N; Kasim, M F; Sadler, J; Norreys, P A; Habara, H; Tanaka, K A; Zhang, S; Wei, M S; Ivancic, S; Froula, D H; Theobald, W
2018-04-01
Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>10^{18}W/cm^{2}) kilojoule laser pulses through large density scale length (∼390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.
Plasma detachment in divertor tokamaks
Leonard, A. W.
2018-02-07
In this study, observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasmamore » $$\\vec{E}$$ x $$\\vec{B}$$ drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.« less
Channel optimization of high-intensity laser beams in millimeter-scale plasmas
NASA Astrophysics Data System (ADS)
Ceurvorst, L.; Savin, A.; Ratan, N.; Kasim, M. F.; Sadler, J.; Norreys, P. A.; Habara, H.; Tanaka, K. A.; Zhang, S.; Wei, M. S.; Ivancic, S.; Froula, D. H.; Theobald, W.
2018-04-01
Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>1018W/cm 2 ) kilojoule laser pulses through large density scale length (˜390 -570 μ m ) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.
Rodgers, A H; Subramanian, S; Morgan, L R
1995-08-18
An analytical method has been developed for the determination of 4,4'-dihydroxybenzophenone-2,4-dinitrophenylhydrazone (I, trade name A-007) in plasma. Plasma samples are primed with the internal standard, 2,2'-dihydroxybenzophenone-2,4-dinitrophenylhydrazone (II), deproteinized with acetonitrile, centrifuged and filtered prior to assay. The components are then separated on a reversed-phase column with retention times of 4.4 and 6.0 min for I and II, respectively. Ultraviolet detection at 365 nm was employed and little interference with the analyte or the internal standard was noted from other plasma components. This method has been applied to the plasma of rats and monkeys doses for pharmacokinetic and toxicity studies.
Plasma detachment in divertor tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, A. W.
In this study, observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasmamore » $$\\vec{E}$$ x $$\\vec{B}$$ drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.« less
Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-01-01
Objectives Omentin-1 is a recently discovered adipokine, mainly produced by visceral adipose tissue, which is thought to improve insulin sensitivity. The study aimed to assess the association of plasma omentin-1 with cardiometabolic traits and physical performance and to test its response to high-intensity interval training (HIIT) in obese and normal-weight subjects. Methods Nine overweight/obese (OG) and 9 normal-weight (NWG) young men performed an 8-week HIIT program. Body composition, physical performance, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma omentin-1and lipid levels were assessed before and after the HIIT program. Results Baseline plasma omentin-1 was lower in OG than NWG men (359 ± 138 vs. 470 ± 114 ng/ml; p = 0.052). Plasma omentin-1 was related to body fat (r = −0.57; p = 0.03) and LDL-cholesterol (r = −0.49; p = 0.04). There was a trend towards significant association of omentin-1 with BMI (r = −0.47; p = 0.06) and VO2max (r = 0.41; p = 0.09). However, no association was observed with HOMA-IR. Following the HIIT program, omentin-1 concentrations have significantly (p < 0.01) increased in OG (359 ± 138 to 455 ± 126 ng/ml) and NWG men (470 ± 114 to 572 ± 115 ng/ml). In parallel, the cardiometabolic profile has improved with a significant decrease of HOMA-IR in OG. Conclusions HIIT resulted in a plasma omentin-1 increase and an improvement with regard to cardiometabolic traits in the OG men, which may contribute to modulate insulin sensitivity. PMID:28787708
Ouerghi, Nejmeddine; Ben Fradj, Mohamed Kacem; Bezrati, Ikram; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-01-01
Omentin-1 is a recently discovered adipokine, mainly produced by visceral adipose tissue, which is thought to improve insulin sensitivity. The study aimed to assess the association of plasma omentin-1 with cardiometabolic traits and physical performance and to test its response to high-intensity interval training (HIIT) in obese and normal-weight subjects. Nine overweight/obese (OG) and 9 normal-weight (NWG) young men performed an 8-week HIIT program. Body composition, physical performance, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma omentin-1and lipid levels were assessed before and after the HIIT program. Baseline plasma omentin-1 was lower in OG than NWG men (359 ± 138 vs. 470 ± 114 ng/ml; p = 0.052). Plasma omentin-1 was related to body fat (r = -0.57; p = 0.03) and LDL-cholesterol (r = -0.49; p = 0.04). There was a trend towards significant association of omentin-1 with BMI (r = -0.47; p = 0.06) and VO2max (r = 0.41; p = 0.09). However, no association was observed with HOMA-IR. Following the HIIT program, omentin-1 concentrations have significantly (p < 0.01) increased in OG (359 ± 138 to 455 ± 126 ng/ml) and NWG men (470 ± 114 to 572 ± 115 ng/ml). In parallel, the cardiometabolic profile has improved with a significant decrease of HOMA-IR in OG. HIIT resulted in a plasma omentin-1 increase and an improvement with regard to cardiometabolic traits in the OG men, which may contribute to modulate insulin sensitivity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.
Zhou, Ying; Hu, Pei; Jiang, Ji
2017-04-15
Remimazolam is a new chemical entity belonging to the benzodiazepine class of sedative drugs, which shows faster-acting onset and recovery than currently available short-acting sedatives. In the present study, ultra high performance liquid chromatography with synapt high-definition mass spectrometry method combined with MassLynx software was established to characterize metabolites of remimazolam in human plasma and urine. In total, 5 human metabolites were detected, including 3 phase I and 2 phase II metabolites. There was no novel human metabolite detected compared to that in rat. Hydrolysis, glucuronidation and oxidation were the major metabolic reactions. To our knowledge, this is the first report of the human metabolic profile of remimazolam. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.
2016-12-01
In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.
Redechová, S; Féderová, L; Hammerová, L; Filkászová, A; Horváthová, D; Redecha, M
2014-06-01
Authors in the article describe a case of a patient with thrombotic thrombocytopenic purpurain 37 weeks gestation complicated by acute severe hemorrhagic-necrotic pancreatitis during the early puerperium. Case report. Ist Department of gynaecology and obstetrics of the Comenius University Bratislava. 33-years-old patient in the 37 weeks gestation was admitted to our department with the signs of HELLP syndrome (hemolysis, elevated liver enzymes, low platelets). Due to the worsening clinical status, we have performed caesarean section. After the transient stabilization of the patient's clinical status, the hemolysis with severe thrombocytopenia reappeared. Based on the clinical signs of abdominal pain and computer tomography, the diagnosis of acute hemorrhagic-necrotic pancreatitis was set. The primary diagnosis was thrombotic thrombocytopenic purpura. Therefore, therapeutic plasma exchange was performed with consequent improvement of the patients clinical state. Normalization of the platelet count was achieved after 4.plasma exchanges. Consequently 5 plasma exchanges were performed. However, one month later, the disease relapsed. Therapeutic plasma exchanges were needed again (4x), with anti CD 20 administration. This therapy had good clinical outcome, without the need for further plasma exchanges. Thrombotic thrombocytopenic purpura is highly lethal disease. Early diagnosis, treatment, and multidisciplinary approach are essential.
Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.
2016-09-01
Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1974-01-01
The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.
The design and development of a space laboratory to conduct magnetospheric and plasma research
NASA Technical Reports Server (NTRS)
Rosen, A.
1974-01-01
A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.
Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten
The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less
Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.
Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen
2018-01-10
Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.
NASA Astrophysics Data System (ADS)
Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.
2014-05-01
We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.
NASA Astrophysics Data System (ADS)
Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.
2001-06-01
The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.
Overview of HIT-SI Results and Plans
NASA Astrophysics Data System (ADS)
Ennis, D. A.; Akcay, C.; Hansen, C. J.; Hicks, N. K.; Hossack, A. C.; Jarboe, T. R.; Marklin, G. J.; Nelson, B. A.; Victor, B. S.
2011-10-01
Experiments in the Helicity Injected Torus-Steady Inductive (HIT-SI) device have achieved record spheromak current amplification during operations in deuterium plasmas. HIT-SI investigates steady inductive helicity injection with the aim of forming and sustaining a high-beta equilibrium in a spheromak geometry using two semi-toroidal injectors. Recent operations in deuterium plasmas have produced toroidal plasma currents greater than 50 kA, with current amplifications (Itor / Iinj) > 3 , and poloidal flux amplifications (ψpol /ψinj) > 10 . High performance deuterium discharges are achieved by initially conditioning the plasma-facing alumina surface of the HIT-SI confinement volume with helium plasmas. During subsequent deuterium operation the alumina surface strongly pumps deuterium, thereby limiting the density in the confinement volume. Additional measurements during high current deuterium discharges demonstrate reduced current and electron density fluctuations, impurity O III ion temperatures up to 50 eV and a toroidal current persistence for 0.6 ms after the injectors are shut off. Progress and plans for the HIT-SI3 configuration, with three injectors mounted on the same side of the confinement volume, will also be presented. Work supported by USDoE and ARRA.
Access to high beta advanced inductive plasmas at low injected torque
NASA Astrophysics Data System (ADS)
Solomon, W. M.; Politzer, P. A.; Buttery, R. J.; Holcomb, C. T.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Hanson, J. M.; In, Y.; Jackson, G. L.; Kinsey, J. E.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Okabayashi, M.; Petty, C. C.; Turco, F.; Welander, A. S.
2013-09-01
Recent experiments on DIII-D demonstrate that advanced inductive (AI) discharges with high equivalent normalized fusion gain can be accessed and sustained with very low amounts (∼1 N m) of externally injected torque, a level of torque that is anticipated to drive a similar amount of rotation as the beams on ITER, via simple consideration of the scaling of the moment of inertia and confinement time. The AI regime is typically characterized by high confinement, and high βN, allowing the possibility for high performance, high gain operation at reduced plasma current. Discharges achieved βN ∼ 3.1 with H98(y,2) ∼ 1 at q95 ∼ 4, and are sustained for the maximum duration of the counter neutral beams (NBs). In addition, plasmas using zero net NB torque from the startup all the way through to the high βN phase have been created. AI discharges are found to become increasingly susceptible to m/n = 2/1 neoclassical tearing modes as the torque is decreased, which if left unmitigated, generally slow and lock, terminating the high performance phase of the discharge. Access is not notably different whether one ramps the torque down at high βN, or ramps βN up at low torque. The use of electron cyclotron heating (ECH) and current drive proved to be an effective method of avoiding such modes, enabling stable operation at high beta and low torque, a portion of phase space that has otherwise been inaccessible. Thermal confinement is significantly reduced at low rotation, a result that is reproduced using the TGLF transport model. Although it is thought that stiffness is increased in regions of low magnetic shear, in these AI plasmas, the reduced confinement occurs at radii outside the low shear, and in fact, higher temperature gradients can be found in the low shear region at low rotation. Momentum transport is also larger at low rotation, but a significant intrinsic torque is measured that is consistent with a previous scaling considering the role of the turbulent Reynolds stress and thermal ion orbit loss. Although high normalized fusion performance has been achieved in these discharges, more detailed projections suggest that enhancement in the confinement needs to be realized in order to obtain a low current solution consistent with ITER Q = 10 performance, and this remains a future research challenge.
Barco, Sebastiano; Castagnola, Elio; Gennai, Iulian; Barbagallo, Laura; Loy, Anna; Tripodi, Gino; Cangemi, Giuliana
2016-10-01
Vancomycin therapeutic drug monitoring (TDM) is necessary for effective and safetherapy. The aim of the this paper was to develop a specific and robust ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for vancomycin quantification starting from low plasma volumes to be applied for the routine TDM in children. Samples from children receiving intravenous vancomycin were analysed using a TSQ Quantum Access MAX Triple Quadrupole system coupled with an Accela 1250 UHPLC system after a rapid protein precipitation. Gradient separation chromatography was carried out using a Hypersil GOLD aQ C18 column (50 × 2.1 mm, particle size 1.9 μm). Method performance was validated following international guidelines. UHPLC-MS/MS allowed a rapid and specific quantification of vancomycin over the range 0.1-128 μg/mL from 50 μL of plasma with high reproducibility and accuracy in the absence of matrix effect. The comparison with the commercial immunoassay performed on 138 samples demonstrated the presence of a proportional bias. The concentrations of vancomycin measured with immunoassay were found to be 4.5% (95% CI: 1.3-7.7) higher than those determined with UHPLC-MS/MS. Importantly, a clinical discordance was found in about 10% of samples analysed. This new UHPLC-MS/MS method is accurate and specific for the measurement of vancomycin starting from small (50 μL) plasma volumes. The use of UHPLC-MS/MS is recommended to prevent a misclassification of therapeutic or toxic vancomycin levels in paediatrics.
Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R
2014-02-01
Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.
NASA Technical Reports Server (NTRS)
Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace
2003-01-01
The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.
Hollow cathode restartable 15 cm diameter ion thruster
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1973-01-01
The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.
Yu, Panfeng; Wang, Qi; Zhang, Xifeng; Zhang, Xuesong; Shen, Shun; Wang, Yan
2010-09-23
In this study, a novel extraction and enrichment technique based on superparamagnetic high-magnetization C(18)-functionalized magnetic silica nanoparticles (C(18)-MNPs) as sorbents was successfully developed for the determination of methylprednisolone (MP) in rat plasma by high performance liquid chromatography (HPLC). The synthesized silica-coated magnetite modified with chlorodimethyl-n-octadecylsilane was about 320 nm in diameter with strong magnetism and high surface area. It provided an efficient way for extraction and concentration of MP in the samples through hydrophobic interaction by the interior C(18) groups. Moreover, MP adsorbed with C(18)-MNPs could be simply and rapidly isolated through placing a strong magnet on the bottom of container, and then easily eluted from C(18)-MNPs by n-hexane solution. Extraction conditions such as amounts of C(18)-MNPs added, adsorption time and desorption solvent, were investigated. Method validations including linear range, detection limit, precision, and recovery were also studied. The results showed that the proposed method based on C(18)-MNPs was a simple, accurate and high efficient approach for the analysis of MP in the complex plasma samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Characterization of a linear device developed for research on advanced plasma imaging and dynamicsa)
NASA Astrophysics Data System (ADS)
Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Choi, M. C.
2010-10-01
Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 °C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5×10-8 Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.
Byeon, Seul Kee; Kim, Jin Yong; Lee, Jin-Sung; Moon, Myeong Hee
2016-03-01
A deficiency of α-galactosidase A causes Fabry disease (FD) by disrupting lipid metabolism, especially trihexosylceramide (THC). Enzyme replacement therapy (ERT) is clinically offered to FD patients in an attempt to lower the accumulated lipids. Studies on specific types of lipids that are directly or indirectly altered by FD are very scarce, even though they are crucial in understanding the biological process linked to the pathogenesis of FD. We performed a comprehensive lipid profiling of plasma and urinary lipids from FD patients with nanoflow liquid chromatography electrospray-ionization tandem mass spectrometry (nLC-ESI-MS/MS) and identified 129 plasma and 111 urinary lipids. Among these, lipids that exhibited alternations (>twofold) in patients were selected as targets for selected reaction monitoring (SRM)-based high-speed quantitation using nanoflow ultra-performance LC-ESI-MS/MS (nUPLC-ESI-MS/MS) and 31 plasma and 26 urinary lipids showed significant elevation among FD patients. Higher percentages of sphingolipids (SLs; 48% for plasma and 42% for urine) were highly elevated in patients; whereas, a smaller percentage of phospholipids (PLs; 15% for plasma and 13% for urine) were significantly affected. Even though α-galactosidase A is reported to affect THC only, the results show that other classes of lipids (especially SLs) are changed as well, indicating that FD not only alters metabolism of THC but various classes of lipids too. Most lipids showing significant increases in relative amounts before ERT decreased after ERT, but overall, ERT influenced plasma lipids more than urinary lipids.
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wei, Hong
2000-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. The principle of the laser power propulsion is that when high-powered laser is focused at a small area near the surface of a thruster, the intense energy causes the electrical breakdown of the working fluid (e.g. air) and forming high speed plasma (known as the inverse Bremsstrahlung, IB, effect). The intense heat and high pressure created in the plasma consequently causes the surrounding to heat up and expand until the thrust producing shock waves are formed. This complex process of gas ionization, increase in radiation absorption and the forming of plasma and shock waves will be investigated in the development of the present numerical model. In the first phase of this study, laser light focusing, radiation absorption and shock wave propagation over the entire pulsed cycle are modeled. The model geometry and test conditions of known benchmark experiments such as those in Myrabo's experiment will be employed in the numerical model validation simulations. The calculated performance data will be compared to the test data.
Parametric Instabilities During High Power Helicon Wave Injection on DIII-D
NASA Astrophysics Data System (ADS)
Porkolab, M.; Pinsker, R. I.
2017-10-01
High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.
Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas
2017-12-01
In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences
NASA Astrophysics Data System (ADS)
Xu, Gu-feng; Wang, Hong-mei
2001-08-01
Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.
Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivancic, S.; Haberberger, D.; Habara, H.
Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.
El-Yazbi, Fawzi A; Amin, Omayma A; El-Kimary, Eman I; Khamis, Essam F; Younis, Sameh E
2018-06-01
Two simple, sensitive and specific high-performance thin-layer chromatographic (HPTLC) methods were developed for the determination of febuxostat (FEB) individually, and simultaneously with diclofenac (DIC) in human plasma. Method A presents the first HPTLC-ultraviolet attempt for FEB determination in human plasma. FEB was separated from endogenous plasma components (at hR F = 70) with ethyl acetate-methanol-water (9:2:1, v/v) mixture as mobile phase and quantified by densitometry at its λ max (315 nm). Method B is considered the first attempt for the simultaneous determination of FEB and DIC in human plasma. A mixture of petroleum ether-chloroform-ethyl acetate-formic acid (7.5:1:2.5:0.25, v/v) was used as the mobile phase. The two drugs were separated at hR F of 39 and 60 for FEB and DIC, respectively. FEB and DIC were quantified by densitometry at their isoabsorptive point (289 nm). FEB calibration plots were linear between 0.1 and 7 μg mL -1 in both methods A and B. In method B, DIC showed linear response in the range of 0.08-8 μg mL -1 . Sample preparation was performed by liquid-liquid extraction using diethyl ether. Both methods did not record any interference from plasma matrix, the studied drugs' metabolites or their decomposition products. They were successfully applied for the determination of the studied drugs in healthy male volunteers after oral administration of FEB or FEB/DIC dosage forms. FEB plasma concentration increased significantly when given with DIC. The proposed methods provided very simple, rapid and cheap approaches that might be attractive for the future pharmacokinetic and bioavailability studies of FEB and/or DIC. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Fengkui; Li, Qi; Wang, Rubing; Xu, Jianbao; Hu, Junxiong; Li, Weiwei; Guo, Yufen; Qian, Yuting; Deng, Wei; Ullah, Zaka; Zeng, Zhongming; Sun, Mengtao; Liu, Liwei
2017-11-01
Graphene nanoribbons (GNRs) have attracted intensive research interest owing to their potential applications in high performance graphene-based electronics. However, the deterioration of electrical performance caused by edge disorder is still an important obstacle to the applications. Here, we report the fabrication of low resistivity GNRs with a zigzag-dominated edge through hydrogen plasma etching combined with the Zn/HCl pretreatment method. This method is based on the anisotropic etching properties of hydrogen plasma in the vicinity of defects created by sputtering zinc (Zn) onto planar graphene. The polarized Raman spectra measurement of GNRs exhibits highly polarization dependence, which reveals the appearance of the zigzag-dominated edge. The as-prepared GNRs exhibit high carrier mobility (˜1332.4 cm2 v-1 s-1) and low resistivity (˜0.7 kΩ) at room temperature. Particularly, the GNRs can carry large current density (5.02 × 108 A cm-2) at high voltage (20.0 V) in the air atmosphere. Our study develops a controllable method to fabricate zigzag edge dominated GNRs for promising applications in transistors, sensors, nanoelectronics, and interconnects.
Comparison of cross-sectional HIV incidence assay results from dried blood spots and plasma.
Schlusser, Katherine E; Pilcher, Christopher; Kallas, Esper G; Santos, Breno R; Deeks, Steven G; Facente, Shelley; Keating, Sheila M; Busch, Michael P; Murphy, Gary; Welte, Alex; Quinn, Thomas; Eshleman, Susan H; Laeyendecker, Oliver
2017-01-01
Assays have been developed for cross-sectional HIV incidence estimation using plasma samples. Large scale surveillance programs are planned using dried blood spot (DBS) specimens for incidence assessment. However, limited information exists on the performance of HIV cross-sectional incidence assays using DBS. The assays evaluated were: Maxim HIV-1 Limiting Antigen Avidity EIA (LAg-Avidity), Sedia HIV-1 BED-Capture EIA (BED-CEIA), and CDC modified BioRad HIV-1/2 Plus O Avidity-based Assay (CDC-BioRad Avidity) using pre-determined cutoff values. 100 matched HIV-1 positive plasma and DBS samples, with known duration of infection, from the Consortium for the Evaluation and Performance of HIV Incidence Assays repository were tested. All assays were run in duplicate. To examine the degree of variability within and between results for each sample type, both categorical and continuous results were analyzed. Associations were assessed with Bland Altman, R2 values and Cohen's kappa coefficient (ĸ). Intra-assay variability using the same sample type was similar for all assays (R2 0.96 to 1.00). The R2 values comparing DBS and plasma results for LAg-Avidity, BED-CEIA, and CDC-BioRad Avidity were 0.96, 0.94, and 0.84, respectively. The concordance and ĸ values between DBS and plasma for all three assays were >87% and >0.64, respectively. The Bland-Altman analysis showed significant differences between plasma and DBS samples. For all three assays, a higher number of samples were classified as recent infections using DBS samples. DBS and plasma sample results were highly correlated. However, when compared to plasma, each assay performed somewhat differently in DBS at the lower and higher ends of the dynamic range. DBS samples were more likely to be classified as recently infected by all three assays, which may lead to overestimation of incidence in surveys using performance criteria derived for plasma samples.
A theoretical analysis of vacuum arc thruster performance
NASA Technical Reports Server (NTRS)
Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre
2001-01-01
In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.
Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E
2000-08-01
Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.
Erosion and re-deposition of lithium and boron coatings under high-flux plasma bombardment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, Tyler Wayne
2015-01-01
Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oz, E.; Myers, C. E.; Edwards, M. R.
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC ringsmore » with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.« less
Progress toward commissioning and plasma operation in NSTX-U
NASA Astrophysics Data System (ADS)
Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team
2015-07-01
The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.
Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements
NASA Astrophysics Data System (ADS)
Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.
2017-12-01
In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.
The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lei; School of Astronautics, Beihang University, Beijing 100191; Zeng, Guangshang
2016-07-15
Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodifiedmore » model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.« less
NASA Astrophysics Data System (ADS)
Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam
2016-07-01
This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.
Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam
2016-01-01
This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects. PMID:27383714
[Enantioselectivity in the excretion of glucuronides of carprofen in man, dogs and horses].
Delatour, P; Garnier, F; Maire, R
1996-10-01
After administration of the racemic drug, the stereoselective quantification of the enantiomers of free and conjugated carprofen was performed in human plasma and in plasma, urine and bile of dogs and horses. In humans, the plasma profile of free carprofen and its glucuronides is not stereoselective and the glucuronides excreted in urine are close to a racemate. In dogs and horses on the contrary, the R(-) enantiomer of the free drug is predominant in plasma, while urine and/or bile concentrations of the glucuronides are high in comparison to plasma with a strong selectivity for the S(+) enantiomer. Because glucuronidation of carprofen, as a carboxylic compound, is known to be the major metabolic pathway in most species, interspecies discrepancies in the stereoselective disposition of carprofen seem to be mainly related to the stereoselectivity in the excretion of the glucuronides. Finally, the high plasma concentrations of carprofen glucuronides in human in comparison to other animal species suggest that the former could be specifically subjected to immunological side effects in the time course of treatments by this type of compounds.
Particle energization in magnetic reconnection in high-energy-density plasmas
NASA Astrophysics Data System (ADS)
Deng, W.; Fox, W.; Bhattacharjee, A.
2014-10-01
Significant particle energization is inferred to occur in many astrophysical environments and magnetic reconnection has been proposed to be the driver in many cases. Recent observation of magnetic reconnection in high-energy-density (HED) plasmas on the Vulcan, Omega and Shenguang laser facilities has opened up a new regime of reconnection study of great interest to laboratory and plasma astrophysics. In these experiments, plasma bubbles, excited by laser shots on solid targets and carrying magnetic fields, expand into one another, squeezing the opposite magnetic fields together to drive reconnection. 2D particle-in-cell (PIC) simulations have been performed to study the particle energization in such experiments. Two energization mechanisms have been identified. The first is a Fermi acceleration process between the expanding plasma bubbles, wherein the electromagnetic fields of the expanding plasma bounce particles, acting as moving walls. Particles can gain significant energy through multiple bounces between the bubbles. The second mechanism is a subsequent direct acceleration by electric field at the reconnection X-line when the bubbles collide into each other and drive reconnection.
Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak
NASA Astrophysics Data System (ADS)
Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team
2018-01-01
The transient perturbation method with metallic impurities such as iron (Fe, Z = 26) and copper (Cu, Z = 29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.
2013-01-01
Background We have recently reported on the changes in plasma free amino acid (PFAA) profiles in lung cancer patients and the efficacy of a PFAA-based, multivariate discrimination index for the early detection of lung cancer. In this study, we aimed to verify the usefulness and robustness of PFAA profiling for detecting lung cancer using new test samples. Methods Plasma samples were collected from 171 lung cancer patients and 3849 controls without apparent cancer. PFAA levels were measured by high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). Results High reproducibility was observed for both the change in the PFAA profiles in the lung cancer patients and the discriminating performance for lung cancer patients compared to previously reported results. Furthermore, multivariate discriminating functions obtained in previous studies clearly distinguished the lung cancer patients from the controls based on the area under the receiver-operator characteristics curve (AUC of ROC = 0.731 ~ 0.806), strongly suggesting the robustness of the methodology for clinical use. Moreover, the results suggested that the combinatorial use of this classifier and tumor markers improves the clinical performance of tumor markers. Conclusions These findings suggest that PFAA profiling, which involves a relatively simple plasma assay and imposes a low physical burden on subjects, has great potential for improving early detection of lung cancer. PMID:23409863
Vertzoni, M V; Archontaki, H A; Galanopoulou, P
2003-07-14
A reversed-phase high-performance liquid chromatographic method with detection at 242 nm was developed, optimized and validated for the determination of acetaminophen (A) and its major metabolites glucuronide (AG) and sulfate (AS) conjugates in rabbit plasma and urine after a toxic dose. m-Aminophenol was used as internal standard (IS). A Hypersil BDS RP-C18 column (250 x 4.6 mm), 5 microm particle size, was equilibrated with a mobile phase composed of aqueous buffer solution of KH2PO4 0.05 M containing 1% CH3COOH (pH 6.5) and methanol (95:5, v/v). Its flow rate was 1.5 ml/min. Calibration curves of A, AG and AS were linear in the concentration ranges of 0.5-250, 1-200, 0.5-100 microg/ml in plasma and 1-200, 0.5-150, 0.5-100 microg/ml in urine matrix, respectively. Limits of detection and quantitation were calculated in all cases and extensive recovery studies were also performed. Intra-day relative standard deviation (R.S.D.) for A, AG and AS in plasma was less than 5, 4, 2% and in urine less than 4, 7, 4%, respectively, while the corresponding inter-day values were 7, 6, 4% and 5, 8, 6%, respectively.
Kamble, Bhagyashree; Gupta, Ankur; Patil, Dada; Khatal, Laxman; Janrao, Shirish; Moothedath, Ismail; Duraiswamy, Basavan
2013-05-01
A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid-liquid extraction with tetra-butyl methyl ether. Chromatographic separation was performed on Luna C(18) column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280-300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.
Formation of high heat resistant coatings by using gas tunnel type plasma spraying.
Kobayashi, A; Ando, Y; Kurokawa, K
2012-06-01
Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,
Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2000-01-01
The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure fusion micro-bursts with reasonable levels of input energy is an equally challenging scientific problem. It remains to be seen, however, whether an effective ignition driver can be developed which meets the requirements for practical spaceflight application (namely high power density, compactness, low weight, and low cost). In this paper, system level performance and design issues are examined including generator performance, magnetic flux compression processes, magnetic diffusion processes, high temperature superconductor (HTSC) material properties, plasmadynamic processes, detonation plasma expansion processes, magnetohydrodynamic instabilities, magnetic nozzle performance, and thrust production performance. Representative generator performance calculations based on a simplified skin layer formulation are presented as well as the results of exploratory small-scale laboratory experiments on magnetic flux diffusion in HTSC materials. In addition, planned follow-on scientific feasibility experiments are described which utilize high explosive detonations and high energy gas discharges to simulate the plasma conditions associated with thermonuclear micro-detonations.
NASA Astrophysics Data System (ADS)
Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.
2011-11-01
Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.
Da, Xu; Qian, Ling-Jia
2005-08-01
To establish a method for detection of plasma total homocysteine with HPLC. The chromatography analysis was carried out using a Symmetry Shield RP18. The mobile phase was sodium acetate (0.08 mol/L) and methanol (1%) and we utilized a HPLC system with fluorescence detection of plasma homocysteine derivatized from reaction with 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate (SBD-F). The average recoveries were 95.8 - 100.8% and the relative standard deviations were 1.2-2.0%. The results showed it to be a rapid and accurate method for the determination of homocysteine level in plasma.
Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.
He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo
2013-01-01
A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.
PVD coating for optical applications on temperature-resistant thermoplastics
NASA Astrophysics Data System (ADS)
Munzert, Peter; Schulz, Ulrike; Kaiser, Norbert
2004-02-01
The performance of the high temperature resistant polymers Pleximid, APEC and Ultrason as substrate materials in plasma-assisted physical vapor deposition processes was studied and compared with well-known thermoplastics for optical applications. Different effects of UV irradiation and plasma exposure on the polymers' optical features, surface energy and adhesion properties for oxide layers, typically used for interference multilayer coatings, are shown.
Investigation of helicon ion source extraction systems.
Mordyk, S; Miroshnichenko, V; Shulha, D; Storizhko, V
2008-02-01
Various versions of an extraction system for a helicon ion source have been investigated in high plasma density (>10(12) cm(-3)) modes. The measurements of the plasma density were carried out with a microwave interferometer. Experiments were performed with hydrogen and helium gases. The preliminary results indicate that specially designed extractors are very promising for improving ion beam paraxial brightness.
20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies
NASA Technical Reports Server (NTRS)
Posta, S. J.; Michels, C. J.
1973-01-01
A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.
2016-05-28
We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less
Tan, Guangguo; Zhu, Zhenyu; Jing, Jing; Lv, Lei; Lou, Ziyang; Zhang, Guoqing; Chai, Yifeng
2011-08-01
A high-performance liquid chromatography with diode-array detection coupled to time-of-flight mass spectrometry (HPLC/DAD/TOFMS) method was established to clarify the chemical composition of Sini decoction (SND) and rat plasma after oral administration of SND. With dynamic adjustment of fragmentor voltage in TOFMS, an efficient transmission of the ions was achieved to obtain the best sensitivity for providing the molecular formula for each analyte and abundant fragment ions for structural information. By accurate mass measurements within 5 ppm error for each molecular ion and subsequent fragment ions, 53 compounds including diterpenoid alkaloids, flavonoids, triterpenoids and gingerol-related compounds were identified in SND. Major compounds identified from SND were further assigned in the three individual herbs. After oral administration of SND, 33 compounds and five metabolites in rat plasma were detected and identified by comparing and contrasting the compounds measured in SND with those in the plasma samples by HPLC/DAD/TOFMS. The results provided helpful chemical information for further pharmacology and active mechanism research on SND. Copyright © 2010 John Wiley & Sons, Ltd.
Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments
NASA Astrophysics Data System (ADS)
Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.
2016-10-01
We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.
Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector
NASA Astrophysics Data System (ADS)
Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.
2015-12-01
In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).
High heat flux testing of CFC composites for the tokamak physics experiment
NASA Astrophysics Data System (ADS)
Valentine, P. G.; Nygren, R. E.; Burns, R. W.; Rocket, P. D.; Colleraine, A. P.; Lederich, R. J.; Bradley, J. T.
1996-10-01
High heat flux (HHF) testing of carbon fiber reinforced carbon composites (CFC's) was conducted under the General Atomics program to develop plasma-facing components (PFC's) for Princeton Plasma Physics Laboratory's tokamak physics experiment (TPX). As part of the process of selecting TPX CFC materials, a series of HHF tests were conducted with the 30 kW electron beam test system (EBTS) facility at Sandia National Laboratories, and with the plasma disruption simulator I (PLADIS-I) facility at the University of New Mexico. The purpose of the tests was to make assessments of the thermal performance and erosion behavior of CFC materials. Tests were conducted with 42 different CFC materials. In general, the CFC materials withstood the rapid thermal pulse environments without fracturing, delaminating, or degrading in a non-uniform manner; significant differences in thermal performance, erosion behavior, vapor evolution, etc. were observed and preliminary findings are presented below. The CFC's exposed to the hydrogen plasma pulses in PLADIS-I exhibited greater erosion rates than the CFC materials exposed to the electron-beam pulses in EBTS. The results obtained support the continued consideration of a variety of CFC composites for TPX PFC components.
Wang, Shu-Ping; Liu, Lei; Wang, Ling-Ling; Jiang, Peng; Zhang, Ji-Quan; Zhang, Wei-Dong; Liu, Run-Hui
2010-06-15
Based on the serum pharmacochemistry technique and high-performance liquid chromatography/diode-array detection (HPLC/DAD) coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS), a method for screening and analysis of the multiple absorbed bioactive components and metabolites of Jitai tablets (JTT) in orally dosed rat plasma was developed. Plasma was treated by methanol precipitation prior to liquid chromatography, and the separation was carried out on a Symmetry C(18) column, with a linear gradient (0.1% formic acid/water/acetonitrile). Mass spectra were acquired in negative and positive ion modes, respectively. As a result, 26 bioactive components originated from JTT and 5 metabolites were tentatively identified in orally dosed rat plasma by comparing their retention times and MS spectra with those of authentic standards and literature data. It is concluded that an effective and reliable analytical method was set up for screening the bioactive components of Chinese herbal medicine, which provided a meaningful basis for further pharmacology and active mechanism research of JTT. Copyright (c) 2010 John Wiley & Sons, Ltd.
Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng
2011-09-01
Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.
Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael
2016-10-01
In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noninductive RF startup in CDX-U
NASA Astrophysics Data System (ADS)
Jones, B.; Majeski, R.; Efthimion, P.; Kaita, R.; Menard, J.; Munsat, T.; Takase, Y.
1998-11-01
For the spherical torus (ST) to prove viable as a reactor, it will be necessary to devise techniques for noninductive plasma startup. Initial studies of noninductive plasma initiation have been performed on CDX-U, using the 100 kW high harmonic fast wave (HHFW) system in combination with the 1 kW 2.45 GHz electron cyclotron heating system used for breakdown. Modest density (ne ~ 10^12 cm-3), low temperature (5 eV) plasmas were formed, but the density profile was peaked far off-axis, very near the HHFW antenna. High neutral fill pressures were also required. In upcoming experiments, up to 500 kW of low frequency RF power will utilized for heating and noninductive current drive in the mode conversion regime in a target noninductive plasma formed by a combination of 5.6 and 14 GHz ECH (40 kW total). Modeling will be presented which indicates that startup to plasma currents of 60 kA is feasible with this system.
Gallina, G; Lucatello, L; Drigo, I; Cocchi, M; Scandurra, S; Agnoletti, F; Montesissa, C
2010-06-01
Tilmicosin (TIM, Pulmotil) was administered to eight rabbits by oral gavage at a dose of 12.5 mg/kg body weight for 2, 5, and 7 days, and its plasma kinetics and intrapulmonary disposition were investigated. TIM concentrations in plasma samples collected after days 1 and 6 of treatment were measured by high-performance liquid chromatography with ultraviolet detection. The pharmacokinetic parameters, obtained by non-compartmental analysis of TIM plasma concentrations, did not show any significant variations between days 1 and 6. From the second day of treatment, TIM concentrations attained in lung tissue and pulmonary alveolar macrophages (PAM) exceeded those in plasma by 7- and 400-fold, respectively, and high levels were maintained in lung tissues during the entire treatment duration. After the first day of withdrawal, a fast decline in TIM levels in both plasma and lung tissue was observed, but in PAM, much higher concentrations were maintained after 3 days of TIM withdrawal.
Recent experimental results of KSTAR RF heating and current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.
2015-12-10
The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control Systemmore » (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.« less
NASA Astrophysics Data System (ADS)
Shinohara, S.; Nishida, H.; Nakamura, T.; Mishio, A.; Ishii, H.; Teshigahara, N.; Fujitsuka, H.; Waseda, S.; Tanikawa, T.; Hada, T.; Otsuka, F.; Funaki, I.; Matsuoka, T.; Shamrai, K.; Rudenko, T.
2012-10-01
High-density but low temperature helicon plasmas have been proved to be very useful for fundamental research as well as for various applications. First, we introduce our very large helicon sources [1] with a diameter up to 74 cm. For the industrial and propulsion applications, we have reduced the aspect ratio (axial length-to-diameter) down to 0.075, and examined the discharge performance and wave characteristics. Then, we discuss our small helicon sources [1] for developing new electrodeless acceleration schemes. Some experimental and theoretical results [2] by applying the rotating magnetic (or electric) fields to the helicon plasma under the divergent magnetic field will be presented, along with other propulsion schemes. In addition, an initial plasma production experiment with very small diameter will be described.[4pt] [1] S. Shinohara et al., Jpn. J. Appl. Phys. 35 (1996) 4503; Rev. Sci. Instrum. 75 (2004) 1941; Phys. Plasmas 16 (2009) 057104.[0pt] [2] S. Shinohara et al., 32th Int. Electric Propul. Conf., IEPC-2011-056, 2011.
Robust GRMHD Evolutions of Merging Black-Hole Binaries in Magnetized Plasma
NASA Astrophysics Data System (ADS)
Kelly, Bernard; Etienne, Zachariah; Giacomazzo, Bruno; Baker, John
2016-03-01
Black-hole binary (BHB) mergers are expected to be powerful sources of gravitational radiation at stellar and galactic scales. A typical astrophysical environment for these mergers will involve magnetized plasmas accreting onto each hole; the strong-field gravitational dynamics of the merger may churn this plasma in ways that produce characteristic electromagnetic radiation visible to high-energy EM detectors on and above the Earth. Here we return to a cutting-edge GRMHD simulation of equal-mass BHBs in a uniform plasma, originally performed with the Whisky code. Our new tool is the recently released IllinoisGRMHD, a compact, highly-optimized ideal GRMHD code that meshes with the Einstein Toolkit. We establish consistency of IllinoisGRMHD results with the older Whisky results, and investigate the robustness of these results to changes in initial configuration of the BHB and the plasma magnetic field, and discuss the interpretation of the ``jet-like'' features seen in the Poynting flux post-merger. Work supported in part by NASA Grant 13-ATP13-0077.
NASA Astrophysics Data System (ADS)
Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Petkov, E. E.; Shlyaptseva, V. V.; Childers, R.; Shrestha, I.; Beiersdorfer, P.; Hell, H.; Brown, G. V.
2017-10-01
Dielectronic recombination (DR) is an important process for astrophysical and laboratory high energy density (HED) plasmas and the associated satellite lines are frequently used for plasma diagnostics. In particular, K-shell DR satellite lines were studied in detail in low-Z plasmas. L-shell Na-like spectral features from Mo X-pinches considered here represent the blend of DR and inner shell satellites and motivated the detailed study of DR at the EBIT-1 electron beam ion trap at LLNL. In these experiments the beam energy was swept between 0.6 - 2.4 keV to produce resonances at certain electron beam energies. The advantages of using an electron beam ion trap to better understand atomic processes with highly ionized ions in HED Mo plasma are highlighted. This work was supported by NNSA under DOE Grant DE-NA0002954. Work at LLNL was performed under the auspices of the U.S. DOE under Contract No. DE-AC52-07NA27344.
Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L
2012-10-01
High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.
Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime
NASA Astrophysics Data System (ADS)
Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.
2018-02-01
Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.
Gao, Hongying; Deng, Shibing; Obach, R Scott
2015-12-01
An unbiased scanning methodology using ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry was used to bank data and plasma samples for comparing the data generated at different dates. This method was applied to bank the data generated earlier in animal samples and then to compare the exposure to metabolites in animal versus human for safety assessment. With neither authentic standards nor prior knowledge of the identities and structures of metabolites, full scans for precursor ions and all ion fragments (AIF) were employed with a generic gradient LC method to analyze plasma samples at positive and negative polarity, respectively. In a total of 22 tested drugs and metabolites, 21 analytes were detected using this unbiased scanning method except that naproxen was not detected due to low sensitivity at negative polarity and interference at positive polarity; and 4'- or 5-hydroxy diclofenac was not separated by a generic UPLC method. Statistical analysis of the peak area ratios of the analytes versus the internal standard in five repetitive analyses over approximately 1 year demonstrated that the analysis variation was significantly different from sample instability. The confidence limits for comparing the exposure using peak area ratio of metabolites in animal plasma versus human plasma measured over approximately 1 year apart were comparable to the analysis undertaken side by side on the same days. These statistical analysis results showed it was feasible to compare data generated at different dates with neither authentic standards nor prior knowledge of the analytes.
Development of plasma assisted thermal vapor deposition technique for high-quality thin film.
Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae
2016-12-01
The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.
NASA Astrophysics Data System (ADS)
Breuillard, H.; Henri, P.; Vallières, X.; Eriksson, A. I.; Odelstad, E.; Johansson, F. L.; Richter, I.; Goetz, C.; Wattieaux, G.; Tsurutani, B.; Hajra, R.; Le Contel, O.
2017-12-01
During two years, the groundbreaking ESA/Rosetta mission was able to escort comet 67P where previous cometary missions were only limited to flybys. This enabled for the first time to make in-situ measurements of the evolution of a comet's plasma environment. The density and temperature measured by Rosetta are derived from RPC-Mutual Impedance Probe (MIP) and RPC-Langmuir Probe (LAP). On one hand, low time resolution electron density are calculated using the plasma frequency extracted from the MIP mutual impedance spectra. On the other hand, high time resolution density fluctuations are estimated from the spacecraft potential measured by LAP. In this study, using a simple spacecraft charging model, we perform a cross-calibration of MIP plasma density and LAP spacecraft potential variations to obtain high time resolution measurements of the electron density. These results are also used to constrain the electron temperature. Then we make use of these new dataset, together with RPC-MAG magnetic field measurements, to investigate for the first time the compressibility and the correlations between plasma and magnetic field variations, for both singing comet waves and steepened waves observed, respectively during low and high cometary outgassing activity, in the plasma environment of comet 67P.
Development of plasma assisted thermal vapor deposition technique for high-quality thin film
NASA Astrophysics Data System (ADS)
Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae
2016-12-01
The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.
Shock Wave Dynamics in Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Holland, Chris [UC San Diego, San Diego, California, United States
2017-12-09
The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the âburning plasmaâ regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.
Numerical Characterization of Wall Recycling Conditions of the HIDRA Stellarator using EMC3-EIRENE
NASA Astrophysics Data System (ADS)
Marcinko, Steven; Curreli, Davide
2015-11-01
The wall recycling conditions created by energetic bombardment of plasma-facing components (PFCs) are of critical importance to determining the plasma and impurity profile in the edge region of a magnetically confined plasma. In this work a pre-online numerical characterization of the edge plasma in HIDRA has been carried out. HIDRA is the former WEGA experiment, now relocated to the University of Illinois at Urbana-Champaign. Numerical simulations of the HIDRA edge environment are performed utilizing the 3D edge plasma and neutral transport code EMC3-EIRENE [Y. Feng J. Nucl. Mater 241-243, 930 (1997)]. In our analysis, emphasis is placed on the influence of the neutrals and the impurities on edge plasma profiles and thus on energy and particle fluxes impingent onto PFCs. We examine the effect of different wall types, comparing high recycling conditions to situations of low recycling. The effect of intrinsic impurity screening is also taken into account under the expected HIDRA operating regimes. We report the calculated particle confinement time and fluid moments of both plasma and neutrals at the low recycling regimes expected with lithium-based PFCs, and compare them with the high recycling regimes found with conventional metal-based PFCs.
Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions
NASA Astrophysics Data System (ADS)
Bogatu, I. N.; Galkin, S. A.
2017-10-01
Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.
Sensitivity of the Boundary Plasma to the Plasma-Material Interface
Canik, John M.; Tang, X. -Z.
2017-01-01
While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less
Plasma Wall interaction in the IGNITOR machine
NASA Astrophysics Data System (ADS)
Ferro, C.
1998-11-01
One of the critical issues in ignited machines is the management of the heat and particle exhaust without degradation of the plasma quality (pollution and confinement time) and without damage of the material facing the plasma. The IGNITOR machine has been conceived as a ``limiter" device, i.e., with the plasma leaning nearly on the entire surface of the first wall. Peak heat loads can easily be maintained at values lower than 1.35 MW/m^2 even considering displacements of the plasma column^1. This ``limiter" choice is based on the operational performances of high density, high field machines which suggests that intrinsic physics processes in the edge of the plasma are effective in spreading heat loads and maintaining the plasma pollution at a low level. The possibility of these operating scenarios has been demonstrated recently by different machines both in limiter and divertor configurations. The basis for the different physical processes that are expected to influence the IGNITOR edge parameters ^2 are discussed and a comparison with the latest experimental results is given. ^1 C. Ferro, G. Franzoni, R. Zanino, ENEA Internal Report RT/ERG/FUS/94/14. ^2 C. Ferro, R. Zanino, J. Nucl. Mater. 543, 176 (1990).
Shen, Xiong; Liang, Jian; Zheng, Luxia; Lv, Qianzhou; Wang, Hong
2017-11-01
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid-liquid microextraction based on the solidification of floating organic drops and determined by high-performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket-Burman design and Box-Behnken design. The optimized values were: 58 μL of 1-decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high-performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0-1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2-0.4 and 0.1-0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cetin, Sevil Müge; Atmaca, Sedef
2004-03-26
A simple and reliable high-performance liquid chromatographic (HPLC) method with UV-Vis detection has been developed and validated for the determination of vigabatrin (VG) in human plasma and urine. The samples were pre-column derivatizated with 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS). A good chromatographic separation was achieved on a C18 column with a mobile phase consisting of acetonitrile and 10 mM orthophosphoric acid (pH 2.5) gradient elution. Tranexamic acid was used as an internal standard (I.S.). The method was linear over the concentration range of 0.8-30.0 microg/ml for both samples. The method is precise (relative standard deviation (R.S.D.) <9.13%) and accurate (relative mean error (RME) <-8.75%); analytical recoveries were 81.07% for plasma and 83.05% for urine. The assay was applied to pharmacokinetic study in a healthy volunteer after a single oral administration of 1 g of vigabatrin.
Injector design for liner-on-target gas-puff experiments
NASA Astrophysics Data System (ADS)
Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.
2017-11-01
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
Injector design for liner-on-target gas-puff experiments.
Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N
2017-11-01
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
Baek, Soo Kyoung; Lee, Seung Seok; Park, Eun Jeon; Sohn, Dong Hwan; Lee, Hye Suk
2003-02-05
A rapid and sensitive column-switching semi-micro high-performance liquid chromatography method was developed for the direct analysis of tiropramide in human plasma. The plasma sample (100 microl) was directly injected onto Capcell Pak MF Ph-1 precolumn where deproteinization and analyte fractionation occurred. Tiropramide was then eluted into an enrichment column (Capcell Pak UG C(18)) using acetonitrile-potassium phosphate (pH 7.0, 50 mM) (12:88, v/v) and was analyzed on a semi-micro C(18) analytical column using acetonitrile-potassium phosphate (pH 7.0, 10 mM) (50:50, v/v). The method showed excellent sensitivity (limit of quantification 5 ng/ml), and good precision (C.V.
Li, Huan; Guo, Hui; Wu, Li; Zhang, Yongxin; Chen, Juan; Liu, Xiao; Cai, Hao; Zhang, Kewei; Cai, Baochang
2013-03-25
A specific and sensitive high performance liquid chromatography-mass spectrometric (HPLC-MS) method has been developed and validated for simultaneous determination of three anthraquinones of rhein, aloe-emodin and emodin in rat plasma after oral administration of Radix et Rhei Rhizoma extract and Dahuang Fuzi Tang. The analytes were separated on a Kromaisl(®) C(18) column within a total running time of 12min with a mobile phase of methanol:ammonium acetate (3mM) (75:25, v/v). The calibration curves for all the anthraquinones showed good linearity in the measured range with correlation coefficient (r) higher than 0.9978. The precision, accuracy, recovery and stability were deemed acceptable. The method was successfully applied to the comparative pharmacokinetics study of the anthraquinones in rat plasma after oral administration of Radix et Rhei Rhizoma extract and Dahuang Fuzi Tang. Copyright © 2012 Elsevier B.V. All rights reserved.
Hoh, Carmen S L; Boocock, David J; Marczylo, Timothy H; Brown, V A; Cai, Hong; Steward, William P; Berry, David P; Gescher, Andreas J
2007-04-04
Silibinin has recently received attention as a potential cancer chemopreventive agent because of its antiproliferative and anticarcinogenic effects. A simple and specific reversed-phase high-performance liquid chromatography method was developed and validated for the quantitation of silibinin in human plasma. Sample preparation involved simple protein precipitation, and separation was achieved on a Waters Atlantis C18 column with flow rate of 1.0 mL/min at 40 degrees C and UV detection at 290 nm. Silibinin was detected as two peaks corresponding to trans-diastereoisomers. The peak area was linear over the investigated concentration range (0-5000 ng/mL). The limits of detection were 2 and 1 ng/mL for the two diastereoisomers (d1 and d2), with a recovery of 53-58%. This method was utilized to detect silibinin in plasma of colorectal patients after 7 days of treatment with silipide (silibinin formulated with phosphatidyl choline).
Numerical study of laminar plasma dynamo in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Bayliss, Adam; Ebrahimi, Fatima; Forest, Cary; Schnack, Dalton
2009-05-01
We have performed the numerical investigation of possibility of laminar dynamo in two new experiments, Plasma Couette and Plasma Dynamo, which have been designed at the University of Wisconsin-Madison. The plasma is confined by a strong multipole magnetic field localized at the boundary of cylindrical (Plasma Couette) or spherical (Plasma Dynamo) chamber. Electrodes positioned between the magnet rings can be biased with arbitrary potentials so that Lorenz force ExB drives any given toroidal velocity profile at the surface. Using the extended MHD code, NIMROD, we have modeled several types of plasma flows appropriate for dynamo excitation. It is found that for high magnetic Reynolds numbers the counter-rotating von Karman flow (in cylinder) and Dudley-James flow (in sphere) can lead to self-generation of non-axisymmetric magnetic field. This field saturates at certain amplitude corresponding to a new stable equilibrium. The structure of this equilibrium is considered.
High temperature plasma in beta Lyrae, observed from Copernicus
NASA Technical Reports Server (NTRS)
Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.
1975-01-01
High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.
Salivo, Simona; Beccaria, Marco; Sullini, Giuseppe; Tranchida, Peter Q; Dugo, Paola; Mondello, Luigi
2015-01-01
The main focus of the present research is the analysis of the unsaponifiable lipid fraction of human plasma by using data derived from comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection. This approach enabled us to attain both mass spectral information and analyte percentage data. Furthermore, gas chromatography coupled with high-resolution time-of-flight mass spectrometry was used to increase the reliability of identification of several unsaponifiable lipid constituents. The synergism between both the high-resolution gas chromatography and mass spectrometry processes enabled us to attain a more in-depth knowledge of the unsaponifiable fraction of human plasma. Additionally, information was attained on the fatty acid and triacylglycerol composition of the plasma samples, subjected to investigation by using comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection and high-performance liquid chromatography with atmospheric pressure chemical ionization quadrupole mass spectrometry, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
High-beta steady-state research with integrated modeling in the JT-60 Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, T.
2007-05-15
Improvement of high-beta performance and its long sustainment was obtained with ferritic steel tiles in the JT-60 Upgrade (JT-60U) [T. Fujita et al., Phys. Plasmas 50, 104 (2005)], which were installed inside the vacuum vessel to reduce fast ion loss by decreasing the toroidal field ripple. When a separation between the plasma surface and the wall was small, high-beta plasmas reached the ideal wall stability limit, i.e., the ideal magnetohydrodynamics stability limit with the wall stabilization. A small rotation velocity of 0.3% of the Alfven velocity was found to be effective for suppressing the resistive wall mode. Sustainment of themore » high normalized beta value of {beta}{sub N}=2.3 has been extended to 28.6 s ({approx}15 times the current diffusion time) by improvement of the confinement and increase in the net heating power. Based on the research in JT-60U experiments and first-principle simulations, integrated models of core, edge-pedestal, and scrape-off-layer (SOL) divertors were developed, and they clarified complex features of reactor-relevant plasmas. The integrated core plasma model indicated that the small amount of electron cyclotron (EC) current density of about half the bootstrap current density could effectively stabilize the neoclassical tearing mode by the localized EC current accurately aligned to the magnetic island center. The integrated edge-pedestal model clarified that the collisionality dependence of energy loss due to the edge-localized mode was caused by the change in the width of the unstable mode and the SOL transport. The integrated SOL-divertor model clarified the effect of the exhaust slot on the pumping efficiency and the cause of enhanced radiation near the X-point multifaceted asymmetric radiation from edge. Success in these consistent analyses using the integrated code indicates that it is an effective means to investigate complex plasmas and to control the integrated performance.« less
Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin
2018-03-28
Proper management of patients with chronic hepatitis B virus (HBV) infection requires monitoring of plasma or serum HBV DNA levels using a highly sensitive nucleic acid amplification test. Because commercially available assays differ in performance, we compared herein the performance of the Hologic Aptima HBV Quant assay (Aptima) to that of the Roche Cobas TaqMan HBV test for use with the high pure system (HPS/CTM). Assay performance was assessed using HBV reference panels as well as plasma and serum samples from chronically HBV-infected patients. Method correlation, analytical sensitivity, precision/reproducibility, linearity, bias and influence of genotype were evaluated. Data analysis was performed using linear regression, Deming correlation analysis and Bland-Altman analysis. Agreement between the assays for the two reference panels was good, with a difference in assay values vs. target <0.5 log. Qualitative assay results for 159 clinical samples showed good concordance (88.1%; κ=0.75; 95% confidence interval: 0.651-0.845). For the 106 samples quantitated by both assays, viral load results were highly correlated (R=0.92) and differed on average by 0.09 log, with 95.3% of the samples being within the 95% limit of agreement of the assays. Linearity for viral loads 1-7 log was excellent for both assays (R2>0.98). The two assays had similar bias and precision across the different genotypes tested at low viral loads (25-1000 IU/mL). Aptima has a performance comparable with that of HPS/CTM, making it suitable for use for HBV infection monitoring. Aptima runs on a fully automated platform (the Panther system) and therefore offers a significantly improved workflow compared with HPS/CTM.
High density plasmas and new diagnostics: An overview (invited).
Celona, L; Gammino, S; Mascali, D
2016-02-01
One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.
NASA Astrophysics Data System (ADS)
Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy
2016-10-01
Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.
Characteristics of Surface Sterilization using ECR Plasma
NASA Astrophysics Data System (ADS)
Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya
2015-09-01
Plasma sterilization techniques have superior characteristics such as a short treatment times, non-toxicity and low thermal damages on the sterilized materials. In plasma sterilization, microorganisms can be sterilized by active radicals, energetic charged particles, and vacuum UV radiation. The influence of each factor depends on the plasma operating parameters. Microwave discharges under the electron cyclotron resonance (ECR) condition produce higher electron temperature and density plasma as compared with other plasma generation techniques. In the present study, characteristics of surface sterilization using ECR plasma have been investigated.The experiment was performed in the vacuum chamber which contains a magnet holder. A pair of rectangular Sm-Co permanent magnets is aligned parallel to each other within the magnet holder. The region of the magnetic field for ECR exists near the magnet holder surface. When the microwave is introduced into the vacuum chamber, a ECR plasma is produced around surface of the magnet holder. High energy electrons and oxygen radicals were observed at ECR zone by electric probe method and optical spectroscopic method. Biological indicators (B.I.) having spore of 106 was sterilized in 2min for oxygen discharge. The temperature of the B.I. installation position was about 55°. The sterilization was achieved by the effect of oxygen radicals and high energy electrons.
NASA Astrophysics Data System (ADS)
Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong
2018-02-01
High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.
NASA Astrophysics Data System (ADS)
van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.
2013-12-01
For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.
Prostatic origin of a zinc binding high molecular weight protein complex in human seminal plasma.
Siciliano, L; De Stefano, C; Petroni, M F; Vivacqua, A; Rago, V; Carpino, A
2000-03-01
The profile of the zinc ligand high molecular weight proteins was investigated in the seminal plasma of 55 normozoospermic subjects by size exclusion high performance liquid chromatography (HPLC). The proteins were recovered from Sephadex G-75 gel filtration of seminal plasma in three zinc-containing fractions which were then submitted to HPLC analysis. The results were, that in all the samples, the protein profiles showed two peaks with apparent molecular weight of approximately 660 and approximately 250 kDa. Dialysis experiments revealed that both approximately 660 and approximately 250 kDa proteins were able to uptake zinc against gradient indicating their zinc binding capacity. The HPLC analysis of the whole seminal plasma evidenced only the approximately 660 kDa protein complex as a single well quantifying peak, furthermore a positive correlation between its peak area and the seminal zinc values (P < 0.001) was observed. This suggested a prostatic origin of the approximately 660 kDa protein complex which was then confirmed by the seminal plasma HPLC analysis of a subject with agenesis of the Wolffian ducts. Finally the study demonstrated the presence of two zinc binding proteins, approximately 660 and approximately 250 kDa respectively, in human seminal plasma and the prostatic origin of the approximately 660 kDa.
Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials
NASA Astrophysics Data System (ADS)
Philipps, V.; Neu, R.; Rapp, J.; Samm, U.; Tokar, M.; Tanabe, T.; Rubel, M.
2000-12-01
Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.
Critical need for MFE: the Alcator DX advanced divertor test facility
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.
2013-10-01
Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.
Complex Plasmas under free fall conditions aboard the International Space Station
NASA Astrophysics Data System (ADS)
Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus
2017-10-01
Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).
NASA Astrophysics Data System (ADS)
Nakashima, Ryosuke; Shin, Ryota; Hanafusa, Hiroaki; Higashi, Seiichiro
2017-06-01
We have successfully generated ultra high-power thermal plasma jet (Super TPJ: s-TPJ) by increasing the Ar gas supply pressure to 0.4 MPa and the flow rate to 18 L/min. DC arc discharge was stably performed under a supply power of 4.6 kW. The peak power density of s-TPJ reached 64.1 kW/cm2 and enabled us to melt and recrystallize amorphous silicon (a-Si) films on quartz substrates with a scanning speed as high as 8000 mm/s. Under ultra high-speed scanning faster than 3000 mm/s, we observed granular crystal growth (GCG) competing with conventional high-speed lateral crystallization (HSLC). When further high speed scanning was performed, we observed a significant increase in grain density, which suggests spontaneous nucleation in undercooled molten Si as the origin of GCG. When we crystallized an isolated pattern of 6 × 6 µm2 under GCG conditions, single crystalline growth was successfully achieved.
NASA Astrophysics Data System (ADS)
Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.
2016-10-01
A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.
Magnetic Field Tailored Annular Hall Thruster with Anode Layer
NASA Astrophysics Data System (ADS)
Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration
2016-09-01
Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.
Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao
2015-01-01
Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Passivation of Ge/high-κ interface using RF Plasma nitridation
NASA Astrophysics Data System (ADS)
Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud
2018-01-01
In this paper, plasma nitridation of a germanium surface using NH3 and N2 gases is performed with a standard RF-PECVD method at a substrate temperature of 250 °C. The structural and optical properties of the Ge surface have been investigated using Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FT-IR), and Variable Angle Spectroscopic Ellipsometery (VASE). Study of the Ge (100) surface revealed that it is nitrated after plasma treatment while the GeO2 regrowth on the surface has been suppressed. Also, stability of the treated surface under air exposure is observed, where all the measurements were performed at room ambient. The electrical characteristics of fabricated Al/Ti/HfO2/GeON/p-Ge capacitors using the proposed surface treatment technique have been investigated. The C-V curves indicated a negligible hysteresis compared to ˜500 mV observed in untreated samples. Additionally, the C-V characteristic is used to extract the high-κ/Ge interface trap density using the most commonly used methods in determining the interface traps. The discussion includes the Dit calculation from the high-low frequency (Castagné-Vapaille) method and Terman (high-frequency) method. The high-low frequency method indicated a low interface trap density of ˜2.5 × 1011 eV-1.cm-2 compared to the Terman method. The J-V measurements revealed more than two orders of magnitude reduction of the gate leakage. This improved Ge interface quality is a promising low-temperature technique for fabricating high-performance Ge MOSFETs.
Rustum, A M
1989-01-01
The determination of acetaminophen in biological samples of humans who have ingested normal and overdosage of the drug is necessary to understand the clinical pharmacokinetics of acetaminophen and to determine its distribution and toxicokinetic parameters. This paper describes a rapid, simple, and sensitive high-performance liquid chromatographic method for determining acetaminophen in human plasma. Acetaminophen is isolated from plasma by adding approximately 200 microL of acetonitrile and 50 mg of solid zinc sulfate to each milliliter of plasma. A short column (60 mm x 4.6 mm) slurry packed with 5.0-microns PRP-1 particles is used with an isocratic elution of 5.0 mM dibasic potassium phosphate and 5.0 mM tetrabutylammonium hydroxide/methanol, 70:30 (v/v). The flow rate is 1.0 mL/min. The acetaminophen peak is detected with a variable wavelength ultraviolet/visible detector at 250 nm and 0.50 to 0.002 AUFS. The analysis time of the assay is less than 15 min, and the limit of detection is 20 ng/mL for an 80-microL injection volume. The pharmacokinetics of acetaminophen in plasma from a subject who had orally ingested 975 mg of the drug in tablet form is conducted using this method, and various pharmacokinetic parameters are determined.
2004-07-01
steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate
Moncrieff, J
1989-11-24
Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.
Liquid chromatographic determination of florfenicol in the plasma of multiple species of fish
Vue, C.; Schmidt, L.J.; Stehly, G.R.; Gingerich, W.H.
2002-01-01
A simple method was developed for determining florfenicol concentration in a small volume (250 mul) of plasma from five phylogenetically diverse species of freshwater fish. Florfenicol was isolated from the plasma matrix through C-18 solid-phase extraction and quantified by reversed-phase high-performance liquid chromatography with UV detection. The accuracy (84-104%), precision (%RSDless than or equal to8), and sensitivity (quantitation limit <30 ng/ml) of the method indicate its usefulness for conducting pharmacokinetic studies on a variety of freshwater fish. Published by Elsevier Science B.V.
Spatial structures arising along a surface wave produced plasma column: an experimental study
NASA Astrophysics Data System (ADS)
Atanassov, V.; Mateev, E.
2007-04-01
The formation of spatial structures in high-frequency and microwave discharges has been known for several decades. Nevertheless it still raises increased interest, probably due to the variety of the observed phenomena and the lack of adequate and systematic theoretical interpretation. In this paper we present preliminary results on observation of spatial structures appearing along a surface wave sustained plasma column. The experiments have been performed in noble gases (xenon and neon) at low to intermediate pressure and the surface wave has been launched by a surfatron. Under these conditions we have observed and documented: i) appearance of stationary plasma rings; ii) formation of standing-wave striationlike patterns; iii) contraction of the plasma column; iv) plasma column transition into moving plasma balls and filaments. Some of the existing theoretical considerations of these phenomena are reviewed and discussed.
Molinaro, Ross J; Ritchie, James C
2010-01-01
The following chapter describes a method to measure iothalamate in plasma and urine samples using high performance liquid chromatography combined with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Methanol and water are spiked with the internal standard (IS) iohexol. Iothalamate is isolated from plasma after IS spiked methanol extraction and from urine by IS spiked water addition and quick-spin filtration. The plasma extractions are dried under a stream of nitrogen. The residue is reconstituted in ammonium acetate-formic acid-water. The reconstituted plasma and filtered urine are injected into the HPLC-ESI-MS/MS. Iothalamate and iohexol show similar retention times in plasma and urine. Quantification of iothalamate in the samples is made by multiple reaction monitoring using the hydrogen adduct mass transitions, from a five-point calibration curve.
Grotevendt, A; Wallaschofski, H; Reincke, M; Adolf, C; Quinkler, M; Nauck, M; Hoffmann, W; Rettig, R; Hannemann, A
2017-08-01
Chronic inflammation is an age-independent and body mass index-independent contributor to the development of multi-morbidity. Alterations of the renin-angiotensin-aldosterone system are observed within the context of proinflammatory states. We assessed circulating aldosterone, renin, and inflammatory biomarker concentrations in healthy, normotensive subjects and patients with primary aldosteronism. We included 1177 normotensive individuals from the population-based Study of Health in Pomerania (first follow-up, Study of Health in Pomerania-1) and 103 primary aldosteronism patients from the German Conn's Registry. A 1:1 matching for sex, age, body mass index, smoking status, diabetes mellitus, and the estimated glomerular filtration rate was performed to determine whether primary aldosteronism patients exhibit higher inflammatory biomarker concentrations than normotensive controls. The associations of plasma aldosterone concentration or plasma renin concentration with circulating fibrinogen concentrations, white blood cell count, and high sensitive C-reactive protein concentrations in the normotensive sample were determined with multivariable linear and logistic regression analyses. 1:1 matched primary aldosteronism patients demonstrated significantly (p < 0.01) higher plasma aldosterone concentration (198 vs. 47 ng/l), lower plasma renin concentration (3.1 vs. 7.7 ng/l) and higher high sensitive C-reactive protein concentrations (1.5 vs. 1.0 mg/l) than normotensive controls. Within the normotensive cohort, plasma renin concentration but not plasma aldosterone concentration was positively associated with fibrinogen concentrations and white blood cell count. Further, a J-shaped association between plasma renin concentration and high sensitive C-reactive protein concentrations was detected. High plasma aldosterone concentration in a primary aldosteronism cohort and high plasma renin concentration in normotensive subjects are associated with increased concentrations of inflammatory biomarkers. This suggests a link between the renin-angiotensin-aldosterone system and inflammatory processes in patients with primary aldosteronism and even in normotensive subjects.
Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes
NASA Astrophysics Data System (ADS)
Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.
2015-02-01
This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.
Deroussent, Alain; Skarbek, Charles; Maury, Adeline; Chapuis, Hubert; Daudigeos-Dubus, Estelle; Le Dret, Ludivine; Durand, Sylvère; Couvreur, Patrick; Desmaële, Didier; Paci, Angelo
2015-06-15
The antitumor drug, ifosfamide (IFO), requires activation by cytochrome P450 (CYP) to form the active metabolite, 4-hydroxyisfosfamide (4-OHIFO), leading to toxic by-products at high dose. In order to overcome these drawbacks, preactivated ifosfamide derivatives (RXIFO) were designed to release 4-OHIFO without CYP involvement. A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous quantification of 4-OHIFO, IFO and four derivatives RXIFO in mouse plasma using multiple reaction monitoring. Because of its instability in plasma, 4-OHIFO was immediately converted to the semi-carbazone derivative, 4-OHIFO-SCZ. For the six analytes, the calibration curves were linear from 20 to 5000ng/mL in 50μL plasma and the lower limit of quantitation was determined at 20ng/mL with accuracies within ±10% of nominal and precisions less than 12%. Their recoveries ranged from 62 to 96% by using liquid-liquid extraction. With an improved assay sensitivity compared to analogues, the derivative 4-OHIFO-SCZ was stable in plasma at 4°C for 24h and at -20°C for three months. For all compounds, the assay was validated with accuracies within ±13% and precisions less than 15%. This method was applied to a comparative pharmacokinetic study of 4-OHIFO from IFO and three derivatives RXIFO in mice. This active metabolite was produced by some of the novel conjugates with good pharmacokinetic properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Deep anisotropic ICP plasma etching designed for high-volume MEMS manufacturing
NASA Astrophysics Data System (ADS)
Yu, Keven; Feldbaum, Michael; Pandhumsoporn, Tam; Gadgil, Prashant
1999-08-01
ICP plasma etching is gaining widespread acceptance as an enabling micromachining technology for advanced MEMS fabrication. Whereas this technology has shown a capability of delivering multiple novel applications for R and D, its acceptance by industry for high volume production has been limited. This acceptance into production will only occur when the plasma etching equipment with this technology offers the device performance, throughput, reliability, and uptime criteria required by a production facility. The design of the plasma etcher using this technology and the process capability it consequently delivers, has significant implications in making this a reality. Alcatel has been supplying such a technology to this MEMS industry for over 5 years and in the interim has evolved its product and process to make this technology production worthy. Alcatel's next generation etcher, the Alcatel 601E, offers multiple advantages to MEMS manufacturers in realizing their production goals.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
Operations of the External Conjugate-T Matching System for the A2 ICRH Antennas at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Graham, M.; Blackman, T.; Mayoral, M.-L.; Nightingale, M.; Sheikh, H.; Whitehurst, A.
2009-11-01
The External Conjugate-T (ECT) matching system was successfully commissioned on two A2 ICRH antennas at JET in 2009. The system allows trip-free injection of RF power into ELMy H-mode plasmas in the 32-52 MHz band without antenna phasing restrictions. The ECT demonstrates robust and predictable performance and high load-tolerance during routine operations, injecting up to 4 MW average power into H-mode plasma with Type-I ELMs. The total power coupled to ELMy plasma by all the A2 antennas using the ECT and 3dB systems has been increased to 7 MW. Antenna arcing during ELMs has been identified as a new challenge to high-power ICRH operations in H-mode plasma. The implemented Advanced Wave Amplitude Comparison System (AWACS) has proven to be an efficient protection tool for the ECT scheme.
Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films
NASA Astrophysics Data System (ADS)
Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan
2012-02-01
For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, M. E.; Frederiksen, J. T.; Bret, A.
2006-11-15
Particle-in-cell simulations confirm here that a mixed plasma mode is the fastest growing when a highly relativistic tenuous electron-proton beam interacts with an unmagnetized plasma. The mixed modes grow faster than the filamentation and two-stream modes in simulations with beam Lorentz factors {gamma} of 4, 16, and 256, and are responsible for thermalizing the electrons. The mixed modes are followed to their saturation for the case of {gamma}=4 and electron phase space holes are shown to form in the bulk plasma, while the electron beam becomes filamentary. The initial saturation is electrostatic in nature in the considered one- and two-dimensionalmore » geometries. Simulations performed with two different particle-in-cell simulation codes evidence that a finite grid instability couples energy into high-frequency electromagnetic waves, imposing simulation constraints.« less
Operations of the External Conjugate-T Matching System for the A2 ICRH Antennas at JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monakhov, I.; Graham, M.; Blackman, T.
2009-11-26
The External Conjugate-T (ECT) matching system was successfully commissioned on two A2 ICRH antennas at JET in 2009. The system allows trip-free injection of RF power into ELMy H-mode plasmas in the 32-52 MHz band without antenna phasing restrictions. The ECT demonstrates robust and predictable performance and high load-tolerance during routine operations, injecting up to 4 MW average power into H-mode plasma with Type-I ELMs. The total power coupled to ELMy plasma by all the A2 antennas using the ECT and 3dB systems has been increased to 7 MW. Antenna arcing during ELMs has been identified as a new challengemore » to high-power ICRH operations in H-mode plasma. The implemented Advanced Wave Amplitude Comparison System (AWACS) has proven to be an efficient protection tool for the ECT scheme.« less
Tungsten-microdiamond composites for plasma facing components
NASA Astrophysics Data System (ADS)
Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.
2011-09-01
Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Pablant, N.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.
2014-10-01
A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for measurement of spatial profiles of Doppler ion temperature and plasma flow velocity, as well as electron temperature. Laboratory measurements demonstrate a resolving power, E/ ΔE of 10,000 and spatial resolution better than 10 μm. Good performance is obtained for Bragg angles ranging from 23 to 63 degrees. Initial tests of the instrument on HEDP plasmas are being performed with a goal of developing spatially resolved ion and electron temperature diagnostics. This work was performed under the auspices of the US DOE by PPPL under Contract DE-AC02-09CH11466 and by LLNL under Contract DE-AC52-07NA27344.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
Fast Fiber-Coupled Imaging Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockington, Samuel; Case, Andrew; Witherspoon, Franklin Douglas
HyperV Technologies Corp. has successfully designed, built and experimentally demonstrated a full scale 1024 pixel 100 MegaFrames/s fiber coupled camera with 12 or 14 bits, and record lengths of 32K frames, exceeding our original performance objectives. This high-pixel-count, fiber optically-coupled, imaging diagnostic can be used for investigating fast, bright plasma events. In Phase 1 of this effort, a 100 pixel fiber-coupled fast streak camera for imaging plasma jet profiles was constructed and successfully demonstrated. The resulting response from outside plasma physics researchers emphasized development of increased pixel performance as a higher priority over increasing pixel count. In this Phase 2more » effort, HyperV therefore focused on increasing the sample rate and bit-depth of the photodiode pixel designed in Phase 1, while still maintaining a long record length and holding the cost per channel to levels which allowed up to 1024 pixels to be constructed. Cost per channel was 53.31 dollars, very close to our original target of $50 per channel. The system consists of an imaging "camera head" coupled to a photodiode bank with an array of optical fibers. The output of these fast photodiodes is then digitized at 100 Megaframes per second and stored in record lengths of 32,768 samples with bit depths of 12 to 14 bits per pixel. Longer record lengths are possible with additional memory. A prototype imaging system with up to 1024 pixels was designed and constructed and used to successfully take movies of very fast moving plasma jets as a demonstration of the camera performance capabilities. Some faulty electrical components on the 64 circuit boards resulted in only 1008 functional channels out of 1024 on this first generation prototype system. We experimentally observed backlit high speed fan blades in initial camera testing and then followed that with full movies and streak images of free flowing high speed plasma jets (at 30-50 km/s). Jet structure and jet collisions onto metal pillars in the path of the plasma jets were recorded in a single shot. This new fast imaging system is an attractive alternative to conventional fast framing cameras for applications and experiments where imaging events using existing techniques are inefficient or impossible. The development of HyperV's new diagnostic was split into two tracks: a next generation camera track, in which HyperV built, tested, and demonstrated a prototype 1024 channel camera at its own facility, and a second plasma community beta test track, where selected plasma physics programs received small systems of a few test pixels to evaluate the expected performance of a full scale camera on their experiments. These evaluations were performed as part of an unfunded collaboration with researchers at Los Alamos National Laboratory and the University of California at Davis. Results from the prototype 1024-pixel camera are discussed, as well as results from the collaborations with test pixel system deployment sites.« less
NASA Astrophysics Data System (ADS)
Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.
2017-12-01
The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.
Multiply charged ion generation according to magnetic field configurations in Hall thruster plasmas
NASA Astrophysics Data System (ADS)
Kim, Holak; Lee, Seunghun; Kim, Junbum; Lim, Youbong; Choe, Wonho; KIMS Collaboration
2016-09-01
Plasma propulsion is the most promising techniques to operate satellites for low earth orbit as well as deep space exploration. A typical plasma propulsion system is Hall thruster (HT) that uses crossed electromagnetic fields to ionize a propellant gas and to accelerate the ionized gas. In HT the tailoring of magnetic fields is significant due to that the electron confinement in the electromagnetic fields affects thruster performances such as thrust force, specific impulse, power efficiency, and life time. We designed an anode layer HT (TAL) with the magnetic field tailoring. The TAL is possible to keep discharge in 1 2 kilovolts, which voltage is useful to obtain high specific impulse The magnetic field tailoring is adapted to minimize undesirable heat dissipations and secondary electron emissions at a wall surrounding plasma In presentation, we will report TAL performances including thrust force, specific impulse, and anode efficiency measured by a pendulum thrust stand. This mechanical measurement will be compared to the plasma diagnostics conducted by angular Faraday probe, retarding potential analyzer, and ExB probe Grant No. 2014M1A3A3A02034510.
Conformational dynamics underlie the activity of the auxin-binding protein, Nt-abp1.
David, K; Carnero-Diaz, E; Leblanc, N; Monestiez, M; Grosclaude, J; Perrot-Rechenmann, C
2001-09-14
The auxin-binding protein 1 (ABP1) has been proposed to be involved in the perception of the phytohormone at the plasma membrane. Site-directed mutagenesis was performed on highly conserved residues at the C terminus of ABP1 to investigate their relative importance in protein folding and activation of a functional response at the plasma membrane. Detailed analysis of the dynamic interaction of the wild-type ABP1 and mutated proteins with three distinct monoclonal antibodies recognizing conformation-dependent epitopes was performed by surface plasmon resonance. The influence of auxin on these interactions was also investigated. The Cys(177) as well as Asp(175) and Glu(176) were identified as critical residues for ABP1 folding and action at the plasma membrane. On the contrary, the C-terminal KDEL sequence was demonstrated not to be essential for auxin binding, interaction with the plasma membrane, or activation of the transduction cascade although it does appear to be involved in the stability of ABP1. Taken together, the results confirmed that ABP1 conformational change is the critical step for initiating the signal from the plasma membrane.
Design concept of K-DEMO for near-term implementation
NASA Astrophysics Data System (ADS)
Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G.-S.; Neilson, G.; Kessel, C.; Brown, T.; Titus, P.; Mikkelsen, D.; Zhai, Y.
2015-05-01
A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb3Sn-based superconducting conductor is adopted, providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.
Jezequel-Cuer, M; Le Moël, G; Mounié, J; Peynet, J; Le Bizec, C; Vernet, M H; Artur, Y; Laschi-Loquerie, A; Troupel, S
1995-01-01
A previous multicentric study set up by the Société française de biologie clinique has emphasized the usefulness of a standardized procedure for the determination by high performance liquid chromatography of alpha-tocopherol in serum or plasma. In our study, we have tested every step of the different published procedures: internal standard adduct, lipoprotein denaturation and vitamin extraction. Reproducibility of results was improved by the use of tocol as an internal standard when compared to retinol or alpha-tocopherol acetates. Lipoprotein denaturation was more efficient with ethanol addition than with methanol and when the ethanol/water ratio was > or = 0.7. Use of n-hexane or n-heptane gave the same recovery of alpha-tocopherol. When organic solvent/water ratio was > or = 1, n-hexane enabled to efficiently extract, in a one-step procedure, the alpha-tocopherol from both normo and hyperlipidemic sera. Performances of the selected procedure were: detection limit: 0.5 microM--linear range: 750 microM--within run coefficient of variation: 2.03%--day to day: 4.76%. Finally, this pluricentric study allows us to propose an optimised procedure for the determination of alpha-tocopherol in serum or plasma.
Flow profile measurement with multi-Mach probes on the HIST spherical torus device
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Nishioka, T.; Ando, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2008-11-01
Role of plasma flow during MHD relaxation and magnetic reconnection processes is still underlying physics. The HIST spherical torus can generate various spherical torus (ST) configurations by changing the external toroidal magnetic field. Especially, the flipped ST (F-ST) configuration has been for the first time found in the HIST device [1]. In the present study, plasma flow measurements were performed by multi-Mach probes in the ST and the F-ST configurations. In addition, the measured plasma flow was compared with that evaluated by an ion Doppler spectrometer (IDS) system and plasma images measured by a high-speed camera. As the result, it was shown that the toroidal plasma flow (˜ 20 km/s) at the location far from the plasma gun was clearly reversed after the transition from the ST to the F-ST. However, the direction of the toroidal flow was not changed near the plasma gun. Therefore, it can be considered that there are flipped and non-reversal regions in the plasma. The result agrees well with a magnetic configuration predicted by magnetic field measurements. The plasma images measured by the high-speed camera also indicated that a helically twisted structure appeared from the gun region, and it localized at the edge region. [1] M. Nagata et al., Phys. Rev. Lett. 90, pp. 225001-225004 (2003).
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Jankovsky, Robert S.
2003-01-01
Recent studies of xenon Hall thrusters have shown peak efficiencies at specific impulses of less than 3000 s. This was a consequence of modern Hall thruster magnetic field topographies, which have been optimized for 300 V discharges. On-going research at the NASA Glenn Research Center is investigating this behavior and methods to enhance thruster performance. To conduct these studies, a laboratory model Hall thruster that uses a pair of trim coils to tailor the magnetic field topography for high specific impulse operation has been developed. The thruster-the NASA-173Mv2 was tested to determine how current density and magnetic field topography affect performance, divergence, and plasma oscillations at voltages up to 1000 V. Test results showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. At 1000 V, 10 milligrams per second the total specific impulse was 3390 s and the total efficiency was 60.8%. Plume divergence decreased at 400-1000 V, but increased at 300-400 V as the result of plasma oscillations. The dominant oscillation frequency steadily increased with voltage, from 14.5 kHz at 300 V, to 22 kHz at 1000 V. An additional oscillatory mode in the 80-90 kHz frequency range began to appear above 500 V. The use of trim coils to modify the magnetic field improved performance while decreasing plume divergence and the frequency and magnitude of plasma oscillations.
Rakic, Anita; Miljkovic, Branislava; Pokrajac, Milena; Vucicevic, Katarina
2007-03-12
A selective, sensitive, and simple high-performance liquid chromatographic (HPLC) method was developed for the determination of moclobemide and its two major metabolites, Ro 12-5637 and Ro 12-8095, in human plasma. Sample preparation (0.5 ml of plasma) involved solid-phase extraction (SPE) using Speedisk H(2)O-Philic DVB columns. Separations were performed on a Waters XTerra RP18 column (5 microm, 150 mm x 4.6 mm). The mobile phase consisted of 10 mM KH(2)PO(4) with 1% triethylamine (pH 3.9) and acetonitrile (83:17, v/v), and a flow-rate was 1.2 ml/min. The total run time was 13 min. UV detection was performed at 240 nm. Mean absolute recoveries were > or =90% and the limit of quantification (LOQ) for all analytes was 0.02 mg/l. Calibration curves were linear (r>0.995) over a wide range of the analyte concentrations in plasma; thus, the method is suitable for different clinical studies when large variations in the drug/metabolites concentrations are observed. During a 5-day assay validation procedure the accuracy and precision were tested and proven (relative errors (RE)< or =13%; intra-day coefficient of variation (CV)< or =7%; inter-day CV< or =13%). Many drugs frequently used in the target patient population were evaluated for potential interference in order method selectivity to be ensured. The assay has been used in a clinical pharmacokinetic study to assess steady-state pharmacokinetics of moclobemide and two metabolites in depressive patients on mono- and combined therapy.
Chen, Xijing; Yang, Bing; Ni, Liang; Wang, Guangji
2006-06-07
A simple and sensitive method for simultaneous determination of the active compound, thiamphenicol (TAP) and its prodrug, thiamphenicol glycinate (TG) in human plasma and urine is described. The procedure involved extraction of TG and TAP with ethyl acetate (plasma) or 100-fold dilution with the mobile phase (urine) followed by determination by reversed-phase high performance liquid chromatography (HPLC) with UV detection at 224 nm. Separation of the compounds was achieved on a column packed with Hypersil ODS2. The mobile phase consisted of acetonitrile-water containing 0.003 M tetrabutyl ammonium bromide and 0.056 M ammonium acetate (87:13, v/v) with a flow rate of 1.0 ml/min. The chromatograms did not contain interfering peaks due to the suitable extraction procedure and chromatographic conditions. The calibration curves of TG and TAP were linear ranging from 0.78 to 100 microg/ml in plasma and in urine. The intra-day and inter-day relative standard deviations (S.D.) were less than 10%. The recoveries of TG and TAP in plasma and urine were above 80%. TG was not stable in plasma samples and after extraction at ambient temperature or in freeze-thaw cycles, and hence the samples for injection on HPLC column should be stored in refrigerator or under ice cooling prior to analysis, and the plasma samples should not experience the freeze-thaw cycle more than one time. Unlike TAP, TG could not be detected in most urine samples. Application of this method demonstrated that it was feasible for the clinical pharmacokinetic study.
Gray, Bobby P; Teale, Phil; Pearce, Clive M
2011-04-01
Analysis of equine plasma samples to detect the abuse of anabolic steroids can be complicated when the parent steroid is endogenous to the animal. Anabolic steroids are usually administered intramuscularly as synthetic esters and therefore detection of the exogenous esters provides unequivocal proof of illegal administration. An ultra high performance liquid chromatography tandem mass spectrometric (UPLC-MSMS) method for the analysis of esters of testosterone (propionate, phenylpropionate, isocaproate, and decanoate) and boldenone (undecylenate) in equine plasma has been developed. Esters were extracted from equine plasma using a mixture of hexane and ethyl acetate and treated with methoxyamine hydrochloride to form methyloxime derivatives. Metenolone enanthate was used as an internal standard. After chromatographic separation, the derivatized steroid esters were quantified using selected reaction monitoring (SRM). The limit of detection for all of the steroid esters, based on a signal to noise ratio (S/N) of 3:1, was 1-3 pg/mL. The lower limit of quantification (LLOQ) for the all of the steroid esters was 5 pg/mL when 2 mL of plasma was extracted. Recovery of the steroid esters was 85-97% for all esters except for testosterone decanoate which was recovered at 62%. The intra-day coefficient of variation (CV) for the analysis of plasma quality control (QC) samples was less than 9.2% at 40 pg/mL and less than 6.0% at 400 pg/mL. The developed assay was used to successfully confirm the presence of intact testosterone esters in equine plasma samples following intramuscular injection of Durateston® (mixed testosterone esters). Copyright © 2011 John Wiley & Sons, Ltd.
Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D
NASA Astrophysics Data System (ADS)
Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team
2015-11-01
A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.
Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...
2015-11-16
Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β N ≤ 4 , β P ≥ 3 , and β T ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less
Simulations of a dense plasma focus on a high impedance generator
NASA Astrophysics Data System (ADS)
Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander
2017-10-01
We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.
National Spherical Torus Experiment (NSTX) and Planned Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yueng Kay Martin; Ono, M.; Kaye, S.
1998-01-01
The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less
Pulsed Energy Systems for Generating Plasmas
NASA Technical Reports Server (NTRS)
Rose, M. Franklin; Shotts, Z.
2005-01-01
This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.
NASA Astrophysics Data System (ADS)
Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.
2018-01-01
We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.
ERIC Educational Resources Information Center
Korkmaz, S. D.; Aybek, E. C.; Pat, S.
2015-01-01
The educational objectives related to the plasma state of matter, which comprises more than 90% of our universe, are located in the "properties of substances" unit in the 9th grade high school physics course curriculum. If there are physical and technical limitations while performing an experiment, the use of different techniques is…
A comparative study of radiofrequency antennas for Helicon plasma sources
NASA Astrophysics Data System (ADS)
Melazzi, D.; Lancellotti, V.
2015-04-01
Since Helicon plasma sources can efficiently couple power and generate high-density plasma, they have received interest also as spacecraft propulsive devices, among other applications. In order to maximize the power deposited into the plasma, it is necessary to assess the performance of the radiofrequency (RF) antenna that drives the discharge, as typical plasma parameters (e.g. the density) are varied. For this reason, we have conducted a comparative analysis of three Helicon sources which feature different RF antennas, namely, the single-loop, the Nagoya type-III and the fractional helix. These antennas are compared in terms of input impedance and induced current density; in particular, the real part of the impedance constitutes a measure of the antenna ability to couple power into the plasma. The results presented in this work have been obtained through a full-wave approach which (being hinged on the numerical solution of a system of integral equations) allows computing the antenna current and impedance self-consistently. Our findings indicate that certain combinations of plasma parameters can indeed maximize the real part of the input impedance and, thus, the deposited power, and that one of the three antennas analyzed performs best for a given plasma. Furthermore, unlike other strategies which rely on approximate antenna models, our approach enables us to reveal that the antenna current density is not spatially uniform, and that a correlation exists between the plasma parameters and the spatial distribution of the current density.
Time-dependent modeling of dust injection in semi-detached ITER divertor plasma
NASA Astrophysics Data System (ADS)
Smirnov, Roman; Krasheninnikov, Sergei
2017-10-01
At present, it is generally understood that dust related issues will play important role in operation of the next step fusion devices, i.e. ITER, and in the development of future fusion reactors. Recent progress in research on dust in magnetic fusion devises has outlined several topics of particular concern: a) degradation of fusion plasma performance; b) impairment of in-vessel diagnostic instruments; and c) safety issues related to dust reactivity and tritium retention. In addition, observed dust events in fusion edge plasmas are highly irregular and require consideration of temporal evolution of both the dust and the fusion plasma. In order to address the dust-related fusion performance issues, we have coupled the dust transport code DUSTT and the edge plasma transport code UEDGE in time-dependent manner, allowing modeling of transient dust-induced phenomena in fusion edge plasmas. Using the coupled codes we simulate burst-like injection of tungsten dust into ITER divertor plasma in semi-detached regime, which is considered as preferable ITER divertor operational mode based on the plasma and heat load control restrictions. Analysis of transport of the dust and the dust-produced impurities, and of dynamics of the ITER divertor and edge plasma in response to the dust injection will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-06ER54852.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Gregory Elijah
2013-01-01
Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less
EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas
NASA Astrophysics Data System (ADS)
Nakamura, Nobuyuki
2013-05-01
An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.
NASA Astrophysics Data System (ADS)
Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.
2013-08-01
The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.
Kabir, Abuzar; Furton, Kenneth G; Tinari, Nicola; Grossi, Laurino; Innosa, Denise; Macerola, Daniela; Tartaglia, Angela; Di Donato, Valentina; D'Ovidio, Cristian; Locatelli, Marcello
2018-05-01
This paper reports a novel fabric phase sorptive extraction-high performance liquid chromatography-photodiode array detection (FPSE-HPLC-PDA) method for the simultaneous extraction and analysis of three drug residues (ciprofloxacin, sulfasalazine, and cortisone) in human whole blood, plasma, and urine samples, generally administered in human patients to treat inflammatory bowel disease (IBD). The drugs of interest were well resolved using a Luna C 18 column (250 mm × 4.6 mm; 5 μm particle size) in gradient elution mode within 20 min. The analytical method was optimized and validated in the range 0.05-10 μg/mL for whole blood, 0.25-10 μg/mL for human plasma, and 0.10-10 μg/mL for human urine. Blank human whole blood, plasma, and urine were used as the sample matrix for the method development and validation; while methyl-p-hydroxybenzoate was used as the internal standard (IS). Weighted-matrix matched standard calibration curves showed a good linearity up to a concentration of 10 μg/mL. The intra- and inter-day accuracy values (precision and trueness) were found in the range from -10.9% to 12.3%, and the performances of the validated FPSE-HPLC-PDA were further tested on real IBD patient samples. This is the first FPSE procedure applied simultaneously to whole blood, plasma, and urine samples for the determination of residual IBD drugs, which possess a wide range of polarity (logP values ranging from 2.30 for Ciprofloxacin, to 1.66 for Cortisone, and 2.92 for Sulfasalazine). The new approach exhibits high potential for immediate adoptation as a rapid, robust and green analytical tool for future clinical and pharmaceutical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.
2012-01-01
The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.
Overview of Recent Alcator C-Mod Highlights
NASA Astrophysics Data System (ADS)
Marmar, Earl; C-Mod Team
2013-10-01
Analysis and modeling of recent C-Mod experiments has yielded significant results across multiple research topics. I-mode provides routine access to high confinement plasma (H98 up to 1.2) in quasi-steady state, without large ELMs; pedestal pressure and impurity transport are regulated by short-wavelength EM waves, and core turbulence is reduced. Multi-channel transport is being investigated in Ohmic and RF-heated plasmas, using advanced diagnostics to validate non-linear gyrokinetic simulations. Results from the new field-aligned ICRF antenna, including significantly reduced high-Z metal impurity contamination, and greatly improved load-tolerance, are being understood through antenna-plasma modeling. Reduced LHCD efficiency at high density correlates with parametric decay and enhanced edge absorption. Strong flow drive and edge turbulence suppression are seen from LHRF, providing new approaches for plasma control. Plasma density profiles directly in front of the LH coupler show non-linear modifications, with important consequences for wave coupling. Disruption-mitigation experiments using massive gas injection at multiple toroidal locations show unexpected results, with potentially significant implications for ITER. First results from a novel accelerator-based PMI diagnostic are presented. What would be the world's first actively-heated high-temperature advanced tungsten divertor is designed and ready for construction. Conceptual designs are being developed for an ultra-advanced divertor facility, Alcator DX, to attack key FNSF and DEMO heat-flux challenges integrated with a high-performance core. Supported by USDOE.
XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states
NASA Astrophysics Data System (ADS)
Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.
2016-03-01
Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.
Ratnaraj, N; Doheny, H C; Patsalos, P N
1996-04-01
An isocratic high performance liquid chromatographic micromethod is described for the quantitation of levetiracetam (ucb L059) in plasma or serum of patients. The chromatography is performed on a 250 x 4 mm I.D. LiChrospher 60 RP-select B, 5-micron column, eluted with an acetonitrile/50 mM phosphate buffer (15:85 vol/vol, pH 5.6) mobile phase, and levetiracetam detected using ultraviolet absorbance at 220 nm. The limit of quantitation was 5 mumol/L and the within-batch and between-batch coefficients of variation were < 7%. No interference from commonly prescribed antiepileptic drugs (carbamazepine and its metabolite carbamazepine epoxide, ethosuximide, gabapentin, lamotrigine, phenobarbitone, phenytoin, primidone, valproic acid, and vigabatrin) was observed, and thus the method can be used to monitor levetiracetam in patients on polytherapy antiepileptic drug regimens.
Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.
Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew
2015-12-10
While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.
High-Speed, High-Power Active Control Coils for HBT-EP
NASA Astrophysics Data System (ADS)
Debono, Bryan
2010-11-01
We report the performance of a newly installed high-speed, high-power active control system for the application of non-symmetric magnetic fields and the study of rotating MHD and resistive wall modes in the HBTEP tokamak. The new control system consists of an array of 120 modular control coils and 40 solid-state, high-power amplifiers that can apply non-symmetric control fields that are more than 10 times larger than previous studies in HBT-EP and exceed 5% of the equilibrium poloidal field strength. Measurements of the current and field response of the control system are presented as a function of frequency and control coil geometry, and these demonstrate the effectiveness of the system to interact with both growing RWM instabilities and long-wavelength modes rotating with the plasma. We describe a research plan to study the interaction of both kink and tearing mode fluctuations with applied static and rotating magnetic perturbations while systematically changing the plasma rotation with a biased molybdenum electrode inserted into the edge plasma.
Performance of ITER as a burning plasma experiment
NASA Astrophysics Data System (ADS)
Shimada, M.; Mukhovatov, V.; Federici, G.; Gribov, Y.; Kukushkin, A.; Murakami, Y.; Polevoi, A.; Pustovitov, V.; Sengoku, S.; Sugihara, M.
2004-02-01
Recent performance analysis has improved confidence in achieving Q (= fusion power/auxiliary heating power)geq 10 in inductive operation in ITER. Performance analysis based on empirical scalings shows the feasibility of achieving Q geq 10 in inductive operation, particularly with improved modelling of helium exhaust. Analysis has also indicated the possibility that ITER can potentially demonstrate Q ~ 50, enabling studies of self-heated plasmas. Theory-based core modelling indicates the need for a high pedestal temperature (3.2-5.3 keV) to achieve Q geq 10, which is in the range of projections with presently available pedestal scalings. Pellet injection from the high-field side would be useful in enhancing Q and reducing edge localized mode (ELM) heat load in high plasma current operation. If the ELM heat load is not acceptable, it could be made tolerable by further tilting the target plate. Steady state operation scenarios at Q = 5 have been developed with modest requirements on confinement improvement and beta (HH98(y,2) geq 1.3 and bgrN geq 2.6). Stabilization of the resistive wall modes (RWMs), required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structures taken into account. Recent analysis shows a potential of high power steady state operation with a fusion power of 0.7 GW at Q ~ 8. Achievement of the required bgrN ~ 3.6 by RWM stabilization is a possibility. Further analysis is also needed on reduction of the divertor target heat load.
Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho
2016-01-01
The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process. PMID:27721493
Higher plasma level of STIM1, OPG are correlated with stent restenosis after PCI.
Li, Haibin; Jiang, Zhian; Liu, Xiangdong; Yang, Zhihui
2015-01-01
Percutaneous Coronary Intervention (PCI) is one of the most effective treatments for Coronary Heart Disease (CHD), but the high rate of In Stent Restenosis (ISR) has plagued clinicians after PCI. We aim to investigate the correlation of plasma Stromal Interaction Molecular 1 (STIM1) and Osteoprotegerin (OPG) level with stent restenosis after PCI. A total of 100 consecutive patients with Coronary Heart Disease (CHD) received PCI procedure were recruited. Coronary angiography was performed 8 months after their PCI. Then patients were divided into 2 groups: observation group was composed by patients who existing postoperative stenosis after intervention; Control group was composed by patients with no postoperative stenosis. The plasma levels of STIM, OPG in all patients were tested before and after intervention. Pearson correlation and multiple linear regression analysis were performed to analysis the correlation between STIM, OPG level and postoperative stenosis. 35 cases were divided into observation group and other 65 were divided into control group. The plasma levels of STIM, OPG have no statistical difference before their PCI procedure, but we observed higher level of High-sensitivity C-reactive protein (Hs-CRP) existed in observation group. We observed higher level of plasma STIM, OPG in observation group when compared with control group after PCI procedure (P < 0.05). Regression analysis demonstrated that Hs-CRP, STIM1, OPG are independent risk factors for ISR. Elevated levels of plasma STIM1, OPG are independent risk factors for ISR in patients received PCI, which could provide useful information for the restenosis control after PCI.
Determination of bergenin in rat plasma by high-performance liquid chromatography.
Qin, Xuan; Zhou, Dan; Zhang, Zhi-Rong; Huang, Yuan
2007-05-01
A simple, sensitive, selective and reproducible reversed-phase high-performance liquid chromatography (HPLC) method was developed for the determination of bergenin in rat plasma after intravenous administration. Acetaminophen was successfully used, as internal standard (IS) for calibration. The chromatographic separation was accomplished on a reversed-phase C18 column using a mobile phase consisting of methanol-water (20:80, v/v, pH 2.50) and a detection wavelength of 275 nm. Retention times of bergenin and acetaminophen were approximately 9.9 and 6.1 min and no interfering peak of the blank plasma chromatograms was observed. Good linearity was achieved in the range of 0.3 - 100 microg/ml (r2 = 0.9998). The extraction recoveries of bergenin from plasma was 70.82%, 69.44%, 70.98% at concentrations of 5, 50, 100 microg/ml. Intra-assay and inter-assay variabilities were 0.92 - 2.60% and 2.31 - 2.95%, respectively. The accuracy was validated by relative error (RE%), which was in the range of -0.05 - 1.74%. The capability of the assay to pharmacokinetic studies was demonstrated by the determination of bergenin in plasma after intravenous administration to rats in doses of 7.5 mg/kg, 15.0 mg/kg, and 30.0 mg/kg, using water as the solvent. The half-lives for distribution and elimination are not related to administered doses. A biphasic phenomenon with a rapid distribution followed by a slower elimination phase was observed from the plasma concentration-time curve and the pharmacokinetics was based on first order kinetics.
Advanced Thomson scattering system for high-flux linear plasma generator.
van der Meiden, H J; Lof, A R; van den Berg, M A; Brons, S; Donné, A J H; van Eck, H J N; Koelman, P M J; Koppers, W R; Kruijt, O G; Naumenko, N N; Oyevaar, T; Prins, P R; Rapp, J; Scholten, J; Schram, D C; Smeets, P H M; van der Star, G; Tugarinov, S N; Zeijlmans van Emmichoven, P A
2012-12-01
An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f/3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n(e)) and temperature (T(e)) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n(e) and 6% in T(e) (at n(e) = 9.4 × 10(18) m(-3)) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n(e) > 2.8 × 10(20) m(-3). The minimum measurable density and temperature are n(e) < 1 × 10(17) m(-3) and T(e) < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n(0)) of the plasma can be measured with an accuracy of 25% (at n(0) = 1 × 10(20) m(-3)). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.
Acceleration Modes and Transitions in Pulsed Plasma Accelerators
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Greve, Christine M.
2018-01-01
Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.
Developing the science and technology for the Material Plasma Exposure eXperiment
NASA Astrophysics Data System (ADS)
Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Isler, R. C.; Lumsdaine, A.; Beers, C. J.; Bjorholm, T.; Bradley, C.; Canik, J. M.; Donovan, D.; Duckworth, R. C.; Ellis, R. J.; Graves, V.; Giuliano, D.; Green, D. L.; Hillis, D. L.; Howard, R. H.; Kafle, N.; Katoh, Y.; Lasa, A.; Lessard, T.; Martin, E. H.; Meitner, S. J.; Luo, G.-N.; McGinnis, W. D.; Owen, L. W.; Ray, H. B.; Shaw, G. C.; Showers, M.; Varma, V.; the MPEX Team
2017-11-01
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1-10 eV and electron densities of 1021{\\text{}}-1020 m-3 . The resulting heat fluxes are about 10 MW m-2 . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW m-2 was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to 1.1 × 1020 m-3 at high magnetic fields of 1.0 T at the target. The experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL’s High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.
Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease.
Mattsson, Niklas; Andreasson, Ulf; Zetterberg, Henrik; Blennow, Kaj
2017-05-01
Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias. To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration. In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer's Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016. Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism. Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P < .001). Plasma NFL was increased in patients with MCI (mean, 42.8 ng/L) and patients with AD dementia (mean, 51.0 ng/L) compared with controls (mean, 34.7 ng/L) (P < .001) and had high diagnostic accuracy for patients with AD with dementia vs controls (area under the receiver operating characteristic curve, 0.87, which is comparable to established CSF biomarkers). Plasma NFL was particularly high in patients with MCI and patients with AD dementia with Aβ pathologic features. High plasma NFL correlated with poor cognition and AD-related atrophy (at baseline and longitudinally) and with brain hypometabolism (longitudinally). Plasma NFL is associated with AD diagnosis and with cognitive, biochemical, and imaging hallmarks of the disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD.