Sample records for plasma kallikrein inhibitor

  1. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    PubMed

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  2. Immunochemical Studies of Plasma Kallikrein

    PubMed Central

    Bagdasarian, Andranik; Lahiri, Biswajit; Talamo, Richard C.; Wong, Pat; Colman, Robert W.

    1974-01-01

    A monospecific antibody against human plasma kallikrein has been prepared in rabbits with kallikrein further purified to remove gamma globulins. The antisera produced contained antikallikrein and also anti-IgG, in spite of only 8% contamination of kallikrein preparation with IgG. The latter antibody was removed by adsorption of antisera with either Fletcher factor-deficient plasma or with purified IgG. Both kallikrein and prekallikrein (in plasma) cross-react with the antibody with no apparent difference between the precipitation arcs developed during immunoelectrophoresis and no significant difference in reactivity when quantified by radial immunodiffusion. Kallikrein antibody partially inhibits the esterolytic and fully inhibits the proteolytic activity of kallikrein. In addition, the antibody inhibits the activation of prekallikrein, as measured by esterase or kinin release. The magnitude of the inhibition is related to the molecular weight of the activator used. Thus, for the four activators tested, the greatest inhibition is observed with kaolin and factor XIIA, while large activator and the low molecular weight prekallikrein activators are less inhibited. With the kallikrein antibody, the incubation of kallikrein with either plasma or partially purified C1 esterase inactivator results in a new precipitin arc, as detected by immunoelectrophoresis. This finding provides physical evidence for the interaction of the enzyme and inhibitor. No new arc could be demonstrated between kallikrein and α2-macroglobulin, or α1-antitrypsin, although the concentration of free kallikrein antigen decreases after interaction with the former inhibitor. By radial immunodiffusion, plasma from healthy individuals contained 103±13 μg/ml prekallikrein antigen. Although in mild liver disease, functional and immunologic kallikrein are proportionally depressed, the levels of prekallikrein antigen in plasma samples from patients with severe liver disease remains 40% of normal, while the functional kallikrein activity was about 8%. These observations suggest that the livers of these patients have synthesized a proenzyme that cannot be converted to active kallikrein. Images PMID:4140197

  3. Stable and Long-Lasting, Novel Bicyclic Peptide Plasma Kallikrein Inhibitors for the Treatment of Diabetic Macular Edema.

    PubMed

    Teufel, Daniel P; Bennett, Gavin; Harrison, Helen; van Rietschoten, Katerine; Pavan, Silvia; Stace, Catherine; Le Floch, François; Van Bergen, Tine; Vermassen, Elke; Barbeaux, Philippe; Hu, Tjing-Tjing; Feyen, Jean H M; Vanhove, Marc

    2018-04-12

    Plasma kallikrein, a member of the kallikrein-kinin system, catalyzes the release of the bioactive peptide bradykinin, which induces inflammation, vasodilation, vessel permeability, and pain. Preclinical evidence implicates the activity of plasma kallikrein in diabetic retinopathy, which is a leading cause of visual loss in patients suffering from diabetes mellitus. Employing a technology based on phage-display combined with chemical cyclization, we have identified highly selective bicyclic peptide inhibitors with nano- and picomolar potencies toward plasma kallikrein. Stability in biological matrices was either intrinsic to the peptide or engineered via the introduction of non-natural amino acids and nonpeptidic bonds. The peptides prevented bradykinin release in vitro, and in vivo efficacy was demonstrated in both a rat paw edema model and in rodent models of diabetes-induced retinal permeability. With a highly extended half-life of ∼40 h in rabbit eyes following intravitreal administration, the bicyclic peptides are promising novel agents for the treatment of diabetic retinopathy and diabetic macular edema.

  4. THE INHIBITION OF PLASMIN, PLASMA KALLIKREIN, PLASMA PERMEABILITY FACTOR, AND THE C'1r SUBCOMPONENT OF THE FIRST COMPONENT OF COMPLEMENT BY SERUM C'1 ESTERASE INHIBITOR

    PubMed Central

    Ratnoff, Oscar D.; Pensky, Jack; Ogston, Derek; Naff, George B.

    1969-01-01

    The fraction of human serum designated as C'1 esterase inhibitor is known to inhibit the action of C'1 esterase, a plasma kallikrein, and PF/Dil, an enzyme in plasma enhancing cutaneous vascular permeability. In the present study, C'1 esterase inhibitor has been found to block the actions of plasmin and the C'1r subcomponent of the first component of complement, and to retard the generation of PF/Dil. No inhibition of blood clotting or of the generation of plasmin was demonstrable. PMID:4178758

  5. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    PubMed

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies to block peptidase activities in order to target specific peptidase-mediated growth and invasion characteristics of individual tumors, mainly in patients resistant to 5-fluorouracil chemotherapy. Georg Thieme Verlag KG Stuttgart · New York.

  6. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models.

    PubMed

    Brito, Marlon V; de Oliveira, Cleide; Salu, Bruno R; Andrade, Sonia A; Malloy, Paula M D; Sato, Ana C; Vicente, Cristina P; Sampaio, Misako U; Maffei, Francisco H A; Oliva, Maria Luiza V

    2014-05-01

    The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    PubMed

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  8. Activation of tissue kallikrein-kininogen-kinin system in rabbit skin by a fraction isolated from Phoneutria nigriventer (armed spider) venom.

    PubMed

    Antunes, E; Marangoni, R A; Giglio, J R; Brain, S D; de Nucci, G

    1993-11-01

    Phoneutria nigriventer venom was fractionated by gel filtration followed by ion-exchange chromatography from which 16 fractions (I-XVI) were obtained and assayed in rabbit skin in order to identify those responsible for the increased vascular permeability observed with the whole venom. The fractions, and control mediators (tissue kallikrein, bradykinin and histamine) were intradermally injected in male New Zealand white rabbits. Local oedema formation was measured as the local accumulation of i.v. injected 125I-human serum albumin into skin sites. Fraction XIII was the only fraction assayed which significantly induced oedema formation. Fraction XIII-induced oedema was greatly reduced by either the protease inhibitor aprotinin or the bradykinin B2 receptor antagonist D-Arg,[Hyp3,Thi5,8D-Phe7]-Bk, whereas the plasma kallikrein inhibitor soybean trypsin inhibitor failed to significantly affect this oedematogenic response. The kininase II inhibitor captopril markedly potentiated fraction XIII-induced oedema. Our results indicate that the increased vascular permeability induced by fraction XIII is due to local generation of kinins in response to tissue (but not plasma) kallikrein-kinin system activation.

  9. Human plasma kallikrein-kinin system: Physiological and biochemical parameters

    PubMed Central

    Bryant, J.W.; Shariat-Madar, z

    2016-01-01

    The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity. PMID:19689262

  10. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  11. The Kallikrein-Kinin System in Bartter's Syndrome and Its Response to Prostaglandin Synthetase Inhibition

    PubMed Central

    Vinci, Joseph M.; Gill, John R.; Bowden, Robert E.; Pisano, John J.; Izzo, Joseph L.; Radfar, Nazam; Taylor, Addison A.; Zusman, Randall M.; Bartter, Frederic C.; Keiser, Harry R.

    1978-01-01

    The kallikrein-kinin system was characterized in seven patients with Bartter's syndrome on constant metabolic regimens before, during, and after treatment with prostaglandin synthetase inhibitors. Patients with Bartter's syndrome had high values for plasma bradykinin, plasma renin activity (PRA), urinary kallikrein, urinary immunoreactive prostaglandin E excretion, and urinary aldosterone; urinary kinins were subnormal and plasma prekallikrein was normal. Treatment with indomethacin or ibuprofen which decreased urinary immunoreactive prostaglandin E excretion by 67%, decreased mean PRA (patients recumbent) from 17.3±5.3 (S.E.M.) ng/ml per h to 3.3±1.1 ng/ml per h, mean plasma bradykinin (patients recumbent) from 15.4±4.4 ng/ml to 3.9±0.9 ng/ml, mean urinary kallikrein excretion from 24.8±3.2 tosyl-arginine-methyl ester units (TU)/day to 12.4±2.0 TU/day, but increased mean urinary kinin excretion from 3.8±1.3 μg/day to 8.5±2.5 μg/day. Plasma prekallikrein remained unchanged at 1.4 TU/ml. Thus, with prostaglandin synthetase inhibition, values for urinary kallikrein and kinin and plasma bradykinin returned to normal pari passu with changes in PRA, in aldosterone, and in prostaglandin E. The results suggest that, in Bartter's syndrome, prostaglandins mediate the low urinary kinins and the high plasma bradykinin, and that urinary kallikrein, which is aldosterone dependent, does not control kinin excretion. The high plasma bradykinin may be a cause of the pressor hyporesponsiveness to angiotensin II which characterizes the syndrome. PMID:96139

  12. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed Central

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-01-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364

  13. Activation by Phoneutria nigriventer (armed spider) venom of tissue kallikrein-kininogen-kinin system in rabbit skin in vivo.

    PubMed

    Marangoni, R A; Antunes, E; Brain, S D; de Nucci, G

    1993-06-01

    1. The purpose of the present study was to investigate the mechanisms by which venom from Phoneutria nigriventer spider induces increases in vascular permeability in rabbit skin. 2. Local oedema formation, in response to intradermally-injected agents, was measured in male New Zealand white rabbits as the local accumulation of i.v. injected 125I-labelled human serum albumin into skin sites. 3. Phoneutria nigriventer venom (10-30 micrograms/site) increased vascular permeability, which was inhibited by trasylol (10 micrograms/site) and the bradykinin B2 receptor antagonists D-Arg,[Hyp3,Thi5,8,D-Phe7]-BK (3 nmol/site) and Hoe 140 (0.3 nmol/site). In addition, the oedema induced by the venom was potentiated by the kinase II inhibitor, captopril (1 nmol/site). The lipoxygenase inhibitor, BWA4C (10 nmol/site) and the PAF antagonist, WEB 2086 (100 nmol/site) had no effect on the venom-induced increase in vascular permeability. 4. Incubation of rabbit plasma with Phoneutria nigriventer venom in vitro did not cause bradykinin formation. Further, the plasma kallikrein inhibitor, soybean trypsin inhibitor (10 micrograms/site), had no effect on the venom-induced increase in vascular permeability in rabbit skin. 5. These results indicate that the oedema produced by Phoneutria nigriventer venom is dependent on the activation of the tissue kallikrein-kinin system.

  14. Activation by Phoneutria nigriventer (armed spider) venom of tissue kallikrein-kininogen-kinin system in rabbit skin in vivo.

    PubMed Central

    Marangoni, R. A.; Antunes, E.; Brain, S. D.; de Nucci, G.

    1993-01-01

    1. The purpose of the present study was to investigate the mechanisms by which venom from Phoneutria nigriventer spider induces increases in vascular permeability in rabbit skin. 2. Local oedema formation, in response to intradermally-injected agents, was measured in male New Zealand white rabbits as the local accumulation of i.v. injected 125I-labelled human serum albumin into skin sites. 3. Phoneutria nigriventer venom (10-30 micrograms/site) increased vascular permeability, which was inhibited by trasylol (10 micrograms/site) and the bradykinin B2 receptor antagonists D-Arg,[Hyp3,Thi5,8,D-Phe7]-BK (3 nmol/site) and Hoe 140 (0.3 nmol/site). In addition, the oedema induced by the venom was potentiated by the kinase II inhibitor, captopril (1 nmol/site). The lipoxygenase inhibitor, BWA4C (10 nmol/site) and the PAF antagonist, WEB 2086 (100 nmol/site) had no effect on the venom-induced increase in vascular permeability. 4. Incubation of rabbit plasma with Phoneutria nigriventer venom in vitro did not cause bradykinin formation. Further, the plasma kallikrein inhibitor, soybean trypsin inhibitor (10 micrograms/site), had no effect on the venom-induced increase in vascular permeability in rabbit skin. 5. These results indicate that the oedema produced by Phoneutria nigriventer venom is dependent on the activation of the tissue kallikrein-kinin system. PMID:8395291

  15. A plant Kunitz-type inhibitor mimics bradykinin-induced cytosolic calcium increase and intestinal smooth muscle contraction.

    PubMed

    Andrade, Sheila Siqueira; Smaili, Soraya Soubhi; Monteforte, Priscila Totarelli; Miranda, Antônio; Kouyoumdjian, Maria; Sampaio, Misako Uemura; Lopes, Guiomar Silva; Oliva, Maria Luiza V

    2012-09-01

    BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B(2) receptors (B(2)R). BbKI was examined on smooth muscle contraction and Ca(2+) mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 μm) increased [Ca(2+)](c) and contraction, as observed with BK (2.0 μm). Not blocked by B(1) receptors (B(1)R), the BbKI agonistic effect was blocked by the B(2)R antagonist, HOE-140 (6 μm), and the involvement of B(2)R was confirmed in B(2)R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca(2+) release from internal storages, as a consequence of its interaction with B(2)R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B(2)R involvement.

  16. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  17. Helodermatine, a kallikrein-like, hypotensive enzyme from the venom of Heloderma horridum horridum (Mexican beaded lizard)

    PubMed Central

    1986-01-01

    We have purified and characterized the major N-benzoyl-L-arginine ethyl ester hydrolase from the venom of Heloderma horridum horridum. The enzyme belongs to the serine proteinase family, and its activity vs. peptide amide substrates and human high-molecular-weight kininogen suggests a similarity to the family of kallikreins. This interpretation is corroborated by its reactivity with the natural inhibitors soybean trypsin inhibitor and Kunitz-type bovine pancreatic trypsin inhibitor (aprotinin). Injection of the enzyme (2-16 micrograms/kg) into anesthetized rabbits leads to a rapid dose-dependent transient decrease of the arterial blood pressure. Like glandular kallikrein it specifically converts single-chain tissue type plasminogen activator into its double chain form. In contrast to other kallikrein-like enzymes from snake venoms it shows no thrombin-like or plasminogen activator activity. The enzyme is a single-chain glycoprotein (Mr 63,000). The N-terminal sequence revealed significant homology to pig pancreatic kallikrein and to kallikrein like enzymes from Crotalus atrox and Crotalus adamanteus venom. This enzyme, which we name Helodermatine, is the first purified from Sauria with kallikrein-like properties. PMID:3537191

  18. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    PubMed

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-04

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.

  19. combination effect of hypertonic disease with chronic pancreatitis on the processes maintain homeostasis.

    PubMed

    Babinets, Liliya S; Medvid, Igor I; Herasymets, Iryna I; Borovyk, Iryna O; Migenko, Liudmyla M; Migenko, Bogdan O; Ryabokon, Svitlana S; Korylchuk, Neonila I; Botcyk, Natalia E; Tvorko, Vadym M

    Introduction: Abnormalities comorbidity - a frequent phenomenon in medical practice. This determines the relevance of research processes maintaining homeostasis with a combination of various diseases. The aim of this study was to examine and compare the character of vegetative, antioxidant, kallikrein-kinin system and parameters of endogenous intoxication disorders in the patients with isolated essential hypertension and with combination of hypertonic disease and chronic pancreatitis. Materials and Methods: Cardiointervalography was used in the research with definition of standard statistical and spectral heart rate variability. Determination of superoxide dismutase, glutathione, catalase, middle molecular peptides, total proteolytic activity of plasma by the hydrolysis of protamine sulfate, prekallikrein, kallikrein, α1 -proteinase inhibitor, α2 -macroglobulin and kininase II was conducted by laboratory methods. Results: Sympathicotonia with the moderate tension of adaptation processes, violation of antioxidant protection, kallikrein-kinin system and displays of endogenous intoxication were found in the patients with isolated hypertension. Reduction of sympathicotonia, reducing total power spectrum, increasing the share of humoral-metabolic effects on heart rate, tendency to asympathicotonia autonomic reactivity, lower levels of superoxide dismutase, glutathione, prekallikrein, α2 -macroglobulin, kininase II, higher levels of catalase, middle molecular peptides, total proteolytic activity of plasma kallikrein were observed upon accession the concomitant chronic pancreatitis. Conclusions: The signs of compensatory mechanisms disruption and increased autonomic nervous system imbalance with a decrease in ductility autonomous processes in the load were determined upon accession the concomitant chronic pancreatitis. The combination of pathologies also accompanied by more severe manifestations of endogenous intoxication, significant violations of antioxidant and kallikrein-kinin systems.

  20. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice.

    PubMed

    Wang, Hui; Zhang, Jia-Xiang; Ye, Liang-Ping; Li, Shu-Long; Wang, Feng; Zha, Wan-Sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-Xing

    2016-07-01

    Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage.

  1. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    PubMed

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  2. Evaluation of avoralstat, an oral kallikrein inhibitor, in a Phase 3 hereditary angioedema prophylaxis trial: the OPUS-2 study.

    PubMed

    Riedl, Marc A; Aygören-Pürsün, Emel; Baker, James; Farkas, Henriette; Anderson, John; Bernstein, Jonathan A; Bouillet, Laurence; Busse, Paula; Manning, Michael; Magerl, Markus; Gompels, Mark; Huissoon, Aarnoud P; Longhurst, Hillary; Lumry, William; Ritchie, Bruce; Shapiro, Ralph; Soteres, Daniel; Banerji, Aleena; Cancian, Mauro; Johnston, Douglas T; Craig, Timothy J; Launay, David; Li, H Henry; Liebhaber, Myron; Nickel, Timothy; Offenberger, Jacob; Rae, William; Schrijvers, Rik; Triggiani, Massimo; Wedner, H James; Dobo, Sylvia; Cornpropst, Melanie; Clemons, Desiree; Fang, Lei; Collis, Phil; Sheridan, William P; Maurer, Marcus

    2018-04-24

    Effective inhibition of plasma kallikrein may have significant benefits for patients with hereditary angioedema due to deficiency of C1 inhibitor (C1-INH-HAE) by reducing the frequency of angioedema attacks. Avoralstat is a small molecule inhibitor of plasma kallikrein. This study (OPuS-2) evaluated the efficacy and safety of prophylactic avoralstat 300 or 500 mg compared with placebo. OPuS-2 was a Phase 3, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Subjects were administered avoralstat 300 mg, avoralstat 500 mg, or placebo orally 3 times per day for 12 weeks. The primary efficacy endpoint was the angioedema attack rate based on adjudicator-confirmed attacks. A total of 110 subjects were randomized and dosed. The least squares (LS) mean attack rates per week were 0.589, 0.675, and 0.593 for subjects receiving avoralstat 500 mg, avoralstat 300 mg, and placebo, respectively. Overall, 1 subject in each of the avoralstat groups and no subjects in the placebo group were attack-free during the 84-day treatment period. The LS mean duration of all confirmed attacks was 25.4, 29.4 and 31.4 hours for the avoralstat 500 mg, avoralstat 300 mg and placebo groups respectively. Using the Angioedema Quality of Life Questionnaire (AE-QoL), improved QoL was observed for the avoralstat 500 mg group compared with placebo. Avoralstat was generally safe and well tolerated. Although this study did not demonstrate efficacy of avoralstat in preventing angioedema attacks in C1-INH-HAE, it provided evidence of shortened angioedema episodes and improved QoL in the avoralstat 500 mg treatment group compared with placebo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Bauhinia proteinase inhibitor-based synthetic fluorogenic substrates for enzymes isolated from insect midgut and caterpillar bristles.

    PubMed

    Andrade, Sonia A; Santomauro-Vaz, Eugênio M; Lopes, Adriana R; Chudzinski-Tavassi, Ana M; Juliano, Maria A; Terra, Walter R; Sampaio, Misako U; Sampaio, Claudio A M; Oliva, Maria Luiza V

    2003-03-01

    Bauhinia ungulata factor Xa inhibitor (BuXI) inactivates factor Xa and LOPAP, a prothrombin activator proteinase isolated from the venom of Lonomia obliqua caterpillar bristles. The reactive site of the enzyme-inhibitor interaction was explored to design specific substrates for both enzymes. Methionine is crucial for LOPAP and factor Xa substrate interaction, since the change of both Met residues in the substrates abolished the hydrolysis. Synthetic substrates containing the sequence around the reactive site of BbKI, a plasma kallikrein inhibitor, were shown to be specific for trypsin hydrolysis. Therefore, these substrates may be an alternative in studies aiming at a characterization of trypsin-like enzyme activities, especially non-mammalian enzymes.

  4. Bradykinin-forming components in Kuwaiti patients with type 2 diabetes.

    PubMed

    Sharma, J N; Al-Shoumer, K A S; Matar, K M; Al-Gharee, H Y; Madathil, N V

    2013-01-01

    Diabetes is the most common risk factor in inducing hypertension, nephropathy and retinopathy. The bradykinin (BK)-forming system has been proposed to protect cardiovascular and renal functions. We therefore evaluated urinary active and proactive kallikrein, total kininogen, plasma tissue kallikrein, plasma creatinine, plasma glucose and plasma HbA1c in newly diagnosed untreated type 2 diabetic patients and healthy subjects. In diabetic patients, urinary and plasma tissue kallikrein concentrations were significantly increased. In addition, plasma prekallikrein levels were also significantly higher. However, urinary kininogen values were significantly reduced in diabetic patients when compared with healthy subjects. This is the first investigation among Kuwaiti Arab patients with type 2 diabetes showing abnormal activities in the BK-forming system. High levels of plasma prekallikrein may be a risk factor for developing high blood pressure as well as nephropathy. The urinary and plasma tissue kallikrein concentrations were higher in diabetic patients, which could indicate the hyperactivities of these components, and may result in increased levels of plasma glucose to induce diabetes. Furthermore, the urinary kininogen levels were reduced in diabetic patients. These alterations might reflect the utilization of urinary kininogen to form BK, a potent inflammatory agent. However, this hypothesis needs further investigation.

  5. Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution*

    PubMed Central

    Lilla, Jennifer N.; Joshi, Ravi V.; Craik, Charles S.; Werb, Zena

    2009-01-01

    The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development. PMID:19297327

  6. Enhancement of lymphocyte proliferation by mouse glandular kallikrein.

    PubMed

    Hu, Z Q; Murakami, K; Ikigai, H; Shimamura, T

    1992-03-01

    Mouse glandular kallikrein (mGK) strongly enhanced the spontaneous and mitogen-induced proliferation of lymphocytes. Both blast formation and 3H-TdR incorporation were dose-dependently enhanced at the same time many cells were killed. The enhancing activity was independent of EGF, because EGF-binding proteins (mGK-9 in mGK-6,9 mixture and mGK-13), renal kallikrein (mGK-6) and human kallikrein all displayed the same enhancement. A serine proteinase inhibitor, diisopropyl fluorophosphate, could block the enhancement by mGK. The new function suggests that mGK is important in the immune system as a regulatory molecule.

  7. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.

  8. Bradykinin-mediated diseases.

    PubMed

    Kaplan, Allen P

    2014-01-01

    Diseases which have been demonstrated to be caused by increased plasma levels of bradykinin all have angioedema as the common major clinical manifestation. Angioedema due to therapy with angiotensin-converting enzyme (ACE) inhibitors is caused by suppressed bradykinin degradation so that it accumulates. This occurs because ACE metabolizes bradykinin by removal of Phe-Arg from the C-terminus, which inactivates it. By contrast, angioedema due to C1 inhibitor deficiency (either hereditary types I and II, or acquired) is caused by bradykinin overproduction. C1 inhibitor inhibits factor XIIa, kallikrein and activity associated with the prekallikrein-HK (high-molecular-weight kininogen) complex. In its absence, uncontrolled activation of the plasma bradykinin cascade is seen once there has been an initiating stimulus. C4 levels are low in all types of C1 inhibitor deficiency due to the instability of C1 (C1r, in particular) such that some activated C1 always circulates and depletes C4. In the hereditary disorder, formation of factor XIIf (factor XII fragment) during attacks of swelling causes C4 levels to drop toward zero, and C2 levels decline. A kinin-like molecule, once thought to be a cleavage product derived from C2 that contributes to the increased vascular permeability seen in hereditary angioedema (HAE), is now thought to be an artifact, i.e. no such molecule is demonstrable. The acquired C1 inhibitor deficiency is associated with clonal disorders of B cell hyperreactivity, including lymphoma and monoclonal gammopathy. Most cases have an IgG autoantibody to C1 inhibitor which inactivates it so that the presentation is strikingly similar to type I HAE. New therapies for types I and II HAE include C1 inhibitor replacement therapy, ecallantide, a kallikrein antagonist, and icatibant, a B2 receptor antagonist. A newly described type III HAE has normal C1 inhibitor, although it is thought to be mediated by bradykinin, as is an antihistamine-resistant subpopulation of patients with 'idiopathic' angioedema. The mechanism(s) for the formation of bradykinin in these disorders is unknown. © 2014 S. Karger AG, Basel.

  9. The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function

    PubMed Central

    Rhaleb, Nour-Eddine; Yang, Xiao-Ping; Carretero, Oscar A.

    2015-01-01

    Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardiovascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (†PA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoidsalt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body’s adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension. PMID:23737209

  10. Hereditary angioedema: management of laryngeal attacks.

    PubMed

    Christiansen, Sandra C; Zuraw, Bruce L

    2011-01-01

    Hereditary angioedema (HAE) patients suffering from laryngeal attacks in the United States faced severely limited treatment options until 2008. These potentially life-threatening episodes occur in over one-half of the patients affected by HAE during their lifetimes. Acute therapy had been relegated to supportive care, intubation, and consideration of fresh frozen plasma (FFP)--the latter with the potential for actually accelerating the speed and severity of the swelling. In this article we will review the recently approved and emerging HAE treatments that have evolved from the recognition that bradykinin generation is the fundamental abnormality leading to attacks of angioedema. Acute therapy for laryngeal attacks will be discussed including purified plasma-derived C1 inhibitor (C1INH), recombinant C1INH, an inhibitor of plasma kallikrein (ecallantide), and a B2 receptor antagonist (icatibant). Prophylactic care has also been transformed from a reliance on attenuated androgens with their attendant side effects to C1INH replacement. The arrival of these novel therapies promises to transform the future management of HAE.

  11. Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport.

    PubMed

    Margolius, H S; Halushka, P V; Chao, J; Miller, D H; Cuthbert, A W; Spayne, J A

    1985-01-01

    Tissue kallikrein of colon mucosa is synthesized rapidly, and this synthetic process can now be examined in relation to hormonal or dietary manipulations or pathological circumstances that affect intestinal ion transport. Although the identical renal tissue enzyme is known to be enriched in membranes of distal convoluted tubular epithelial cells, the precise localization of the intestinal enzyme is uncertain. An understanding of the intestinal cellular locale of kallikrein will help in defining its local role. That tissue kallikreins can be inhibited by monovalent cations and some drugs (e.g., amiloride) and that kallikrein inhibitors affect cation transport across epithelial surfaces containing such enzymes must be reconciled with the new observations of kinin-induced chloride secretion. Extracellular calcium, eicosanoid synthesis, and cyclic nucleotide production are involved in the secretory response to kinins, although an absolute requirement for intact eicosanoid synthesis may not exist.

  12. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus

    PubMed Central

    Longhurst, Hilary

    2018-01-01

    Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients’ quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze), a recombinant C1 inhibitor (Ruconest/Conestat alpha), a kallikrein inhibitor (Ecallantide), and a bradykinin B2 receptor inhibitor (Icatibant) are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophylactic agents are associated with breakthrough attacks, therefore an acute treatment plan is essential for every patient. Experience has shown that higher doses of C1 inhibitor than previously recommended may be desirable, although only recombinant C1 inhibitor has been subject to full dose–response evaluation. Treatment of early symptoms of an attack, with any licensed therapy, results in milder symptoms, more rapid resolution and shorter duration of attack, compared with later treatment. All therapies have been shown to be well-tolerated, with low risk of serious adverse events. Plasma-derived C1 inhibitors have a reassuring safety record regarding lack of transmission of virus or other infection. Thrombosis has been reported in association with plasma-derived C1 inhibitor in some case series. Ruconest was associated with anaphylaxis in a single rabbit-allergic volunteer, but no further anaphylaxis has been reported in those not allergic to rabbits despite, in a few cases, prior IgE sensitization to rabbit or milk protein. Icatibant is associated with high incidence of local reactions but not with systemic effects. Ecallantide may cause anaphylactoid reactions and is given under supervision. For children and pregnant women, plasma-derived C1 inhibitor has the best evidence of safety and currently remains first-line treatment. PMID:29594115

  13. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus.

    PubMed

    Longhurst, Hilary

    2017-01-01

    Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients' quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze), a recombinant C1 inhibitor (Ruconest/Conestat alpha), a kallikrein inhibitor (Ecallantide), and a bradykinin B2 receptor inhibitor (Icatibant) are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophylactic agents are associated with breakthrough attacks, therefore an acute treatment plan is essential for every patient. Experience has shown that higher doses of C1 inhibitor than previously recommended may be desirable, although only recombinant C1 inhibitor has been subject to full dose-response evaluation. Treatment of early symptoms of an attack, with any licensed therapy, results in milder symptoms, more rapid resolution and shorter duration of attack, compared with later treatment. All therapies have been shown to be well-tolerated, with low risk of serious adverse events. Plasma-derived C1 inhibitors have a reassuring safety record regarding lack of transmission of virus or other infection. Thrombosis has been reported in association with plasma-derived C1 inhibitor in some case series. Ruconest was associated with anaphylaxis in a single rabbit-allergic volunteer, but no further anaphylaxis has been reported in those not allergic to rabbits despite, in a few cases, prior IgE sensitization to rabbit or milk protein. Icatibant is associated with high incidence of local reactions but not with systemic effects. Ecallantide may cause anaphylactoid reactions and is given under supervision. For children and pregnant women, plasma-derived C1 inhibitor has the best evidence of safety and currently remains first-line treatment.

  14. Virtual Screening and X-ray Crystallography for Human Kallikrein 6 Inhibitors with an Amidinothiophene P1 Group.

    PubMed

    Liang, Guyan; Chen, Xin; Aldous, Suzanne; Pu, Su-Fen; Mehdi, Shujaath; Powers, Elaine; Giovanni, Andrew; Kongsamut, Sathapana; Xia, Tianhui; Zhang, Ying; Wang, Rachel; Gao, Zhongli; Merriman, Gregory; McLean, Larry R; Morize, Isabelle

    2012-02-09

    A series of compounds with an amidinothiophene P1 group and a pyrrolidinone-sulphonamide scaffold linker was identified as potent inhibitors of human kallikrein 6 by structure-based virtual screening based on the union accessible binding space of serine proteases. As the first series of potent nonmechanism-based hK6 inhibitors, they may be used as tool compounds for target validation. An X-ray structure of a representative compound complexed with hK6, resolved at a resolution of 1.88 Å, revealed that the amidinothiophene moiety bound in the S1 pocket and the pyrrolidinone-sulphonamide linker projected the aromatic tail into the S' pocket.

  15. Thrombin-stimulated platelet aggregation is inhibited by kallikrein in a time- and concentration-dependent manner.

    PubMed

    Veloso, D

    2003-01-01

    Many in vitro studies have shown that activation of prekallikrein (PK) to kallikrein (KAL) in normal plasma triggers rapid activation of the coagulation cascade. In agreement, the coagulation activation is impaired in PK-deficient plasma. Paradoxically, PK-deficient patients show a tendency to thrombosis. To investigate the discrepancy between the in vitro and in vivo findings, we analyzed the effect of KAL on the rate of platelet aggregation. For this research, physiologic concentrations of washed human platelets were incubated for 5 and/or 10 min with approximately 2.2 to 88 nM human plasma KAL (< 1/100 to approximately 1/3 of PK concentrations in plasma) prior to the addition of high concentrations of alpha-thrombin (54 nM) or fibrinogen plus ADP. KAL concentrations were arbitrarily selected on the assumption that concentrations of free KAL (the enzymatically active species) were minute in normal plasma and higher when KAL production was enhanced, and/or inhibitors were depleted. Full platelet aggregation was that seen in the absence of KAL or PK. Inhibition of platelet aggregation stimulated by thrombin was markedly increased with increased KAL concentrations and incubation times. The degree of inhibition by KAL was smaller when ADP was the agonist. The data suggest that KAL may play a role in the modulation of platelet aggregation in vivo under normal conditions as well as when prolonged, high concentrations of KAL occur in blood. The data may also help to explain the intriguing observation that PK-deficient patients show a tendency to thrombotic episodes and myocardial infarction whereas in vitro assays predict bleeding.

  16. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  17. Exocrine and endocrine release of kallikrein after reflex-induced salivary secretion.

    PubMed

    Berg, T; Johansen, L; Poulsen, K

    1990-05-01

    Exocrine and endocrine release of rat submandibular gland kallikrein has been shown to be low after parasympathetic and beta-adrenergic stimulation but greatly increased after alpha-adrenergic stimulation. In the present study, release of glandular kallikrein was investigated under conditions known to give a reflex-induced salivary gland response. Heat stress induced a rich flow of saliva originating in the submandibular glands. Salivary kallikrein secretory rate was higher than after parasympathetic stimulation but lower than after sympathetic stimulation (P less than 0.005). Only heat stress increased circulating glandular kallikrein (12.7 +/- 0.8 ng ml-1 before heat exposure and 53.3 +/- 14.1 ng ml-1 40 min afterwards, P less than 0.005). There were no indications that the endocrine release of kallikrein was due to non-specific leakage. Atropine abolished heat-induced salivation and endocrine kallikrein secretion, possibly through interference with central pathways (P less than 0.05). However, phentolamine did not, which may indicate as an yet unidentified mediator of endogenous kallikrein release. The salivary gland response to acid and ether was comparable to that observed after parasympathetic nerve stimulation and was abolished by atropine (P less than 0.005). Stimuli known to influence other salivary gland ductal cells, such as aggression and starvation followed by drinking, also did not increase the plasma concentration of glandular kallikrein. The fact that various conditions which induce salivation did not increase circulating glandular kallikrein, coupled with the fact that kallikrein concentration was the highest in animals that died from heat stress, may suggest that the increase in circulating glandular kallikrein seen after heat stress may be pathological and could contribute to the development of heat shock.

  18. Genome-Wide Meta-Analyses of Plasma Renin Activity and Concentration Reveal Association with the Kininogen 1 and Prekallikrein Genes

    PubMed Central

    Lieb, Wolfgang; Chen, Ming-Huei; Teumer, Alexander; de Boer, Rudolf A.; Lin, Honghuang; Fox, Ervin R.; Musani, Solomon K.; Wilson, James G.; Wang, Thomas J.; Völzke, Henry; Petersen, Ann-Kristin; Meisinger, Christine; Nauck, Matthias; Schlesinger, Sabrina; Li, Yong; Menard, Jöel; Hercberg, Serge; Wichmann, H.-Erich; Völker, Uwe; Rawal, Rajesh; Bidlingmaier, Martin; Hannemann, Anke; Dörr, Marcus; Rettig, Rainer; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; Bakker, Stephan J.L.; Navis, Gerjan; Wallaschofski, Henri; Meneton, Pierre; van der Harst, Pim; Reincke, Martin; Vasan, Ramachandran S.; Consortium, CKDGen

    2015-01-01

    Background The renin-angiotensin-aldosterone-system (RAAS) is critical for regulation of blood pressure and fluid balance and influences cardiovascular remodeling. Dysregulation of the RAAS contributes to cardiovascular and renal morbidity. The genetic architecture of circulating RAAS components is incompletely understood. Methods and Results We meta-analyzed genome-wide association data for plasma renin activity (n=5,275), plasma renin concentrations (n=8,014) and circulating aldosterone (n=13,289) from up to four population-based cohorts of European and European-American ancestry, and assessed replication of the top results in an independent sample (n=6,487). Single nucleotide polymorphisms (SNPs) in two independent loci displayed associations with plasma renin activity atgenome-wide significance (p<5×10-8). A third locus was close to this threshold (rs4253311 in kallikrein B [KLKB1], p=5.5×10-8). Two of these loci replicated in an independent sample for both plasma renin and aldosterone concentrations (SNP rs5030062 in kininogen 1 [KNG1]: p=0.001 for plasma renin, p=0.024 for plasma aldosterone concentration; rs4253311 with p<0.001 for both plasma renin and aldosterone concentration). SNPs in the NEBL gene reached genome-wide significance for plasma renin concentration in the discovery sample (top SNP rs3915911, p= 8.81×10-9), but did not replicate (p=0.81). No locus reached genome-wide significance for aldosterone. SNPs rs5030062 and rs4253311 were not related to blood pressure or renal traits; in a companion study, variants in the kallikrein B locus were associated with B-type natriuretic peptide concentrations in African-Americans. Conclusions We identified two genetic loci (kininogen 1 and kallikrein B) influencing key components of the RAAS, consistent with the close interrelation between the kallikrein-kinin system and the RAAS. PMID:25477429

  19. Tissue Kallikrein Inhibitors Based on the Sunflower Trypsin Inhibitor Scaffold – A Potential Therapeutic Intervention for Skin Diseases

    PubMed Central

    Chen, Wenjie; Kinsler, Veronica A.

    2016-01-01

    Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS. PMID:27824929

  20. Radioimmunoassay of human high molecular weight kininogen in normal and deficient plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proud, D.; Pierce, J.V.; Pisano, J.J.

    1980-04-01

    An RIA for human HMW kininogen, capable of detecting 150 pg of antigen, has been developed. Antibody to HMW kininogen was purified by immunoaffinity chromatography, and double-antibody precipitation was used to separate free and bound antigen. Of the LMW kininogens only one of the forms tested (B3.2) showed significant cross-reaction (2%). Bradykinin and human plasma kallikrein both showed no cross-reaction, and monkey HMW kininogen showed identity to the human antigen. Intraassay and interassay coefficients of variation were 2 and 1.5%, respectively. Recovery of HMW kininogen added to 6 plasmas was 97.7% +- 1.8%. Assay of 17 normal plasmas gave amore » level of 90.8 +- 2.5 ..mu..g/ml HMW kininogen (mean +- S.E.M.). A bioassay of the samples, based on specific release of kinin by purified plasma kallikrein, yielded a level of 90.2 +- 2.8 ..mu..g/ml HMW kininogen (r = 0.83, p < 0.001). In neither assay was any significant sex difference observed. No evidence of any antigenic fragments was seen upon gel filtration of normal plasmas. RIA measurements were also performed on seven plasmas reportedly deficient in HMW kininogen. Williams, Dayton, San Francisco, and Flaujeac plasmas all showed no significant cross-reaction, whereas Fitzgerald, Reid, and Detroit plasmas showed 1.0, 2.5, and 3.5% of normal antigenic levels, respectively. This sensitive, convenient method should facilitate studies on the role of the kallikrein-kinin system in health and disease.« less

  1. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin

    PubMed Central

    Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee

    2015-01-01

    Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981

  2. Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System

    PubMed Central

    Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198

  3. Effect of bauhinia bauhinioides kallikrein inhibitor on endothelial proliferation and intracellular calcium concentration.

    PubMed

    Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A

    2014-01-01

    Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.

  4. Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology.

    PubMed

    Adamopoulos, Panagiotis G; Kontos, Christos K; Scorilas, Andreas

    2018-03-31

    Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer. Copyright © 2018. Published by Elsevier Inc.

  5. Matriptase initiates epidermal prokallikrein activation and disease onset in a mouse model of Netherton syndrome

    PubMed Central

    Sales, Katiuchia Uzzun; Masedunskas, Andrius; Bey, Alexandra L.; Rasmussen, Amber; Weigert, Roberto; List, Karin; Szabo, Roman; Overbeek, Paul A.; Bugge, Thomas H.

    2010-01-01

    Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome. The principal morbidities of the disease are stratum corneum detachment and chronic inflammation. We show that the membrane protease, matriptase, initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein-related cascade. Auto-activation of pro-inflammatory and stratum corneum detachment-associated pro-kallikrein-related peptidases was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented stratum corneum detachment, and improved epidermal barrier function. The study uncovers a pathogenic matriptase-pro-kallikrein pathway that could be operative in several human skin and inflammatory diseases. PMID:20657595

  6. Response of the kallikrein-kinin and renin-angiotensin systems to saline infusion and upright posture.

    PubMed Central

    Wong, P Y; Talamo, R C; Williams, G H; Colman, R W

    1975-01-01

    The possibility that bradykinin, a potent vasodilator, might be a physiological antagonist of the renin-angiotensin system was investigated. 11 norman subjects, ranging in age from 21 to 33 yr were studied. Seven of the subjects were given a 10 meq sodium, 100 meq potassium, 2500 ml isocaloric diet. After metabolic balance was achieved, they were infused with either 1 liter of 5 per cent glucose over 2 h or 2 liters of 0.9 per cent saline over 4 h. During the infusions, plasma renin activity (PRA), angiotensin II (A II), prekallikrein, bradykinin, and aldosterone levels were frequently determined. Plasma prekallikrein and kallikrein inhibitor did not change during the infusion of either glucose or saline. In subjects receiving saline, plasma bradykinin fell from 3.9 plus or minus 1.5 (SEM) ng/ml at 0 min to 0.93 plus or minus 0.2 at 30 min and 0.95 plus or minus 0.3 at 120 min. These changes paralleled the decrease in PRA over the same period (7.9 plus or minus 1.3 ng/ml/h to 5.6 plus or minus 0.8 at 30 min and 3.5 plus or minus 0.7 at 120 min). Similarly, A II fell from 113 plus or minus 12 pg/ml to 62 plus or minus 10 and 48 plus or minus 5, respectively, at 30 and 120 min. In contrast, the control group infused with glucose showed no change in bradykinin, A II, or PRA. Another four subjects were given a constant 200 meq sodium/100 meq potassium isocaloric diet. After metabolic balance was achieved, they were kept supine and fasting overnight. At 9 a.m. they assumed an upright position and began walking a fixed distance (200 ft) at a normal rate (3-4 ft/s). Plasma prekallikrein and kallikrein inhibitor did not change during the posture study. The plasma bradykinin rose from a base line of 0.54 plus or minus 0.01 (SEM) ng/ml to 0.96 plus or minus 0.13 at 20 min. 0.77 plus or minus 0.18 at 60 min, and 0.96 plus or minus 0.07 at 120 min. These changes parallel the increase in PRA over the same period (1.65 plus or minus 3.3 ng/ml/h to 3.6 plus or minus 0.85 at 20 min, 5.3 plus or minus 0.9 at 60 min, and 5.35 plus or minus 0.55 at 120 min). Likewise, the A II rose from 32.5 plus or minus 1.82 pg/ml to 50.8 plus or minus 3.6 at 20 min, 54.3 plus or minus 3.2 at 60 min, and 61.3 plus or minus 5.9 at 120 min. Thus, in sodium-depleted individuals, saline infusion produces a rapid fall of plasma bradykinin at a rate similar to that observed for a II and PRA. Conversely, in sodium-loaded individuals, assumption of upright posture leads to a parallel rise in A II, TPRA, and bradykinin. These studies indicate that there is a close correlation of bradykinin levels with renin activity and angiotensin II, in both acute sodium loading and assumption of upright posture, suggesting that these two systems may be physiologically interrelated. PMID:235559

  7. Role of plasma kallikrein in diabetes and metabolism.

    PubMed

    Feener, E P; Zhou, Q; Fickweiler, W

    2013-09-01

    Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism.

  8. Cytokine and estrogen stimulation of endothelial cells augments activation of the prekallikrein-high molecular weight kininogen complex: Implications for hereditary angioedema.

    PubMed

    Joseph, Kusumam; Tholanikunnel, Baby G; Kaplan, Allen P

    2017-07-01

    When the prekallikrein-high molecular weight kininogen complex is bound to endothelial cells, prekallikrein is stoichiometrically converted to kallikrein because of release of heat shock protein-90 (Hsp90). Although bradykinin formation is typically initiated by factor XII autoactivation, it is also possible to activate factor XII either by kallikrein, thus formed, or by plasmin. Because attacks of hereditary angioedema can be related to infection and/or exposure to estrogen, we questioned whether estrogen or cytokine stimulation of endothelial cells could augment release of Hsp90 and prekallikrein activation. We also tested release of profibrinolytic enzymes, urokinase, and tissue plasminogen activator (TPA) as a source for plasmin formation. Cells were stimulated with agonists, and secretion of Hsp90, urokinase, and TPA was measured in the culture supernatants by ELISA. Activation of the prekallikrein-HK complex was measured by using pro-phe-arg-p-nitroanilide reflecting kallikrein formation. Hsp90 release was stimulated with optimal doses of estradiol, IL-1, and TNF-α (10 ng/mL) from 15 minutes to 120 minutes. TPA release was not augmented by any of the agonists tested but urokinase was released by IL-1, TNF-α, and thrombin (positive control), but not estrogen. Augmented activation of the prekallikrein-HK complex to generate kallikrein was seen with each agonist that releases Hsp90. Addition of 0.1% factor XII relative to prekallikrein-HK leads to rapid formation of kallikrein; factor XII alone does not autoactivate. IL-1, TNF-α, and estrogen stimulate release of Hsp90 and augment activation of the prekallikrein-HK complex to generate kallikrein and bradykinin. IL-1 and TNF-α stimulate release of urokinase, which can convert plasminogen to plasmin and represents a possible source for plasmin generation in all types of hereditary angioedema, but particularly hereditary angioedema with normal C1 inhibitor with a factor XII mutation. Both kallikrein and plasmin activate factor XII; kallikrein is 20 times more potent on a molar basis. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors

    PubMed Central

    Xu, Peng; Andreasen, Peter A.; Huang, Mingdong

    2017-01-01

    This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases. PMID:29104489

  10. Genetics Home Reference: prekallikrein deficiency

    MedlinePlus

    ... a role in a process called the intrinsic coagulation pathway (also called the contact activation pathway). This ... functional plasma kallikrein, which likely impairs the intrinsic coagulation pathway. Researchers suggest that this lack (deficiency) of ...

  11. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors.

    PubMed

    de Veer, Simon J; Swedberg, Joakim E; Brattsand, Maria; Clements, Judith A; Harris, Jonathan M

    2016-12-01

    Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2' led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.

  12. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis.

    PubMed

    Yang, Aizhen; Zhou, Junsong; Wang, Bo; Dai, Jihong; Colman, Robert W; Song, Wenchao; Wu, Yi

    2017-12-01

    The plasma kallikrein-kinin system (KKS) consists of serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-MW kininogen (HK). Upon activation, activated pKal and FXII cleave HK to release bradykinin. Activation of this system has been noted in patients with rheumatoid arthritis, and its pathogenic role has been characterized in animal arthritic models. In this study, we generated 2 knockout mouse strains that lacked pKal and HK and determined the role of KKS in autoantibody-induced arthritis. In a K/BxN serum transfer-induced arthritis (STIA) model, mice that lacked HK, pKal, or bradykinin receptors displayed protective phenotypes in joint swelling, histologic changes in inflammation, and cytokine production; however, FXII-deficient mice developed normal arthritis. Inhibition of Kal ameliorated arthritis severity and incidence at early stage STIA and reduced the levels of major cytokines in joints. In addition to releasing bradykinin from HK, Kal directly activated monocytes to produce proinflammatory cytokines, up-regulated their C5aR and FcRIII expression, and released C5a. Immune complex increased pKal activity, which led to HK cleavage. The absence of HK is associated with a decrease in joint vasopermeability. Thus, we identify a critical role for Kal in autoantibody-induced arthritis with pleiotropic effects, which suggests that it is a new target for the inhibition of arthritis.-Yang, A., Zhou, J., Wang, B., Dai, J., Colman, R. W., Song, W., Wu, Y. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis. © FASEB.

  13. Chymotryptic specificity determinants in the 1.0 Å structure of the zinc-inhibited human tissue kallikrein 7

    PubMed Central

    Debela, Mekdes; Hess, Petra; Magdolen, Viktor; Schechter, Norman M.; Steiner, Thomas; Huber, Robert; Bode, Wolfram; Goettig, Peter

    2007-01-01

    hK7 or human stratum corneum chymotryptic enzyme belongs to the human tissue kallikrein (hKs) serine proteinase family and is strongly expressed in the upper layers of the epidermis. It participates in skin desquamation but is also implicated in diverse skin diseases and is a potential biomarker of ovarian cancer. We have solved x-ray structures of recombinant active hK7 at medium and atomic resolution in the presence of the inhibitors succinyl-Ala-Ala-Pro-Phe-chloromethyl ketone and Ala-Ala-Phe-chloromethyl ketone. The most distinguishing features of hK7 are the short 70–80 loop and the unique S1 pocket, which prefers P1 Tyr residues, as shown by kinetic data. Similar to several other kallikreins, the enzyme activity is inhibited by Zn2+ and Cu2+ at low micromolar concentrations. Biochemical analyses of the mutants H99A and H41F confirm that only the metal-binding site at His99 close to the catalytic triad accounts for the noncompetitive Zn2+ inhibition type. Additionally, hK7 exhibits large positively charged surface patches, representing putative exosites for prime side substrate recognition. PMID:17909180

  14. An open-label study to evaluate the long-term safety and efficacy of lanadelumab for prevention of attacks in hereditary angioedema: design of the HELP study extension.

    PubMed

    Riedl, Marc A; Bernstein, Jonathan A; Craig, Timothy; Banerji, Aleena; Magerl, Markus; Cicardi, Marco; Longhurst, Hilary J; Shennak, Mustafa M; Yang, William H; Schranz, Jennifer; Baptista, Jovanna; Busse, Paula J

    2017-01-01

    Hereditary angioedema (HAE) is characterized by recurrent attacks of subcutaneous or submucosal edema. Attacks are unpredictable, debilitating, and have a significant impact on quality of life. Patients may be prescribed prophylactic therapy to prevent angioedema attacks. Current prophylactic treatments may be difficult to administer (i.e., intravenously), require frequent administrations or are not well tolerated, and breakthrough attacks may still occur frequently. Lanadelumab is a subcutaneously-administered monoclonal antibody inhibitor of plasma kallikrein in clinical development for prophylaxis of hereditary angioedema attacks. A Phase 1b study supported its efficacy in preventing attacks. A Phase 3, randomized, double-blind, placebo-controlled, parallel-arm study has been completed and an open-label extension is currently ongoing. The primary objective of the open-label extension is to evaluate the long-term safety of repeated subcutaneous administrations of lanadelumab in patients with type I/II HAE. Secondary objectives include evaluation of efficacy and time to first angioedema attack to determine outer bounds of the dosing interval. The study will also evaluate immunogenicity, pharmacokinetics/pharmacodynamics, quality of life, characteristics of breakthrough attacks, ease of self-administration, and safety/efficacy in patients who switch to lanadelumab from another prophylactic therapy. The open-label extension will enroll patients who completed the double-blind study ("rollover patients") and those who did not participate in the double-blind study ("non-rollover patients"), which includes patients who may or may not be currently using another prophylactic therapy. Rollover patients will receive a single 300 mg dose of lanadelumab on Day 0 and the second dose after the patient's first confirmed angioedema attack. Thereafter, lanadelumab will be administered every 2 weeks. Non-rollover patients will receive 300 mg lanadelumab every 2 weeks regardless of the first attack. All patients will receive their last dose on Day 350 (maximum of 26 doses), and will then undergo a 4-week follow-up. Prevention of attacks can reduce the burden of illness associated with HAE. Prophylactic therapy requires extended, repeated dosing and the results of this study will provide important data on the long-term safety and efficacy of lanadelumab, a monoclonal antibody inhibitor of plasma kallikrein for subcutaneous administration for the treatment of HAE. Trial registration NCT02741596.

  15. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis.

    PubMed

    Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi

    2014-01-01

    Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.

  16. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles.

    PubMed

    Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo

    2018-04-01

    Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Active kallikrein response to changes in sodium-chloride intake in essential hypertensive patients.

    PubMed

    Ferri, C; Bellini, C; Carlomagno, A; Desideri, G; Santucci, A

    1996-03-01

    To evaluate the behavior of active kallikrein excretion in salt-sensitive and salt-resistant hypertensive patients during changes in sodium-chloride (NaCl) intake, 61 male, nonobese, nondiabetic outpatients affected by uncomplicated essential hypertension were given a diet that contained 140 mmol NaCl per day for 2 wk. Patients then received either a low- (20 mmol NaCl/day) or a high- (320 mmol NaCl/day) sodium diet for 2 wk, according to a randomized, double-blind, cross-over protocol. Hypertensive patients were classified as salt sensitive when their diastolic blood pressure rose by at least 10 mm Hg after the high-sodium diet, and decreased by at least 10 mm Hg after the low-sodium diet, considering as baseline blood pressure values those that were taken at the end of the 140 mmol NaCl/day intake period. The remaining patients were classified as salt resistant or, when diastolic blood pressure increased by 10 mm Hg or more after low-sodium intake, as counter-regulating. Twenty-three patients were therefore classified as salt sensitive, 28 as salt resistant, and 10 as counter-regulating. The baseline active kallikrein excretion was significantly lower (P < 0.0001) in salt-sensitive (0.62 +/- 0.31 U/24 h) patients than in salt-resistant (1.39 +/- 0.44 U/24 h) and counter-regulating patients (1.27 +/- 0.38 U/24 h). Surprisingly, the kallikrein response to changes in sodium intake was similar in all subgroups, although enzyme excretion was always at the lowest level in salt-sensitive hypertensive patients. This latter group also showed the highest plasma atrial natriuretic peptide levels (28.2 +/- 8.5 fmol/mL, P < 0.0001 versus salt-resistant and counter-regulating patients), and the greatest peptide increment with sodium load (P < 0.0001 versus salt-resistant and counter-regulating patients). Counter-regulating patients showed the steepest increase in plasma renin activity (from 0.24 +/- 0.18 to 0.83 +/- 0.21 ng/L per s, P < 0.001) and decrease of plasma atrial natriuretic peptide (from 26.1 +/- 6.3 to 6.8 +/- 3.1 fmol/mL, P < 0.001) when switched from a high to a low-sodium intake. In conclusion, salt-sensitive hypertensive patients excrete less active kallikrein than do salt-resistant and counter-regulating patients, but maintain a normal enzyme response to changes in dietary sodium intake. The exaggerated response of atrial natriuretic peptide to high-sodium intake that was observed in the same patients could be compensating for an impaired renal capability to excrete a sodium load.

  18. Recombinant α1-Antitrypsin Pittsburgh Attenuates Experimental Gram-Negative Septicemia

    PubMed Central

    Colman, Robert W.; Flores, Daniel N.; De La Cadena, Raul A.; Scott, Cheryl F.; Cousens, Laurence; Barr, Philip J.; Hoffman, Ian B.; Kueppers, Friedrich; Fisher, Donald; Idell, Steven; Pisarello, Jorge

    1988-01-01

    Alpha1-antitrypsin-Pittsburgh (AT-P), a naturally occurring lethal mutation (358Met → Arg), has been genetically engineered (rAT-P). The protein has been shown to be a potent active site-directed inhibitor of thrombin and the contact enzymes Factor XIIf, Factor XIa, and kallikrein. Because activation of the contact system is known to occur in gram-negative septicemia, the authors have hypothesized that the administration of rAT-P might modulate the course of this syndrome. Yorkshire piglets anesthetized with pentobarbital and infused with viable Pseudomonas aeruginosa (2 X 108 CFU) were untreated (Group I) or treated with rAT-P (Group II) and studied in a 6-hour protocol. Coagulation studies revealed that rAT-P significantly inhibited the rapid decrease in the functional concentrations of Antithrombin III, Factor XI, and fibrinogen. In addition, rAT-P markedly reduced the serum levels of fibrinogen degradation products. Survival in Group II was significantly increased during 2-5 hours but not at 6 hours when the functional levels of rAT-P in plasma were the lowest. These results indicate that this recombinant inhibitor, even at low concentrations, affords protection in experimental gram-negative septicemia. PMID:3257651

  19. Platelets Contain Tissue Factor Pathway Inhibitor-2 Derived from Megakaryocytes and Inhibits Fibrinolysis*

    PubMed Central

    Vadivel, Kanagasabai; Ponnuraj, Sathya-Moorthy; Kumar, Yogesh; Zaiss, Anne K.; Bunce, Matthew W.; Camire, Rodney M.; Wu, Ling; Evseenko, Denis; Herschman, Harvey R.; Bajaj, Madhu S.; Bajaj, S. Paul

    2014-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis. PMID:25262870

  20. Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L V; Andrade, S A; Juliano, M A; Sallai, R C; Torquato, R J; Sampaio, M U; Pott, V J; Sampaio, C A M

    2003-07-01

    The specific Kunitz Bauhinia ungulata factor Xa inhibitor (BuXI) and the Bauhinia variegata trypsin inhibitor (BvTI) blocked the activity of trypsin, chymotrypsin, plasmin, plasma kallikrein and factor XIIa, and factor Xa inhibition was achieved only by BuXI (K(i) 14 nM). BuXI and BvTI are highly homologous (70%). The major differences are the methionine residues at BuXI reactive site, which are involved in the inhibition, since the oxidized protein no longer inhibits factor Xa but maintains the trypsin inhibition. Quenched fluorescent substrates based on the reactive site sequence of the inhibitors were synthesized and the kinetic parameters of the hydrolysis were determined using factor Xa and trypsin. The catalytic efficiency k(cat)/K(m) 4.3 x 10(7) M(-1)sec(>-1) for Abz-VMIAALPRTMFIQ-EDDnp (lead peptide) hydrolysis by factor Xa was 10(4)-fold higher than that of Boc-Ile-Glu-Gly-Arg-AMC, widely used as factor Xa substrate. Lengthening of the substrate changed its susceptibility to factor Xa hydrolysis. Both methionine residues in the substrate influence the binding to factor Xa. Serine replacement of threonine (P(1)') decreases the catalytic efficiency by four orders of magnitude. Factor Xa did not hydrolyze the substrate containing the reactive site sequence of BvTI, that inhibits trypsin inhibitor but not factor Xa. Abz-VMIAALPRTMFIQ-EDDnp prolonged both the prothrombin time and the activated partial thromboplastin time, and the other modified substrates used in this experiment altered blood-clotting assays.

  1. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario; Bhakta, Varsha

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assaysmore » of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.« less

  2. G Protein-Coupled Kinin Receptors and Immunity Against Pathogens.

    PubMed

    Scharfstein, Julio; Ramos, Pablo I P; Barral-Netto, Manoel

    2017-01-01

    For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS. © 2017 Elsevier Inc. All rights reserved.

  3. Effect of glandular kallikrein on distal nephron HCO3- secretion in rats and on HCO3- secretion in MDCK cells.

    PubMed

    Vallés, P; Ebner, S; Manucha, W; Gutierrez, L; Marin-Grez, M

    1997-11-01

    Renal kallikrein is localized in the connecting tubule cells and secreted into the tubular fluid at late distal nephron segments. The present experiments were performed to further test the hypothesis that renal kallikrein reduces bicarbonate secretion of cortical collecting duct (CCD). The effect of orthograde injections of pig pancreatic kallikrein (1 or 3 micrograms/ml) into the renal tubular system was investigated. Urine fractions (Fr) were collected after a 2-min stop flow. Changes in the urine fraction with respect to those in free-flow urine samples (Ff) were related to the respective polyfructosan (Inutest) ratio. Renal kallikrein activity (Fr:Ff kallikrein/ Fr:Ff polyfructosan) increased significantly in the first two urine fractions collected after glandular kallikrein administration (kallikrein, 1 microgram/ml, P < 0.05; kallikrein, 3 micrograms/ml, P < 0.01). HCO3- secretion of collecting ducts was significantly reduced dose dependently by orthograde and also reduced by retrograde pig pancreatic kallikrein administration. Release of kinins into the fractions was not affected by the retrograde kallikrein injection, even though the kallikrein activity increased considerably (2.26 +/- 0.2 vs. 1.55 +/- 0.2, P < 0.05). Adequacy of retrograde injections for delivering substances to the CCD was demonstrated by injecting colloidal mercury and detecting the appearance of this mercury in the renal cortex by transmission electron microscopy. The integrity of the renal tissue after a retrograde ureteral injection was confirmed by scanning electron microscopy. These results confirm and extend previous data (M. Marin-Grez and P. Vallés. Renal Physiol. Biochem. 17: 301-306, 1994; and M. Marin-Grez, P. Vallés, and P. Odigie. J. Physiol. 488: 163-170, 1995) showing that renal kallikrein reduces bicarbonate secretion at the CCD, probably by inhibiting HCO3- transported by a mechanism unrelated to its kininogenase activity. Support for this assessment was obtained in experiments testing the effect of kallikrein on the luminal bicarbonate secretion of a subpopulation of Madin-Darby canine kidney cells capable of extruding the anion. Kallikrein inhibited HCO3-/Cl- exchange, and the degree of inhibition was dose dependent. This inhibition occurred in the absence of kininogen in the bathing solution.

  4. The Urine Proteome as a Biomarker of Radiation Injury: Submitted to Proteomics- Clinical Applications Special Issue: "Renal and Urinary Proteomics (Thongboonkerd)"

    PubMed

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2008-06-18

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury.

  5. The Urine Proteome as a Biomarker of Radiation Injury

    PubMed Central

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury. PMID:19746194

  6. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  7. Subcutaneous infusion of human C1 inhibitor in swine.

    PubMed

    Jiang, Haixiang; Zhang, Hua-Mei; Frank, Michael M

    2010-09-01

    Hereditary angioedema afflicts patients with unpredictable episodes of swelling that can be life threatening. Treatments approved by the Food and Drug Administration for routine prophylaxis include danazol given orally and the nanofiltered human C1 esterase inhibitor, CINRYZE, which is approved for intravenous administration. Approved for the treatment of acute attacks are the C1 esterase inhibitor, Berinert, given intravenously, and the kallikrein inhibitor, KALBITOR, given subcutaneously. C1 inhibitor has generally been non-toxic and neither pro-inflammatory nor pro-fibrotic, suggesting that it may be suitable for subcutaneous infusion. The current study used a swine model to compare blood levels of human C1 inhibitor following intravenous and subcutaneous infusion, and the effect of infusion route on heart and skin pathology. Levels of C1 inhibitor achieved with SC infusion compared favorably with levels achieved after IV infusion and were relatively more stable than those after IV infusion. Neither cardiac nor skin toxicity was observed. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Israel S.; Ständker, Ludger; Hannover Medical School, Center of Pharmacology, 30625 Hannover

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer.more » In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.« less

  9. Emerging clinical importance of the cancer biomarkers kallikrein-related peptidases (KLK) in female and male reproductive organ malignancies

    PubMed Central

    Schmitt, Manfred; Magdolen, Viktor; Yang, Feng; Kiechle, Marion; Bayani, Jane; Yousef, George M.; Scorilas, Andreas; Diamandis, Eleftherios P.; Dorn, Julia

    2013-01-01

    Background Tumor tissue-associated KLKs (kallikrein-related peptidases) are clinically important biomarkers that may allow prognosis of the cancer disease and/or prediction of response/failure of cancer patients to cancer-directed drugs. Regarding the female/male reproductive tract, remarkably, all of the fifteen KLKs are expressed in the normal prostate, breast, cervix uteri, and the testis, whereas the uterus/endometrium and the ovary are expressing a limited number of KLKs only. Conclusions Most of the information regarding elevated expression of KLKs in tumor-affected organs is available for ovarian cancer; depicting them as valuable biomarkers in the cancerous phenotype. In contrast, for breast cancer, a series of KLKs was found to be downregulated. However, in breast cancer, KLK4 is elevated which is also true for ovarian and prostate cancer. In such cases, selective synthetic KLK inhibitors that aim at blocking the proteolytic activities of certain KLKs may serve as future candidate therapeutic drugs to interfere with tumor progression and metastasis. PMID:24294176

  10. Kallikreins - The melting pot of activity and function.

    PubMed

    Kalinska, Magdalena; Meyer-Hoffert, Ulf; Kantyka, Tomasz; Potempa, Jan

    2016-03-01

    The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    PubMed

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  12. Effects of oversulfated and fucosylated chondroitin sulfates on coagulation. Challenges for the study of anticoagulant polysaccharides.

    PubMed

    Fonseca, Roberto J C; Oliveira, Stephan-Nicollas M C G; Pomin, Vitor H; Mecawi, André S; Araujo, Iracema G; Mourão, Paulo A S

    2010-05-01

    We report the effects of a chemically oversulfated chondroitin sulfate and a naturally fucosylated chondroitin sulfate on the coagulation system. The former has been recently identified as a contaminant of heparin preparations and the latter has been proposed as an alternative anticoagulant. The mechanism of action of these polymers on coagulation is complex and target different components of the coagulation system. They have serpin-independent anticoagulant activity, which preponderates in plasma. They also have serpin-dependent anticoagulant activity but differ significantly in the target coagulation protease and preferential serpin. Their anticoagulant effects differ even more markedly when tested as inhibitors of coagulation proteases using plasma as a source of serpins. It is possible that the difference is due to the high availability of fucosylated chondroitin sulfate whereas oversulfated chondroitin sulfate has strong unspecific binding to plasma protein and low availability for the binding to serpins. When tested using a venous thrombosis experimental model, oversulfated chondroitin sulfate is less potent as an antithrombotic agent than fucosylated chondroitin sulfate. These highly sulfated chondroitin sulfates activate factor XII in in vitro assays, based on kallikrein release. However, only fucosylated chondroitin sulfate induces hypotension when intravenously injected into rats. In conclusion, the complexity of the regulatory mechanisms involved in the action of highly sulfated polysaccharides in coagulation requires their analysis by a combination of in vitro and in vivo assays. Our results are relevant due to the urgent need for new anticoagulant drugs or alternative sources of heparin.

  13. Contact activation: a revision.

    PubMed

    Schmaier, A H

    1997-07-01

    In conclusion, a revised view of the contact system has been presented. This system has little to do with the initiation of hemostasis. Like lupus anticoagulants, deficiencies of contact proteins give prolonged APTTs but may be risk factors for thrombosis. BK from kininogens is a potent modulator of vascular biology inducing vasodilation, tissue plasminogen activator release, and prostacyclin liberation. Kininogens, themselves, are selective inhibitors of alpha-thrombin-induced platelet activation preventing alpha-thrombin from cleaving the cloned thrombin receptor after arginine41. Kininogens' alpha-thrombin inhibitory activity exists in intact kininogens, BK, and all of BK's breakdown products. HK also is the pivotal protein for contact protein assembly on endothelium. It is the receptor for prekallikrein which when bound to HK becomes activated to kallikrein by an endothelial cell enzyme system independent of activated forms of plasma factor XII. Prekallikrein activation on endothelial cells results in kinetically favorable single chain urokinase and plasminogen activation. Thus the "physiologic, negatively charged surface" for contact system activation is really the assembly of these proteins on cell membranes and activation by membrane-associated enzymes.

  14. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    PubMed Central

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A; Ploug, Michael; Almholt, Kasper; Lilla, Jennifer; Nielsen, Boye S; Christensen, Ib J; Craik, Charles S; Werb, Zena; Danø, Keld; Rømer, John

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation. PMID:16763560

  15. Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system.

    PubMed

    Liu, Qian S; Hao, Fang; Sun, Zhendong; Long, Yanmin; Zhou, Qunfang; Jiang, Guibin

    2018-01-01

    Per- and polyfluoroalkyl substances (PFASs) are ubiquitous and high persistent in human blood, thus potentially inducing a myriad of deleterious consequences. Plasma kallikrein-kinin system (KKS), which physiologically regulates vascular permeability, is vulnerable to exogenous stimulators, like PFASs with long-chain alkyl backbone substituted by electronegative fluorine. The study on the interactions of PFASs with the KKS and the subsequent effects on vascular permeability would be helpful to illustrate how the chemicals penetrate the biological vascular barriers to reach different tissues. In present study, three representative PFASs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexadecanoic acid (PFHxDA), were investigated for their effects on the activation of the KKS, paracellular permeability in human retina endothelial cells (HRECs) and integrity of the adherens junctions. In contrast to either PFOS or PFOA, PFHxDA efficiently triggered KKS activation in a concentration-dependent manner based on protease activity assays. The plasma activated by PFHxDA significantly increased paracellular permeability of HRECs through the degradation of adherens junctions. As evidenced by the antagonistic effect of aprotinin, PFHxDA-involved effects on vascular permeability were mediated by KKS activation. The results herein firstly revealed the mechanistic pathway for PFHxDA induced effects on vascular endothelial cells. Regarding the possible structure-related activities of the chemicals, this finding would be of great help in the risk assessment of PFASs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    PubMed

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  17. [Pathogenic factors of vibrios with special emphasis on Vibrio vulnificus].

    PubMed

    Shinoda, Sumio

    2005-07-01

    Bacteria of the genus Vibrio are normal habitants of the aquatic environment and play roles for biocontrole of aquatic ecosystem, but some species are believed to be human pathogens. These species can be classified into two groups according to the types of diseases they cause: the gastrointestinal infections and the extraintestinal infections. The pathogenic species produce various pathogenic factors including enterotoxin, hemolysin, cytotoxin, protease, siderophore, adhesive factor, and hemagglutinin. We studied various pathogenic factors of vibrios with special emphasis on protease and hemolysin of V. vulnificus. V. vulnificus is now recognized as being among the most rapidly fatal of human pathogens, although the infection is appeared in patients having underlying disease(s) such as liver dysfunction, alcoholic cirrhosis or haemochromatosis. V. vulnificus protease (VVP) is thought to be a major toxic factor causing skin damage in the patients having septicemia. VVP is a metalloprotease and degrades a number of biologically important proteins including elastin, fibrinogen, and plasma proteinase inhibitors of complement components. VVP causes skin damages through activation of the Factor XII-plasma kallikrein-kinin cascade and/or exocytotic histamine release from mast cells, and a haemorrhagic lesion through digestion of the vascular basement membrane. Thus, the protease is the most probable candidate for tissue damage and bacterial invasion during an infection. Pathogenic roles and functional mechanism of other factors including hemolysins of V. vulnificus and V. mimicus are also shown in this review article.

  18. Twenty-year Risk of Prostate Cancer Death by Midlife Prostate-specific Antigen and a Panel of Four Kallikrein Markers in a Large Population-based Cohort of Healthy Men.

    PubMed

    Sjoberg, Daniel D; Vickers, Andrew J; Assel, Melissa; Dahlin, Anders; Poon, Bing Ying; Ulmert, David; Lilja, Hans

    2018-06-01

    Prostate-specific antigen (PSA) screening reduces prostate cancer deaths but leads to harm from overdiagnosis and overtreatment. To determine the long-term risk of prostate cancer mortality using kallikrein blood markers measured at baseline in a large population of healthy men to identify men with low risk for prostate cancer death. Study based on the Malmö Diet and Cancer cohort enrolling 11 506 unscreened men aged 45-73 yr during 1991-1996, providing cryopreserved blood at enrollment and followed without PSA screening to December 31, 2014. We measured four kallikrein markers in the blood of 1223 prostate cancer cases and 3028 controls. Prostate cancer death (n=317) by PSA and a prespecified statistical model based on the levels of four kallikrein markers. Baseline PSA predicted prostate cancer death with a concordance index of 0.86. In men with elevated PSA (≥2.0ng/ml), predictive accuracy was enhanced by the four-kallikrein panel compared with PSA (0.80 vs 0.73; improvement 0.07; 95% confidence interval 0.04, 0.10). Nearly half of men aged 60+ yr with elevated PSA had a four-kallikrein panel score of <7.5%, translating into 1.7% risk of prostate cancer death at 15 yr-a similar estimate to that of a man with a PSA of 1.6ng/ml. Men with a four-kallikrein panel score of ≥7.5% had a 13% risk of prostate cancer death at 15 yr. A prespecified statistical model based on four kallikrein markers (commercially available as the 4Kscore) reclassified many men with modestly elevated PSA, to have a low long-term risk of prostate cancer death. Men with elevated PSA but low scores from the four-kallikrein panel can be monitored rather than being subject to biopsy. Men with elevated prostate-specific antigen (PSA) are often referred for prostate biopsy. However, men with elevated PSA but low scores from the four-kallikrein panel can be monitored rather than being subject to biopsy. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.

    PubMed

    Fang, Xingang; Bagui, Sikha; Bagui, Subhash

    2017-08-01

    The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age123

    PubMed Central

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn

    2017-01-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26–40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24–26 wk GA)-delivering mothers and 9 from late GA (LGA) (27–32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL−1 · d−1 and 0.454 μg · mL−1 · d−1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not vary substantially across GA and postnatal age. PMID:28424255

  1. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    PubMed

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not vary substantially across GA and postnatal age. © 2017 American Society for Nutrition.

  2. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.

    PubMed

    Krystek, S; Stouch, T; Novotny, J

    1993-12-05

    An empirical function was used to calculate free energy change (delta G) of complex formation between the following inhibitors and enzymes: Kunitz inhibitor (BPTI) with trypsin, trypsinogen and kallikrein; turkey ovomucoid 3rd domain (OMTKY3) with alpha-chymotrypsin and the Streptomyces griseus protease B; the potato chymotrypsin inhibitor with the protease B; and the barely chymotrypsin inhibitor and eglin-c with subtilisin and thermitase. Using X-ray coordinates of the nine complexes, we estimated the contributions that hydrophobic effect, electrostatic interactions and side-chain conformational entropy make towards the stability of the complexes. The calculated delta G values showed good agreement with the experimentally measured ones, the only exception being the kallikrein/BPTI complex whose X-ray structure was solved at an exceptionally low pH. In complexes with different enzymes, the same inhibitor residues contributed identically towards complex formation (delta G(residue) Spearman rank correlation coefficient 0.7 to 1.0). The most productive enzyme-contacting residues in OMTKY3, eglin-c, and the chymotrypsin inhibitors were found in analogous positions on their respective binding loops; thus, our calculations identified a functional (energetic) motif that parallels the well-known structural similarity of the binding loops. The delta G values calculated for BPTI complexed with trypsin (-21.7 kcal) and trypsinogen (-23.4 kcal) were similar and close to the experimental delta G value of the trypsin/BPTI complex (-18.1 kcal), lending support to the suggestion that the 10(7) difference in the observed stabilities (KA) of these two complexes reflects the energetic cost of conformational changes induced in trypsinogen during the pre-equilibrium stages of complex formation. In almost all of the complexes studied, the stabilization free energy contributed by the inhibitors was larger than that donated by the enzymes. In the trypsin-BPTI complex, the calculated delta G contribution of the amino group from the BPTI residue Lys15 (9.7 kcal) was somewhat higher than that arrived at in experiments with semisynthetic inhibitor analogs (7.5 kcal). In OMTKY3, different binding loop residues are known to affect differently the binding (delta delta G) to alpha-chymotrypsin and protease B; a good qualitative agreement was found between the calculated delta G(residue) estimates and the experimental delta delta G data (correlation coefficient 0.7). Large variations were observed in local surface complementarity and related interfacial volume in the two OMTKY3 complexes (by 20 to 60% for some side-chains).(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Thrombostatin FM compounds: direct thrombin inhibitors - mechanism of action in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieman, M T; Burke, F; Warnock, M

    2008-04-29

    Novel pentapeptides called Thrombostatin FM compounds consisting mostly of D-isomers and unusual amino acids were prepared based upon the stable angiotensin converting enzyme breakdown product of bradykinin - RPPGF. These peptides are direct thrombin inhibitors prolonging the thrombin clotting time, activated partial thromboplastin time, and prothrombin time at ≥0.78, 1.6, and 1.6 μm, respectively. They competitively inhibit α-thrombin-induced cleavage of a chromogenic substrate at 4.4--8.2 μm. They do not significantly inhibit plasma kallikrein, factor (F) XIIa, FXIa, FIXa, FVIIa-TF, FXa, plasmin or cathepsin G. One form, FM19 [rOicPaF(p-Me)], blocks α-thrombin-induced calcium flux in fibroblasts with an IC 50 of 6.9more » ± 1.2 μm. FM19 achieved 100% inhibition of threshold α- or γ-thrombin-induced platelet aggregation at 8.4 ± 4.7 μm and 16 ± 4 μm, respectively. The crystal structure of thrombin in complex with FM19 shows that the N-terminal D-Arg retrobinds into the S1 pocket, its second residue Oic interacts with His-57, Tyr-60a and Trp-60d, and its C-terminal p-methyl Phe engages thrombin's aryl binding site composed of Ile-174, Trp-215, and Leu-99. When administered intraperitoneal, intraduodenal, or orally to mice, FM19 prolongs thrombin clotting times and delays carotid artery thrombosis. FM19, a low affinity reversible direct thrombin inhibitor, might be useful as an add-on agent to address an unmet need in platelet inhibition in acute coronary syndromes in diabetics and others who with all current antiplatelet therapy still have reactive platelets.« less

  4. Structure-function analyses of human kallikrein-related peptidase 2 establish the 99-loop as master regulator of activity.

    PubMed

    Skala, Wolfgang; Utzschneider, Daniel T; Magdolen, Viktor; Debela, Mekdes; Guo, Shihui; Craik, Charles S; Brandstetter, Hans; Goettig, Peter

    2014-12-05

    Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the "classical" KLKs 1-3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn(2+) concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn(2+), which located the Zn(2+) binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity*

    PubMed Central

    Skala, Wolfgang; Utzschneider, Daniel T.; Magdolen, Viktor; Debela, Mekdes; Guo, Shihui; Craik, Charles S.; Brandstetter, Hans; Goettig, Peter

    2014-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the “classical” KLKs 1–3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation. PMID:25326387

  6. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer.

    PubMed

    Figueroa, Carlos D; Molina, Luis; Bhoola, Kanti D; Ehrenfeld, Pamela

    2018-06-19

    The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.

  7. Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin

    PubMed Central

    Kanada, Kimberly N.; Nakatsuji, Teruaki; Gallo, Richard L.

    2014-01-01

    The increased abundance and activity of cathelicidin and kallikrein 5 (KLK5), a predominant trypsin-like serine protease (TLSP) in the stratum corneum, have been implicated in the pathogenesis of rosacea, a disorder treated by the use of low-dose doxycycline. Here we hypothesized that doxycycline can inhibit activation of tryptic KLKs through an indirect mechanism by inhibition of matrix metalloproteinases (MMPs) in keratinocytes. The capacity of doxycycline to directly inhibit enzyme activity was measured in surface collections of human facial skin and extracts of cultured keratinocytes by fluorescence polarization assay against fluorogenic substrates specific for MMPs or TLSPs. Doxycycline did inhibit MMP activity but did not directly inhibit serine protease activity against a fluorogenic substrate specific for TLSPs. However, when doxycycline or other MMP inhibitors were added to live keratinocytes during the production of tryptic KLKs, this treatment indirectly resulted in decreased TLSP activity. Furthermore, doxycycline under these conditions inhibited the generation of the cathelicidin peptide LL-37 from its precursor protein hCAP18, a process dependent on KLK activity. These results demonstrate that doxycycline can prevent cathelicidin activation, and suggest a previously unknown mechanism of action for doxycycline through inhibiting generation of active cathelicidin peptides. PMID:22336948

  8. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  9. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M; Romero, Miguel; Duarte, Juan M; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2015-10-01

    Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.

  10. Activation of Membrane-Bound Kallikrein and Renin in the Kidney.

    DTIC Science & Technology

    1980-05-23

    included repeated washings with hypotonic buffer. Kallikrein activity in the PM fraction (PM-kallikrein) averaged 1.81 nmol of S-2266 hydrolyzed per min...thousand Fig. 1 times more active than lysolecithin on a molar basis. Lecithin and arachidonic acid were active only at a much higher concentration...taglandin E2 (11), arachidonic acid or lecithin . However, melittin, on a molar basis, was about three orders of magnitude more potent than

  11. Biological Function of Plasma Kallikrein in Mammary Gland Stromal Development and Tumor Metastasis

    DTIC Science & Technology

    2008-03-01

    mammary gland as well as to identify targets of PKal activity during involution. Furthermore, mast cells are required for normal mammary duct branching...litters were generated, and no live homozygous mutant animals were identified . Wild-type and heterozygous mice appeared in nearly all litters, and of...to identify homozygous mutants in utero. F2 litters from heterozygous crosses were analyzed at embryonic day (E) 12, 10.5, 9.5, 8, and 7.5. At E12

  12. Glandular kallikrein in the innate immune system of Atlantic salmon (Salmo salar).

    PubMed

    Haussmann, D; Figueroa, J

    2011-02-15

    Glandular Kallikrein is a serine-protease with trypsin-like activity and is able to generate bioactive peptides from inactive precursors. We have evaluated the presence of this protease in the different organs of the Atlantic salmon (Salmo salar). The results clearly indicate that GK and PRL are generated in the same pituitary cells based on a co-localization by confocal microscopy. Based on probed cross-reactivity between C. striata and C. carpio glandular anti-GK antibodies, we used a homologous antibody to detect the presence of GK in several salmon tissues. We have evaluated the GK expression in healthy and defied fish. P. salmonis and V. ordalii. The GK immunoreaction in organs such as leukocytes, gills and skin is considerably increased in defied fish compared to healthy fish. This increase was present in the cells of the excretory kidney and in the intercellular tissue, where the development of hematopoietic and lymphocytic lines in fish take place. One of the most interesting organs to study was the skin, bearing in mind that this is a primary barrier to all pathogens. The skin of the defied fish exhibited an increase in immunoreactivity for glandular kallikrein similar to the protease found in mucus. An immunoreactive tissue kallikrein-like protein was identified and partially separated by perfusion chromatography. Enzymatic activity of salmon muscle prokallikrein was determined before and after trypsin activation. Kallikrein activity was characterized with respect to their ability to cleave the chromogenic leaving group, p-nitroanilide, from the peptidyl kallikrein and trypsin substrate. These findings constitute a important contribution to reveal the role of kallikrein in the innate immune system of fish. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man.

    PubMed

    Potier, Louis; Waeckel, Ludovic; Fumeron, Fréderic; Bodin, Sophie; Fysekidis, Marinos; Chollet, Catherine; Bellili, Naima; Bonnet, Fabrice; Gusto, Gaëlle; Velho, Gilberto; Marre, Michel; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine

    2014-05-01

    The kallikrein-kinin system has been suggested to participate in the control of glucose metabolism. Its role and the role of angiotensin-I-converting enzyme, a major kinin-inactivating enzyme, are however the subject of debate. We have evaluated the consequence of deficiency in tissue kallikrein (TK), the main kinin-forming enzyme, on the development of insulin resistance and diabetes in mice and man. Mice with inactivation of the TK gene were fed a high-fat diet (HFD) for 3 months, or crossed with obese, leptin-deficient (ob/ob) mice to generate double ob/ob-TK-deficient mutants. In man, a loss-of-function polymorphism of the TK gene (R53H) was studied in a large general population cohort tested for insulin resistance, the DESIR study (4843 participants, 9 year follow-up). Mice deficient in TK gained less weight on the HFD than their WT littermates. Fasting glucose level was increased and responses to glucose (GTT) and insulin (ITT) tolerance tests were altered at 10 and 16 weeks on the HFD compared with standard on the diet, but TK deficiency had no influence on these parameters. Likewise, ob-TK⁻/⁻ mice had similar GTT and ITT responses to those of ob-TK⁺/⁺ mice. TK deficiency had no effect on blood pressure in either model. In humans, changes over time in BMI, fasting plasma glucose, insulinemia, and blood pressure were not influenced by the defective 53H-coding TK allele. The incidence of diabetes was not influenced by this allele. These data do not support a role for the TK-kinin system, protective or deleterious, in the development of insulin resistance and diabetes.

  14. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer.

    PubMed

    Nordström, Tobias; Vickers, Andrew; Assel, Melissa; Lilja, Hans; Grönberg, Henrik; Eklund, Martin

    2015-07-01

    The four-kallikrein panel and the Prostate Health Index (PHI) have been shown to improve prediction of prostate cancer (PCa) compared with prostate-specific antigen (PSA). No comparison of the four-kallikrein panel and PHI has been presented. To compare the four-kallikrein panel and PHI for predicting PCa in an independent cohort. Participants were from a population-based cohort of PSA-tested men in Stockholm County. We included 531 men with PSA levels between 3 and 15 ng/ml undergoing first-time prostate biopsy during 2010-2012. Models were fitted to case status. We computed calibration curves, the area under the receiver-operating characteristics curve (AUC), decision curves, and percentage of saved biopsies. The four-kallikrein panel showed AUCs of 69.0 when predicting any-grade PCa and 71.8 when predicting high-grade cancer (Gleason score ≥7). Similar values were found for PHI: 70.4 and 71.1, respectively. Both models had higher AUCs than a base model with PSA value and age (p<0.0001 for both); differences between models were not significant. Sensitivity analyses including men with any PSA level or a previous biopsy did not materially affect our findings. Using 10% predicted risk of high-grade PCa by the four-kallikrein panel or PHI of 39 as cut-off for biopsy saved 29% of performed biopsies at a cost of delayed diagnosis for 10% of the men with high-grade cancers. Both models showed limited net benefit in decision analysis. The main study limitation was lack of digital rectal examination data and biopsy decision being based on PSA information. The four-kallikrein panel and PHI similarly improved discrimination when predicting PCa and high-grade PCa. Both are simple blood tests that can reduce the number of unnecessary biopsies compared with screening with total PSA, representing an important new option to reduce harm. Prostate-specific antigen screening is controversial due to limitations of the test. We found that two blood tests, the Prostate Health Index and the four-kallikrein panel, performed similarly and could both aid in decision making among Swedish men undergoing a prostate biopsy. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  15. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  16. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observedmore » a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.« less

  17. Angioedema.

    PubMed

    Kaplan, Allen P

    2008-06-01

    Angioedema can be caused by either mast cell degranulation or activation of the kallikrein-kinin cascade. In the former case, angioedema can be caused by allergic reactions caused by immunoglobulin E (IgE)-mediated hypersensitivity to foods or drugs that can also result in acute urticaria or a more generalized anaphylactic reaction. Nonsteroidal anti-inflammatory drugs (cyclooxygenase 1 inhibitors, in particular) may cause angioedema with or without urticaria, and leukotrienes may have a particular role as a mediator of the swelling. Reactions to contrast agents resemble allergy with basophil and mast cell degranulation in the absence of specific IgE antibody and can be generalized, that is, anaphylactoid. Angioedema accompanies chronic urticaria in 40% of patients, and approximately half have an autoimmune mechanism in which there is IgG antibody directed to the subunit of the IgE receptor (40%) or to IgE itself (5%-10%). Bradykinin is the mediator of angioedema in hereditary angioedema types I and II (C1 inhibitor [INH] deficiency) and the newly described type III disorder some of which are caused bya mutation involving factor XII. Acquired C1 INH deficiency presents in a similar fashion to the hereditary disorder and is due either toC1 INH depletion by circulating immune complexes or to an IgG antibody directed to C1 INH. Although each of these causes excessive bradykinin formation because of activation of the plasma bradykinin-forming pathway, the angioedema due to angiotensin-converting enzyme inhibitors is caused by excessive bradykinin levels due to inhibition of bradykinin degradation. Idiopathic angioedema (ie, pathogenesis unknown) may be histaminergic, that is, caused by mast cell degranulation with histamine release, or nonhistaminergic. The mediator pathways in the latter case are yet to be defined. A minority may be associated with the same autoantibodies associated with chronic urticaria. Angioedema that is likely to be life threatening (laryngeal edema or tongue/pharyngeal edema that obstructs the airway) is seen in anaphylactic/anaphylactoid reactions and the disorders mediated by bradykinin.

  18. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

    PubMed Central

    Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.

    2016-01-01

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086

  19. STRUCTURAL CHARACTERISTICS AND ANTIHYPERTENSIVE EFFECTS OF ANGIOTENSIN-I-CONVERTING ENZYME INHIBITORY PEPTIDES IN THE RENIN-ANGIOTENSIN AND KALLIKREIN KININ SYSTEMS

    PubMed Central

    Manoharan, Sivananthan; Shuib, Adawiyah Suriza; Abdullah, Noorlidah

    2017-01-01

    Background: The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors. Method: Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar. Results: The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa. Conclusion: The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed. PMID:28573254

  20. The relevance of kalikrein-kinin system via activation of B2 receptor in LPS-induced fever in rats.

    PubMed

    Soares, Denis de Melo; Santos, Danielle R; Rummel, Christoph; Ott, Daniela; Melo, Míriam C C; Roth, Joachim; Calixto, João B; Souza, Glória E P

    2017-11-01

    This study evaluated the involvement of endogenous kallikrein-kinin system and the bradykinin (BK) B 1 and B 2 receptors on LPS- induced fever and the POA cells involved in this response. Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B 2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B 1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca ++ signaling in POA cells was performed in rat pup brain tissue microcultures. Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK-induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE 2 concentration. Effect abolished by indomethacin (i.p.). LPS activates endogenous kalikrein-kinin system leading to production of BK, which by acting on B 2 -receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B 2 -receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Type 2 diabetes elicits lower nitric oxide, bradykinin concentration and kallikrein activity together with higher DesArg(9)-BK and reduced post-exercise hypotension compared to non-diabetic condition.

    PubMed

    Simões, Herbert Gustavo; Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg(9)-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg(9)-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15 min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg(9)-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg(9)-BK production and reduced PEH in relation to ND participants after a single exercise session.

  2. Type 2 Diabetes Elicits Lower Nitric Oxide, Bradykinin Concentration and Kallikrein Activity Together with Higher DesArg9-BK and Reduced Post-Exercise Hypotension Compared to Non-Diabetic Condition

    PubMed Central

    Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg9-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg9-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg9-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg9-BK production and reduced PEH in relation to ND participants after a single exercise session. PMID:24265812

  3. Activity-based mass spectrometric characterization of proteases and inhibitors in human saliva

    PubMed Central

    Sun, Xiuli; Salih, Erdjan; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2009-01-01

    Proteases present in oral fluid effectively modulate the structure and function of some salivary proteins and have been implicated in tissue destruction in oral disease. To identify the proteases operating in the oral environment, proteins in pooled whole saliva supernatant were separated by anion-exchange chromatography and individual fractions were analyzed for proteolytic activity by zymography using salivary histatins as the enzyme substrates. Protein bands displaying proteolytic activity were particularly prominent in the 50–75 kDa region. Individual bands were excised, in-gel trypsinized and subjected to LC/ESI-MS/MS. The data obtained were searched against human, oral microbial and protease databases. A total of 13 proteases were identified all of which were of mammalian origin. Proteases detected in multiple fractions with cleavage specificities toward arginine and lysine residues, were lactotransferrin, kallikrein-1, and human airway trypsin-like protease. Unexpectedly, ten protease inhibitors were co-identified suggesting they were associated with the proteases in the same fractions. The inhibitors found most frequently were alpha-2-macroglobulin-like protein 1, alpha-1-antitrypsin, and leukocyte elastase inhibitor. Regulation of oral fluid proteolysis is highly important given that an inbalance in such activities has been correlated to a variety of pathological conditions including oral cancer. PMID:20011683

  4. Prostate-specific antigen kallikrein and acute myocardial infarction: where we are. Where are we going?

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2011-01-07

    Prostate-specific antigen (PSA) is an established marker for the detection of prostate cancer. Both elevated and diminished PSA have been reported during acute myocardial infarction. It seems that when elevation of PSA occurs during acute myocardial infarction (AMI), coronary lesions are frequent and often more severe than when a diminution of PSA occurs. PSA has been identified as a member of the human kallikrein family of serine proteases. In recent years, numerous observations have suggested that the activity of the kallikrein-kinin system is related to inflammation and to cardiovascular diseases. PSA kallikrein, however, does not seem to have kinin-generating activity. The inactive precursor form of PSA, proPSA, is converted rapidly to active PSA by Human kallikrein 2 (hK2), suggesting an important in vivo regulatory function byhK2 on PSA activity. However, it has been reported that hK2 might not alone be able to activate proPSA in vivo, but there are also other protease/proteases involved in this event. Moreover, it seems that when elevation of prostate-specific antigen occurs during AMI, it seems to relate to a higher occurrence of major adverse cardiac events in the first 8 days after AMI than when a diminution of PSA occurs. It confirms a possible new intriguing scenario of the role of the PSA in AMI. Although these preliminary observations are suggestive, large studies need to be done to confirm these preliminary results. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  5. Crystallization and crystallographic studies of kallistatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fang; Zhou, Aiwu; Wei, Zhenquan, E-mail: weizhq@gmail.com

    2015-08-25

    The crystallization of human kallistatin in the relaxed conformation is reported. Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P6{sub 1}, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in amore » relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.« less

  6. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Göteborg, Sweden

    PubMed Central

    Vickers, Andrew J; Cronin, Angel M; Aus, Gunnar; Pihl, Carl-Gustav; Becker, Charlotte; Pettersson, Kim; Scardino, Peter T; Hugosson, Jonas; Lilja, Hans

    2008-01-01

    Background Prostate-specific antigen (PSA) is widely used to detect prostate cancer. The low positive predictive value of elevated PSA results in large numbers of unnecessary prostate biopsies. We set out to determine whether a multivariable model including four kallikrein forms (total, free, and intact PSA, and human kallikrein 2 (hK2)) could predict prostate biopsy outcome in previously unscreened men with elevated total PSA. Methods The study cohort comprised 740 men in Göteborg, Sweden, undergoing biopsy during the first round of the European Randomized study of Screening for Prostate Cancer. We calculated the area-under-the-curve (AUC) for predicting prostate cancer at biopsy. AUCs for a model including age and PSA (the 'laboratory' model) and age, PSA and digital rectal exam (the 'clinical' model) were compared with those for models that also included additional kallikreins. Results Addition of free and intact PSA and hK2 improved AUC from 0.68 to 0.83 and from 0.72 to 0.84, for the laboratory and clinical models respectively. Using a 20% risk of prostate cancer as the threshold for biopsy would have reduced the number of biopsies by 424 (57%) and missed only 31 out of 152 low-grade and 3 out of 40 high-grade cancers. Conclusion Multiple kallikrein forms measured in blood can predict the result of biopsy in previously unscreened men with elevated PSA. A multivariable model can determine which men should be advised to undergo biopsy and which might be advised to continue screening, but defer biopsy until there was stronger evidence of malignancy. PMID:18611265

  7. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    PubMed

    Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.

  8. A cytocidal tissue kallikrein isolated from mouse submandibular glands.

    PubMed

    Murakami, K; Ikigai, H; Nagumo, N; Tomita, M; Shimamura, T

    1989-11-06

    A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.

  9. The polyphosphate–factor XII pathway drives coagulation in prostate cancer-associated thrombosis

    PubMed Central

    Nickel, Katrin F.; Ronquist, Göran; Langer, Florian; Labberton, Linda; Fuchs, Tobias A.; Bokemeyer, Carsten; Sauter, Guido; Graefen, Markus; Mackman, Nigel; Stavrou, Evi X.; Ronquist, Gunnar

    2015-01-01

    Cancer is a leading cause of thrombosis. We identify a new procoagulant mechanism that contributes to thromboembolism in prostate cancer and allows for safe anticoagulation therapy development. Prostate cancer-mediated procoagulant activity was reduced in plasma in the absence of factor XII or its substrate of the intrinsic coagulation pathway factor XI. Prostate cancer cells and secreted prostasomes expose long chain polyphosphate on their surface that colocalized with active factor XII and initiated coagulation in a factor XII-dependent manner. Polyphosphate content correlated with the procoagulant activity of prostasomes. Inherited deficiency in factor XI or XII or high-molecular-weight kininogen, but not plasma kallikrein, protected mice from prostasome-induced lethal pulmonary embolism. Targeting polyphosphate or factor XII conferred resistance to prostate cancer-driven thrombosis in mice, without increasing bleeding. Inhibition of factor XII with recombinant 3F7 antibody reduced the increased prostasome-mediated procoagulant activity in patient plasma. The data illustrate a critical role for polyphosphate/factor XII-triggered coagulation in prostate cancer-associated thrombosis with implications for anticoagulation without therapy-associated bleeding in malignancies. PMID:26153520

  10. Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors

    PubMed Central

    Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.

    1969-01-01

    As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814

  11. Finding off-targets, biological pathways, and target diseases for chymase inhibitors via structure-based systems biology approach.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang Ping; Kim, Songmi; Arulalapperumal, Venkatesh; Lee, Keun Woo

    2015-07-01

    Off-target binding connotes the binding of a small molecule of therapeutic significance to a protein target in addition to the primary target for which it was proposed. Progressively such off-targeting is emerging to be regular practice to reveal side effects. Chymase is an enzyme of hydrolase class that catalyzes hydrolysis of peptide bonds. A link between heart failure and chymase is ascribed, and a chymase inhibitor is in clinical phase II for treatment of heart failure. However, the underlying mechanisms of the off-target effects of human chymase inhibitors are still unclear. Here, we develop a robust computational strategy that is applicable to any enzyme system and that allows the prediction of drug effects on biological processes. Putative off-targets for chymase inhibitors were identified through various structural and functional similarity analyses along with molecular docking studies. Finally, literature survey was performed to incorporate these off-targets into biological pathways and to establish links between pathways and particular adverse effects. Off-targets of chymase inhibitors are linked to various biological pathways such as classical and lectin pathways of complement system, intrinsic and extrinsic pathways of coagulation cascade, and fibrinolytic system. Tissue kallikreins, granzyme M, neutrophil elastase, and mesotrypsin are also identified as off-targets. These off-targets and their associated pathways are elucidated for the effects of inflammation, cancer, hemorrhage, thrombosis, and central nervous system diseases (Alzheimer's disease). Prospectively, our approach is helpful not only to better understand the mechanisms of chymase inhibitors but also for drug repurposing exercises to find novel uses for these inhibitors. © 2014 Wiley Periodicals, Inc.

  12. KLK14 interactions with HAI-1 and HAI-2 serine protease inhibitors: A molecular dynamics and relative free-energy calculations study.

    PubMed

    Solís-Calero, Christian; Carvalho, Hernandes F

    2017-11-01

    Kallikrein 14 (KLK14) is a serine protease linked to several pathologies including prostate cancer and positively correlates with Gleason score. Though KLK14 functioning in cancer is poorly understood, it has been implicated in HGF/Met signaling, given that KLK14 proteolytically inhibits HGF activator-inhibitor 1 (HAI-1), which strongly inhibits pro-HGF activators, thereby contributing to tumor progression. In this work, KLK14 binding to either hepatocyte growth factor activator inhibitor type-1 (HAI-1) or type-2 (HAI-2) was essayed using homology modeling, molecular dynamic simulations and free-energy calculations through MM/PBSA and MM/GBSA. KLK14 was successfully modeled. Calculated free energies suggested higher binding affinity for the KLK14/HAI-1 interaction than for KLK14/HAI-2. This difference in binding affinity is largely explained by the higher stability of the hydrogen-bond networks in KLK14/HAI-1 along the simulation trajectory. A key arginine residue in both HAI-1 and HAI-2 is responsible for their interaction with the S1 pocket in KLK14. Additionally, MM/GBSA free-energy decomposition postulates that KLK14 Asp174 and Trp196 are hotspots for binding HAI-1 and HAI-2. © 2017 International Federation for Cell Biology.

  13. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits.

    PubMed

    van Veen, Harrie A; Koiter, Jaco; Vogelezang, Carla J M; van Wessel, Noucha; van Dam, Tijtje; Velterop, Ingeborg; van Houdt, Kristina; Kupers, Luc; Horbach, Danielle; Salaheddine, Mourad; Nuijens, Jan H; Mannesse, Maurice L M

    2012-12-31

    C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    PubMed Central

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  15. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity.

    PubMed

    Zhu, Yanan; Underwood, Joanne; Macmillan, Derek; Shariff, Leila; O'Shaughnessy, Ryan; Harper, John I; Pickard, Chris; Friedmann, Peter S; Healy, Eugene; Di, Wei-Li

    2017-11-01

    Upregulation of kallikreins (KLKs) including KLK5 has been reported in atopic dermatitis (AD). KLK5 has biological functions that include degrading desmosomal proteins and inducing proinflammatory cytokine secretion through protease-activated receptor 2 (PAR2). However, due to the complex interactions between various cells in AD inflamed skin, it is difficult to dissect the precise and multiple roles of upregulated KLK5 in AD skin. We investigated the effect of upregulated KLK5 on the expression of epidermal-related proteins and cytokines in keratinocytes and on skin architecture. Lesional and nonlesional AD skin biopsies were collected for analysis of morphology and protein expression. The relationship between KLK5 and barrier-related molecules was investigated using an ex vivo dermatitis skin model with transient KLK5 expression and a cell model with persistent KLK5 expression. The influence of upregulated KLK5 on epidermal morphology was investigated using an in vivo skin graft model. Upregulation of KLK5 and abnormal expression of desmoglein 1 (DSG1) and filaggrin, but not PAR2 were identified in AD skin. PAR2 was increased in response to transient upregulation of KLK5, whereas persistently upregulated KLK5 did not show this effect. Persistently upregulated KLK5 degraded DSG1 and stimulated secretion of IL-8, IL-10, and thymic stromal lymphopoietin independent of PAR2 activity. With control of higher KLK5 activity by the inhibitor sunflower trypsin inhibitor G, restoration of DSG1 expression and a reduction in AD-related cytokine IL-8, thymic stromal lymphopoietin, and IL-10 secretion were observed. Furthermore, persistently elevated KLK5 could induce AD-like skin architecture in an in vivo skin graft model. Persistently upregulated KLK5 resulted in AD-like skin architecture and secretion of AD-related cytokines from keratinocytes in a PAR2 independent manner. Inhibition of KLK5-mediated effects may offer potential as a therapeutic approach in AD. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia.

    PubMed

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2017-02-01

    High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P<0.01 and FDR <0.01). In particular, the kallikrein gene cluster (KLK1/3/7/8/12) was upregulated >17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3-13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases.

  17. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  18. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  19. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein.

    PubMed

    Wang, Yunpeng; Xu, Wentao; Kou, Xiaohong; Luo, Yunbo; Zhang, Yanan; Ma, Biao; Wang, Mengsha; Huang, Kunlun

    2012-08-01

    Wheat germ cell-free protein synthesis systems have the potential to synthesize functional proteins safely and with high accuracy, but the poor energy supply and the instability of mRNA templates reduce the productivity of this system, which restricts its applications. In this report, phosphocreatine and pyruvate were added to the system to supply ATP as a secondary energy source. After comparing the protein yield, we found that phosphocreatine is more suitable for use in the wheat germ cell-free protein synthesis system. To stabilize the mRNA template, the plasmid vector, SP6 RNA polymerase, and Cu(2+) were optimized, and a wheat germ cell-free protein synthesis system with high yield and speed was established. When plasmid vector (30 ng/μl), SP6 RNA polymerase (15 U), phosphocreatine (25 mM), and Cu(2+) (5 mM) were added to the system and incubated at 26°C for 16 h, the yield of venom kallikrein increased from 0.13 to 0.74 mg/ml. The specific activity of the recombinant protein was 1.3 U/mg, which is only slightly lower than the crude venom kallikrein (1.74 U/mg) due to the lack of the sugar chain. In this study, the yield of venom kallikrein was improved by optimizing the system, and a good foundation has been laid for industrial applications and for further studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Tissue-specific promoter utilisation of the kallikrein-related peptidase genes, KLK5 and KLK7, and cellular localisation of the encoded proteins suggest roles in exocrine pancreatic function.

    PubMed

    Dong, Ying; Matigian, Nick; Harvey, Tracey J; Samaratunga, Hemamali; Hooper, John D; Clements, Judith A

    2008-02-01

    Abstract Tissue kallikrein (kallikrein 1) was first identified in pancreas and is the namesake of the kallikrein-related peptidase (KLK) family. KLK1 and the other 14 members of the human KLK family are encoded by 15 serine protease genes clustered at chromosome 19q13.4. Our Northern blot analysis of 19 normal human tissues for expression of KLK4 to KLK15 identified pancreas as a common expression site for the gene cluster spanning KLK5 to KLK13, as well as for KLK15 which is located adjacent to KLK1. Consistent with previous reports detailing the ability of KLK genes to generate organ- and disease-specific transcripts, detailed molecular and in silico analyses indicated that KLK5 and KLK7 generate transcripts in pancreas variant from those in skin or ovary. Consistently, we identified in the promoters of these KLK genes motifs which conform with consensus binding sites for transcription factors conferring pancreatic expression. In addition, immunohistochemical analysis revealed predominant localisation of KLK5 and KLK7 in acinar cells of the exocrine pancreas, suggesting roles for these enzymes in digestion. Our data also support expression patterns derived from gene duplication events in the human KLK cluster. These findings suggest that, in addition to KLK1, other related KLK enzymes will function in the exocrine pancreas.

  1. Isolation and biological activity of [Trp5]bradykinin from the plasma of the phylogenetically ancient fish, the bowfin and the longnosed gar.

    PubMed

    Conlon, J M; Platzack, B; Marra, L E; Youson, J H; Olson, K R

    1995-01-01

    The holostean fish occupy an important position in vertebrate phylogeny as extant representatives of a ancient group of ray-finned fish with evolutionary connections to present-day teleosts. Incubation of heat-denatured plasma from the bowfin Amia calva with trypsin generated bradykinin-like immunoreactivity. The primary structure of bowfin bradykinin was established as Ala-Pro-Pro-Gly-Trp-Ser-Pro-Phe-Arg. This amino acid sequence contains one amino acid substitution (Phe5 --> Trp) compared with mammalian bradykinin. The same peptide was generated in heat-denatured plasma from the longnosed gar Lepisosteus osseus. Treatment of plasma from either the bowfin or gar with glass beads under conditions previously shown to activate Factor XII in the plasma of mammals and reptiles did not generate bradykinin. Bolus injections of synthetic bowfin bradykinin (0.1, 0.3, and 1.0 nmol/kg) into the bulbus arteriosus of unanesthetized bowfin resulted in an immediate fall in arterial blood pressure of 5-10 min duration that was followed by a dose-dependent rise in pressure that was sustained for 30-60 min. There was no change in heart rate following bradykinin administration. The data suggest that the kallikrein-kinin system may predate the appearance of teleosts and may play a role in cardiovascular regulation in holosteans.

  2. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression.

    PubMed

    Ramsay, Andrew J; Dong, Ying; Hunt, Melanie L; Linn, MayLa; Samaratunga, Hemamali; Clements, Judith A; Hooper, John D

    2008-05-02

    Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca(2+) flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1-1000 nM indicated that KLK4-induced Ca(2+) mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.

  3. Expression profile of human tissue kallikrein 15 provides preliminary insights into its roles in the prostate and testis.

    PubMed

    Filippou, Panagiota S; Ren, Annie H; Soosaipillai, Antoninus; Papaioannou, Michail-Dimitrios; Korbakis, Dimitrios; Safar, Roaa; Diamandis, Eleftherios P; Conner, James

    2018-06-26

    Human tissue kallikrein 15 (KLK15) is the latest member of the kallikrein-related peptidase family. Little is known about the pathophysiological roles of KLK15. Previous studies implied a role of KLK15 in prostate cancer. In the present study, we examined KLK15 protein expression using a new immunoassay (ELISA) and immunohistochemistry (IHC). Highest KLK15 levels were detected in the testis and seminal fluid, whereas lower levels were observed in prostate and other tissues. Immunohistochemical analysis of testis suggests that KLK15 is strongly expressed in mature spermatids, but not in immature germ cells. KLK15 displayed predominantly nuclear localization in the basal cell layer of the prostatic epithelium. We also measured KLK15 in supernatants of various cell lines. Highest KLK15 levels were primarily detected in prostate cancer cell lines and KLK15 expression was hormone-independent, in contrast to KLK3. Collectively, our data provide insights into the localization and possible role of KLK15 in human physiology. Copyright © 2018. Published by Elsevier Inc.

  4. Kallikrein and Renin in the Membrane Fractions of the Rat Kidney.

    DTIC Science & Technology

    1980-05-23

    Zingg, E.A. and Hedlin, A.H.: Kallikrein and plasmin as activators of inactive renin. Lancet 11:1375, 1978 32. Inagami, T ., Yokosawa , N., Takahashi, N...FRACTIONS Technical Report to 8/15/60 OF THE RAT KIDNEY, t 8/15/- 0 6 PEOPORMINS~1.RPOTNME 7/. 1 AuTN’OR/f’) B CoNfrt*C; OW ; R^R NT NJ4S._R...E’ T PSJ’ , TASK . :) A DA RE AR 5W S. UNIT 10 ELE E 4 POI~f-r University of Texas Health Science Center AREA ORKUNIT sMBES 5323 Harry Hines Blvd

  5. ProteinSeq: High-Performance Proteomic Analyses by Proximity Ligation and Next Generation Sequencing

    PubMed Central

    Vänelid, Johan; Siegbahn, Agneta; Ericsson, Olle; Fredriksson, Simon; Bäcklin, Christofer; Gut, Marta; Heath, Simon; Gut, Ivo Glynne; Wallentin, Lars; Gustafsson, Mats G.; Kamali-Moghaddam, Masood; Landegren, Ulf

    2011-01-01

    Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 µl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use. PMID:21980495

  6. A four-kallikrein panel for the prediction of repeat prostate biopsy: data from the European Randomized Study of Prostate Cancer screening in Rotterdam, Netherlands.

    PubMed

    Gupta, A; Roobol, M J; Savage, C J; Peltola, M; Pettersson, K; Scardino, P T; Vickers, A J; Schröder, F H; Lilja, H

    2010-08-24

    Most men with elevated levels of prostate-specific antigen (PSA) do not have prostate cancer, leading to a large number of unnecessary biopsies. A statistical model based on a panel of four kallikreins has been shown to predict the outcome of a first prostate biopsy. In this study, we apply the model to an independent data set of men with previous negative biopsy but persistently elevated PSA. The study cohort consisted of 925 men with a previous negative prostate biopsy and elevated PSA (>or=3 ng ml(-1)), with 110 prostate cancers detected (12%). A previously published statistical model was applied, with recalibration to reflect the lower positive biopsy rates on rebiopsy. The full-kallikrein panel had higher discriminative accuracy than PSA and DRE alone, with area under the curve (AUC) improving from 0.58 (95% confidence interval (CI): 0.52, 0.64) to 0.68 (95% CI: 0.62, 0.74), P<0.001, and high-grade cancer (Gleason >or=7) at biopsy with AUC improving from 0.76 (95% CI: 0.64, 0.89) to 0.87 (95% CI: 0.81, 0.94), P=0.003). Application of the panel to 1000 men with persistently elevated PSA after initial negative biopsy, at a 15% risk threshold would reduce the number of biopsies by 712; would miss (or delay) the diagnosis of 53 cancers, of which only 3 would be Gleason 7 and the rest Gleason 6 or less. Our data constitute an external validation of a previously published model. The four-kallikrein panel predicts the result of repeat prostate biopsy in men with elevated PSA while dramatically decreasing unnecessary biopsies.

  7. Can one blood draw replace transrectal ultrasonography-estimated prostate volume to predict prostate cancer risk?

    PubMed

    Carlsson, Sigrid V; Peltola, Mari T; Sjoberg, Daniel; Schröder, Fritz H; Hugosson, Jonas; Pettersson, Kim; Scardino, Peter T; Vickers, Andrew J; Lilja, Hans; Roobol, Monique J

    2013-09-01

    To explore whether a panel of kallikrein markers in blood: total, free and intact prostate-specific antigen (PSA) and kallikrein-related peptidase 2, could be used as a non-invasive alternative for predicting prostate cancer on biopsy in a screening setting. The study cohort comprised previously unscreened men who underwent sextant biopsy owing to elevated PSA (≥3 ng/mL) in two different centres of the European Randomized Study of Screening for Prostate Cancer, Rotterdam (n = 2914) and Göteborg (n = 740). A statistical model, based on kallikrein markers, was compared with one based on established clinical factors for the prediction of biopsy outcome. The clinical tests were found to be no better than blood markers, with an area under the curve in favour of the blood measurements of 0.766 vs. 0.763 in Rotterdam and 0.809 vs. 0.774 in Göteborg. Adding digital rectal examination (DRE) or DRE plus transrectal ultrasonography (TRUS) volume to the markers improved discrimination, although the increases were small. Results were similar for predicting high-grade cancer. There was a strong correlation between the blood measurements and TRUS-estimated prostate volume (Spearman's correlation 0.60 in Rotterdam and 0.57 in Göteborg). In previously unscreened men, each with indication for biopsy, a statistical model based on kallikrein levels was similar to a clinical model in predicting prostate cancer in a screening setting, outside the day-to-day clinical practice. Whether a clinical approach can be replaced by laboratory analyses or used in combination with decision models (nomograms) is a clinical judgment that may vary from clinician to clinician depending on how they weigh the different advantages and disadvantages (harms, costs, time, invasiveness) of both approaches. © 2013 BJU International.

  8. Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity toward serine proteases.

    PubMed

    Cohen, Itay; Naftaly, Si; Ben-Zeev, Efrat; Hockla, Alexandra; Radisky, Evette S; Papo, Niv

    2018-04-16

    High structural and sequence similarity within protein families can pose significant challenges to the development of selective inhibitors, especially toward proteolytic enzymes. Such enzymes usually belong to large families of closely similar proteases and may also hydrolyze, with different rates, protein- or peptide-based inhibitors. To address this challenge, we employed a combinatorial yeast surface display library approach complemented with a novel pre-equilibrium, competitive screening strategy for facile assessment of the effects of multiple mutations on inhibitor association rates and binding specificity. As a proof of principle for this combined approach, we utilized this strategy to alter inhibitor/protease association rates and to tailor the selectivity of the amyloid β-protein precursor Kunitz protease inhibitor domain (APPI) for inhibition of the oncogenic protease mesotrypsin, in the presence of three competing serine proteases, anionic trypsin, cationic trypsin and kallikrein-6. We generated a variant, designated APPI P13W/M17G/I18F/F34V , with up to 30-fold greater specificity relative to the parental APPI M17G/I18F/F34V protein, and 6500- to 230 000-fold improved specificity relative to the wild-type APPI protein in the presence of the other proteases tested. A series of molecular docking simulations suggested a mechanism of interaction that supported the biochemical results. These simulations predicted that the selectivity and specificity are affected by the interaction of the mutated APPI residues with nonconserved enzyme residues located in or near the binding site. Our strategy will facilitate a better understanding of the binding landscape of multispecific proteins and will pave the way for design of new drugs and diagnostic tools targeting proteases and other proteins. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Purification, structural characterization, and myotropic activity of a peptide related to des-Arg(9)-bradykinin from an elasmobranch fish, the little skate, Leucoraja erinacea.

    PubMed

    Anderson, W Gary; Leprince, Jérôme; Conlon, J Michael

    2008-08-01

    A bradykinin (BK)-related peptide was isolated from heat-denaturated plasma from an elasmobranch fish, the little skate, Leucoraja erinacea after incubation with porcine pancreatic kallikrein. The primary structure of the peptide (H-Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe-OH; skate BK) shows limited structural similarity to the mammalian B1 receptor agonist, des-Arg(9)-BK. The myotropic activities of synthetic skate BK, and the analog skate [Arg(9)]BK, were examined in isolated skate vascular and intestinal smooth muscle preparations. Skate BK produced a concentration-dependent constriction of the mesenteric artery (EC(50)=4.37x10(-8)M; maximum response=103.4+/-10.23% of the response to 60mM KCl) but the response to skate [Arg(9)]BK was appreciably weaker (response to 10(-6)M=73.0+/-23.4% of the response to 60mM KCl). Neither the first branchial gill arch nor the ventral aorta responded to either purified peptide. Skate BK also produced a concentration-dependent constriction of intestinal smooth muscle preparations (EC(50)=2.74x10(-7)M; maximum response 31.0+/-12.2% of the response to 10(-5)M acetylcholine). Skate [Arg(9)]BK was without effect on the intestinal preparation. The data provide evidence for the existence of the kallikrein-kinin system in a phylogenetically ancient vertebrate group and the greater potency of skate BK compared with the analog skate [Arg(9)]BK suggests that the receptor mediating vascular responses resembles the mammalian B1 receptor more closely than the B2 receptor.

  10. Crystallization and preliminary X-ray analysis of a novel Kunitz-type kallikrein inhibitor from Bauhinia bauhinioides

    PubMed Central

    Navarro, Marcos Vicente de A. S.; Vierira, Débora F.; Nagem, Ronaldo A. P.; de Araújo, Ana Paula U.; Oliva, Maria Luiza V.; Garratt, Richard C.

    2005-01-01

    A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P212121, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V M = 2.5 Å3 Da−1). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method. PMID:16511193

  11. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  12. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  13. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  14. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  15. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  16. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2013-05-01

    Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by enhanced angiogenesis and reducing apoptosis.

  17. Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, Yefei; Yan, Fengdi; Fu, Cong; Li, Yongjun; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2012-08-01

    Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor-Akt signaling pathway.

  18. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides

    PubMed Central

    Masuyer, Geoffrey; Schwager, Sylva L. U.; Sturrock, Edward D.; Isaac, R. Elwyn; Acharya, K. Ravi

    2012-01-01

    Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS). PMID:23056909

  19. Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice.

    PubMed

    Zhang, Y; Wang, L; Song, Y; Zhao, X; Wong, M S; Zhang, W

    2016-03-01

    The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis. The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice. The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively. Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K. This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and BR signaling pathways in bone.

  20. Analysis of erectile responses to bradykinin in the anesthetized rat

    PubMed Central

    Edward, Justin A.; Pankey, Edward A.; Jupiter, Ryan C.; Lasker, George F.; Yoo, Daniel; Reddy, Vishwaradh G.; Peak, Taylor C.; Chong, Insun; Jones, Mark R.; Feintech, Samuel V.; Lindsey, Sarah H.

    2015-01-01

    The kallikrein-kinin system is expressed in the corpus cavernosa, and bradykinin (BK) relaxes isolated corpora cavernosal strips. However, erectile responses to BK in the rat have not been investigated in vivo. In the present study, responses to intracorporal (ic) injections of BK were investigated in the anesthetized rat. BK, in doses of 1–100 μg/kg ic, produced dose-related increases in intracavernosal pressure (ICP) and dose-related deceases in mean arterial pressure (MAP). When decreases in MAP were prevented by intravenous injections of angiotensin II (Ang II), increases in ICP, in response to BK, were enhanced. Increases in ICP, ICP/MAP ratio, and area under the curve and decreases in MAP in response to BK were inhibited by the kinin B2 receptor antagonist HOE-140 and enhanced by the angiotensin-converting enzyme (ACE) inhibitor captopril and by Ang-(1–7). Increases in ICP, in response to BK, were not attenuated by the nitric oxide (NO) synthase inhibitor (Nω-nitro-l-arginine methyl ester) or the soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) but were attenuated by the cyclooxygenase inhibitor, sodium meclofenamate. Decreases in MAP were not attenuated by either inhibitor. These data suggest that erectile responses are mediated by kinin B2 receptors and modulated by decreases in MAP. These data indicate that ACE is important in the inactivation of BK and that erectile and hypotensive responses are independent of NO in the penis or the systemic vascular bed. Erectile responses to cavernosal nerve stimulation are not altered by BK or HOE-140, suggesting that BK and B2 receptors do not modulate nerve-mediated erectile responses under physiologic conditions. These data suggest that erectile responses to BK are mediated, in part, by the release of cyclooxygenase products. PMID:26055796

  1. Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil.

    PubMed

    Ehrenfeld, Pamela; Bhoola, Kanti D; Matus, Carola E; Figueroa, Carlos D

    2018-06-19

    In the human neutrophil, kallikrein-related peptidases (KLKs) have a significant functional relationship with the classical kinin system as a kinin B1 receptor agonist induces secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the medium. Secretion of KLK1, the kinin-forming enzyme, may perpetuate formation of kinin in the inflammatory milieu by hydrolyzing extravasated kininogens present in tissue edema. Secretion of KLKs into the inflammatory milieu, induced by kinins or other proinflammatory mediators, provides the human neutrophil with a wide range of molecular interactions to hydrolyze different cellular and extracellular matrix components, which may be of critical relevance in different mechanisms involving inflammation.

  2. A model comparing how rapidly transfusion of solvent detergent plasma restores clotting factors versus infusion of albumin-saline.

    PubMed

    Jilma-Stohlawetz, Petra; Kursten, Friedrich W; Horvath, Michaela; Leitner, Gerda; List, Jana; Marcek, Jana; Quehenberger, Peter; Schwameis, Michael; Bartko, Johann; Jilma, Bernd

    2015-12-01

    A recent randomized controlled trial demonstrated the bioequivalence between universally applicable and AB0 compatible transfusion plasma in healthy volunteers. There was a limited change in coagulation factor levels and inhibitors before and after plasmapheresis and subsequent plasma transfusion. The aim of this extension trial was to investigate the true capacity of these plasma products to restore baseline levels of coagulation factors and inhibitors after plasma depletion in comparison to haemodilution induced by infusion of albumin solution. Fourteen healthy subjects, who completed both plasma transfusion periods, underwent an additional plasmapheresis (600 mL) followed by an infusion of 1200 mL albumin (3.125%) in a third period. The fibrinogen levels, as well as other clotting factors (FII, FV, FVII and FXI), decreased by 10% after plasmapheresis, and subsequent infusion of albumin solution further aggravated this drop in clotting factors to approximately 20-25%. The clotting factors with a long half-life were not even restored 24 hours after infusion of albumin solution, whereas those with a short half-life were replenished by endogenous synthesis within 24 hours. In contrast, transfusion of either plasma product rapidly restored all clotting parameters and inhibitors (protein S and plasmin inhibitor) immediately after transfusion. This study demonstrates that albumin solution induces an enhanced dilution of clotting factors and inhibitors, whereas both plasma products quickly compensated for the experimental loss of these plasma proteins. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    PubMed Central

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  4. Dissecting blue light signal transduction pathway in leaf epidermis using a pharmacological approach.

    PubMed

    Živanović, Branka D; Shabala, Lana I; Elzenga, Theo J M; Shabala, Sergey N

    2015-10-01

    Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.

  5. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo.

    PubMed

    Törmä, Hans; Lindberg, Magnus; Berne, Berit

    2008-05-01

    Detergents are skin irritants affecting keratinocytes. In this study, healthy volunteers were exposed to water (vehicle) and 1% sodium lauryl sulfate (SLS) under occlusive patch tests for 24 hours. The messenger RNA (mRNA) expression of keratinocyte differentiation markers and of enzymes involved in corneodesmosome degradation was examined in skin biopsies (n=8) during the repair phase (6 hours to 7 days postexposure) using real-time reverse-transcription PCR. It was found that the expression of involucrin was increased at 6 hours, but then rapidly normalized. The expression of transglutaminase 1 exhibited a twofold increase after 24 hours in the SLS-exposed skin. Profilaggrin was decreased after 6 hours. Later (4-7 days), the expression in SLS-exposed areas was >50% above than in control areas. An increased and altered immunofluorescence pattern of involucrin, transglutaminase 1, and filaggrin was also found (n=4). At 6 hours post-SLS exposure, the mRNA expression of kallikrein-7 (KLK-7) and kallikrein-5 (KLK-5) was decreased by 50 and 75%, respectively, as compared with control and water-exposed areas. Thereafter, the expression pattern of KLK-7 and KLK-5 was normalized. Changes in protein expression of KLK-5 were also found. In conclusion, SLS-induced skin barrier defects induce altered mRNA expression of keratinocyte differentiation markers and enzymes degrading corneodesmosomes.

  6. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their relation with semen freezability.

    PubMed

    Jobim, M I M; Trein, C; Zirkler, H; Gregory, R M; Sieme, H; Mattos, R C

    2011-09-01

    The objective was to evaluate protein profiles of equine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and to determine whether any of these proteins were related to semen freezability. Seminal plasma was collected from 10 stallions, of high and low semen freezability, housed at the State Stud of Lower Saxony, and routinely used in AI programs. Twenty-five protein spots were identified from the two-dimensional gel (12%), seven of which were present in all samples (all proteins were identified by MALDI-MS). Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used to generate ion images of samples in one or more mass-to-charge (m/z) values, providing the capability of mapping specific molecules to two-dimensional coordinates of the original sample. Of the 25 proteins identified, two spots had greater relative content (P < 0.05) in seminal plasma samples collected from stallions with high semen freezability: spot 5 (80-85 kDa, isoelectric point [pI] 7.54), identified as CRISP-3; and spot 45 (18.2 kDa, pI 5.0-5.2), identified as HSP-2. Conversely, protein content was greater (P < 0.05) in seminal plasma samples from stallions with low semen freezability: spot 7 (75.4 kDa, pI 6.9-7.4), identified as lactoferrin; spot 15 (26.7 kDa, pI 5.51), identified as kallikrein; spot 25 (25 kDa, pI 7.54), identified as CRISP-3; and spot 35 (13.9 kDa, pI 3.8-4.2), identified as HSP-1. In conclusion, there were differences in the seminal plasma protein profile from stallions with high and low semen freezability. Furthermore, CRISP-3 and HSP-2 were potential seminal plasma markers of high semen freezability. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The Arrestin-selective Angiotensin AT1 Receptor Agonist [Sar1,Ile4,Ile8]-AngII Negatively Regulates Bradykinin B2 Receptor Signaling via AT1-B2 Receptor Heterodimers*

    PubMed Central

    Wilson, Parker C.; Lee, Mi-Hye; Appleton, Kathryn M.; El-Shewy, Hesham M.; Morinelli, Thomas A.; Peterson, Yuri K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2013-01-01

    The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar1,Ile4,Ile8]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar1,Ile4, Ile8]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar1,Ile4,Ile8]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar1,Ile4,Ile8]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar1,Ile4,Ile8]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar1,Ile4,Ile8]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions. PMID:23661707

  8. The arrestin-selective angiotensin AT1 receptor agonist [Sar1,Ile4,Ile8]-AngII negatively regulates bradykinin B2 receptor signaling via AT1-B2 receptor heterodimers.

    PubMed

    Wilson, Parker C; Lee, Mi-Hye; Appleton, Kathryn M; El-Shewy, Hesham M; Morinelli, Thomas A; Peterson, Yuri K; Luttrell, Louis M; Jaffa, Ayad A

    2013-06-28

    The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar(1),Ile(4),Ile(8)]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar(1),Ile(4), Ile(8)]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar(1),Ile(4),Ile(8)]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar(1),Ile(4),Ile(8)]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar(1),Ile(4),Ile(8)]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar(1),Ile(4),Ile(8)]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions.

  9. Prostate-specific antigen kallikrein: from prostate cancer to cardiovascular system.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2009-05-01

    Prostate-specific antigen (PSA), considered only an established marker for the detection of prostate cancer, has been identified as a member (hK3) of the human kallikrein family of serine proteases and now, it is known that PSA is not specific to prostate, semen, and gender. Increased PSA serum levels have been reported also in cardiovascular patients and both elevated as well as diminished PSA have been reported during acute myocardial infarction (AMI). Preliminary observations have concluded that when elevation of prostate-specific antigen occurs during AMI, it seems to relate to a higher occurrence of major adverse cardiac events and that coronary lesions are frequent and often more severe than when a diminution of PSA occurs. Large studies need to be done to confirm these preliminary results but the journey of PSA could be longer than expected.

  10. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities.

    PubMed

    Imamura, Takahisa; Murakami, Yoji; Nitta, Hidetoshi

    2017-09-26

    Aeromonas sobria serine protease (ASP) is secreted from Aeromonas sobria, a pathogen causing gastroenteritis and sepsis. ASP resembles Saccharomyces cerevisiae Kex2, a member of the subtilisin family, and preferentially cleaves peptide bonds at the C-terminal side of paired basic amino acid residues; also accepting unpaired arginine at the P1 site. Unlike Kex2, however, ASP lacks an intramolecular chaperone N-terminal propeptide, instead utilizes the external chaperone ORF2 for proper folding, therefore, ASP and its homologues constitute a new subfamily in the subtilisin family. Through activation of the kallikrein/kinin system, ASP induces vascular leakage, and presumably causes edema and septic shock. ASP accelerates plasma clotting by α-thrombin generation from prothrombin, whereas it impairs plasma clottability by fibrinogen degradation, together bringing about blood coagulation disorder that occurs in disseminated intravascular coagulation, a major complication of sepsis. From complement C5 ASP liberates C5a that induces neutrophil recruitment and superoxide release, and mast cell degranulation, which are associated with pus formation, tissue injury and diarrhea, respectively. Nicked two-chain ASP also secreted from A. sobria is more resistant to inactivation by α2-macroglobulin than single-chain ASP, thereby raising virulence activities. Thus, ASP is a potent virulence factor and may participate in the pathogenesis of A. sobria infection.

  11. High-sensitivity detection of PSA by time-resolved fluorometry with Europium chelate

    NASA Astrophysics Data System (ADS)

    Nahm, Kie B.; Jeong, Jin H.; Kim, Byoung C.; Kim, Jae H.; Kim, Young M.; Jeong, Dong S.; Oh, Sang W.; Choi, Eui Y.; Ko, Dong S.

    2006-01-01

    Prostate-specific antigen (PSA) is an androgen-dependent glycoprotein protease (M.W. 33 kDa) and a member of kallikrein super-family of serine protease, and has chymotrypsin-like enzymatic activity. It is synthesized by the prostate epithelial cells and found in the prostate gland and seminal plasma as a major protein. It is widely used as a clinical marker for diagnosis, screening, monitoring and prognosis of prostate cancer. In normal male adults, the concentration of PSA in the blood is below 4 ng/ml and this value increases in patients with the prostate cancer or the benign prostatic hyperplasia (BPH) due to its leakage into the circulatory system. As such, systematic monitoring of the PSA level in the blood can provide critical information about the progress of the prostatic disease. We have fabricated a bread-board time resolved fluorescence system that could detect a concentration of Prostate Specific Antigen t-PSA) at clinically meaningful level in plasma as well as in whole blood sample. We chose Europium chelates as the fluorescence markers to attach to the PSA for its long decay lifetime and relative photostability. We have simplified the electronic circuits considerably by employing a MCS. With this setup, we have successfully proved that PSA concentration of 4pg/mL can be detected with acceptable reliability.

  12. The use of plasma-activated covalent attachment of early domains of tropoelastin to enhance vascular compatibility of surfaces

    PubMed Central

    Hiob, Matti A.; Wise, Steven G.; Kondyurin, Alexey; Waterhouse, Anna; Bilek, Marcela M.; Ng, Martin K. C.; Weiss, Anthony S.

    2013-01-01

    All current metallic vascular prostheses, including stents, exhibit suboptimal biocompatibility. Improving the re-endothelialization and reducing the thrombogenicity of these devices would substantially improve their clinical efficacy. Tropoelastin (TE), the soluble precursor of elastin, mediates favorable endothelial cell interactions while having low thrombogenicity. Here we show that constructs of TE corresponding to the first 10 (“N10”) and first 18 (“N18”) N-terminal domains of the molecule facilitate endothelial cell attachment and proliferation equivalent to the performance of full-length TE. This N-terminal ability contrasts with the known role of the C-terminus of TE in facilitating cell attachment, particularly of fibroblasts. When immobilized on a plasma-activated coating (“PAC”), N10 and N18 retained their bioactivity and endothelial cell interactive properties, demonstrating attachment and proliferation equivalent to full-length TE. In whole blood assays, both N10 and N18 maintained the low thrombogenicity of PAC. Furthermore, these N-terminal constructs displayed far greater resistance to protease degradation by blood serine proteases kallikrein and thrombin than did full-length TE. When immobilized onto a PAC surface, these shorter constructs form a modified metal interface to establish a platform technology for biologically compatible, implantable cardiovascular devices. PMID:23863453

  13. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis.

    PubMed

    Simak, Jan; De Paoli, Silvia

    2017-09-01

    The blood coagulation balance in the organism is achieved by the interaction of the blood platelets (PLTs) with the plasma coagulation system (PCS) and the vascular endothelial cells. In healthy organism, these systems prevent thrombosis and, in events of vascular damage, enable blood clotting to stop bleeding. The dysregulation of hemostasis may cause serious thrombotic and/or hemorrhagic pathologies. Numerous engineered nanomaterials are being investigated for biomedical purposes and are unavoidably exposed to the blood. Also, nanomaterials may access vascular system after occupational, environmental, or other types of exposure. Thus, it is essential to evaluate the effects of engineered nanomaterials on hemostasis. This review focuses on investigations of nanomaterial interactions with the blood components involved in blood coagulation: the PCS and PLTs. Particular emphases include the pathophysiology of effects of nanomaterials on the PCS, including the kallikrein-kinin system, and on PLTs. Methods for investigating these interactions are briefly described, and a review of the most important studies on the interactions of nanomaterials with plasma coagulation and platelets is provided. WIREs Nanomed Nanobiotechnol 2017, 9:e1448. doi: 10.1002/wnan.1448 For further resources related to this article, please visit the WIREs website. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Effect of SQ29,852, a new angiotensin converting enzyme (ACE) inhibitor with a phosphonic acid group, on the activity of angiotensin converting enzyme from human kidney.

    PubMed

    Hiwada, K; Inoue, Y; Kokubu, T

    1990-01-01

    1. An in vitro experiment was carried out to compare the inhibitory effect of SQ29,852 on human renal angiotensin converting enzyme (ACE) with those of captopril, enalapril and enalaprilat. 2. SQ29,852 strongly inhibited human renal ACE; its IC50 value was 1.5 x 10(-8) M. In terms of the IC50, SQ29,852's efficacy was about 1/10 of that of captopril and 1/28 of that of enalaprilat, but it was about 14 times more potent than enalapril. 3. SQ29,852 showed no inhibitory effects on cathepsin D, urinary kallikrein, renal renin, pepsin, trypsin and chymotrypsin. Its ACE-specificity was higher than that of captopril. 4. ACE inhibition by SQ29,852 was shown to be competitive, as revealed by Lineweaver-Burk plots. The affinity of SQ29,852 to ACE was shown to be high by a Ki value of 1.2 x 10(-8) M.

  15. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo

    PubMed Central

    2017-01-01

    Semen liquefaction changes semen from a gel-like to watery consistency and is required for sperm to gain mobility and swim to the fertilization site in the Fallopian tubes. Kallikrein-related peptidases 3 (KLK3) and other kallikrein-related peptidases from male prostate glands are responsible for semen liquefaction by cleaving gel-forming proteins (semenogelin and collagen). In a physiological context, the liquefaction process occurs within the female reproductive tract. How seminal proteins interact with the female reproductive environment is still largely unexplored. We previously reported that conditional genetic ablation of Esr1 (estrogen receptor α) in the epithelial cells of the female reproductive tract (Wnt7aCre/+;Esr1f/f) causes female infertility, partly due to a drastic reduction in the number of motile sperm entering the oviduct. In this study, we found that post-ejaculated semen from fertile wild-type males was solidified and the sperm were entrapped in Wnt7aCre/+;Esr1f/f uteri, compared to the watery semen (liquefied) found in Esr1f/f controls. In addition, semenogelin and collagen were not degraded in Wnt7aCre/+;Esr1f/f uteri. Amongst multiple gene families aberrantly expressed in the absence of epithelial ESR1, we have identified that a lack of Klks in the uterus is a potential cause for the liquefaction defect. Pharmacological inhibition of KLKs in the uterus replicated the phenotype observed in Wnt7aCre/+;Esr1f/f uteri, suggesting that loss of uterine and seminal KLK function causes this liquefaction defect. In human cervical cell culture, expression of several KLKs and their inhibitors (SPINKs) was regulated by estrogen in an ESR1-dependent manner. Our study demonstrates that estrogen/ESR1 signaling in the female reproductive tract plays an indispensable role in normal semen liquefaction, providing fundamental evidence that exposure of post-ejaculated semen to the suboptimal microenvironment in the female reproductive tract leads to faulty liquefaction and subsequently causes a fertility defect. PMID:28414719

  16. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation.

    PubMed

    Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2016-05-01

    We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Complementary effect of hydroquinone and retinoic acid on corneocyte desquamation with their combination use.

    PubMed

    Cheong, Kyung Ah; Lee, Tae Ryong; Lee, Ai-Young

    2017-08-01

    Retinoic acid (RA) enhances skin-lightening capabilities of hydroquinone (HQ), at least in part, by facilitating desquamation which leads to increase penetration of HQ. The desquamation also affects skin irritation levels. The mechanism of RA-induced desquamation, however, has not been completely explored and no such data has been available for HQ uses. To examine the role of HQ, RA, and their combination in the desquamation. Primary cultured normal human keratinocytes, which were treated with HQ and/or RA in presence or absence of serine-specific inhibitor Kazal type5 (SPINK5)/lympho-epithelial Kazal-type-related inhibitor (LEKTI) knockdown or recombinant human SPINK5/LEKTI, and biopsied skin samples applied with HQ or RA were examined. Expression levels of corneodesmosin (CDSN), desmocollin1 (DSC1), kallikrein5 (KLK5), KLK7, and SPINK5/LEKTI, and proteolysis activity against extracted human skin epidermal protein were determined using time-course real-time PCR, Western blotting, ELISA, and immunofluorescence staining. HQ increased but RA decreased the synthesis of CDSN and DSC1. HQ reduced corneodesmosome degradation by the upregulation of SPINK5/LEKTI, whereas RA showed opposite results without upregulation of SPINK5/LEKTI. The combination of HQ and RA was close to the sum of the individual components. HQ reduced corneocyte desquamation. However, RA enhanced desquamation. The combination induced more desquamation than HQ but less than RA. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  18. Functions of KLK4 and MMP-20 in dental enamel formation

    PubMed Central

    Lu, Yuhe; Papagerakis, Petros; Yamakoshi, Yasuo; Hu, Jan C-C.; Bartlett, John D.; Simmer, James P.

    2009-01-01

    Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory stage ameloblasts. Enamel protein cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. Kallikrein 4 is secreted by transition and maturation stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins. PMID:18627287

  19. Combined panel of serum human tissue kallikreins and CA-125 for the detection of epithelial ovarian cancer.

    PubMed

    Koh, Stephen Chee Liang; Huak, Chan Yiong; Lutan, Delfi; Marpuang, Johny; Ketut, Suwiyoga; Budiana, Nyoma Gede; Saleh, Agustria Zainu; Aziz, Mohamad Farid; Winarto, Hariyono; Pradjatmo, Heru; Hoan, Nguyen Khac Han; Thanh, Pham Viet; Choolani, Mahesh

    2012-07-01

    To determine the predictive accuracy of the combined panels of serum human tissue kallikreins (hKs) and CA-125 for the detection of epithelial ovarian cancer. Serum specimens collected from 5 Indonesian centers and 1 Vietnamese center were analyzed for CA-125, hK6, and hK10 levels. A total of 375 specimens from patients presenting with ovarian tumors, which include 156 benign cysts, 172 epithelial ovarian cancers (stage I/II, n=72; stage III/IV, n=100), 36 germ cell tumors and 11 borderline tumors, were included in the study analysis. Receiver operating characteristic analysis were performed to determine the cutoffs for age, CA-125, hK6, and hK10. Sensitivity, specificity, negative, and positive predictive values were determined for various combinations of the biomarkers. The levels of hK6 and hK10 were significantly elevated in ovarian cancer cases compared to benign cysts. Combination of 3 markers, age/CA-125/hk6 or CA-125/hk6/hk10, showed improved specificity (100%) and positive predictive value (100%) for prediction of ovarian cancer, when compared to the performance of single markers having 80-92% specificity and 74-87% positive predictive value. Four-marker combination, age/CA-125/hK6/hK10 also showed 100% specificity and 100% positive predictive value, although it demonstrated low sensitivity (11.9%) and negative predictive value (52.8%). The combination of human tissue kallikreins and CA-125 showed potential for improving prediction of epithelial ovarian cancer in patients presenting with ovarian tumors.

  20. Is the renal kallikrein-kinin system a factor that modulates calciuria?

    PubMed

    Negri, Armando Luis

    Renal tubular calcium reabsorption is one of the principal factors that determine serum calcium concentration and calcium excretion. Calcium excretion is regulated by the distal convoluted tubule and connecting tubule, where the epithelial calcium channel TRPV5 can be found, which limits the rate of transcellular calcium transport. The dynamic presence of the TRPV5 channel on the surface of the tubular cell is mediated by an endosomal recycling process. Different intrarenal factors are involved in calcium channel fixation in the apical membrane, including the anti-ageing hormone klotho and tissue kallikrein (TK). Both proteins are synthesised in the distal tubule and secreted in the tubular fluid. TK stimulates active calcium reabsorption through the bradykinin receptor B2 that compromises TRPV5 activation through the protein kinase C pathway. TK-deficient mice show hypercalciuria of renal origin comparable to that seen in TRPV5 knockout mice. There is a polymorphism with loss of function of the human TK gene R53H (allele H) that causes a marked decrease in enzymatic activity. The presence of the allele H seems to be common at least in the Japanese population (24%). These individuals have a tendency to greater calcium and sodium excretion in urine that is more evident during furosemide infusion. Future studies should analyse if manipulating the renal kallikrein-kinin system can correct idiopathic hypercalciuria with drugs other than thiazide diuretics. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Different effect of hydrogelation on anti-fouling and circulation properties of dextran–iron oxide nanoparticles

    PubMed Central

    Karmali, Priya Prakash; Chao, Ying; Park, Ji-Ho (Joe); Sailor, Michael J.; Ruoslahti, Erkki; Esener, Sadik C.; Simberg, Dmitri

    2012-01-01

    Premature recognition and clearance of nanoparticulate imaging and therapeutic agents by macrophages in the tissues can dramatically reduce both the nanoparticle half-life and delivery to the diseased tissue. Grafting nanoparticles with hydrogels prevents nanoparticulate recognition by liver and spleen macrophages and greatly prolongs circulation times in vivo. Understanding the mechanisms by which hydrogels achieve this “stealth” effect has implications for the design of long-circulating nanoparticles. Thus, the role of plasma protein absorption in the hydrogel effect is not yet understood. Short-circulating dextran-coated iron oxide nanoparticles could be converted into stealth hydrogel nanoparticles by crosslinking with 1-chloro-2,3-epoxypropane. We show that hydrogelation did not affect the size, shape and zeta potential, but completely prevented the recognition and clearance by liver macrophages in vivo. Hydrogelation decreased the number of hydroxyl groups on the nanoparticle surface and reduced the binding of the anti-dextran antibody. At the same time, hydrogelation did not reduce the absorption of cationic proteins on the nanoparticle surface. Specifically, there was no effect on the binding of kininogen, histidine-rich glycoprotein, and protamine sulfate to the anionic nanoparticle surface. In addition, hydrogelation did not prevent activation of plasma kallikrein on the metal oxide surface. These data suggest that: (a) a stealth hydrogel coating does not mask charge interactions with iron oxide surface and (b) the total blockade of plasma protein absorption is not required for maintaining iron oxide nanoparticles’ long-circulating stealth properties. These data illustrate a novel, clinically promising property of long-circulating stealth nanoparticles. PMID:22243419

  2. Proliferation of smooth muscle cells stimulated by Porphyromonas gingivalis is inhibited by apple polyphenol.

    PubMed

    Inaba, Hiroaki; Tagashira, Motoyuki; Kanda, Tomomasa; Amano, Atsuo

    2011-11-01

    Porphyromonas gingivalis (Pg) is thought to be involved in the progression of occlusive arterial lesions, whereas vascular smooth muscle cell (SMC) proliferation is considered to be involved in occlusive arterial disease. We previously showed that bacteremia caused by Pg infection induced proliferation of mouse aortic SMCs. Furthermore, human SMCs stimulated with human plasma incubated with Pg showed a marked transformation from the contractile to proliferative phenotype. In the present study, we examine the involvement of Pg gingipains and fimbriae in induction of the SMC transformation and proliferation, and effective inhibitors. Pg strains including gingipain- and fimbria-null mutants were incubated in human plasma, after which the bacteria were removed and the supernatants were added to cultured SMCs. To evaluate the effects of inhibitors, Pg organisms were incubated in plasma in the presence of apple polyphenol (AP), epigallocatechin gallate, KYT-1 (Arg-gingipain inhibitor), and KYT-36 (Lys-gingipain inhibitor). Plasma supernatants from wild-type and fimbria-mutant cultures markedly stimulated cellular proliferation, whereas those containing gingipain-null mutants showed negligible effects. SMC proliferation was also induced by plasma treated with trypsin. Furthermore, plasma supernatants cultured in the presence of KYT-1/KYT-36 and AP showed significant inhibitory effects on SMC proliferation, whereas cultures with epigallocatechin gallate did not. Our results suggest that Pg gingipains are involved in the induction of SMC transformation and proliferation, whereas this was inhibited by AP.

  3. The functional dissection of the plasma corona of SiO₂-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages.

    PubMed

    Fedeli, Chiara; Segat, Daniela; Tavano, Regina; Bubacco, Luigi; De Franceschi, Giorgia; de Laureto, Patrizia Polverino; Lubian, Elisa; Selvestrel, Francesco; Mancin, Fabrizio; Papini, Emanuele

    2015-11-14

    A coat of strongly-bound host proteins, or hard corona, may influence the biological and pharmacological features of nanotheranostics by altering their cell-interaction selectivity and macrophage clearance. With the goal of identifying specific corona-effectors, we investigated how the capture of amorphous silica nanoparticles (SiO2-NPs; Ø = 26 nm; zeta potential = -18.3 mV) by human lymphocytes, monocytes and macrophages is modulated by the prominent proteins of their plasma corona. LC MS/MS analysis, western blotting and quantitative SDS-PAGE densitometry show that Histidine Rich Glycoprotein (HRG) is the most abundant component of the SiO2-NP hard corona in excess plasma from humans (HP) and mice (MP), together with minor amounts of the homologous Kininogen-1 (Kin-1), while it is remarkably absent in their Foetal Calf Serum (FCS)-derived corona. HRG binds with high affinity to SiO2-NPs (HRG Kd ∼2 nM) and competes with other plasma proteins for the NP surface, so forming a stable and quite homogeneous corona inhibiting nanoparticles binding to the macrophage membrane and their subsequent uptake. Conversely, in the case of lymphocytes and monocytes not only HRG but also several common plasma proteins can interchange in this inhibitory activity. The depletion of HRG and Kin-1 from HP or their plasma exhaustion by increasing NP concentration (>40 μg ml(-1) in 10% HP) lead to a heterogeneous hard corona, mostly formed by fibrinogen (Fibr), HDLs, LDLs, IgGs, Kallikrein and several minor components, allowing nanoparticle binding to macrophages. Consistently, the FCS-derived SiO2-NP hard corona, mainly formed by hemoglobin, α2 macroglobulin and HDLs but lacking HRG, permits nanoparticle uptake by macrophages. Moreover, purified HRG competes with FCS proteins for the NP surface, inhibiting their recruitment in the corona and blocking NP macrophage capture. HRG, the main component of the plasma-derived SiO2-NPs' hard corona, has antiopsonin characteristics and uniquely confers to these particles the ability to evade macrophage capture.

  4. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  5. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury.

    PubMed

    Reichetzeder, Christoph; von Websky, Karoline; Tsuprykov, Oleg; Mohagheghi Samarin, Azadeh; Falke, Luise Gabriele; Dwi Putra, Sulistyo Emantoko; Hasan, Ahmed Abdallah; Antonenko, Viktoriia; Curato, Caterina; Rippmann, Jörg; Klein, Thomas; Hocher, Berthold

    2017-07-01

    Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg -1 ·day -1 ), vildagliptin (8 mg·kg -1 ·day -1 ) and sitagliptin (30 mg·kg -1 ·day -1 ). An additional group received sitagliptin until study end (before IRI: 30 mg·kg -1 ·day -1 ; after IRI: 15 mg·kg -1 ·day -1 ). Plasma-active glucagon-like peptide type 1 (GLP-1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP-1 plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  6. Design of potent substrate-analogue inhibitors of canine renin

    NASA Technical Reports Server (NTRS)

    Hui, K. Y.; Siragy, H. M.; Haber, E.

    1992-01-01

    Through a systematic study of structure-activity relationships, we designed potent renin inhibitors for use in dog models. In assays against dog plasma renin at neutral pH, we found that, as in previous studies of rat renin inhibitors, the structure at the P2 position appears to be important for potency. The substitution of Val for His at this position increases potency by one order of magnitude. At the P3 position, potency appears to depend on a hydrophobic side chain that does not necessarily have to be aromatic. Our results also support the approach of optimizing potency in a renin inhibitor by introducing a moiety that promotes aqueous solubility (an amino group) at the C-terminus of the substrate analogue. In the design of potent dog plasma renin inhibitors, the influence of the transition-state residue 4(S)-amino-3(S)-hydroxy-5-cyclohexylpentanoic acid (ACHPA)-commonly used as a substitute for the scissile-bond dipeptide to boost potency-is not obvious, and appears to be sequence dependent. The canine renin inhibitor Ac-paF-Pro-Phe-Val-statine-Leu-Phe-paF-NH2 (compound 15; IC50 of 1.7 nM against dog plasma renin at pH 7.4; statine, 4(S)-amino-3(S)-hydroxy-6-methylheptanoic acid; paF, para-aminophenylalanine) had a potent hypotensive effect when infused intravenously into conscious, sodium-depleted, normotensive dogs. Also, compound 15 concurrently inhibited plasma renin activity and had a profound diuretic effect.

  7. Inhibitor of prostacyclin production in sporadic haemolytic uraemic syndrome.

    PubMed Central

    Levin, M; Elkon, K B; Nokes, T J; Buckle, A M; Dillon, M J; Hardisty, R M; Barratt, T M

    1983-01-01

    Prostacyclin (PGI2) production was diminished when rat aortic rings were incubated with plasma from 5 of 6 patients with the sporadic form of haemolytic uraemic syndrome but was normal in the presence of plasma from 7 patients with the epidemic form of haemolytic uraemic syndrome or from patients with other renal diseases. The reduced PGI2 production was caused by an unstable inhibitor, extractable into polar lipid solvents, in sporadic haemolytic uraemic plasma. These results suggest that there may be at least 2 different pathogenetic mechanisms in epidemic and sporadic haemolytic uraemic syndrome and that the reduced PGI2 production observed in the sporadic type is due to an inhibitor of PGI2 production rather than a deficiency of stimulating factors. PMID:6354101

  8. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells.

    PubMed

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate-buffered saline; SD: standard deviation; ARE: androgenresponsive element; KLK: kallikrein.

  9. Identification and molecular cloning of novel transcripts of the human kallikrein-related peptidase 10 (KLK10) gene using next-generation sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamopoulos, Panagiotis G.; Kontos, Christos K.; Scorilas, Andreas

    Tissue kallikrein and kallikrein-related peptidases (KLKs) form the largest group of serine proteases in the human genome, sharing many structural and functional characteristics. Multiple alternative transcripts have been reported for the most human KLK genes, while many of them are aberrantly expressed in various malignancies, thus possessing significant prognostic and/or diagnostic value. Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity, as it affects cell cycle control, proliferation, apoptosis, invasion, and metastasis. In this study, we describe the identification and molecular cloning of eight novel transcripts of the human KLK10 gene using 3′more » rapid amplification of cDNA ends (3′ RACE) and next-generation sequencing (NGS), as well as their expression analysis in a wide panel of cell lines, originating from several distinct cancerous and normal tissues. Bioinformatic analysis revealed that the novel KLK10 transcripts contain new alternative splicing events between already annotated exons as well as novel exons. In addition, investigation of their expression profile in a wide panel of cell lines was performed with nested RT-PCR using variant-specific pairs of primers. Since many KLK mRNA transcripts possess clinical value, these newly discovered alternatively spliced KLK10 transcripts appear as new potential biomarkers for diagnostic and/or prognostic purposes or as targets for therapeutic strategies. - Highlights: • NGS was used to identify novel transcripts of the human KLK10 gene. • 8 novel KLK10 transcripts were identified. • A novel 3′UTR was detected and characterized. • The expression profiles of all 8 novel KLK10 transcripts were identified.« less

  10. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity*

    PubMed Central

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L.; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology. PMID:26582203

  11. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood.

    PubMed

    Hansson, K M; Nielsen, S; Elg, M; Deinum, J

    2014-10-01

    Corn trypsin inhibitor (CTI), an inhibitor of FXIIa, is used to prevent plasma coagulation by contact activation, to specifically investigate tissue factor (TF)-initiated coagulation. In the present work the specificity of CTI for factor (F) XIIa is questioned. In the commercial available plasma coagulation assays CTI was found to double activated partial thromboplastin time (APTT) at a plasma concentration of 7.3 ± 1.5 μm CTI (assay concentration 2.4 μm). No effect was found on the prothrombin time (PT) when high TF concentrations were used. Also, with specific antibodies for FXIIa and for FXIa only APTT was found to be extended but not PT. With specific enzyme assays using chromogenic substrates CTI was shown to be a strong inhibitor of FXIIa and a competitive inhibitor of FXIa with Ki  = 8.1 ± 0.3 μm, without effect on the coagulation factors FVIIa, FIXa, FXa and thrombin. In thrombin generation and coagulation (free oscillation rheometry, FOR) assays, initiated with low TF concentrations, no effect of CTI (plasma concentrations of 4.4 and 13.6 μm CTI, 25 resp. 100 mg L(-1) in blood) was found with ≥ 1 pm TF. At ≤ 0.1 pm TF in the FOR whole blood assay the coagulation time (CT) concentration dependently increased while the plasma CT became longer than the observation time. To avoid inhibition of FXIa and the thrombin feedback loop we recommend that for coagulation assays the concentration of CTI in blood should be below 20 mg L(-1) (1.6 μm) and in plasma below 3 μm. © 2014 International Society on Thrombosis and Haemostasis.

  12. INTER-ALPHA INHIBITOR PROTEINS: A NOVEL THERAPEUTIC STRATEGY FOR EXPERIMENTAL ANTHRAX INFECTION

    PubMed Central

    Opal, Steven M.; Lim, Yow-Pin; Cristofaro, Patricia; Artenstein, Andrew W.; Kessimian, Noubar; DelSesto, David; Parejo, Nicolas; Palardy, John E.; Siryaporn, Edward

    2010-01-01

    Human inter-alpha-inhibitor proteins (IaIp) are endogenous human plasma proteins that function as serine protease inhibitors. IaIp can block the systemic release of proteases in sepsis and block furin-mediated assembly of protective antigen, an essential stop in the intracellular delivery of the anthrax exotoxins, lethal toxin and edema toxin. IaIp administered on hour or up to 24 hours after spore challenge with Bacillus anthracis Sterne strain protected mice from lethality if administered with antimicrobial therapy (p<.001). These human plasma proteins possess combined actions against anthrax as general inhibitors of excess serine proteases in sepsis and specific inhibitors of anthrax toxin assembly. IaIp could represent a novel adjuvant therapy for the treatment of established anthrax infection. PMID:20523269

  13. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    PubMed

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Diabetic Macular Edema: Current Understanding, Pharmacologic Treatment Options, and Developing Therapies.

    PubMed

    Miller, Kevin; Fortun, Jorge A

    2018-01-01

    Diabetic retinopathy and diabetic macular edema comprise a major source of visual disability throughout the developed world. The etiology and pathogenesis of macular edema is intricate and multifactorial, in which the hyperglycemic state in diabetes induces a microangiopathy. Through several inflammatory and vasogenic mediators, including vascular endothelial growth factor (VEGF) upregulation and inflammatory cytokines and chemokines, pathologic changes are induced in the vascular endothelium triggering breakdown of the blood retinal barrier, causing extravasation of fluid into the extracellular space and manifesting clinically as macular edema, resulting in visual loss. The advent of medications targeting the VEGF pathway has led to great clinical improvements compared with the previous standard of care of laser therapy alone, as shown in studies such as RISE, RIDE, VIVID, VISTA, and DRCR. However, analyses have shown that many patients have inadequate response or are nonresponders to anti-VEGF therapy, demonstrating the need for additional therapies to more comprehensively treat this disease. Although corticosteroid treatments and implants have demonstrated some efficacy in adjunctive and supplemental treatment, the need to more adequately treat macular edema remains. Our knowledge of diabetic macular edema continues to grow, leading to new currently available and emerging pharmacotherapies to further enhance our treatment and restore vision in those affected by diabetic macular edema. This review will discuss the pathogenesis of diabetic macular edema and the pharmacologic therapies available for its treatment, including anti-VEGF, steroids, and newer therapies still in development, such as angiopoietin antagonists, Tie2 agonists, kallikrein inhibitors, interleukin inhibitors, and others. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  15. Effect of 3-substituted 1,4-benzodiazepin-2-ones on bradykinin-induced smooth muscle contraction.

    PubMed

    Virych, P A; Shelyuk, O V; Kabanova, T A; Khalimova, E I; Martynyuk, V S; Pavlovsky, V I; Andronati, S A

    2017-01-01

    Biochemical properties of 3-substituted 1,4-benzodiazepine determined by the characteristics of their chemical structure. Influence of 3-substituted 1,4-benzodiazepin-2-ones on maximal normalized rate and amplitudes of isometric smooth muscle contraction in rats was investigated. Compounds MX-1775 and MX-1828 demonstrated the similar inhibition effect on bradykinin-induced contraction of smooth muscle like competitive inhibitor des-arg9-bradykinin-acetate to bradykinin B2-receptors. MX-1626 demonstrated unidirectional changes of maximal normalized rate and force of smooth muscle that proportionally depended on bradykinin concentration in the range 10-10-10-6 M. MX-1828 has statistically significant decrease of normalized rate of smooth muscle contraction for bradykinin concentrations 10-10 and 10-9 M by 20.7 and 8.6%, respectively, but for agonist concentration 10-6 M, this parameter increased by 10.7% and amplitude was reduced by 29.5%. Compounds MX-2011, MX-1785 and MX-2004 showed no natural effect on bradykinin-induced smooth muscle contraction. Compounds MX-1775, MX-1828, MX-1626 were selected for further research of their influence on kinin-kallikrein system and pain perception.

  16. Effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugio, K.; Daly, J.W.

    1984-01-09

    The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin were investigated using (/sup 125/I) bovine serum albumin (/sup 125/I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E/sub 1/-induced response. The phosphodiesterase inhibitors, ZK 627ll, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited and prostaglandin E/sub 1/-induced response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 ..mu..g potentiated the bradykinin-induced plasma exudation, but hadmore » no effect at doses of 10 and 100 ..mu..g. 8-bromo cyclic AMP at all doses significantly inhibited the prostaglandin E/sub 1/-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin derive from activation of cyclic AMP-generating systems.« less

  17. Comparative studies of three cholesteryl ester transfer proteins and their interactions with known inhibitors

    PubMed Central

    Wang, Ziyun; Niimi, Manabu; Ding, Qianzhi; Liu, Zhenming; Wang, Ling; Zhang, Jifeng; Xu, Jun

    2017-01-01

    Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates bidirectional transfers of cholesteryl esters and triglycerides between low-density lipoproteins and high-density lipoproteins (HDL). Because low levels of plasma CETP are associated with increased plasma HDL-cholesterol, therapeutic inhibition of CETP activity is considered an attractive strategy for elevating plasma HDL-cholesterol, thereby hoping to reduce the risk of cardiovascular disease. Interestingly, only a few laboratory animals, such as rabbits, guinea pigs, and hamsters, have plasma CETP activity, whereas mice and rats do not. It is not known whether all CETPs in these laboratory animals are functionally similar to human CETP. In the current study, we compared plasma CETP activity and characterized the plasma lipoprotein profiles of these animals. Furthermore, we studied the three CETP molecular structures, physicochemical characteristics, and binding properties with known CETP inhibitors in silico. Our results showed that rabbits exhibited higher CETP activity than guinea pigs and hamsters, while these animals had different lipoprotein profiles. CETP inhibitors can inhibit rabbit and hamster CETP activity in a similar manner to human CETP. Analysis of CETP molecules in silico revealed that rabbit and hamster CETP showed many features that are similar to human CETP. These results provide novel insights into understanding CETP functions and molecular properties. PMID:28767652

  18. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.

    CE was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was a negative correlationmore » (r . -0.81) between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.

    CE (converting enzyme) was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was amore » negative correlation between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less

  1. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates.

    PubMed

    Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J

    2009-01-01

    beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.

  2. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the male and female genital tract.

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites', where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Suboptimal antiretroviral concentrations in the genital tract may result in compartmentalized viral replication, selection of resistant mutations and possible re-entry of wild-type/resistant virus into the systemic circulation. Therefore, achieving adequate antiretroviral exposure in the genital tract has implications for the prevention of sexual and vertical transmission of HIV. Penetration of antiretrovirals in the genital tract is expressed by accumulation ratios derived from the measurement of drug concentrations in time-matched seminal plasma/cervicovaginal fluid and plasma samples. Penetration varies by gender and may be drug (as opposed to class) specific with high interindividual variability. Concentrations in seminal plasma are highest for nucleoside analogues and lowest for protease inhibitors and efavirenz. Seminal accumulation of newer agents, raltegravir and maraviroc, is moderate (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitors [lamivudine/zidovudine/tenofovir/didanosine > stavudine/abacavir] > raltegravir > indinavir/maraviroc/nevirapine > efavirenz/protease inhibitors [amprenavir/atazanavir/darunavir > lopinavir/ritonavir > saquinavir] > enfuvirtide). In the female genital tract, the nucleoside analogues exhibit high accumulation ratios, whereas protease inhibitors have limited penetration; however, substantial variability exists between individuals and study centres. Second generation non-nucleoside reverse transcriptase inhibitor etravirine, and maraviroc and raltegravir, demonstrate effective accumulation in cervicovaginal secretions (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitor [zidovudine/lamivudine/didanosine > emtricitabine/tenofovir] > indinavir > maraviroc/raltegravir/darunavir/etravirine > nevirapine/abacavir > protease inhibitors [amprenavir/atazanavir/ritonavir] > lopinavir/stavudine/efavirenz > saquinavir).

  3. Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens.

    PubMed

    Tran, Mai L; McCarthy, Thomas W; Sun, Hao; Wu, Shu-Zon; Norris, Joanna H; Bezanilla, Magdalena; Vidali, Luis; Anderson, Charles T; Roberts, Alison W

    2018-01-15

    Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in these divergent plant lineages.

  4. Chemical biology tools to study pantetheinases of the vanin family.

    PubMed

    Schalkwijk, Joost; Jansen, Patrick

    2014-08-01

    VNNs (vanins) are pantetheinases that hydrolyse pantetheine to pantothenic acid and cysteamine. Studies with Vnn1-knockout mice have indicated a role of VNN-1 in inflammation and stress responses. VNN-1 is highly expressed in liver and is under transcriptional control of PPAR (peroxisome-proliferator-activated receptor)-α and nutritional status, suggesting a role in energy metabolism. Recently, the specific substrates and inhibitors of VNNs were obtained as tools to study VNN biology and to investigate whether VNNs are potential drug targets. Oral administration of RR6, a pantothenone with nanomolar anti-VNN potency, completely inhibited plasma VNN activity in rats and showed favourable pharmacokinetics. Prolonged RR6 administration caused alterations of hepatic and plasma lipid concentrations upon fasting. VNN inhibitors were found to protect pantothenamides (pantetheine analogues with antibiotic activity) against breakdown by plasma VNN, thereby preserving their antibiotic activity. Combination of pantothenamides with a VNN inhibitor showed a strong activity against Staphylococcus aureus and Staphylococcus pneumoniae when assayed in the presence of 10% serum. Recent studies have reported plasma stable pantothenamides that were active against the malaria parasite Plasmodium falciparum. We conclude that VNN inhibitors and pantothenate derivatives that target enzymes in the CoA (coenzyme A) biosynthetic pathway may have potential use as novel drugs in infection, inflammation and metabolism.

  5. LINE-1 methylation in plasma DNA as a biomarker of activity of DNA methylation inhibitors in patients with solid tumors.

    PubMed

    Aparicio, Ana; North, Brittany; Barske, Lindsey; Wang, Xuemei; Bollati, Valentina; Weisenberger, Daniel; Yoo, Christine; Tannir, Nizar; Horne, Erin; Groshen, Susan; Jones, Peter; Yang, Allen; Issa, Jean-Pierre

    2009-04-01

    Multiple clinical trials are investigating the use of the DNA methylation inhibitors azacitidine and decitabine for the treatment of solid tumors. Clinical trials in hematological malignancies have shown that optimal activity does not occur at their maximum tolerated doses but selection of an optimal biological dose and schedule for use in solid tumor patients is hampered by the difficulty of obtaining tumor tissue to measure their activity. Here we investigate the feasibility of using plasma DNA to measure the demethylating activity of the DNA methylation inhibitors in patients with solid tumors. We compared four methods to measure LINE-1 and MAGE-A1 promoter methylation in T24 and HCT116 cancer cells treated with decitabine treatment and selected Pyrosequencing for its greater reproducibility and higher signal to noise ratio. We then obtained DNA from plasma, peripheral blood mononuclear cells, buccal mucosa cells and saliva from ten patients with metastatic solid tumors at two different time points, without any intervening treatment. DNA methylation measurements were not significantly different between time point 1 and time point 2 in patient samples. We conclude that measurement of LINE-1 methylation in DNA extracted from the plasma of patients with advanced solid tumors, using Pyrosequencing, is feasible and has low within patient variability. Ongoing studies will determine whether changes in LINE-1 methylation in plasma DNA occur as a result of treatment with DNA methylation inhibitors and parallel changes in tumor tissue DNA.

  6. Renoprotective and blood pressure-lowering effect of dietary soy protein via protein kinase C beta II inhibition in a rat model of metabolic syndrome.

    PubMed

    Palanisamy, Nallasamy; Viswanathan, Periyasamy; Ravichandran, Mambakkam Katchapeswaran; Anuradha, Carani Venkataraman

    2010-01-01

    We studied whether substitution of soy protein for casein can improve insulin sensitivity, lower blood pressure (BP), and inhibit protein kinase C betaII (PKCbetaII) activation in kidney in an acquired model of metabolic syndrome. Adult male rats were fed 4 different diets: (i) starch (60%) and casein (20%) (CCD), (ii) fructose (60%) and casein (20%) (FCD), (iii) fructose (60%) and soy protein (20%) (FSD), and (iv) starch (60%) and soy protein (20%) (CSD). Renal function parameters, BP, pressor mechanisms, PKCbetaII expression, oxidative stress, and renal histology were evaluated after 60 days. FCD rats displayed insulin resistance and significant changes in body weight, kidney weight, urine volume, plasma and urine electrolytes accompanied by significant changes in renal function parameters compared with CCD rats. Elevated BP, plasma angiotensin-converting enzyme (ACE) activity, renal oxidative stress, and reduced nitrite (NO) and kallikrein activity were observed. Western blot analysis revealed enhanced renal expression of membrane-associated PKCbetaII in the FCD group. Histology showed fatty infiltration and thickening of glomeruli while urinary protein profile revealed a 5-fold increase in albumin. Substitution of soy protein for casein improved insulin sensitivity, lowered BP and PKCbetaII activation and restored renal function. Antioxidant action, inhibitory effect on ACE and PKCbetaII activation, and increased availability of kinins and NO could be contributing mechanisms for the benefits of dietary soy protein.

  7. In vitro degradation of neurotensin in human plasma.

    PubMed

    Lee, Y C; Uttenthal, L O; Smith, H A; Bloom, S R

    1986-01-01

    To study the degradation of neurotensin in plasma in vitro, fresh human plasma was incubated with neurotensin in the presence and absence of the peptidase inhibitors pepstatin A, EDTA, PMSF and aprotinin. The half-time of disappearance of neurotensin at 37 degrees C was calculated to be 226 min in vitro as opposed to 1.4 min in vivo when measured by radioimmunoassay with a C-terminally directed neurotensin antiserum. Both gel filtration and reversed phase high-pressure liquid chromatography (HPLC) showed that the main degradation product of neurotensin in human plasma in vitro was chromatographically and immunologically identical to neurotensin 1-8 and HPLC also demonstrated the formation of neurotensin 1-11. The loss of neurotensin incubated in human plasma in vitro was greatly reduced by EDTA but not by the other peptidase inhibitors tested. In this respect peptidase(s) responsible for the degradation of neurotensin in plasma differ from those present in brain homogenates. EDTA may be of importance in the preservation of neurotensin in plasma samples.

  8. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  9. New synthetic thrombin inhibitors: molecular design and experimental verification.

    PubMed

    Sinauridze, Elena I; Romanov, Alexey N; Gribkova, Irina V; Kondakova, Olga A; Surov, Stepan S; Gorbatenko, Aleksander S; Butylin, Andrey A; Monakov, Mikhail Yu; Bogolyubov, Alexey A; Kuznetsov, Yuryi V; Sulimov, Vladimir B; Ataullakhanov, Fazoyl I

    2011-01-01

    The development of new anticoagulants is an important goal for the improvement of thromboses treatments. The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. New compounds that are both effective direct thrombin inhibitors (the best K(I) was <1 nM) and strong anticoagulants in plasma (an IC(50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.

  10. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa.

    PubMed

    Lu, Genmin; DeGuzman, Francis R; Hollenbach, Stanley J; Karbarz, Mark J; Abe, Keith; Lee, Gail; Luan, Peng; Hutchaleelaha, Athiwat; Inagaki, Mayuko; Conley, Pamela B; Phillips, David R; Sinha, Uma

    2013-04-01

    Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.

  11. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  12. Angioedema attacks in patients with hereditary angioedema: Local manifestations of a systemic activation process.

    PubMed

    Hofman, Zonne L M; Relan, Anurag; Zeerleder, Sacha; Drouet, Christian; Zuraw, Bruce; Hack, C Erik

    2016-08-01

    Hereditary angioedema (HAE) caused by a deficiency of functional C1-inhibitor (C1INH) becomes clinically manifest as attacks of angioedema. C1INH is the main inhibitor of the contact system. Poor control of a local activation process of this system at the site of the attack is believed to lead to the formation of bradykinin (BK), which increases local vasopermeability and mediates angioedema on interaction with BK receptor 2 on the endothelium. However, several observations in patients with HAE are difficult to explain from a pathogenic model claiming a local activation process at the site of the angioedema attack. Therefore we postulate an alternative model for angioedema attacks in patients with HAE, which assumes a systemic, fluid-phase activation of the contact system to generate BK and its breakdown products. Interaction of these peptides with endothelial receptors that are locally expressed in the affected tissues rather than with receptors constitutively expressed by the endothelium throughout the whole body explains that such a systemic activation process results in local manifestations of an attack. In particular, BK receptor 1, which is induced on the endothelium by inflammatory stimuli, such as kinins and cytokines, meets the specifications of the involved receptor. The pathogenic model discussed here also provides an explanation for why angioedema can occur at multiple sites during an attack and why HAE attacks respond well to modest increases of circulating C1INH activity levels because inhibition of fluid-phase Factor XIIa and kallikrein requires lower C1INH levels than inhibition of activator-bound factors. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Clinical usefulness of a functional assay for the von Willebrand factor cleaving protease (ADAMTS 13) and its inhibitor in a patient with thrombotic thrombocytopenic purpura.

    PubMed

    Rick, M E; Austin, H; Leitman, S F; Krizek, D M; Aronson, D L

    2004-02-01

    Decreased von Willebrand factor cleaving protease activity (VWFCP, ADAMTS 13) leads to persistence of unusually large multimers of von Willebrand factor that bind to platelets, causing platelet aggregates, microangiopathic hemolysis, and thrombocytopenia in patients with thrombotic thrombocytopenic purpura (TTP). The clinical value of measuring ADAMTS 13 and its inhibitor is not fully defined; the case reported here illustrates the usefulness of the assay to help confirm the clinical diagnosis in a patient with other potential causes for thrombotic microangiopathy; the assay also helped in making treatment decisions. A patient with systemic lupus erythematosis (SLE) presented with fever and abdominal pain, thrombocytopenia, and anemia. Thrombotic microangiopathy was diagnosed by the appearance of schistocytes, decreasing platelet count, and evidence of hemolysis. ADAMTS 13 was decreased and an inhibitor was demonstrated in the patient's initial blood sample within 24 hr of admission. Plasma exchange was initiated, and serial assays showed increased ADAMTS 13 activity and decreased inhibitor after each plasma exchange; there was a rebound in inhibitor and a decrease in ADAMTS 13 activity prior to the next exchange that lessened over time. Increasing levels of protease activity correlated with clinical and laboratory improvement. Measurement of ADAMTS 13 activity and its inhibitor aided in the diagnosis of this complicated case of a patient with other potential causes for microangiopathic hemolysis. Subsequent levels correlated with the clinical course, and disappearance of the inhibitor indicated that long-term plasma exchange or other immunosuppressive treatment was not needed.

  14. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells

    PubMed Central

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate-buffered saline; SD: standard deviation; ARE: androgenresponsive element; KLK: kallikrein PMID:28216900

  15. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  16. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  17. Plasma Membrane Factor XIIIA Transglutaminase Activity Regulates Osteoblast Matrix Secretion and Deposition by Affecting Microtubule Dynamics

    PubMed Central

    Al-Jallad, Hadil F.; Myneni, Vamsee D.; Piercy-Kotb, Sarah A.; Chabot, Nicolas; Mulani, Amina; Keillor, Jeffrey W.; Kaartinen, Mari T.

    2011-01-01

    Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to ‘block –and-track’ enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics. PMID:21283799

  18. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  19. Variation in dose and plasma level of lamotrigine in patients discharged from a mental health trust.

    PubMed

    Douglas-Hall, Petrina; Dzahini, Olubanke; Gaughran, Fiona; Bile, Ahmed; Taylor, David

    2017-01-01

    The objectives of this study were to investigate the dose of lamotrigine when prescribed with an enzyme inhibitor or enzyme inducer in patients discharged from a mental health trust and to determine the corresponding lamotrigine plasma concentrations and the factors that may affect these. All patients discharged on lamotrigine between October 2007 and September 2012 were identified using the pharmacy dispensing database. We recorded demographic details, lamotrigine dose and plasma levels and coprescribed medication. During the designated period, 187 patients were discharged on lamotrigine of whom 117 had their plasma levels recorded. The mean lamotrigine daily dose was 226.1 mg (range 12.5-800 mg) and the mean plasma level 5.9 mg/l (range 0.8-18.1 mg/l). Gender, ethnicity, diagnosis and smoking status had no significant effect on dose or plasma levels. Patients taking an enzyme-inducing drug ( n = 6) had significantly lower plasma levels [mean (SD) 3.40 (1.54) mg/l] than those not taking enzyme inducers [ n = 111; 6.03 (3.13) mg/l; p = 0.043]. Patients taking an enzyme-inhibiting drug ( n = 23) had significantly higher levels [7.47 (3.99) mg/l] than those not taking an inhibitor [ n = 94; 5.52 (2.75) mg/l; p = 0.035]. No significant difference was found between the doses of lamotrigine in patients taking an enzyme inhibitor and those not taking one ( p = 0.376). No significant difference was found between the doses of lamotrigine in patients taking an enzyme-inducing drug and those not taking any ( p = 0.574). Current dosing recommendations indicate that lamotrigine doses should be halved in individuals taking enzyme inhibitors and doubled in those on enzyme inducers. In our survey these recommendations were rarely followed with the consequence that patients received too high or too low a dose of lamotrigine, respectively.

  20. Predictive blood plasma biomarkers for EGFR inhibitor-induced skin rash.

    PubMed

    Hichert, Vivien; Scholl, Catharina; Steffens, Michael; Paul, Tanusree; Schumann, Christian; Rüdiger, Stefan; Boeck, Stefan; Heinemann, Volker; Kächele, Volker; Seufferlein, Thomas; Stingl, Julia

    2017-05-23

    Epidermal growth factor receptor overexpression in human cancer can be effectively targeted by drugs acting as specific inhibitors of the receptor, like erlotinib, gefitinib, cetuximab and panitumumab. A common adverse effect is a typical papulopustular acneiform rash, whose occurrence and severity are positively correlated with overall survival in several cancer types. We studied molecules involved in epidermal growth factor receptor signaling which are quantifiable in plasma, with the aim of identifying biomarkers for the severity of rash. With a predictive value for the rash these biomarkers may also have a prognostic value for survival and disease outcome.The concentrations of amphiregulin, hepatocyte growth factor (HGF) and calcidiol were determined by specific enzyme-linked immunosorbent assays in plasma samples from 211 patients.We observed a significant inverse correlation between the plasma concentration of HGF and overall survival in patients with an inhibitor-induced rash (p-value = 0.0075; mean overall survival low HGF: 299 days, high HGF: 240 days) but not in patients without rash. The concentration of HGF was also significantly inversely correlated with severity of rash (p-value = 0.00124).High levels of HGF lead to increased signaling via its receptor MET, which can activate numerous pathways which are normally also activated by epidermal growth factor receptor. Increased HGF/MET signaling might compensate the inhibitory effect of epidermal growth factor receptor inhibitors in skin as well as tumor cells, leading to less severe skin rash and decreased efficacy of the anti-tumor therapy, rendering the plasma concentration of HGF a candidate for predictive biomarkers.

  1. 1-Arylsulfonyl-2-(Pyridylmethylsulfinyl) Benzimidazoles as New Proton Pump Inhibitor Prodrugs

    PubMed Central

    Shin, Jai Moo; Sachs, George; Cho, Young-moon; Garst, Michael

    2010-01-01

    New arylsulfonyl proton pump inhibitor (PPI) prodrug forms were synthesized. These prodrugs provided longer residence time of an effective PPI plasma concentration, resulting in better gastric acid inhibition. PMID:20032890

  2. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins

    PubMed Central

    Semeraro, Fabrizio; Ammollo, Concetta T.; Semeraro, Nicola; Colucci, Mario

    2009-01-01

    Background Thrombin is the main activator of the fibrinolysis inhibitor TAFI (thrombin activatable fibrinolysis inhibitor) and heightened clotting activation is believed to impair fibrinolysis through the increase of thrombin activatable fibrinolysis inhibitor activation. However, the enhancement of thrombin generation by soluble tissue factor was reported to have no effect on plasma fibrinolysis and it is not known whether the same is true for cell-associated tissue factor. The aim of this study was to evaluate the effect of tissue factor-expressing monocytes on plasma fibrinolysis in vitro. Design and Methods Tissue factor expression by human blood mononuclear cells (MNC) and monocytes was induced by LPS stimulation. Fibrinolysis was spectrophotometrically evaluated by measuring the lysis time of plasma clots containing LPS-stimulated or control cells and a low concentration of exogenous tissue plasminogen activator. Results LPS-stimulated MNC (LPS-MNC) prolonged fibrinolysis time as compared to unstimulated MNC (C-MNC) in contact-inhibited but not in normal citrated plasma. A significantly prolonged lysis time was observed using as few as 30 activated cells/μL. Fibrinolysis was also impaired when clots were generated on adherent LPS-stimulated monocytes. The antifibrinolytic effect of LPS-MNC or LPS-monocytes was abolished by an anti-tissue factor antibody, by an antibody preventing thrombin-mediated thrombin activatable fibrinolysis inhibitor activation, and by a TAFIa inhibitor (PTCI). Assays of thrombin and TAFIa in contact-inhibited plasma confirmed the greater generation of these enzymes in the presence of LPS-MNC. Finally, the profibrinolytic effect of unfractionated heparin and enoxaparin was markedly lower (~50%) in the presence of LPS-MNC than in the presence of a thromboplastin preparation displaying an identical tissue factor activity. Conclusions Our data indicate that LPS-stimulated monocytes inhibit fibrinolysis through a tissue factor-mediated enhancement of thrombin activatable fibrinolysis inhibitor activation and make clots resistant to the profibrinolytic activity of heparins, thus providing an additional mechanism whereby tissue factor-expressing monocytes/macrophages may favor fibrin accumulation and diminish the antithrombotic efficacy of heparins. PMID:19377079

  3. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    PubMed Central

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  4. Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues

    PubMed Central

    Kawaguchi, Makiko; Kataoka, Hiroaki

    2014-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases. PMID:25268161

  5. New Therapeutic Approaches in Diabetic Retinopathy

    PubMed Central

    Vaziri, Kamyar; Schwartz, Stephen G.; Relhan, Nidhi; Kishor, Krishna S.; Flynn Jr, Harry W.

    2015-01-01

    Diabetic retinopathy is a common microvascular complication of diabetes mellitus. It affects a substantial proportion of US adults over age 40. The condition is a leading cause of visual loss. Much attention has been given to expanding the role of current treatments along with investigating various novel therapies and drug delivery methods. In the treatment of diabetic macular edema (DME), intravitreal pharmacotherapies, especially anti-vascular endothelial growth factor (anti-VEGF) agents, have gained popularity. Currently, anti-VEGF agents are often used as first-line agents in center-involved DME, with recent data suggesting that among these agents, aflibercept leads to better visual outcomes in patients with worse baseline visual acuities. While photocoagulation remains the standard treatment for proliferative diabetic retinopathy (PDR), recent FDA approvals of ranibizumab and aflibercept in the management of diabetic retinopathy associated with DME may suggest a potential for pharmacologic treatments of PDR as well. Novel therapies, including small interfering RNAs, chemokines, kallikrein-kinin inhibitors, and various anti-angiogenic agents, are currently being evaluated for the management of diabetic retinopathy and DME. In addition to these strategies, novel drug delivery methods such as sustained-release implants and refillable reservoir implants are either under active evaluation or have recently gained FDA approval. This review provides an update on the novel developments in the treatment of diabetic retinopathy. PMID:26676668

  6. The N Domain of Human Angiotensin-I-converting Enzyme

    PubMed Central

    Anthony, Colin S.; Corradi, Hazel R.; Schwager, Sylva L. U.; Redelinghuys, Pierre; Georgiadis, Dimitris; Dive, Vincent; Acharya, K. Ravi; Sturrock, Edward D.

    2010-01-01

    Angiotensin-I-converting enzyme (ACE) plays a critical role in the regulation of blood pressure through its central role in the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface glycosylation of the protein. In order to investigate the role of glycosylation in the N domain and to create suitable forms for crystallization, we have investigated the importance of the 10 potential N-linked glycan sites using enzymatic deglycosylation, limited proteolysis, and mass spectrometry. A number of glycosylation mutants were generated via site-directed mutagenesis, expressed in CHO cells, and analyzed for enzymatic activity and thermal stability. At least eight of 10 of the potential glycan sites are glycosylated; three C-terminal sites were sufficient for expression of active N domain, whereas two N-terminal sites are important for its thermal stability. The minimally glycosylated Ndom389 construct was highly suitable for crystallization studies. The structure in the presence of an N domain-selective phosphinic inhibitor RXP407 was determined to 2.0 Å resolution. The Ndom389 structure revealed a hinge region that may contribute to the breathing motion proposed for substrate binding. PMID:20826823

  7. Enhanced contractility of the rat stomach during suppression of angiotensin converting enzyme by captopril in vitro.

    PubMed

    Rani, R; Rao, K S

    1991-04-01

    1. Intragastric pressure (IGP) was used as an index, of the effect of serosal application of captopril (SQ 14,225; D-3-mercapto-2-methylpropanoyl-L-proline) on the contractility of rat stomach in vitro. 2. Captopril, at concentrations greater than 0.3 microM, enhanced the spontaneous gastric motility (GM) in a concentration-dependent manner whereas concentrations less than 0.3 microM selectively potentiated 4 nM bradykinin (BK)-evoked gastric contractions without significantly affecting the spontaneous GM. 3. The kallikrein inhibitor, aprotinin (100 u ml-1), markedly antagonized the enhanced GM to 1.4 microM captopril and BK (4 nM)-evoked contractions, without affecting the contractions evoked by angiotensin 1 (10 nM) and acetylcholine (0.4 microM). The angiotensin II antagonist, saralasin (50 microM) failed to mimic aprotinin. 4. The enhanced GM to captopril was markedly inhibited by tetrodotoxin (1 microM), and partially inhibited by atropine (1 microM). 5. These results indicate that in vitro, captopril (greater than 0.3 microM) enhances gastric contractility through kininase/ACE inhibitory action, presumably by increasing the concentration of undegraded tissue kinins and substance P. This motor response seems to be predominantly due to activation of the cholinergic neurones but non-cholinergic excitatory neurones are also involved.

  8. Using Activated Clotting Time to Estimate Intraoperative Aprotinin Concentration

    PubMed Central

    Iwata, Yusuke; Okamura, Toru; Zurakowski, David; Jonas, Richard A.

    2010-01-01

    Background Use of aprotinin during cardiopulmonary bypass may be associated with renal dysfunction due to renal excretion of excess drug. We hypothesized that the difference between standard celite activated clotting time (ACT), which is prolonged by aprotinin and kaolin ACT, could provide an estimate of aprotinin blood level. Methods Fresh porcine blood was collected from six donor pigs and heparinized. Blood was stored at 4°C, rewarmed and aprotinin was added: 0, 100, 200, and 400 kallikrein inhibitor units/ml. Specimens were incubated at 37°C. Two pairs of ACT tubes (one celite and one kaolin) were measured at 37°C and 20°C using two HEMOCRON 401 machines. A generalized estimating equation (GEE) statistical approach was used to estimate actual aprotinin from differences in celite and kaolin ACT. Result There was a significant relationship of the form y = exp(a+bx) between aprotinin concentration and difference between celite and kaolin ACT at both 37°C (R2 = 0.858) and 20°C (R2 = 0.743). Conclusion The time difference between celite and kaolin ACT may be a simple and inexpensive method for measuring the blood level of aprotinin during cardiopulmonary bypass. This technique may improve patient-specific dosing of aprotinin and reduce the risk of postoperative renal complications. PMID:20093334

  9. The important role of von Willebrand factor in platelet-derived FVIII gene therapy for murine hemophilia A in the presence of inhibitory antibodies.

    PubMed

    Shi, Q; Schroeder, J A; Kuether, E L; Montgomery, R R

    2015-07-01

    Our previous studies have demonstrated that targeting FVIII expression to platelets results in FVIII storage together with von Willebrand factor (VWF) in platelet α-granules and that platelet-derived FVIII (2bF8) corrects the murine hemophilia A phenotype even in the presence of high-titer anti-FVIII inhibitory antibodies (inhibitors). To explore how VWF has an impact on platelet gene therapy for hemophilia A with inhibitors. 2bF8 transgenic mice in the FVIII(-/-) background (2bF8(tg+/-) F8(-/-) ) with varying VWF phenotypes were used in this study. Animals were analyzed by VWF ELISA, FVIII activity assay, Bethesda assay and tail clip survival test. Only 18% of 2bF8(tg+/-) F8(-/-) VWF(-/-) animals, in which VWF was deficient, survived the tail clip challenge with inhibitor titers of 3-8000 BU mL(-1) . In contrast, 82% of 2bF8(tg+/-) F8(-/-) VWF(+/+) mice, which had normal VWF levels, survived tail clipping with inhibitor titers of 10-50,000 BU mL(-1) . All 2bF8(tg+/-) F8(-/-) VWF(-/-) mice without inhibitors survived tail clipping and no VWF(-/-) F8(-/-) mice survived this challenge. Because VWF is synthesized by endothelial cells and megakaryocytes and is distributed in both plasma and platelets in peripheral blood, we further investigated the effect of each compartment of VWF on platelet-FVIII gene therapy for hemophilia A with inhibitors. In the presence of inhibitors, 42% of animals survived tail clipping in the group with plasma-VWF and 50% survived in the platelet-VWF group. VWF is essential for platelet gene therapy for hemophilia A with inhibitors. Both platelet-VWF and plasma-VWF are required for optimal platelet-derived FVIII gene therapy for hemophilia A in the presence of inhibitors. © 2015 International Society on Thrombosis and Haemostasis.

  10. Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease.

    PubMed

    Denadai-Souza, Alexandre; Bonnart, Chrystelle; Tapias, Núria Solà; Marcellin, Marlène; Gilmore, Brendan; Alric, Laurent; Bonnet, Delphine; Burlet-Schiltz, Odile; Hollenberg, Morley D; Vergnolle, Nathalie; Deraison, Céline

    2018-05-18

    While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.

  11. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies.

    PubMed

    Patel, Seema; Rauf, Abdur; Khan, Haroon; Abu-Izneid, Tareq

    2017-10-01

    Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Plasminogen activator inhibitor-2 in patients with monocytic leukemia.

    PubMed

    Scherrer, A; Kruithof, E K; Grob, J P

    1991-06-01

    Plasma and tumor cells from 103 patients with leukemia or lymphoma at initial presentation were investigated for the presence of plasminogen activator inhibitor-2 (PAI-2) antigen, a potent inhibitor of urokinase. PAI-2 was detected in plasma and leukemic cells of the 21 patients with leukemia having a monocytic component [acute myelomonocytic (M4), acute monoblastic (M5), and chronic myelomonocytic leukemias], and in the three patients with acute undifferentiated myeloblastic leukemia (M0). In contrast, this serine protease inhibitor was undetectable in 79 patients with other subtypes of acute myeloid leukemia or other hematological malignancies. Serial serum PAI-2 determinations in 16 patients with acute leukemia at presentation, during therapy, remission, and relapse revealed that in the five patients with M4-M5, elevated PAI-2 levels rapidly normalized under therapy and during remission, but increased again in the patients with a relapse associated with an M4-M5 phenotype. Thus, PAI-2 seems to be a marker highly specific for the active stages of monocytic leukemia, i.e. presentation and relapse. The presence of PAI-2 in the plasma and cells of patients with M0 may give a clue to a monocytic origin of these cells.

  13. Extracorporeal adsorption of anti-factor VIII allo-antibodies on randomly functionalized polystyrene resins.

    PubMed

    Huguet, Hélène-Céline; Lasne, Dominique; Rothschild, Chantal; Siali, Rosa; Jozefonvicz, Jacqueline

    2004-02-01

    The occurrence of anti-factor VIII (FVIII) allo-antibodies is a severe complication of the treatment of haemophilia A patients, leading to the inhibition of transfused FVIII activity. The effective elimination of these inhibitory antibodies plays a decisive role in the management of affected patients. To achieve this, immunoadsorption devices employing synthetic adsorbers, which selectively eliminate inhibitors, are of interest in the treatment strategy of haemophilia A patients with inhibitors. Adsorbers consisting of polystyrene-based beads substituted with sulphonate and L-tyrosyl methylester groups, which mimic part of epitope of FVIII molecule recognized by inhibitors, exhibit selective binding capacities towards anti-FVIII antibodies. The adsorption of FVIII inhibitors was investigated by simulating an extracorporeal circulation of haemophilic plasma over these functionalized resins. These innovative adsorbers are able to remove around 25% of anti-FVIII antibodies in 15 minutes depending on the plasma tested. Furthermore, they do not modify the amount of essential plasmatic proteins or residual immunoglobulins G. Experiments which were carried out using different plasmas with various inhibitor titres demonstrate a good reproducibility regarding the adsorption capacity of the synthetic resin. The characteristics of adsorption are similar on either native or regenerated resins. Both the purely synthetic nature of the resin and its easy processability demonstrate the real advantages over currently available protocols. This synthetic adsorber is a major technological advance in selective removal of FVIII inhibitory antibodies.

  14. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques.

    PubMed

    Ling, Binhua; Piatak, Michael; Rogers, Linda; Johnson, Ann-Marie; Russell-Lodrigue, Kasi; Hazuda, Daria J; Lifson, Jeffrey D; Veazey, Ronald S

    2014-01-01

    Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  15. The Aldosterone Synthase Inhibitor FAD286 is Suitable for Lowering Aldosterone Levels in ZDF Rats but not in db/db Mice.

    PubMed

    Hofmann, Anja; Brunssen, Coy; Peitzsch, Mirko; Balyura, Mariya; Mittag, Jennifer; Frenzel, Annika; Jannasch, Anett; Brown, Nicholas F; Weldon, Steven M; Gueneva-Boucheva, Kristina K; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning

    2017-06-01

    Inhibition of aldosterone synthase is an alternative treatment option to mineralocorticoid receptor antagonism to prevent harmful aldosterone actions. FAD286 is one of the best characterized aldosterone synthase inhibitors to date. FAD286 improves glucose tolerance and increases glucose-stimulated insulin secretion in obese and diabetic ZDF rats. However, there is limited knowledge about the dose-dependent effects of FAD286 on plasma aldosterone, corticosterone, and 11-deoxycorticosterone in ZDF rats and in db / db mice, a second important rodent model of obesity and type 2 diabetes. In addition, effects of FAD286 on plasma steroids in mice and rats are controversial. Therefore, obese Zucker diabetic fatty (ZDF) rats and db / db mice were treated with FAD286 for up to 15 weeks and plasma steroids were evaluated using highly sensitive liquid chromatography-tandem mass spectrometry. In ZDF rats, FAD286 (10 mg/kg/d) treatment resulted in nearly complete disappearance of plasma aldosterone while corticosterone levels remained unaffected and those of 11-deoxycorticosterone were increased ~4-fold compared to vehicle control. A lower dose of FAD286 (3 mg/kg / d) showed no effect on plasma aldosterone or corticosterone, but 11-deoxycorticosterone was again increased ~4-fold compared to control. In contrast to ZDF rats, a high dose of FAD286 (40 mg/kg/d) did not affect plasma aldosterone levels in db / db mice although 11-deoxycorticosterone increased ~2.5-fold. A low dose of FAD286 (10 mg/kg/d) increased plasma aldosterone without affecting corticosterone or 11-deoxycorticosterone. In conclusion, the aldosterone synthase inhibitor, FAD286, lowers plasma aldosterone in obese ZDF rats, but not in obese db / db mice. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Effects of miglitol, vildagliptin, or their combination on serum insulin and peptide YY levels and plasma glucose, cholecystokinin, ghrelin, and obestatin levels.

    PubMed

    Aoki, Kazutaka; Kamiyama, Hiroshi; Masuda, Kiyomi; Kamiko, Kazunari; Noguchi, Yoshihiko; Tajima, Kazuki; Terauchi, Yasuo

    2014-01-01

    We previously reported that combination therapy with an α-glucosidase inhibitor (αGI) and a dipeptidyl peptidase-4 (DPP-4) inhibitor increased active glucagon-like peptide-1 (GLP-1) levels and decreased total glucose-dependent insulinotropic polypeptide (GIP) levels, compared with monotherapy, in non-diabetic men. However, the peptide YY (PYY), cholecystokinin (CCK), ghrelin, and obestatin levels in patients receiving a combination of αGIs and DPP-4 inhibitors have not been previously reported. We evaluated the effect of miglitol, vildagliptin, or their combination on these parameters. Miglitol and/or vildagliptin were administered according to four different intake schedules in eleven non-diabetic men (C: no drug, M: miglitol; V: vildagliptin, M+V: miglitol+vildagliptin). Blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. The plasma glucose, serum insulin, serum total PYY (PYY1-36 and PYY3-36), plasma CCK, plasma active ghrelin, and plasma obestatin levels were measured. The area under the curve (AUC) of the serum total PYY level in the M group was significantly greater than that in the C group, and the AUC of the serum total PYY level in the M+V group was significantly lower than that in the M group. The combination therapy did not change the AUC of the plasma CCK, plasma active ghrelin, plasma obestatin, and ghrelin/obestatin levels, compared with the control. The results of our study suggested that combination therapy with miglitol and vildagliptin had no effect on appetite regulation hormones, such as total PYY, CCK, active ghrelin, and obestatin, compared with the levels in the control group.

  17. ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors.

    PubMed

    Danilov, Sergei M; Tovsky, Stan I; Schwartz, David E; Dull, Randal O

    2017-07-01

    Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient's response. To investigate whether interindividual variability in the response to ACE inhibitors is explained by the "ACE phenotype"-for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient's blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Due to the fact that "20% of patients do not respond to ACEI by blood pressure drop," the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.

  18. A case of hereditary angioneurotic oedema, successfully treated with ε-aminocaproic acid. Studies on C'1 esterase inhibitor, C'1 activation, plasminogen level and histamine metabolism

    PubMed Central

    Lundh, B.; Laurell, Anna-Brita; Wetterqvist, H.; White, T.; Granerus, G.

    1968-01-01

    A patient with clinical and laboratory findings characteristic of hereditary angioneurotic oedema was investigated. The patient was observed for a period of 5 weeks, during which he had four attacks. ε-Aminocaproic acid (EACA) was then given continuously for 5 months, during which time the patient had no attacks. Attacks reappeared on withdrawal of EACA. Trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCA®) was found to be equally effective in later therapeutic trials. C'1 esterase inhibitor was found in low concentration in defibrinated plasma also during attacks. ε-Aminocaproic acid (EACA) produced no significant change of the inhibitor content. C'1 esterase inhibitor disappeared on incubation of defibrinated plasma from the patient at 37°C for 40 min, and C'1 esterase was generated. The generation time of C'1 esterase increased with increasing the concentration of EDTA in the test solution. The C'1 esterase inhibitor content of defibrinated plasma from the patient, varied with the C'1 esterase generation time, the coefficient of correlation being higher in plasma sampled before treatment with EACA. Plasminogen and α2-macroglobulin were within the normal ranges, also during attacks. EACA markedly depressed the plasminogen level, which rapidly returned to normal on withdrawal of the drug. The studies on histamine metabolism revealed no significant changes with the exception of the urinary excretion of histamine, which was moderately increased towards the end of the period studied. On the days the patient received EACA the urine never contained 1-methylimidazole-5-acetic acid which was present in all the other specimens of urine examined. The basal gastric acid secretion was increased. PMID:5701955

  19. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo*

    PubMed Central

    Durham, Timothy B.; Toth, James L.; Klimkowski, Valentine J.; Cao, Julia X. C.; Siesky, Angela M.; Alexander-Chacko, Jesline; Wu, Ginger Y.; Dixon, Jeffrey T.; McGee, James E.; Wang, Yong; Guo, Sherry Y.; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J.; Calvert, Nathan A.; Coghlan, Michael J.; Sindelar, Dana K.; Christe, Michael; Kiselyov, Vladislav V.; Michael, M. Dodson; Sloop, Kyle W.

    2015-01-01

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE−/− mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance. PMID:26085101

  20. Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.

    PubMed

    Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

    2007-12-01

    Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

  1. Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice.

    PubMed

    Bell, Thomas A; Graham, Mark J; Lee, Richard G; Mullick, Adam E; Fu, Wuxia; Norris, Dan; Crooke, Rosanne M

    2013-10-01

    Due to their ability to promote positive effects across all of the lipoprotein classes, cholesteryl ester transfer protein (CETP) inhibitors are currently being developed as therapeutic agents for cardiovascular disease. In these studies, we compared an antisense oligonucleotide (ASO) inhibitor of CETP to the CETP small molecule inhibitor anacetrapib. In hyperlipidemic CETP transgenic (tg) mice, both drugs provided comparable reductions in total plasma cholesterol, decreases in CETP activity, and increases in HDL cholesterol. However, only mice treated with the antisense inhibitor showed an enhanced effect on macrophage reverse cholesterol transport, presumably due to differences in HDL apolipoprotein composition and decreases in plasma triglyceride. Additionally, the ASO-mediated reductions in CETP mRNA were associated with less accumulation of aortic cholesterol. These preliminary findings suggest that CETP ASOs may represent an alternative means to inhibit that target and to support their continued development as a treatment for cardiovascular disease in man.

  2. Plasma oxidative stress level of IgA nephropathy in children and the effect of early intervention with angiotensin-converting enzyme inhibitors.

    PubMed

    Pei, Yuxin; Xu, Yuanyuan; Ruan, Jingwei; Rong, Liping; Jiang, Mengjie; Mo, Ying; Jiang, Xiaoyun

    2016-01-01

    The purpose of this study was to investigate the change of the plasma oxidative stress level in children with IgA nephropathy (IgAN) and analyze its relativity to the clinical and pathological classification. To discuss the early effects of angiotensin-converting enzyme inhibitors (ACEIs) on the plasma oxidative stress level in children with IgA nephropathy. Thirty-eight children with IgAN were divided into groups according to their clinical features, pathologic grades, and treatments. Twenty healthy children were included in the control group. The plasma level of advanced oxidation protein products (AOPPs), malonaldehyde (MDA), and superoxide dismutase (SOD) were detected. The plasma level of oxidative stress was significantly increased in the IgAN group, including a higher plasma level of AOPP and MDA and a lower plasma level of SOD. After treatment, the plasma level of oxidative stress was significantly decreased in the ACEI group. The children with IgAN had an increase in the plasma level of oxidative stress, expressed as an increased plasma level of AOPP and MDA and a decreased plasma level of SOD. Oxidative stress was associated with the progression of IgAN in children. Early treatment with ACEI therapy can significantly reduce the plasma level of oxidative stress in children with IgAN. © The Author(s) 2016.

  3. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII.

    PubMed

    Rijken, D C; Abdul, S; Malfliet, J J M C; Leebeek, F W G; Uitte de Willige, S

    2016-07-01

    Essentials Factor XIIIa inhibits fibrinolysis by forming fibrin-fibrin and fibrin-inhibitor cross-links. Conflicting studies about magnitude and mechanisms of inhibition have been reported. Factor XIIIa most strongly inhibits lysis of mechanically compacted or retracted plasma clots. Cross-links of α2-antiplasmin to fibrin prevent the inhibitor from being expelled from the clot. Background Although insights into the underlying mechanisms of the effect of factor XIII on fibrinolysis have improved considerably in the last few decades, in particular with the discovery that activated FXIII (FXIIIa) cross-links α2 -antiplasmin to fibrin, the topic remains a matter of debate. Objective To elucidate the mechanisms of the antifibrinolytic effect of FXIII. Methods and Results Platelet-poor plasma clot lysis, induced by the addition of tissue-type plasminogen activator, was measured in the presence or absence of a specific FXIIIa inhibitor. Both in a turbidity assay and in a fluorescence assay, the FXIIIa inhibitor had only a small inhibitory effect: 1.6-fold less tissue-type plasminogen activator was required for 50% clot lysis in the presence of the FXIIIa inhibitor. However, when the plasma clot was compacted by centrifugation, the FXIIIa inhibitor had a strong inhibitory effect, with 7.7-fold less tissue-type plasminogen activator being required for 50% clot lysis in the presence of the FXIIIa inhibitor. In both experiments, the effects of the FXIIIa inhibitor were entirely dependent on the cross-linking of α2 -antiplasmin to fibrin. The FXIIIa inhibitor reduced the amount of α2 -antiplasmin present in the compacted clots from approximately 30% to < 4%. The results were confirmed with experiments in which compaction was achieved by platelet-mediated clot retraction. Conclusions Compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect of FXIII. This is explained by the cross-linking of α2 -antiplasmin to fibrin by FXIIIa, which prevents the plasmin inhibitor from being fully expelled from the clot during compaction/retraction. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  4. The -675 4G/5G polymorphism at the Plasminogen Activator Inhibitor 1 (PAI-1) gene modulates plasma Plasminogen Activator Inhibitor 1 concentrations in response to dietary fat consumption.

    PubMed

    Pérez-Martínez, P; Adarraga-Cansino, M D; Fernández de la Puebla, R A; Blanco-Molina, A; Delgado-Lista, J; Marín, C; Ordovás, J M; López-Miranda, J; Pérez-Jiménez, F

    2008-04-01

    The objective of the study was to determine whether Plasminogen Activator Inhibitor Type 1 (PAI-1) -675 4G/5G polymorphism is associated with the response of functional plasma PAI-1 concentrations to changes in the amount and quality of dietary fat in healthy subjects. PAI-1 is the major inhibitor of fibrinolysis, and a lower level of fibrinolytic activity could be implicated in an increased risk of IHD. Fifty-nine healthy Spanish volunteers (ten 4G/4G homozygotes, twenty-eight heterozygotes 4G/5G and twenty-one 5G/5G homozygotes) consumed three diets for periods of 4 weeks each: a SFA-rich diet (38 % fat, 20 % SFA), followed by a carbohydrate-rich diet (30 % fat, 55 % carbohydrate) and a MUFA-rich diet (38 % fat, 22 % MUFA) according to a randomized crossover design. At the end of each dietary period plasma lipid and functional plasma PAI-1 concentrations were determined. Subjects carrying the 4G allele (4G/4G and 4G/5G) showed a significant decrease in PAI-1 concentrations after the MUFA diet, compared with the SFA-rich and carbohydrate-rich diets (genotype x diet interaction: P = 0.028). 5G/5G homozygotes had the lowest plasma PAI-1 concentrations compared with 4G/4G and 4G/5G subjects (genotype: P = 0.002), without any changes as a result of the amount and the quality of the dietary fat. In summary, no differences in plasma PAI-1 concentration response were found after changes in dietary fat intake in 5G/5G homozygotes, although these subjects displayed the lowest concentrations of PAI-1. On the other hand, carriers of the 4G allele are more likely to hyper-respond to the presence of MUFA in the diet because of a greater decrease in PAI-1 concentrations.

  5. Rumen papillae morphology of beef steers relative to gain and feed intake and the association of volatile fatty acids with kallikrein gene expression

    USDA-ARS?s Scientific Manuscript database

    Feed costs are the most expensive input in beef production. Improvement in the feed efficiency of beef cattle would lower feed inputs and reduce the cost of production. The rumen epithelium is responsible for absorption and metabolism of nutrients and microbial by-products, and may play a significan...

  6. Heterogeneity and lability of endogenous digitalis-like substances in the plasma of the toad, Bufo marinus.

    PubMed

    Butler, V P; Morris, J F; Akizawa, T; Matsukawa, M; Keating, P; Hardart, A; Furman, I

    1996-08-01

    Three major groups of endogenous digitalis-like substances (EDLS) have been identified in the plasma of the toad, Bufo marinus. One group of compounds, present in fresh plasma, is composed of chromatographically homogeneous polar conjugates, principally bufadienolide 3-sulfates, which exhibit relatively weak Na(+)-K(+)-adenosinetriphosphatase (ATPase) inhibitory activity. A second and larger group of compounds, also found in fresh plasma, includes chromatographically heterogeneous conjugates, which are effective inhibitors of Na(+)-K(+)-ATPase; these compounds possess properties similar to those of bufotoxins. The third group of EDLS consists of free unconjugated bufadienolides, which are also effective Na(+)-K(+)-ATPase inhibitors. These unconjugated bufadienolides are present in relatively low concentrations in fresh toad plasma, but appreciable quantities are enzymatically generated from conjugates (believed to consist principally of bufotoxins) during the in vitro incubation of plasma. We suggest that the extent to which circulating polar EDLS are enzymatically deconjugated in vivo may be important in the regulation of the digitalis-sensitive Na(+)-K(+)-ATPase of toad brain, the only known digitalis-sensitive Na(+)-K(+)-ATPase in the toad.

  7. Acyl guanidine inhibitors of β-secretase (BACE-1): optimization of a micromolar hit to a nanomolar lead via iterative solid- and solution-phase library synthesis.

    PubMed

    Gerritz, Samuel W; Zhai, Weixu; Shi, Shuhao; Zhu, Shirong; Toyn, Jeremy H; Meredith, Jere E; Iben, Lawrence G; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Tebben, Andrew J; Muckelbauer, Jodi K; Camac, Daniel M; Metzler, William; Cook, Lynda S; Padmanabha, Ramesh; Lentz, Kimberley A; Sofia, Michael J; Poss, Michael A; Macor, John E; Thompson, Lorin A

    2012-11-08

    This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.

  8. Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didanosine, stavudine, zidovudine and abacavir in human plasma by reversed phase high performance liquid chromatography.

    PubMed

    Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M

    2005-02-25

    A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.

  9. Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans.

    PubMed Central

    Skene, D J; Bojkowski, C J; Arendt, J

    1994-01-01

    1. Acute administration of the specific serotonin uptake inhibitor, fluvoxamine (100 mg at 16.00 h), markedly increased nocturnal plasma melatonin concentrations, with high levels extending into the morning hours. 2. Acute administration of the noradrenaline uptake inhibitor, desipramine (DMI) (100 mg at 16.00 h), increased evening plasma melatonin concentrations. 3. Both drug treatments increased the duration of melatonin secretion, fluvoxamine significantly delaying the offset time and DMI significantly advancing the onset time. 4. The stimulatory effect of DMI on plasma melatonin was mirrored by increased urinary 6-sulphatoxymelatonin (aMT6s) excretion. 5. On the contrary, there was no correlation between plasma melatonin and urinary aMT6s concentrations following fluvoxamine treatment, suggesting that fluvoxamine may inhibit the metabolism of melatonin. 6. Treatment with DMI increased plasma cortisol concentrations in the evening and early morning, treatment with fluvoxamine increased plasma cortisol at 03.00 h, 10.00 h and 11.00 h. 7. The drug treatments affected different aspects of the nocturnal plasma melatonin profile suggesting that the amplitude of the melatonin rhythm may depend upon serotonin availability and/or melatonin metabolism whilst the onset of melatonin production depends upon noradrenaline availability. PMID:8186063

  10. Synthetic serine elastase inhibitor reduces cigarette smoke-induced emphysema in guinea pigs.

    PubMed

    Wright, Joanne L; Farmer, Stephen G; Churg, Andrew

    2002-10-01

    To test whether a serine elastase inhibitor could prevent or reduce emphysema, we exposed guinea pigs to cigarette smoke acutely, or daily for 6 months, and treated some animals with the neutrophil elastase inhibitor ZD0892. Acute smoke exposure increased lavage neutrophils and increased desmosine and hydroxyproline, measures of elastin and collagen breakdown; all these measures were reduced by ZD0892. Long-term smoke exposure produced emphysema and increases in lavage neutrophils, desmosine, hydroxyproline, and plasma tumor necrosis factor alpha (TNF-alpha). ZD0892 treatment returned lavage neutrophils, desmosine, and hydroxyproline levels to control values, and decreased airspace enlargement by 45% and TNF-alpha by 30%. Animals exposed to smoke for 4 months and then to smoke plus ZD0892 for 2 months were not protected against emphysema. Mice exposed to smoke showed increases in gene expression of neutrophil chemoattractant macrophage inflammatory protein-2, macrophage chemoattractant protein-1, and TNF-alpha at 2 hours along with increased plasma TNF-alpha; ZD0892 prevented the increases in macrophage inflammatory protein-2 and macrophage chemoattractant protein-1 expression and reduced plasma TNF-alpha levels to baseline. These data demonstrate that a serine elastase inhibitor ameliorates the inflammatory and destructive effects of cigarette smoke, and that these effects are mediated in part by neutrophils and by smoke-driven TNF-alpha production.

  11. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The role of substance P release in the lung with esophageal acid.

    PubMed

    Kohrogi, H; Hamamoto, J; Kawano, O; Iwagoe, H; Fujii, K; Hirata, N; Ando, M

    2001-12-03

    To investigate whether tachykinins are released in the airways by stimulating the esophagus, airway plasma extravasation induced by intraesophageal hydrochloric acid (HCl) in the presence or absence of the neutral endopeptidase (NEP) inhibitor phosphoramidon and the neurokinin-1-receptor antagonist FK888 was studied in anesthetized guinea pigs. Airway plasma extravasation also was studied in the presence of the NEP inhibitor in guinea pigs pretreated with capsaicin or bilateral vagotomy. Propranolol and atropine were used in all animals to block adrenergic and cholinergic nerve effects. Airway plasma leakage was evaluated by measuring extravasated Evans blue dye. One normal HCl infusion into the esophagus significantly increased plasma extravasation in the trachea. Phosphoramidon significantly potentiated plasma extravasation induced by HCl infusion into the esophagus in the trachea and main bronchi, and FK888 significantly inhibited extravasation in a dose-related manner. In capsaicin-treated animals, airway plasma extravasation was completely inhibited even in the presence of phosphoramidon. Tracheal plasma extravasation potentiated by phosphoramidon was significantly inhibited in the bilaterally vagotomized animals. These results suggest that locally acting substances are released by intraesophageal HCl stimulation that cause airway plasma extravasation. These substances are generated through activation of neural pathways, including some that traffic through the vagus nerves that link the esophagus or airways.

  13. The CYP2C8 inhibitor gemfibrozil does not affect the pharmacokinetics of zafirlukast.

    PubMed

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2011-02-01

    Gemfibrozil, a strong inhibitor of cytochrome P450 (CYP) 2C8 in vivo, was recently found to markedly increase the plasma concentrations of montelukast in humans. Like montelukast, zafirlukast is a substrate of CYP2C9 and CYP3A4 and a potent inhibitor of CYP2C8 in vitro. To investigate the contribution of CYP2C8 to the metabolism of zafirlukast in vivo, we studied the effect of gemfibrozil on the pharmacokinetics of zafirlukast. Ten healthy subjects in a randomized cross-over study took gemfibrozil 600 mg or placebo twice daily for 5 days, and on day 3, a single oral dose of 20 mg zafirlukast. The plasma concentrations of zafirlukast were measured for 72 h postdose. The mean total area under the plasma concentration-time curve of zafirlukast during the gemfibrozil phase was 102% (geometric mean ratio; 95% confidence interval 89-116%) of that during the placebo phase. Furthermore, there were no statistically significant differences in the peak plasma concentration, time of peak concentration, or elimination half-life of zafirlukast between the phases. Gemfibrozil has no effect on the pharmacokinetics of zafirlukast, indicating that CYP2C8 does not play a significant role in the elimination of zafirlukast.

  14. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  15. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  16. Hereditary angioedema: The plasma contact system out of control.

    PubMed

    De Maat, S; Hofman, Z L M; Maas, C

    2018-06-19

    The plasma contact system contributes to thrombosis in experimental models. Even though our standard blood coagulation tests are prolonged when plasma lacks contact factors, this enzyme system appears to have a minor (if any) role in haemostasis. In this review, we will explore the clinical phenotype of C1 esterase inhibitor (C1-INH) deficiency. C1-INH is the key plasma inhibitor of the contact system enzymes and its deficiency causes hereditary angioedema (HAE). This inflammatory disorder is hallmarked by recurrent aggressive attacks of tissue swelling that occur at unpredictable locations throughout the body. Bradykinin, which is considered a byproduct of the plasma contact system during in vitro coagulation, is the main disease mediator in HAE. Surprisingly, there is little evidence for thrombotic events in HAE patients, suggesting a mechanistic uncoupling from the intrinsic pathway of coagulation. In addition, it is questionable whether a surface is responsible for contact system activation in HAE. In this review, we will discuss the clinical phenotype, disease modifiers and diagnostic challenges of HAE. We will subsequently describe the underlying biochemical mechanisms and contributing disease mediators. Furthermore, we will review three types of HAE, which are not caused by C1 esterase inhibitor deficiency. Finally, we will propose a central enzymatic axis that we hypothesize to be responsible for bradykinin production in health and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells

    PubMed Central

    Bach, Thomas J

    2013-01-01

    We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL. PMID:24555083

  18. PEGylated DX-1000: pharmacokinetics and antineoplastic activity of a specific plasmin inhibitor.

    PubMed

    Devy, Laetitia; Rabbani, Shafaat A; Stochl, Mark; Ruskowski, Mary; Mackie, Ian; Naa, Laurent; Toews, Mark; van Gool, Reinoud; Chen, Jie; Ley, Art; Ladner, Robert C; Dransfield, Daniel T; Henderikx, Paula

    2007-11-01

    Novel inhibitors of the urokinase-mediated plasminogen (plg) activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pln) (K(i) = 99 pM). When tested in vitro, DX-1000 blocks plasmin-mediated pro-matrix metalloproteinase-9 (proMMP-9) activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor ( approximately 7 kDa) exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP)-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA) and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogen-activated protein kinase (MAPK) in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.

  19. Single nucleotide polymorphisms in an intergenic chromosome 2q region associated with tissue factor pathway inhibitor plasma levels and venous thromboembolism.

    PubMed

    Dennis, J; Truong, V; Aïssi, D; Medina-Rivera, A; Blankenberg, S; Germain, M; Lemire, M; Antounians, L; Civelek, M; Schnabel, R; Wells, P; Wilson, M D; Morange, P-E; Trégouët, D-A; Gagnon, F

    2016-10-01

    Essentials Tissue factor pathway inhibitor (TFPI) regulates the blood coagulation cascade. We replicated previously reported linkage of TFPI plasma levels to the chromosome 2q region. The putative causal locus, rs62187992, was associated with TFPI plasma levels and thrombosis. rs62187992 was marginally associated with TFPI expression in human aortic endothelial cells. Click to hear Ann Gil's presentation on new insights into thrombin activatable fibrinolysis inhibitor SUMMARY: Background Tissue factor pathway inhibitor (TFPI) regulates fibrin clot formation, and low TFPI plasma levels increase the risk of arterial thromboembolism and venous thromboembolism (VTE). TFPI plasma levels are also heritable, and a previous linkage scan implicated the chromosome 2q region, but no specific genes. Objectives To replicate the finding of the linkage region in an independent sample, and to identify the causal locus. Methods We first performed a linkage analysis of microsatellite markers and TFPI plasma levels in 251 individuals from the F5L Family Study, and replicated the finding of the linkage peak on chromosome 2q (LOD = 3.06). We next defined a follow-up region that included 112 603 single nucleotide polymorphisms (SNPs) under the linkage peak, and meta-analyzed associations between these SNPs and TFPI plasma levels across the F5L Family Study and the Marseille Thrombosis Association (MARTHA) Study, a study of 1033 unrelated VTE patients. SNPs with false discovery rate q-values of < 0.10 were tested for association with TFPI plasma levels in 892 patients with coronary artery disease in the AtheroGene Study. Results and Conclusions One SNP, rs62187992, was associated with TFPI plasma levels in all three samples (β = + 0.14 and P = 4.23 × 10 -6 combined; β = + 0.16 and P = 0.02 in the F5L Family Study; β = + 0.13 and P = 6.3 × 10 -4 in the MARTHA Study; β = + 0.17 and P = 0.03 in the AtheroGene Study), and contributed to the linkage peak in the F5L Family Study. rs62187992 was also associated with clinical VTE (odds ratio 0.90, P = 0.03) in the INVENT Consortium of > 7000 cases and their controls, and was marginally associated with TFPI expression (β = + 0.19, P = 0.08) in human aortic endothelial cells, a primary site of TFPI synthesis. The biological mechanisms underlying these associations remain to be elucidated. © 2016 International Society on Thrombosis and Haemostasis.

  20. Enhanced contractility of the rat stomach during suppression of angiotensin converting enzyme by captopril in vitro.

    PubMed Central

    Rani, R.; Rao, K. S.

    1991-01-01

    1. Intragastric pressure (IGP) was used as an index, of the effect of serosal application of captopril (SQ 14,225; D-3-mercapto-2-methylpropanoyl-L-proline) on the contractility of rat stomach in vitro. 2. Captopril, at concentrations greater than 0.3 microM, enhanced the spontaneous gastric motility (GM) in a concentration-dependent manner whereas concentrations less than 0.3 microM selectively potentiated 4 nM bradykinin (BK)-evoked gastric contractions without significantly affecting the spontaneous GM. 3. The kallikrein inhibitor, aprotinin (100 u ml-1), markedly antagonized the enhanced GM to 1.4 microM captopril and BK (4 nM)-evoked contractions, without affecting the contractions evoked by angiotensin 1 (10 nM) and acetylcholine (0.4 microM). The angiotensin II antagonist, saralasin (50 microM) failed to mimic aprotinin. 4. The enhanced GM to captopril was markedly inhibited by tetrodotoxin (1 microM), and partially inhibited by atropine (1 microM). 5. These results indicate that in vitro, captopril (greater than 0.3 microM) enhances gastric contractility through kininase/ACE inhibitory action, presumably by increasing the concentration of undegraded tissue kinins and substance P. This motor response seems to be predominantly due to activation of the cholinergic neurones but non-cholinergic excitatory neurones are also involved. PMID:1713107

  1. Regulation and impairments of dynamic desmosome and corneodesmosome remodeling.

    PubMed

    Kitajima, Yasuo

    2013-04-30

    Desmosomes and corneodesmosomes are the most important adhering junctions to provide strength for the epidermal sheet structure made of living keratinocytes and enucleated corneocytes, respectively. These junctions are connected directly with transmembrane desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), mainly Dsg1/Dsc1 and Dsg3/Dsc3 in desmosomes and Dsg1/Dsc1 with corneodesmosin in corneodesmosomes. Dsgs and Dscs are associated with several proteins at their inner cytoplasmic domains to anchor keratin intermediate filaments. Desmosomes are not static, but dynamic units that undergo regular remodeling to allow for keratinocyte outward-migration in the epidermis. Recently, two mutually-reversible desmosomal adhesion states have been recognized, i.e., "stable hyper-adhesion (Ca 2+ -independent)" and "dynamic weak-adhesion (Ca 2+ -dependent)". A remarkable impairment of this remodeling is observed in pemphigus vulgaris (an autoimmune blistering disease), caused by anti-Dsg3 antibodies, generating a weak-adhesion desmosome state. Immediately after formation, corneodesmosomes normally commit to degradation, which is complicatedly regulated by proteolytic cleavage of their respective extracellular portion(s), via kallikrein-regulated peptidases and cathepsins. This proteolytic activity is in turn controlled by a variety of inhibitory agents, including protease inhibitors, cholesterol sulfate, and an acidic gradient. The impairment of protease control causes keratinization disorders. This review focuses on the dynamic regulation of desmosomes and corneodesmosomes in relation to keratinization disorders.

  2. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-03-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.

  3. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen

    PubMed Central

    Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel

    2013-01-01

    The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination. PMID:23827999

  4. Intact stable isotope labeled plasma proteins from the SILAC-labeled HepG2 secretome.

    PubMed

    Mangrum, John B; Martin, Erika J; Brophy, Donald F; Hawkridge, Adam M

    2015-09-01

    The plasma proteome remains an attractive biospecimen for MS-based biomarker discovery studies. The success of these efforts relies on the continued development of quantitative MS-based proteomics approaches. Herein we report the use of the SILAC-labeled HepG2 secretome as a source for stable isotope labeled plasma proteins for quantitative LC-MS/MS measurements. The HepG2 liver cancer cell line secretes the major plasma proteins including serum albumin, apolipoproteins, protease inhibitors, coagulation factors, and transporters that represent some of the most abundant proteins in plasma. The SILAC-labeled HepG2 secretome was collected, spiked into human plasma (1:1 total protein), and then processed for LC-MS/MS analysis. A total of 62 and 56 plasma proteins were quantified (heavy:light (H/L) peptide pairs) from undepleted and depleted (serum albumin and IgG), respectively, with log2 H/L = ± 6. Major plasma proteins quantified included albumin, apolipoproteins (e.g., APOA1, APOA2, APOA4, APOB, APOC3, APOE, APOH, and APOM), protease inhibitors (e.g., A2M and SERPINs), coagulation factors (e.g., Factor V, Factor X, fibrinogen), and transport proteins (e.g., TTR). The average log2 H/L values for shared plasma proteins in both undepleted and depleted plasma samples were 0.43 and 0.44, respectively. This work further expands the SILAC strategy into MS-based biomarker discovery of clinical biospecimens. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Immunization by bovine thrombin used with fibrin glue during cardiovascular operations. Development of thrombin and factor V inhibitors.

    PubMed

    Berruyer, M; Amiral, J; Ffrench, P; Belleville, J; Bastien, O; Clerc, J; Kassir, A; Estanove, S; Dechavanne, M

    1993-05-01

    Brief case histories of three patients aged 58, 38, and 44 years are reported. All underwent cardiovascular operations. Subsequently hemostasis test abnormalities developed between the seventh and eighth postoperative days after exposure to bovine thrombin used with fibrin glue. These were characterized by an increased activated partial thromboplastin time (64 to 147 seconds), prothrombin time (19 to 24 seconds), bovine thrombin time (> 120 seconds) and a markedly reduced factor V level (< 10% in two patients and 16% in the third patient). A patient plasma dilution of 1 in 200 with a normal plasma pool was necessary to correct bovine thrombin time. No fast-acting or progressive inhibitor against factor V could be detected by coagulation tests, and fresh frozen plasma perfusion had no effect. Plasmapheresis was performed preventatively to avoid bleeding, and factor V levels stabilized at around 50% after two to four exchanges. Immunologic studies showed that the inhibitors were directed not only against bovine factors but also against human ones. Therefore factor V decrease could have been the result of rapid clearance from the circulation of complexes formed with a nonneutralizing inhibitor that is not detected by clotting tests. These antibodies were purified by standard methods and immunoaffinity. Fast immunization could be explained by a prior sensitization to bovine thrombin exposure during previous operations. It is suggested that bovine thrombin used with fibrin glue contains small amounts of factor V and may be responsible for these abnormalities. This is in agreement with previous literature reports. However, these described neutralizing factor V inhibitors, which were easily detected.

  6. Role of homocysteine in the treatment of Parkinson's disease.

    PubMed

    Müller, Thomas

    2008-06-01

    The saga of harmful administration of levodopa (LD) in the treatment of Parkinson's disease (PD) resulted from outcomes of animal trials and cell culture studies. They were initiated after the clinical observation of onset of motor complications related to the short plasma half-life of the drug in PD patients. This discussion only partially considered a further aspect, which is associated with the long-term administration of LD. Chronic LD intake increases homocysteine plasma levels. This may support progression of the disease due to concomitant onset of neuropsychiatric symptoms and comorbidities (i.e., vascular disease). In the periphery, therapeutic approaches for this LD-mediated homocysteine increase are vitamin supplementation (i.e., folic acid or application of LD with an inhibitor of catechol-O-methyltransferase [COMT]). In the brain, a blood-brain trespassing precursor of folic acid or a centrally acting COMT inhibitor may represent hypothetical therapeutic approaches. This COMT inhibitor should be applied together with an oxidative stress reducing monoamine oxidase-B inhibitor, in order to force central dopamine metabolism further down via the methylation path. However, this may turn out to be a double-edged sword, since the inhibition of O-methylation with the COMT inhibitor may hypothetically contribute to increased N-methylation. Thus, endogenous tetrahydroisoquinolines may be transformed to neurotoxic N-methylated tetrahydroisoquinolines. These neurotoxic compounds were observed in cerebrospinal fluid and plasma of long-term LD-treated PD patients. They have a structure similar to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine or its ion 1-methyl-4-phenylpyridinium, both of which are known to induce PD-like motor symptoms.

  7. Effects of recombinant human prothrombin on thrombin generation in plasma from patients with hemophilia A and B.

    PubMed

    Hansson, K M; Gustafsson, D; Skärby, T; Frison, L; Berntorp, E

    2015-07-01

    The present study was carried out to investigate the impact of FII levels, and their increase, on the hemostatic potential in plasma from hemophilia A and B patients with and without inhibitors. Recombinant human factor (F) II (rhFII) was added ex vivo to plasma from 68 patients with hemophilia A and B, with or without inhibitors. The hemostatic potential as measured by thrombin generation (calibrated automated thrombogram [CAT]) was focused on the endogenous thrombin potential (ETP) as it has been shown to correlate with the clinical phenotype of bleeding in hemophilia patients and has also been used to guide bypassing therapy in hemophilia patients with inhibitors before elective surgery. The factor eight inhibitor bypassing agent (FEIBA(®) ) was used as a reference to the clinical situation. The study shows that rhFII concentration-dependently increased ETP by a similar magnitude in hemophilia A and B, both with and without inhibitors. Compared with FEIBA, rhFII showed a shallower concentration-response curve. In both types of hemophilia 100 mg L(-1) of rhFII roughly doubled the ETP. A corresponding response was obtained by 0.5 U mL(-1) of FEIBA. These data support the theory that FII is one of the major components responsible for the efficacy of FEIBA. The data also indicate that rhFII may be useful, alone or in combination with other coagulation factors, in some of the conditions for which FEIBA is used today, although more data are needed to substantiate this. © 2015 International Society on Thrombosis and Haemostasis.

  8. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Tanaka, Hiroyuki; Takano, Kazuhiko; Iijima, Hiroaki; Kubo, Hajime; Maruyama, Nobuko; Hashimoto, Toshio; Arakawa, Kenji; Togo, Masanori; Inagaki, Nobuya; Kaku, Kohei

    2017-02-01

    Sodium glucose co-transporter 2 (SGLT2) inhibitors exhibit diuretic activity, which is a possible mechanism underlying the cardiovascular benefit of these inhibitors. However, the osmotic diuresis-induced increase in urine volume, and the risk of dehydration have been of concern with SGLT2 inhibitor treatment. This study aimed to investigate the mechanism underlying SGLT2 inhibitor canagliflozin-induced diuresis in Japanese type 2 diabetes mellitus (T2DM) patients. Thirteen T2DM patients received a daily oral dose of 100 mg canagliflozin before breakfast for 6 days. Blood and urine samples were collected at predetermined time points. The primary endpoint was evaluation of correlations between changes from baseline in urine volume and factors that are known to affect urine volume and between actual urine volume and these factors. Canagliflozin transiently increased urine volume and urinary sodium excretion on Day 1 with a return to baseline levels thereafter. Canagliflozin administration increased urinary glucose excretion, which was sustained during repeated-dose administration. Plasma atrial natriuretic peptide (ANP) and N-terminal pro-b-type natriuretic peptide (NT-proBNP) levels decreased, while plasma renin activity increased. On Day 1 of treatment, changes in sodium and potassium excretion were closely correlated with changes in urine output. A post hoc multiple regression analysis showed changes in sodium excretion and water intake as factors that affected urine volume change at Day 1. Furthermore, relative to that at baseline, canagliflozin decreased blood glucose throughout the day and increased plasma total GLP-1 after breakfast. Canagliflozin induced transient sodium excretion and did not induce water intake at Day 1; hence, natriuresis rather than glucose-induced osmotic diuresis may be a major factor involved in the canagliflozin-induced transient increase in urine output. In addition, canagliflozin decreased plasma ANP and NT-proBNP levels and increased plasma renin activity, which may be a compensatory mechanism for sodium retention, leading to subsequent urine output recovery. UMIN000019462. Mitsubishi Tanabe Pharma Corporation.

  9. Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle

    PubMed Central

    2017-01-01

    Area-selective atomic layer deposition (ALD) is rapidly gaining interest because of its potential application in self-aligned fabrication schemes for next-generation nanoelectronics. Here, we introduce an approach for area-selective ALD that relies on the use of chemoselective inhibitor molecules in a three-step (ABC-type) ALD cycle. A process for area-selective ALD of SiO2 was developed comprising acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O2 plasma reactant (step C) pulses. Our results show that this process allows for selective deposition of SiO2 on GeO2, SiNx, SiO2, and WO3, in the presence of Al2O3, TiO2, and HfO2 surfaces. In situ Fourier transform infrared spectroscopy experiments and density functional theory calculations underline that the selectivity of the approach stems from the chemoselective adsorption of the inhibitor. The selectivity between different oxide starting surfaces and the compatibility with plasma-assisted or ozone-based ALD are distinct features of this approach. Furthermore, the approach offers the opportunity of tuning the substrate-selectivity by proper selection of inhibitor molecules. PMID:28850774

  10. Structure-Based Optimization of Arylamides as Inhibitors of Soluble Epoxide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldrup, Anne B.; Soleymanzadeh, Fariba; Taylor, Steven J.

    2009-11-04

    Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat livermore » microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.« less

  11. Differential Contributions of Intrinsic and Extrinsic Pathways to Thrombin Generation in Adult, Maternal and Cord Plasma Samples

    PubMed Central

    Rice, Nicklaus T.; Szlam, Fania; Varner, Jeffrey D.; Bernstein, Peter S.; Szlam, Arthur D.; Tanaka, Kenichi A.

    2016-01-01

    Background Thrombin generation (TG) is a pivotal process in achieving hemostasis. Coagulation profiles during pregnancy and early neonatal period are different from that of normal (non-pregnant) adults. In this ex vivo study, the differences in TG in maternal and cord plasma relative to normal adult plasma were studied. Methods Twenty consented pregnant women and ten consented healthy adults were included in the study. Maternal and cord blood samples were collected at the time of delivery. Platelet-poor plasma was isolated for the measurement of TG. In some samples, anti-FIXa aptamer, RB006, or a TFPI inhibitor, BAX499 were added to elucidate the contribution of intrinsic and extrinsic pathway to TG. Additionally, procoagulant and inhibitor levels were measured in maternal and cord plasma, and these values were used to mathematically simulate TG. Results Peak TG was increased in maternal plasma (393.6±57.9 nM) compared to adult and cord samples (323.2±38.9 nM and 209.9±29.5 nM, respectively). Inhibitory effects of RB006 on TG were less robust in maternal or cord plasma (52% vs. 12% respectively) than in adult plasma (81%). Likewise the effectiveness of BAX499 as represented by the increase in peak TG was much greater in adult (21%) than in maternal (10%) or cord plasma (12%). Further, BAX499 was more effective in reversing RB006 in adult plasma than in maternal or cord plasma. Ex vivo data were reproducible with the results of the mathematical simulation of TG. Conclusion Normal parturient plasma shows a large intrinsic pathway reserve for TG compared to adult and cord plasma, while TG in cord plasma is sustained by extrinsic pathway, and low levels of TFPI and AT. PMID:27196067

  12. Effect of nephrotoxic treatment with gentamicin on rats chronically exposed to uranium.

    PubMed

    Rouas, Caroline; Stefani, Johanna; Grison, Stéphane; Grandcolas, Line; Baudelin, Cédric; Dublineau, Isabelle; Pallardy, Marc; Gueguen, Yann

    2011-01-11

    Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Clinical utility of kallikrein-related peptidases (KLK) in urogenital malignancies.

    PubMed

    Dorn, J; Bayani, J; Yousef, G M; Yang, F; Magdolen, V; Kiechle, M; Diamandis, E P; Schmitt, M

    2013-09-01

    Kallikrein-related peptidases (KLK), which represent a major tissue-associated proteolytic system, stand for a rich source of biomarkers that may allow molecular classification, early diagnosis and prognosis of human malignancies as well as prediction of response or failure to cancer-directed drugs. International research points to an important role of certain KLKs in female and male urogenital tract malignancies, in addition to cancers of the lung, brain, skin, head and neck, and the gastrointestinal tract. Regarding the female/male urogenital tract, remarkably, all of the KLKs are expressed in the normal prostate, testis, and kidney whereas the uterus, the ovary, and the urinary bladder are expressing a limited number of KLKs only. Most of the information regarding KLK expression in tumour-affected organs is available for ovarian cancer; all of the 12 KLKs tested so far were found to be elevated in the malignant state, depicting them as valuable biomarkers to distinguish between the normal and the cancerous phenotype. In contrast, for kidney cancer, a series of KLKs was found to be downregulated, while other KLKs were not expressed. Evidently, depending on the type of cancer or cancer stage, individual KLKs may show characteristics of a Janus-faced behaviour, by either expanding or inhibiting cancer progression and metastasis.

  14. Clinical value of protein expression of kallikrein-related peptidase 7 (KLK7) in ovarian cancer.

    PubMed

    Dorn, Julia; Gkazepis, Apostolos; Kotzsch, Matthias; Kremer, Marcus; Propping, Corinna; Mayer, Katharina; Mengele, Karin; Diamandis, Eleftherios P; Kiechle, Marion; Magdolen, Viktor; Schmitt, Manfred

    2014-01-01

    Expression of the kallikrein-related peptidase 7 (KLK7) is dysregulated in ovarian cancer. We assessed KLK7 expression by ELISA and quantitative immunohistochemistry and analyzed its association with clinicopathological parameters and patients' outcome. KLK7 antigen concentrations were determined in tumor tissue extracts of 98 ovarian cancer patients by ELISA. For analysis of KLK7 immunoexpression in ovarian cancer tissue microarrays, a manual quantitative scoring system as well as a software tool for quantitative high-throughput automated image analysis was used. In immunohistochemical analyses, expression levels of KLK7 were not associated with patients' outcome. However, in multivariate analyses, KLK7 antigen levels in tumor tissue extracts were significantly associated with both overall and progression-free survival: ovarian cancer patients with high KLK7 levels had a significantly, 2-fold lower risk of death [hazard ratio (HR)=0.51, 95% confidence interval (CI)=0.29-0.90, p=0.019] or relapse [HR=0.47, 95% CI=0.25-0.91, p=0.024), as compared with patients who displayed low KLK7 levels. Our results indicate that - in contrast to earlier findings - high KLK7 antigen levels in tumor tissue extracts may be associated with a better prognosis of ovarian cancer patients.

  15. Urokinase-Type Plasminogen Activator in a Human Sarcoma Cellular Model for Metastasis in Athymic Mice

    DTIC Science & Technology

    1990-05-01

    essential medium, used for tissue culture DMSO- Dimemthyl sulfoxide, an inhibitor of uPA production E-ACA- Epsilon aminocaproic acid , an inhibitor of uPA...inhibitors, such as E- aminocaproic acid (E-ACA), phenylmethanesulfonyl fluoride, diisopropyl-fluorophosphate, alpha tocopherol, metal ions (especially Zn...plasma was demonstrated approximately 25 years later (Astedt et al., 1978). The complete amino acid sequence of uPA was reported in 1982 (Gunzler et

  16. Plasma plasminogen activator inhibitor-1 levels and nonalcoholic fatty liver in individuals with features of metabolic syndrome.

    PubMed

    de Larrañaga, Gabriela; Wingeyer, Silvia Perés; Graffigna, Mabel; Belli, Susana; Bendezú, Karla; Alvarez, Silvia; Levalle, Oscar; Fainboim, Hugo

    2008-07-01

    Fatty liver represents the liver component of metabolic syndrome and may be involved in plasminogen activator inhibitor-1 (PAI-1) synthesis. We studied plasma PAI-1 levels and relationships with risk factors for metabolic syndrome, including fatty liver, in 170 patients. Liver ultrasound scan was performed on all patients, and a liver biopsy was performed on those patients with chronically elevated transaminase levels. Plasma PAI-1 levels correlated significantly (P < .05) with body mass index, degree of steatosis, insulin resistance, insulin level, waist circumference, triglycerides, and high-density lipoprotein (HDL) -cholesterol. However, only body mass index (beta = .455) and HDL-cholesterol (beta = .293) remained predictors of PAI-1 levels. Liver biopsy revealed a significant correlation (P < .05) between insulin resistance (r = 0.381) or insulin level (r = 0.519) and liver fibrosis. In patients presenting features of metabolic syndrome, plasma PAI-1 levels were mainly conditioned by the whole-body fat content.

  17. Lipid-lowering effects of TAK-475, a squalene synthase inhibitor, in animal models of familial hypercholesterolemia.

    PubMed

    Amano, Yuichiro; Nishimoto, Tomoyuki; Tozawa, Ryu ichi; Ishikawa, Eiichiro; Imura, Yoshimi; Sugiyama, Yasuo

    2003-04-11

    The lipid-lowering effects of 1-[2-[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-1,2,3,5-tetrahydro-2-oxo-5-(2,3-dimethoxyphenyl)-4,1-benzoxazepine-3-yl] acetyl] piperidin-4-acetic acid (TAK-475), a novel squalene synthase inhibitor, were examined in two models of familial hypercholesterolemia, low-density lipoprotein (LDL) receptor knockout mice and Watanabe heritable hyperlipidemic (WHHL) rabbits. Two weeks of treatment with TAK-475 in a diet admixture (0.02% and 0.07%; approximately 30 and 110 mg/kg/day, respectively) significantly lowered plasma non-high-density lipoprotein (HDL) cholesterol levels by 19% and 41%, respectively, in homozygous LDL receptor knockout mice. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, simvastatin and atorvastatin (in 0.02% and 0.07% admixtures), also reduced plasma levels of non-HDL cholesterol. In homozygous WHHL rabbits, 4 weeks of treatment with TAK-475 (0.27%; approximately 100 mg/kg/day) lowered plasma total cholesterol, triglyceride and phospholipid levels by 17%, 52% and 26%, respectively. In Triton WR-1339-treated rabbits, TAK-475 inhibited to the same extent the rate of secretion from the liver of the cholesterol, triglyceride and phospholipid components of very-low-density lipoprotein (VLDL). These results suggest that the lipid-lowering effects of TAK-475 in WHHL rabbits are based partially on the inhibition of secretion of VLDL from the liver. TAK-475 had no effect on plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the squalene synthase inhibitor TAK-475 revealed lipid-lowering effects in both LDL receptor knockout mice and WHHL rabbits.

  18. Pharmacokinetics of opicapone, a third-generation COMT inhibitor, after single and multiple oral administration: A comparative study in the rat.

    PubMed

    Gonçalves, Daniela; Alves, Gilberto; Fortuna, Ana; Soares-da-Silva, Patrício; Falcão, Amílcar

    2017-05-15

    Opicapone is a novel potent, reversible and purely peripheral catechol-O-methyltransferase inhibitor that has been developed to be used as an adjunct to levodopa/aromatic L-amino acid decarboxylase inhibitor therapy for Parkinson's disease. Thus, this study aimed to compare the plasma pharmacokinetics of opicapone and its active metabolite (BIA 9-1079) after the administration of single and multiple oral doses to rats. Wistar rats (n=8 per group) were orally treated with single (30, 60 or 90mg/kg) or multiple (30mg/kg once-daily for seven consecutive days) oral doses of opicapone. Blood samples were collected up to 24h post-dosing through a cannula introduced in the tail vein of rats. After quantifying opicapone and BIA 9-1079 in plasma, a non-compartmental pharmacokinetic analysis was performed. Opicapone was quickly absorbed (time to reach the maximum plasma concentration≤2h) in both dosage regimens and the extent of systemic exposure to opicapone increased approximately in a dose-proportional manner after single-dosing within the studied dose range (30-90mg/kg). Opicapone and BIA 9-1079 showed a relatively short plasma elimination half-life (1.58-4.50h) and a small systemic accumulation after multiple-dosing. Hence, no pharmacokinetic concerns are expected when opicapone is administered with a once-daily dosing regimen. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane.

    PubMed

    Yanatori, Izumi; Yasui, Yumiko; Noguchi, Yumiko; Kishi, Fumio

    2015-04-01

    Ferristatin II, discovered as an iron transport inhibitor, promotes the internalization and degradation of transferrin receptor 1 (TfR1). DMT1, which mediates iron transport across cell membranes, is located at the plasma membrane of enterocytes and imports dietary iron into the cytosol. TfR1 is not directly engaged in the intestinal absorption of free iron, and iron uptake by DMT1 is attenuated by ferristatin II treatment. In this study, we found another function for ferristatin II in iron uptake. Ferristatin II did not cause degradation of DMT1 but did induce DMT1 internalization from the plasma membrane. Dynasore, a small molecule inhibitor of dynamin, did not inhibit this internalization by ferristatin II, which might occur via a clathrin-independent pathway. © 2014 International Federation for Cell Biology.

  20. 4G/5G Polymorphism of the plasminogen activator inhibitor-1 gene is associated with multiple organ dysfunction in critically ill patients.

    PubMed

    Huq, Muhammad Aminul; Takeyama, Naoshi; Harada, Makoto; Miki, Yasuo; Takeuchi, Akinori; Inoue, Sousuke; Nakagawa, Takashi; Kanou, Hideki; Hirakawa, Akihiko; Noguchi, Hiroshi

    2012-01-01

    Impaired fibrinolysis is associated with a higher incidence of both multiple organ dysfunction and mortality in the intensive care unit (ICU). Plasminogen activator inhibitor (PAI)-1 is the chief inhibitor of fibrinolysis. We investigated the influence of the 4G/5G polymorphism (rs1799768) of the PAI-1 gene on the plasma PAI-1 level and the outcome of critically ill patients. In 41 consecutive patients admitted to the ICU, PAI-1 gene polymorphism was assessed, plasma PAI-1 and arterial lactate concentrations were measured and clinical severity scores were recorded. Homozygotes for the 4G allele had higher plasma levels of PAI-1 antigen. The mean ± SD PAI-1 antigen level was 193.31 ± 167.93 ng/ml for the 4G/4G genotype, 100.67 ± 114.16 ng/ml for the 4G/5G genotype and 0.43 ± 0.53 ng/ml for the 5G/5G genotype. There was a significant correlation between plasma PAI-1 and arterial lactate concentrations, as well as between PAI-1 and severity scores. The mortality rate was 63, 33 and 0% for patients with the 4G/4G, 4G/5G and 5G/5G genotypes, respectively. These results demonstrate that the 4G/5G polymorphism of the PAI-1 gene affects the plasma PAI-1 concentration, which could impair fibrinolysis and cause organ failure, and thus the presence of the 4G allele increases the risk of death. Copyright © 2011 S. Karger AG, Basel.

  1. Ashitaba (Angelica Keiskei) Exudate Prevents Increases in Plasminogen Activator Inhibitor-1 Induced by Obesity in Tsumura Suzuki Obese Diabetic Mice.

    PubMed

    Ohta, Mitsuhiro; Fujinami, Aya; Oishi, Katsutaka; Kobayashi, Norihiro; Ohnishi, Katsunori; Ohkura, Naoki

    2018-04-30

    Angelica keiskei koidzumi (ashitaba) is consumed as a traditional folk medicine and health food in Japan. Ashitaba extract contains abundant flavonoids containing chalcones. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of tissue plasminogen activator. Excessive amounts of PAI-1 in plasma disrupt the fibrinolytic balance and promote a prothrombotic state with which thrombosis and cardiovascular diseases are associated. In the present study, we investigated the effects of ashitaba yellow exudate (AE) on enhanced PAI-1 levels in Tsumura Suzuki obese diabetic (TSOD) mice. AE significantly decreased food efficiency and plasma PAI-1 in TSOD mice but did not affect lean control Tsumura Suzuki nonobese (TSNO) mice. AE also decreased some parameters in the plasma, such as glucose, insulin, tumor necrosis factor alpha (TNF-α) and gains in body weight, subcutaneous, mesenteric fat weight in TSOD mice but had little effect on these parameters in TSNO mice. Levels of adipose PAI-1 were significantly higher in TSOD than in TSNO mice. Major sources of plasma PAI-1 are thought to be adipose tissue and liver. AE significantly suppressed PAI-1 protein levels in the livers of both TSOD and TSNO mice. These results suggest that AE decreased plasma PAI-1 levels by suppressing both the adipose tissue retention of PAI-1 protein and liver PAI-1 production in TSOD mice. Supplementing the diet with AE might help to prevent thrombotic diseases or alleviate the risk of thrombotic diseases as well as to suppress metabolic state in obese individuals.

  2. Health economic review of recombinant activated factor VII for treatment of bleeding episodes in hemophilia patients with inhibitors.

    PubMed

    Stephens, Jennifer M; Joshi, Ashish V; Sumner, Michael; Botteman, Marc F

    2007-06-01

    Severe hemophilia with inhibitors is a rare disease with substantial clinical, humanistic and economic consequences. This review provides an overview of the role of recombinant activated factor VII (rFVIIa) versus plasma-derived bypassing agents for hemophilia with inhibitors and summarizes the 13 formal economic analyses (6 burden of illness and 7 comparative studies) that have been published in this indication. The findings suggest that the economic impact of rFVIIa has occurred primarily during hospitalization to manage major bleeding episodes and to allow for elective orthopedic surgeries that would not have been attempted prior to rFVIIa. Comparative analyses for on-demand treatment suggest that the total cost of treating a bleeding episode with rFVIIa may be lower than with plasma-based agents due to faster bleeding resolution, higher initial efficacy rates and avoidance of second and third lines of treatment.

  3. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation.

    PubMed

    Shi, Wei-Kang; Deng, Rui-Cheng; Wang, Peng-Fei; Yue, Qin-Qin; Liu, Qi; Ding, Kun-Ling; Yang, Mei-Hui; Zhang, Hong-Yu; Gong, Si-Hua; Deng, Min; Liu, Wen-Run; Feng, Qiu-Ju; Xiao, Zhu-Ping; Zhu, Hai-Liang

    2016-10-01

    Helicobacter pylori urease is involved in several physiologic responses such as stomach and duodenal ulcers, adenocarcinomas and stomach lymphomas. Thus, inhibition of urease is taken for a good chance to treat H. pylori-caused infections, we have therefore focused our efforts on seeking novel urease inhibitors. Here, a series of arylpropionylhydroxamic acids were synthesized and evaluated for urease inhibition. Out of these compounds, 3-(2-benzyloxy-5-chlorophenyl)-3-hydroxypropionylhydroxamic acid (d24) was the most active inhibitor with IC50 of 0.15±0.05μM, showing a mixed inhibition with both competitive and uncompetitive aspects. Non-linear fitting of kinetic data gives kinetics parameters of 0.13 and 0.12μg·mL(-1) for Ki and Ki', respectively. The plasma protein binding assays suggested that d24 exhibited moderate binding to human and rabbit plasma proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Imidazopyridine and Pyrazolopiperidine Derivatives as Novel Inhibitors of Serine Palmitoyl Transferase.

    PubMed

    Genin, Michael J; Gonzalez Valcarcel, Isabel C; Holloway, William G; Lamar, Jason; Mosior, Marian; Hawkins, Eric; Estridge, Thomas; Weidner, Jeffrey; Seng, Thomas; Yurek, David; Adams, Lisa A; Weller, Jennifer; Reynolds, Vincent L; Brozinick, Joseph T

    2016-06-23

    To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats. Unfortunately these molecules cause a gastric enteropathy after chronic dosing in rats.

  5. The relationship of detergent-solubilization plasma-membrane components of rabbit alveolar macrophages to an isolated inhibitor of phagocytosis.

    PubMed Central

    Pratt, R S; Cook, G M

    1979-01-01

    1. A plasma-membrane fraction prepared from rabbit alveolar macrophages by hyposmotic borate lysis is described. 2. Rabbit lung lavages, containing a glycoprotein inhibitor of phagocytosis, may be fractionated by preparative isoelectric focusing in the presence of Triton X-100. 3. Chemical analysis indicates that the glycoproteins of the lung lavage contain sialic acid, fucose, mannose, galactose, hexosamine and appreciable quantities of glucose. 4. The relationship of macrophage membrane glycoproteins, solubilized with Triton X-100 in the presence of borate, to the lung lavage glycoproteins is demonstrated immunoelectrophoretically. Images PLATE 1 Fig. 1. Fig. 2. PMID:486083

  6. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects.

    PubMed

    Kusuhara, H; Ito, S; Kumagai, Y; Jiang, M; Shiroshita, T; Moriyama, Y; Inoue, K; Yuasa, H; Sugiyama, Y

    2011-06-01

    A microdose study of metformin was conducted to investigate the predictability of drug-drug interactions at the therapeutic dose (ThD). Healthy subjects received a microdose (100 µg) or ThD (250 mg) of metformin orally, with or without a potent and competitive multidrug and toxin extrusion (MATE) inhibitor, pyrimethamine (50 mg, p.o.), in a crossover fashion. Pyrimethamine significantly reduced the renal clearance of metformin by 23 and 35% at the microdose and ThD, respectively. At ThD, but not at microdose, it caused significant increases in the maximum concentration (C(max)) and area under the plasma concentration-time curve (AUC) of metformin (142 and 139% of control values, respectively). Human canalicular membrane vesicles showed pyrimethamine-inhibitable metformin uptake. Pyrimethamine did not affect plasma lactate/pyruvate after ThD of metformin but significantly reduced the renal clearance of creatinine, thereby causing elevation of plasma creatinine level. This microdose study quantitatively predicted a drug-drug interaction involving the renal clearance of metformin at ThD by pyrimethamine. Pyrimethamine is a useful in vivo inhibitor of MATE proteins.

  7. Initial therapy with protease inhibitor-sparing regimens: evaluation of nevirapine and delavirdine.

    PubMed

    Conway, B

    2000-06-01

    We have compared the results (on-treatment analyses) of 2 randomized clinical trials of protease inhibitor-sparing regimens in drug-naive patients. In the INCAS (Italy, Netherlands, Canada, Australia) study, the mean decrease in plasma viral load over 52 weeks was 2.2 log(10) copies/mL in 40 patients who were receiving zidovudine/didanosine/nevirapine (18 [45%] had maximal suppression), with a mean increase in CD4 T cell counts of 139 cells/microL. In protocol 0021 Part II, the mean decrease in plasma viral load over 52 weeks was 2.1 log(10) copies/mL in 34 patients who were receiving zidovudine/lamivudine/delavirdine (20 [59%] had maximal suppression), with a mean increase in CD4 T cell counts of 88 cells/microL. The virologic and immunologic efficacy of the 2 triple-drug regimens are similar. Until results of long-term studies are available to establish whether a preferred approach to initial therapy exists, nonnucleoside reverse transcriptase inhibitors may be a valuable alternative to protease inhibitors in the initial therapy of antiretroviral-naive, moderately immunosuppressed patients.

  8. Biotechnological traps for the reduction of inflammation due to cardiopulmonary bypass operations.

    PubMed

    Grano, Valentina; Salamino, Franca; Melloni, Edon; Minafra, Roberto; Regola, Eliana; Diano, Nadia; Nicolucci, Carla; Attanasio, Angelina; Nappi, Gianantonio; Cotrufo, Maurizio; Maresca, Lucio; De Santo, Natale Gaspare; Mita, Damiano Gustavo

    2006-07-01

    Cardiopulmonary bypass induces a systemic inflammatory response (SIR), characterized by the activation of cellular and humoral elements, with concomitant release of neutrophil elastase and matrix-metallo proteinases. In the present study, the protease release during extracorporeal circulation in 28 patients undergoing cardiac surgical operations was monitored using casein zymography. A peak in protease activity was found in all patients at the end of cardiopulmonary bypass. Plasma samples of patients were allowed to interact with different traps obtained by immobilizing different protease inhibitors on specific carriers. alpha1-Antitrypsin, Bovine Pancreatic Trypsin Inhibitor, Elastatinal or Leupeptin were used as inhibitors and were covalently immobilized by diazotization or by condensation. A reduction in the proteolytic activity of the plasma samples was observed after interaction with the different traps. The most efficient traps, i.e. the ones displaying greatest power to inhibit protease activity, were those obtained by immobilizing Bovine Pancreatic Trypsin Inhibitor and Leupeptin. The biocompatibility of traps was also tested. Results show that protease activity in blood can be decreased by our protease traps.

  9. The Use of Dried Blood Spots for Pharmacokinetic Monitoring of Vemurafenib Treatment in Melanoma Patients.

    PubMed

    Nijenhuis, Cynthia M; Huitema, Alwin D R; Marchetti, Serena; Blank, Christian; Haanen, John B A G; van Thienen, Johannes V; Rosing, Hilde; Schellens, Jan H M; Beijnen, Jos H

    2016-10-01

    Pharmacokinetic monitoring is increasingly becoming an important part of clinical care of tyrosine kinase inhibitor treatment. Vemurafenib is an oral tyrosine kinase inhibitor that inhibits mutated serine/threonine protein kinase B-Raf (BRAF) and is approved for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. The aim of this study was to establish the relationship between dried blood spot (DBS) and plasma concentrations of vemurafenib to enable the use of DBS sampling, which is a minimally invasive form of sample collection. In total, 43 paired plasma and DBS samples (in duplicate) were obtained from 8 melanoma patients on vemurafenib therapy and were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Plasma concentrations were predicted from the DBS concentrations using 2 methods: (1) individual hematocrit correction and blood cell-to-plasma partitioning and (2) the calculated slope explaining the relationship between DBS and plasma concentrations (without individual hematocrit correction). Vemurafenib DBS concentrations and plasma concentrations showed a strong correlation (r = 0.964), and the relationship could be described by ([vemurafenib]plasma = [vemurafenib]DBS /0.64). The predicted plasma concentrations were within ±20% of the analyzed plasma concentrations in 97% and 100% of the samples for the methods with and without hematocrit correction, respectively. In conclusion, DBS concentrations and plasma concentrations of vemurafenib are highly correlated. Plasma concentrations can be predicted from DBS concentration using the blood cell-to-plasma partition and the average hematocrit value of this cohort (0.40 L/L). DBS sampling for pharmacokinetic monitoring of vemurafenib treatment can be used in clinical practice. © 2016, The American College of Clinical Pharmacology.

  10. Conference Support for the 1999 International Hypoxia Symposium

    DTIC Science & Technology

    2000-03-01

    selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 28: 1430-1436...bradykinin- and kallikrein-induced cerebral arteriolar dilation by a specific bradykinin antagonist. Stroke 18: 792-795,1987. 33. Földes, I., and B...role of bradykinin in mediating ischemic brain edema in rats. Stroke 24: 571-576,1993. Mediators of Cerebral Edema 13 7 48. Kawauchi, N., S., M

  11. Developing a Novel Therapeutic Strategy Targeting Kallikrein-4 to Inhibit Prostate Cancer Growth and Metastasis

    DTIC Science & Technology

    2015-08-01

    mesenchymal transition (EMT), animal models, cancer imaging, cancer stem cells , circulating tumor cells (CTCs), metabolomics, targeted therapeutics and...metastatic tissue, and has been reported to increase PCa cell proliferation, induce epithelial-to- mesenchymal (EMT)-like changes, and could have a role...KLK4 has been reported to increase PCa cell proliferation, induce an epithelial to mesenchymal transition (EMT)-like response in PC3 PCa cells [4

  12. Circulating plasma cholesteryl ester transfer protein activity and blood pressure tracking in the community

    USDA-ARS?s Scientific Manuscript database

    Clinical trials using cholesteryl ester transfer protein (CETP) inhibitors to raise high-density lipoprotein cholesterol (HDL-C) concentrations reported an 'off-target' blood pressure (BP) raising effect. We evaluated the relations of baseline plasma CETP activity and longitudinal BP change. One tho...

  13. Simple and simultaneous determination of the hiv-protease inhibitors amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir plus M8 nelfinavir metabolite and the nonnucleoside reverse transcriptase inhibitors efavirenz and nevirapine in human plasma by reversed-phase liquid chromatography.

    PubMed

    Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice

    2005-04-01

    Several studies suggest that therapeutic drug monitoring of protease inhibitors and nonnucleoside reverse transcriptase inhibitors may contribute to the clinical outcome of HIV-infected patients. Because of the growing number of antiretroviral drugs and of drug combinations than can be administered to these patients, an accurate high-performance liquid chromatographic (HPLC) method allowing the simultaneous determination of these drugs may be useful. To date, the authors present the first simultaneous HPLC determination of the new protease inhibitor atazanavir with all the others currently in use (M8 nelfinavir metabolite included) and the 2 widely used nonnucleoside reverse transcriptase inhibitors efavirenz and nevirapine. This simple HPLC method allows the analysis all these drugs at a single ultraviolet wavelength following a 1-step liquid-liquid extraction procedure. A 500-muL plasma sample was spiked with internal standard and subjected to liquid-liquid extraction using by diethyl ether at pH 10. HPLC was performed using a Symmetry Shield RP18 and gradient elution. All the drugs of interest and internal standard were detected with ultraviolet detection at 210 nm. Calibration curves were linear in the range 50-10,000 ng/mL. The observed concentrations of the quality controls at plasma concentrations ranging from 50 to 5000 ng/mL for these drugs showed that the overall accuracy varied from 92% to 104% and 92% to 106% for intraday and day-to-day analysis, respectively. No metabolites of the assayed compounds or other drugs commonly coadministered to HIV-positive patients were found to coelute with the drugs of interest or with the internal standard. This assay was developed for the purpose of therapeutic monitoring (TDM) in HIV-infected patients.

  14. In Vitro Plasma Stability, Permeability and Solubility of Mercaptoacetamide Histone Deacetylase Inhibitors

    PubMed Central

    Konsoula, Roula; Jung, Mira

    2008-01-01

    Histone deacetylase inhibitors (HDACIs) are emerging as a new class of therapeutic agents with potent antitumor activities in a broad spectrum of human cancers. In this study, the in vitro plasma stability, permeability, solubility, and lipophilicity (logD) of two mercaptoacetamide-based HDACIs (coded as W2 and S2) were evaluated and compared to Vorinostat (SAHA). The results demonstrated that the compounds manifested high solubility in HCl (pH 1.2) but lower in PBS (pH 7.4) than SAHA. Moreover, mercaptoacetamide-based HDACIs exhibited higher lipophilicity values compared to SAHA. The permeability of these compounds was evaluated using the Caco-2 cell monolayer as a model of the intestinal mucosa. The Caco-2 studies revealed that the compounds S2 and W2 are highly permeable with apparent permeability coefficients (Papp) in the apical to basolateral direction of 7.33 × 10−6 and 15.0 × 10−6 cm/s, respectively. The in vitro stability was determined in human, mouse, porcine and rat plasma. Data showed that the compound W2 is more stable in human and rat plasma and the S2 is more stable in all plasma species than SAHA. Taken together, these results indicate that the mercaptoacetamide-based HDACIs possess favorable solubility, lipophilicity, permeability and plasma stability features. PMID:18562136

  15. Reduced fasting plasma levels of diazepam-binding inhibitor in adolescents with anorexia nervosa.

    PubMed

    Conti, Elisa; Tremolizzo, Lucio; Bomba, Monica; Uccellini, Orlando; Rossi, Maria Sara; Raggi, Maria Elisabetta; Neri, Francesca; Ferrarese, Carlo; Nacinovich, Renata

    2013-09-01

    Altered expression and/or function, both peripherally and centrally, of various neuropeptides is involved in the neurophysiology of anorexia nervosa (AN). Diazepam-binding inhibitor (DBI) is an interesting peptide for understanding this crosstalk. The aim of this work was to assess fasting plasma levels of DBI and leptin in patients with AN. Twenty-four AN adolescents were recruited together with 10 age-comparable healthy controls. Neuropeptide determinations were performed on plasma samples by enzyme-linked immunosorbent assays. Patients with AN were further characterized for the presence of a depressive state or anxiety by using, respectively, the Children's Depression Inventory or the State-Trait Anxiety Inventory form Y. Levels of both plasma DBI and leptin were reduced in patients with AN (∼40 and ∼70%, respectively). DBI levels displayed a tendency to increase in the presence of a depressive state, although not with anxiety, whereas leptin levels correlated exclusively with body mass index. These data further extend our knowledge of neuropeptide dysfunction in AN, and plasma DBI may represent a marker for this disease, in particular considering its correlation with comorbid mood disorders. Copyright © 2013 Wiley Periodicals, Inc.

  16. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.

    PubMed

    Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W

    2009-09-01

    Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Approximately 50% of the CSF specimens exceeded the IC(95) levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.

  17. Efficacy of hepatitis B virus ribonuclease H inhibitors, a new class of replication antagonists, in FRG human liver chimeric mice.

    PubMed

    Long, Kelly R; Lomonosova, Elena; Li, Qilan; Ponzar, Nathan L; Villa, Juan A; Touchette, Erin; Rapp, Stephen; Liley, R Matt; Murelli, Ryan P; Grigoryan, Alexandre; Buller, R Mark; Wilson, Lisa; Bial, John; Sagartz, John E; Tavis, John E

    2018-01-01

    Chronic hepatitis B virus infection cannot be cured by current therapies, so new treatments are urgently needed. We recently identified novel inhibitors of the hepatitis B virus ribonuclease H that suppress viral replication in cell culture. Here, we employed immunodeficient FRG KO mice whose livers had been engrafted with primary human hepatocytes to ask whether ribonuclease H inhibitors can suppress hepatitis B virus replication in vivo. Humanized FRG KO mice infected with hepatitis B virus were treated for two weeks with the ribonuclease H inhibitors #110, an α-hydroxytropolone, and #208, an N-hydroxypyridinedione. Hepatitis B virus viral titers and S and e antigen plasma levels were measured. Treatment with #110 and #208 caused significant reductions in plasma viremia without affecting hepatitis B virus S or e antigen levels, and viral titers rebounded following treatment cessation. This is the expected pattern for inhibitors of viral DNA synthesis. Compound #208 suppressed viral titers of both hepatitis B virus genotype A and C isolates. These data indicate that Hepatitis B virus replication can be suppressed during infection in an animal by inhibiting the viral ribonuclease H, validating the ribonuclease H as a novel target for antiviral drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of a PDE4 inhibitor Hemay005 in human plasma and urine by UPLC-MS/MS and its application to a PK study.

    PubMed

    Liu, Xuemei; Chen, Rui; Zeng, Guanghuai; Gao, Ying; Liu, Xiuping; Zhang, Donglei; Hu, Pei; Wang, Hongyun; Jiang, Ji

    2018-06-04

    Hemay005 is a novel small-molecule inhibitor of phosphodiesterase-4 developed for the treatment of psoriasis. Measurement of Hemay005 in biological samples is critical for evaluation of its pharmacokinetics in clinical studies. Methodology & results: Plasma and urine samples were extracted and then chromatographed on an Acquity UPLC HSS T3 column with a gradient elution. Detection was performed on a Xevo TQ-S tandem mass spectrometer using negative ESI. For the first time, a sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the quantitative determination of Hemay005 in human plasma and urine, and it was successfully applied to evaluate the pharmacokinetics of Hemay005 in healthy subjects in a first-in-human study.

  19. Partial purification and characterization of cysteine proteinase inhibitor from chicken plasma.

    PubMed

    Rawdkuen, Saroat; Benjakul, Soottawat; Visessanguan, Wonnop; Lanier, Tyre C

    2006-08-01

    A high-molecular-weight cysteine proteinase inhibitor (CPI) was purified from chicken (Gallus gallus) plasma using polyethylene glycol (PEG) fractionation and affinity chromatography on carboxymethyl-papain-Sepharose-4B. The CPI was purified 96.8-fold with a yield of 28.9%. Based on inhibitory activity staining for papain, CPI was shown to have an apparent molecular mass of 122 kDa. No inhibitory activity was obtained under reducing condition, indicating that CPI from chicken plasma was stabilized by disulfide bonds. CPI was stable in temperature ranges from 40 to 70 degrees C for 10 min; however, more than 50% of the inhibitory activity towards papain was lost within 30 min of heating at 90 degrees C. CPI was stable in the presence of salt up to 3%. The purified CPI exhibited the inhibitory activity toward autolysis of arrowtooth flounder (Atheresthes stomias) and Pacific whiting (Merluccius productus) natural actomyosin (NAM) in a concentration-dependent manner.

  20. INHIBITION OF MYCOLIC ACID TRANSPORT ACROSS THE MYCOBACTERIUM TUBERCULOSIS PLASMA MEMBRANE

    PubMed Central

    Grzegorzewicz, Anna E.; Pham, Ha; Gundi, Vijay A. K. B.; Scherman, Michael S.; North, Elton J.; Hess, Tamara; Jones, Victoria; Gruppo, Veronica; Born, Sarah E. M.; Korduláková, Jana; Chavadi, Sivagami Sundaram; Morisseau, Christophe; Lenaerts, Anne J.; Lee, Richard E.; McNeil, Michael R.; Jackson, Mary

    2011-01-01

    New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis (M. tb) are urgently needed. We report on the identification of an adamantyl urea compound displaying potent bactericidal activity against M. tb and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm where they are synthesized to the periplasmic side of the plasma membrane where they are transferred onto cell wall arabinogalactan or used in the formation of virulence-associated outer membrane trehalose-containing glycolipids. Whole genome sequencing of spontaneous resistant mutants of M. tb selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter, MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane. PMID:22344175

  1. Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma Stability

    DTIC Science & Technology

    2014-09-01

    Staszewski, et al., The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation...the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis, 2010. 27(3

  2. Postauthorization safety surveillance of ADVATE [antihaemophilic factor (recombinant), plasma/albumin-free method] demonstrates efficacy, safety and low-risk for immunogenicity in routine clinical practice.

    PubMed

    Oldenburg, J; Goudemand, J; Valentino, L; Richards, M; Luu, H; Kriukov, A; Gajek, H; Spotts, G; Ewenstein, B

    2010-11-01

      Postauthorization safety surveillance of factor VIII (FVIII) concentrates is essential for assessing rare adverse event incidence. We determined safety and efficacy of ADVATE [antihaemophilic factor (recombinant), plasma/albumin-free method, (rAHF-PFM)] during routine clinical practice. Subjects with differing haemophilia A severities and medical histories were monitored during 12 months of prophylactic and/or on-demand therapy. Among 408 evaluable subjects, 386 (95%) received excellent/good efficacy ratings for all on-demand assessments; the corresponding number for subjects with previous FVIII inhibitors was 36/41 (88%). Among 276 evaluable subjects receiving prophylaxis continuously in the study, 255 (92%) had excellent/good ratings for all prophylactic assessments; the corresponding number for subjects with previous FVIII inhibitors was 41/46 (89%). Efficacy of surgical prophylaxis was excellent/good in 16/16 evaluable procedures. Among previously treated patients (PTPs) with >50 exposure days (EDs) and FVIII≤2%, three (0.75%) developed low-titre inhibitors. Two of these subjects had a positive inhibitor history; thus, the incidence of de novo inhibitor formation in PTPs with FVIII≤2% and no inhibitor history was 1/348 (0.29%; 95% CI, 0.01-1.59%). A PTP with moderate haemophilia developed a low-titre inhibitor. High-titre inhibitors were reported in a PTP with mild disease (following surgery), a previously untreated patient (PUP) with moderate disease (following surgery) and a PUP with severe disease. The favourable benefit/risk profile of rAHF-PFM previously documented in prospective clinical trials has been extended to include a broader range of haemophilia patients, many of whom would have been ineligible for registration studies. © 2010 Blackwell Publishing Ltd.

  3. THE MECHANISM OF THE INHIBITION OF HEMOLYSIS

    PubMed Central

    Ponder, Eric

    1945-01-01

    This paper contains a description of some of the inhibitory, and occasionally acceleratory, effects of sols of lecithins, cholesterol, and proteins in hemolytic systems containing simple lysins, together with investigations on the nature of the reactions by means of which the effects are brought about. The principal conclusions are: A. As regards sols of lecithins. 1. In lysin-inhibitor-cell systems, distearyl lecithin is an inhibitor of saponin and digitonin hemolysis, part of the effect being the result of a reaction with the components of the red cell surface and part being the result of a reaction with lysin in the bulk phase of the system. Lecithin ab ovo (Merck) is an accelerator of saponin hemolysis and either an accelerator or an inhibitor of digitonin hemolysis according to the initial concentration of lysin present in the system. Soybean lecithin is an inhibitor of both saponin and digitonin hemolysis, but both soybean lecithin and lecithin ab ovo contain also a hemolytic, or acceleratory, component. 2. The inhibitory effects depend on the order in which the components of the hemolytic system are mixed together. Distearyl lecithin is about 5 times more inhibitory in cell-inhibitor-lysin systems than in lysin-inhibitor-cell systems containing saponin, digitonin, or taurocholate. Lecithin ab ovo is more inhibitory in cell-inhibitor-lysin systems when the time of contact between cells and inhibitor is short, but when it is long, the hemolytic properties of the lecithin offset its inhibitory properties. A similar state of affairs is observed with soybean lecithin. 3. An increase in temperature decreases the inhibitory effect of distearyl lecithin in systems containing saponin or digitonin. B. As regards sols of cholesterol. 4. The quantity of lysin Δ apparently inhibited by a quantity Q of cholesterol sol is dependent on both the type of red cell and the number of red cells added to the system. 5. Δ is a non-linear function of Q and of c 1, the initial quantity of lysin present in the hemolytic system, Δ generally increasing as c 1 increases. 6. The inhibitory effect of cholesterol sols is essentially due to a reaction between the cholesterol and the lysin in the bulk phase of the system, modified by what appear to be redistribution effects which depend on the kind and number of red cells added to complete the hemolytic system. 7. The value of Δ depends on the temperature and on the length of time during which the cholesterol and the lysin remain in contact before the addition of the cells. 8. Distearyl lecithin considerably enhances the inhibitory effects of cholesterol sols. C. As regards the proteins. 9. Freshly prepared serum globulin is inhibitory in systems containing saponin, digitonin, taurocholate, and oleate, and the effect is due to reactions in the bulk phase of the system, modified by redistribution effects. 10. Serum albumin either accelerates or inhibits lysis by saponin, depending on the initial concentration of lysin, and the inhibition depends on such factors as the type of red cell used and the time of contact. In the case of sodium taurocholate, the inhibition has a very marked pH dependence. D. As regards plasma. 11. The way in which the inhibitory effect depends on the length of time during which inhibitor and lysin are in contact before the addition of the cells is not the same when plasma is used as an inhibitor as when a cholesterol sol is used as the inhibitor. The amount of cholesterol sol which is equal in inhibitory power to a given amount of plasma accordingly varies according to the length of the time of contact which is selected. 12. The inhibitory effect in systems containing saponin, plasma, and red cells can be shown to depend on the order in which the components are mixed, when the concentration of the plasma is small. 13. The question as to how much of the inhibitory power of plasma can be accounted for by the contained cholesterol (total or free) is one which can be answered only if the experimental conditions are defined with respect to initial concentration of lysin, time of contact, and several other variables. Very roughly, about 50 per cent of the total inhibition of plasma, or a little more, can be attributed to the cholesterol fraction. 14. Since the inhibitory effects of plasma are the result of reactions in the bulk phase of the system, complicated by redistributions among the phases, of reactions between some of its components and components of the red cell surface, and of enhancing effects of its components upon each other, it is not surprising that nothing better than an empirical expression should have been found to describe the inhibition quantitatively. PMID:19873439

  4. The release and vascular action of bradykinin in the isolated perfused bovine udder

    PubMed Central

    Zeitlin, I J; Eshraghi, H R

    2002-01-01

    It has been postulated that the mammary kinin system may play a role in modulating mammary blood flow. Until the present study, the local release of bradykinin (BK) or other kinin system constituents into the mammary vasculature had not been reported and there were also conflicting findings on the action of BK on udder vasculature. Udders were removed from healthy lactating cows at slaughter. Pairs of ipsilateral quarters were perfused with Tyrode solution through the external pudendalis artery and drained via the cranial superficial epigastric vein. Mammary secretion was collected through teat cannulae. The perfusion pressure was linearly related to perfusate flux between 60 and 210 ml min−1 and the flow rate was adjusted (110-150 ml min−1) to give a basal pressure of 85 mmHg. PO2, PCO2 and pH in the venous effluent perfusate stabilised at 157 ± 10 mmHg, 50.1 ± 2.4 mmHg and 7.1 ± 0.03, respectively. The venous effluent contained immunoreactive BK and BK precursor, tissue kallikrein activity, and bradykinin-destroying enzyme. The concentration of BK stabilised at 378 ± 48 pg (ml perfusate)−1, that of trypsin-activated BK precursor was 679 ± 59 pg BK equivalents ml−1 and that of tissue kallikrein, measured as cleavage of d-Val.Leu.Arg-p-nitroanilide (d-Val.Leu.Arg-pNA), was 5.5 ± 1.7 nmol p-NA h−1 ml−1. Arterial infusion of phenylephrine (0.49-490 μM) produced increases in perfusion pressure (vasoconstriction). Acetylcholine (ACh) (0.55-55 μM) and BK (0.1-10 μM) produced only vasodilatation. BK (EC50 = 1.00±0.04 μM) was a more potent vasodilator than ACh (EC50 = 9.57±0.49 μM). The basal BK concentration was 250 times below the threshold for vasoactivity. The udder produced a milk-like secretion, which was dependent on perfusate flow and contained a concentration of BK which remained unchanged from 60 to 180 min of perfusion (231 ± 31 pg ml−1) unlike that in the venous effluent which doubled between 60 and 120 min. Thus, in addition to its secretion into milk, BK, together with its precursor and tissue kallikrein, is continuously released into the vasculature of the isolated, perfused, lactating bovine udder. PMID:12181294

  5. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    PubMed

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD + and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Novel function of lecithin-cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation.

    PubMed

    Goyal, J; Wang, K; Liu, M; Subbaiah, P V

    1997-06-27

    Although the major function of lecithin-cholesterol acyltransferase (LCAT) is cholesterol esterification, our previous studies showed that it can also hydrolyze platelet-activating factor (PAF). Because of the structural similarities between PAF and the truncated phosphatidylcholines (polar PCs) generated during lipoprotein oxidation, we investigated the possibility that LCAT may also hydrolyze polar PCs to lyso-PC during the oxidation of plasma. PAF acetylhydrolase (PAF-AH), which is known to hydrolyze polar PCs in human plasma, was completely inhibited by 0.2 mM p-aminoethyl benzenesulfonyl fluoride (Pefabloc), a new serine esterase inhibitor, which had no effect on LCAT at this concentration. On the other hand, 1 mM diisopropylfluorophosphate (DFP) completely inhibited LCAT but had no effect on PAF-AH. Polar PC accumulation during the oxidation of plasma increased by 44% in the presence of 0.2 mM Pefabloc and by 30% in the presence of 1 mM DFP. The formation of lyso-PC was concomitantly inhibited by both of the inhibitors. The combination of the two inhibitors resulted in the maximum accumulation of polar PCs, suggesting that both PAF-AH and LCAT are involved in their breakdown. Oxidation of chicken plasma, which has no PAF-AH activity, also resulted in the formation of lyso-PC from the hydrolysis of polar PC, which was inhibited by DFP. Polar PCs, either isolated from oxidized plasma or by oxidation of labeled synthetic PCs, were hydrolyzed by purified LCAT, which had no detectable PAF-AH activity. These results demonstrate a novel function for LCAT in the detoxification of polar PCs generated during lipoprotein oxidation, especially when the PAF-AH is absent or inactivated.

  7. Peptide YY in diabetics treated chronically with an intestinal glucosidase inhibitor.

    PubMed

    Füessl, H S; Adrian, T E; Uttenthal, L O; Bloom, S R

    1988-10-03

    Peptide YY (PYY) is a recently discovered peptide found in the distal ileum and colon. It circulates in plasma and concentrations rise in malabsorptive conditions. The potential of PYY as an indicator of impaired carbohydrate digestion was studied in a pharmacological model of intestinal glucosidase inhibition. Thirteen type-2 diabetics on long-term treatment with the alpha-glucosidase inhibitor acarbose (3 x 100 mg per day) had test meals with and without acarbose 100 mg before and after the treatment period (mean 46 weeks), a test meal with acarbose after 20 weeks of continuous treatment and a final test meal without acarbose 6 weeks after cessation of treatment. Without acarbose mean plasma PYY concentrations rose from a mean basal value of 11.5 +/- 2.9 pmol/l to 19.5 +/- 3.9 pmol/l 120 min postprandially (P less than 0.01). Acarbose treatment did not effect basal plasma PYY concentrations but significantly enhanced food stimulated PYY concentrations acutely, at 20 weeks and at the final treatment test meal. Mean incremental integrated plasma responses (area under curve) rose by 183%, 184% and 169%, respectively (P less than 0.05). After cessation of treatment postprandial responses returned to pretreatment values within 6 weeks. Conversely, the integrated incremetal postprandial plasma responses of glucose and insulin were reversibly reduced by acarbose to 58% +/- 9% and 60% +/- 10% of controls, respectively. Self-assesed side effects of flatulence and more frequent bowel action showed no regular relationship to the PYY response. PYY seems to act as an indicator of the increased carbohydrate load to the distal intestine even in the absence of clinical symptoms. It may contribute to the hypoglycaemic effect of alpha-glucosidase inhibitors by slowing down intestinal transit.

  8. Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor

    PubMed Central

    2012-01-01

    Background Dipeptidylpeptidase 4 (DPP4) inhibitors have clinical benefit in patients with type 2 diabetes mellitus by increasing levels of glucose-lowering incretin hormones, such as glucagon-like peptide -1 (GLP-1), a peptide with a short half life that is secreted for approximately 1 hour following a meal. Since drugs with prolonged binding to their target have been shown to maximize pharmacodynamic effects while minimizing drug levels, we developed a time-dependent inhibitor that has a half-life for dissociation from DPP4 close to the duration of the first phase of GLP-1 release. Results Saxagliptin and its active metabolite (5-hydroxysaxagliptin) are potent inhibitors of human DPP4 with prolonged dissociation from its active site (Ki = 1.3 nM and 2.6 nM, t1/2 = 50 and 23 minutes respectively at 37°C). In comparison, both vildagliptin (3.5 minutes) and sitagliptin ( < 2 minutes) rapidly dissociated from DPP4 at 37°C. Saxagliptin and 5-hydroxysaxagliptin are selective for inhibition of DPP4 versus other DPP family members and a large panel of other proteases, and have similar potency and efficacy across multiple species. Inhibition of plasma DPP activity is used as a biomarker in animal models and clinical trials. However, most DPP4 inhibitors are competitive with substrate and rapidly dissociate from DPP4; therefore, the type of substrate, volume of addition and final concentration of substrate in these assays can change measured inhibition. We show that unlike a rapidly dissociating DPP4 inhibitor, inhibition of plasma DPP activity by saxagliptin and 5-hydroxysaxagliptin in an ex vivo assay was not dependent on substrate concentration when substrate was added rapidly because saxagliptin and 5-hydroxysaxagliptin dissociate slowly from DPP4, once bound. We also show that substrate concentration was important for rapidly dissociating DPP4 inhibitors. Conclusions Saxagliptin and its active metabolite are potent, selective inhibitors of DPP4, with prolonged dissociation from its active site. They also demonstrate prolonged inhibition of plasma DPP4 ex vivo in animal models, which implies that saxagliptin and 5-hydroxysaxagliptin would continue to inhibit DPP4 during rapid increases in substrates in vivo. PMID:22475049

  9. Structure-Function Relationship of Hydrophiidae Postsynaptic Neurotoxins

    DTIC Science & Technology

    1992-03-11

    monster venom concluded that gila toxin is an arginine esterase with kallikrein-like activity causing lethality and gyration in mice. However, it is not a...Fractionation of Lapemis venom ............ 49 Fig 3-4 Fractionation of Gila Toxin ............... 50 Fig 3-5 Fibrinogenolytic Activity of Gila toxin...Sequence of 8 kD Fragment of Lapemis PLA ..... 8 7 Tab 3-9 Enzyme Activity of Native and Metal Pl . 88 Tab 3-10 Amino Acid Analysis of Lapemis 9 kD prorein

  10. Dental Enamel: Genes Define Biomechanics

    PubMed Central

    Rauth, Rick J.; Potter, Karen S.; Ngan, Amanda Y.-W.; Saad, Deema M.; Mehr, Rana; Luong, Vivian Q.; Schuetter, Verna L.; Miklus, Vetea G.; Chang, PeiPei; Paine, Michael L.; Lacruz, Rodrigo S.; Snead, Malcolm L.; White, Shane N.

    2010-01-01

    Regulated gene expression assembles an extracellular proteinaceous matrix to control biomineralization and the resultant biomechanical function of tooth enamel. The importance of the dominant enamel matrix protein, amelogenin (Amel); a minor transiently expressed protein, dentin sialoprotein (Dsp); an electrogenic sodium bicarbonate cotransporter (NBCe1); the timely removal of the proteinaceous matrix by a serine protease, Kallikrein-4 (Klk4); and the late-stage expression of Amelotin (Amtn) on enamel biomechanical function were demonstrated and measured using mouse models. PMID:20066874

  11. Investigation of the Role of Breast Cancer Resistance Protein (Bcrp/Abcg2) on Pharmacokinetics and Central Nervous System Penetration of Abacavir and Zidovudine in the Mouse

    PubMed Central

    Giri, Nagdeep; Shaik, Naveed; Pan, Guoyu; Terasaki, Tetsuya; Mukai, Chisato; Kitagaki, Shinji; Miyakoshi, Naoki; Elmquist, William F.

    2016-01-01

    Many anti-human immunodeficiency virus 1 nucleoside reverse-transcriptase inhibitors have low central nervous system (CNS) distribution due in part to active efflux transport at the blood-brain barrier. We have previously shown that zidovudine (AZT) and abacavir (ABC) are in vitro substrates for the efflux transport protein breast cancer resistance protein (Bcrp) 1. We evaluated the influence of Bcrp1 on plasma pharmacokinetics and brain penetration of zidovudine and abacavir in wild-type and Bcrp1-deficient (Bcrp1−/−) FVB mice. There was no difference in either area under the concentration-time profiles for plasma (AUCplasma) or brain (AUCbrain) for zidovudine between the wild-type and Bcrp1−/− mice. The AUCplasma of abacavir was 20% lower in the Bcrp1−/− mice, whereas the AUCbrain was 20% greater. This difference resulted in a 1.5-fold increase in abacavir brain exposure in the Bcrp1−/− mice. The effect of selective and nonselective transport inhibitors on the ABC brain/plasma ratio at a single time point was evaluated. 3-(6-Isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionicacid tert-butyl ester (Ko143), N[4[2-(6, 7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), probenecid, and Pluronic P85 increased abacavir plasma concentrations in the wild-type mice. Abacavir plasma concentrations in Bcrp1−/− mice were increased by (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo(a,e)cyclopropa(c)cycloheptan-6-yl)-α-((5-quinoloyloxy)methyl)-1-piperazineethanol trihydrochloride (LY335979), GF120918, and probenecid, but not by Ko143. Brain/plasma concentration ratios in both the wild-type and Bcrp1−/− mice were increased by the P-glycoprotein inhibitors LY335979 and GF120918, but not by BCRP-selective inhibitors. These data indicate that deletion of Bcrp1 has little influence on the pharmacokinetics or brain penetration of AZT. However, for abacavir, deletion of Bcrp1 reduces plasma exposure and enhances brain penetration. These findings suggest that Bcrp1 does not play a significant role in limiting the CNS distribution of zidovudine and abacavir; however, brain penetration of abacavir is dependent on P-glycoprotein-mediated efflux. PMID:18443033

  12. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer

    PubMed Central

    Zheng, Jun; Zhang, Ding; Liu, Wei; Zheng, Wei Hong; Li, Xiao Song; Yao, Ru Cheng; Wang, Fangyu; Liu, Sen; Tan, Xiao

    2018-01-01

    Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease. PMID:29560118

  13. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel

    PubMed Central

    Coda, Alvin B.; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C.; Del Rosso, James Q.; Gallo, Richard L.

    2014-01-01

    Background Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. Objective We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Methods Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. Results AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Limitations Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. Conclusions These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. PMID:23871720

  14. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel.

    PubMed

    Coda, Alvin B; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C; Del Rosso, James Q; Gallo, Richard L

    2013-10-01

    Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  15. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

    PubMed

    Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A

    2017-10-01

    The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  16. SGLT2 inhibitors: molecular design and potential differences in effect.

    PubMed

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  17. Postexposure protection of macaques from vaginal SHIV infection by topical integrase inhibitors.

    PubMed

    Dobard, Charles; Sharma, Sunita; Parikh, Urvi M; West, Rolieria; Taylor, Andrew; Martin, Amy; Pau, Chou-Pong; Hanson, Debra L; Lipscomb, Jonathan; Smith, James; Novembre, Francis; Hazuda, Daria; Garcia-Lerma, J Gerardo; Heneine, Walid

    2014-03-12

    Coitally delivered microbicide gels containing antiretroviral drugs are important for HIV prevention. However, to date, microbicides have contained entry or reverse transcriptase inhibitors that block early steps in virus infection and thus need to be given as a preexposure dose that interferes with sexual practices and may limit compliance. Integrase inhibitors block late steps after virus infection and therefore are more suitable for post-coital dosing. We first determined the kinetics of strand transfer in vitro and confirmed that integration begins about 6 hours after infection. We then used a repeat-challenge macaque model to assess efficacy of vaginal gels containing integrase strand transfer inhibitors when applied before or after simian/human immunodeficiency virus (SHIV) challenge. We showed that gel containing the strand transfer inhibitor L-870812 protected two of three macaques when applied 30 min before SHIV challenge. We next evaluated the efficacy of 1% raltegravir gel and demonstrated its ability to protect macaques when applied 3 hours after SHIV exposure (five of six protected; P < 0.05, Fisher's exact test). Breakthrough infections showed no evidence of drug resistance in plasma or vaginal secretions despite continued gel dosing after infection. We documented rapid vaginal absorption reflecting a short pharmacological lag time and noted that vaginal, but not plasma, virus load was substantially reduced in the breakthrough infection after raltegravir gel treatment. We provide a proof of concept that topically applied integrase inhibitors protect against vaginal SHIV infection when administered shortly before or 3 hours after virus exposure.

  18. Mitochondrial and Plasma Membrane Citrate Transporters: Discovery of Selective Inhibitors and Application to Structure/Function Analysis

    PubMed Central

    Sun, Jiakang; Aluvila, Sreevidya; Kotaria, Rusudan; Mayor, June A.; Walters, D. Eric; Kaplan, Ronald S.

    2010-01-01

    Cytoplasmic citrate is the prime carbon source for fatty acid, triacylglycerol, and cholesterol biosyntheses, and also regulates glucose metabolism via its allosteric inhibition of phosphofructokinase. It originates either via the efflux of citrate from the mitochondrial matrix on the inner membrane citrate transport protein (CTP) or via the influx of extracellular citrate on the plasma membrane citrate transporter (PMCT). Despite their common substrate, the two transport proteins share little sequence similarity and they transport citrate via fundamentally different mechanisms. We tested the ability of a set of previously identified CTP inhibitors, to inhibit the PMCT. We found that of the top 10 CTP inhibitors only one substantially inhibited the PMCT. Conversely, we identified two other inhibitors that inhibited the PMCT but had little effect on the CTP. All three identified PMCT inhibitors displayed a noncompetitive mechanism. Furthermore, models to explain inhibitor interactions with the CTP are proposed. As part of the present studies a PMCT homology model has been developed based on the crystal structure of the leucine transporter, and a possible citrate binding site has been identified and its composition compared with the two known citrate binding sites present within the CTP. The ability to selectively inhibit the PMCT may prove key to the pharmacologic amelioration of metabolic disorders resulting from the synthesis of excess lipid, cholesterol, and glucose, including human obesity, hyperlipidemia, hyper-cholesterolemia, and Type 2 diabetes. PMID:20686672

  19. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    PubMed

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  20. THE URINE PROTEOME FOR RADIATION BIODOSIMETRY: EFFECT OF TOTAL BODY VERSUS LOCAL KIDNEY IRRADIATION

    PubMed Central

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. We used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10 Gy dose of X-rays. Both TBI and LKI altered the urinary protein profile within 24 hours with noticeable differences in Gene Ontology categories. Some proteins including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2 were detected only in the TBI group. Some other proteins including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Up/Uc ratio and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation. PMID:20065682

  1. The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.

    PubMed

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2010-02-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. The authors used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10-Gy dose of x-rays. Both TBI and LKI altered the urinary protein profile within 24 h with noticeable differences in gene ontology categories. Some proteins, including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2, were detected only in the TBI group. Some other proteins, including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Urine protein (Up) and creatinine (Uc) (Up/Uc) ratios and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation.

  2. Therapeutic targeting of sunitinib-induced AR phosphorylation in renal cell carcinoma.

    PubMed

    Adelaiye-Ogala, Remi; Damayanti, Nur P; Orillion, Ashley R; Arisa, Sreevani; Chintala, Sreenivasulu; Titus, Mark A; Kao, Chinghai; Pili, Roberto

    2018-03-23

    Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer. AR expression has also been reported in other solid tumors, including renal cell carcinoma (RCC), but its biological role here remains unclear. Through integrative analysis of a reverse phase protein array (RPPA), we discovered increased expression of AR in an RCC patient-derived xenograft model of acquired resistance to the receptor tyrosine kinase inhibitor (RTKi) sunitinib. AR expression was increased in RCC cell lines with either acquired or intrinsic sunitinib resistance in vitro. An AR signaling gene array profiler indicated elevated levels of AR target genes in sunitinib-resistant cells. Sunitinib-induced AR transcriptional activity was associated with increased phosphorylation of serine 81 (pS81) on AR. Additionally, AR overexpression resulted in acquired sunitinib resistance, and the AR antagonist enzalutamide-induced AR degradation and attenuated AR downstream activity in sunitinib-resistant cells, also indicated by decreased secretion of human kallikrein 2 (KLK2). Enzalutamide-induced AR degradation was rescued by either proteasome inhibition or by knockdown of the AR ubiquitin ligase speckle-type POZ protein (SPOP). In vivo treatment with enzalutamide and sunitinib demonstrated that this combination efficiently induced tumor regression in an RCC model following acquired sunitinib resistance. Overall, our results suggest the potential role of AR as a target for therapeutic interventions, in combination with RTKi, to overcome drug resistance in RCC. Copyright ©2018, American Association for Cancer Research.

  3. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  4. Executive summary of the GeSIDA/National AIDS Plan consensus document on antiretroviral therapy in adults infected by the human immunodeficiency virus (updated January 2014).

    PubMed

    Berenguer, Juan; Polo, Rosa; Lozano, Fernando; López Aldeguer, José; Antela, Antonio; Arribas, José Ramón; Asensi, Víctor; Blanco, José Ramón; Clotet, Bonaventura; Domingo, Pere; Galindo, María José; Gatell, José María; González-García, Juan; Iribarren, José Antonio; Locutura, Jaime; López, Juan Carlos; Mallolas, Josep; Martínez, Esteban; Miralles, Celia; Miró, José M; Moreno, Santiago; Palacios, Rosario; Pérez Elías, María Jesús; Pineda, Juan Antonio; Podzamczer, Daniel; Portilla, Joaquín; Pulido, Federico; Ribera, Esteban; Riera, Melchor; Rubio, Rafael; Santos, Jesús; Sanz, Jesús; Tuset, Montserrat; Vidal, Francesc; Rivero, Antonio

    2014-01-01

    In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and grade of the recommendation varies with clinical circumstances, number of CD4 cells, comorbid conditions and prevention of transmission of HIV. The objective of ART is to achieve an undetectable plasma viral load. Initial ART should always comprise a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors and a third drug from a different family (non-nucleoside reverse transcriptase inhibitor, protease inhibitor, or integrase inhibitor). This update presents the causes and criteria for switching ART in patients with undetectable plasma viral load and in cases of virological failure. An update is also provided for the specific criteria for ART in special situations (acute infection, HIV-2 infection, and pregnancy) and with comorbid conditions (tuberculosis or other opportunistic infections, kidney disease, liver disease, and cancer). Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. α2-Macroglobulin Is a Significant In Vivo Inhibitor of Activated Protein C and Low APC:α2M Levels Are Associated with Venous Thromboembolism.

    PubMed

    Martos, Laura; Ramón, Luis Andrés; Oto, Julia; Fernández-Pardo, Álvaro; Bonanad, Santiago; Cid, Ana Rosa; Gruber, Andras; Griffin, John H; España, Francisco; Navarro, Silvia; Medina, Pilar

    2018-04-01

     Activated protein C (APC) is a major regulator of thrombin formation. Two major plasma inhibitors form complexes with APC, protein C inhibitor (PCI) and α 1 -antitrypsin (α 1 AT), and these complexes have been quantified by specific enzyme-linked immunosorbent assays (ELISAs). Also, complexes of APC with α 2 -macroglobulin (α 2 M) have been observed by immunoblotting. Here, we report an ELISA for APC:α 2 M complexes in plasma.  Plasma samples were pre-treated with dithiothreitol and then with iodoacetamide. The detection range of the newly developed APC:α 2 M assay was 0.031 to 8.0 ng/mL of complexed APC. Following infusions of APC in humans and baboons, complexes of APC with α 2 M, PCI and α 1 AT were quantified. These complexes as well as circulating APC were also measured in 121 patients with a history of venous thromboembolism (VTE) and 119 matched controls.  In all the in vivo experiments, α 2 M was a significant APC inhibitor. The VTE case-control study showed that VTE patients had significantly lower APC:α 2 M and APC levels than the controls ( p  < 0.001). Individuals in the lowest quartile of APC:α 2 M or the lowest quartile of APC had approximately four times more VTE risk than those in the highest quartile of APC:α 2 M or of APC. The risk increased for individuals with low levels of both parameters.  The APC:α 2 M assay reported here may be useful to help monitor the in vivo fate of APC in plasma. In addition, our results show that a low APC:α 2 M level is associated with increased VTE risk. Schattauer GmbH Stuttgart.

  6. Enzymatic degradation of somatostatin by rat plasma and hypothalamus.

    PubMed

    Dupont, A; Alvarado-Urbina, G; Côté, J; Labrie, F

    1978-10-01

    A highly sensitive and specific radioimmunoassay for somatostatin has been used to study inactivation of the neurohormone by plasma and hypothalamic peptidase(s). Specificity of the inactivation process was indicated by the absence of interference by addition of luteinizing hormone releasing hormone, thyrotropin-releasing hormone, oxytocin, or substance P. The inactivating ability of hypothalamic tissue and plasma was destroyed by heating and the protease inhibitor benzamidine prevented plasma activity, thus suggesting the enzymatic nature of the processes involved. The present data suggest that the inactivation of somatostatin by hypothalamus and plasma could be an important factor in the regulation of circulating somatostatin levels.

  7. [Matrix metalloproteinases and their inhibitors in lung cancer with malignant pleural effusion].

    PubMed

    Moche, M; Hui, D S C; Huse, K; Chan, K S; Choy, D K L; Scholz, G H; Gosse, H; Winkler, J; Schauer, J; Sack, U; Hoheisel, G

    2005-08-01

    Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) play a crucial role in physiological and pathological matrix turnover. This study aimed to determine the occurrence of MMP and TIMP in lung cancer patients with malignant pleural effusions (CA). MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and IMP-2 oncentrations were determined by ELISA and zymography in pleural effusions and plasma of 31 CA and 14 congestive heart failure (CHF) patients and in plasma of 18 healthy controls (CON). MMP-2, TIMP-1, and TIMP-2 ELISA-concentrations were increased in CA pleural fluid vs. CA plasma (p < 0.005, p < 0.005, p < 0.05), in contrast to MMP-9 being higher in plasma (p < 0.005). Pleural fluid MMP-1 and MMP-8 were increased in CA vs. CHF (p < 0.05, p < 0.005). MMP and TIMP plasma concentrations were not different in CA vs. CHF, but MMP-9, TIMP-1, and TIMP-2 were increased vs. CON (p < 0.005, each). Gelatine zymography MMP-9/MMP-2 ratios were increased in CA plasma vs. effusion fluid (p < 0.005), in CA vs. CHF plasma, CA vs. CHF effusions (p < 0.005 each), and in CA vs. CON plasma (p < 0.05). MMP-2, TIMP-1, and TIMP-2 accumulate in the pleural compartment in CA and CHF, probably reflecting an unspecific pleural reaction. MMP-1 and MMP-8 are increased in cellular rich CA pleural effusions only. The determination of MMP-9/MMP-2 ratios in pleural fluid may contribute to differentiate CHF from CA effusions.

  8. Self-healing effect of the protective inhibitor-containing coatings on Mg alloys

    NASA Astrophysics Data System (ADS)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.

    2017-09-01

    The method of self-healing coating formation on the surface of magnesium alloys on the base of plasma electrolytic oxidation (PEO) with subsequent impregnation of the obtained layer with inhibitor has been suggested. The protective and electrochemical properties of such coatings have been described. Localised Scanning Electrochemical Methods were used for determining the kinetics and mechanism of the self-healing process. The treatment with the solution containing inhibitor enables us to increase the protective properties of the PEO-coating in 30 times in the corrosion-active environment.

  9. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

    PubMed Central

    Frost, Charles E; Byon, Wonkyung; Song, Yan; Wang, Jessie; Schuster, Alan E; Boyd, Rebecca A; Zhang, Donglu; Yu, Zhigang; Dias, Clapton; Shenker, Andrew; LaCreta, Frank

    2015-01-01

    Aim Apixaban is an orally active inhibitor of coagulation factor Xa and is eliminated by multiple pathways, including renal and non-renal elimination. Non-renal elimination pathways consist of metabolism by cytochrome P450 (CYP) enzymes, primarily CYP3A4, as well as direct intestinal excretion. Two single sequence studies evaluated the effect of ketoconazole (a strong dual inhibitor of CYP3A4 and P-glycoprotein [P-gp]) and diltiazem (a moderate CYP3A4 inhibitor and a P-gp inhibitor) on apixaban pharmacokinetics in healthy subjects. Method In the ketoconazole study, 18 subjects received apixaban 10 mg on days 1 and 7, and ketoconazole 400 mg once daily on days 4–9. In the diltiazem study, 18 subjects received apixaban 10 mg on days 1 and 11 and diltiazem 360 mg once daily on days 4–13. Results Apixaban maximum plasma concentration and area under the plasma concentration–time curve extrapolated to infinity increased by 62% (90% confidence interval [CI], 47, 78%) and 99% (90% CI, 81, 118%), respectively, with co-administration of ketoconazole, and by 31% (90% CI, 16, 49%) and 40% (90% CI, 23, 59%), respectively, with diltiazem. Conclusion A 2-fold and 1.4-fold increase in apixaban exposure was observed with co-administration of ketoconazole and diltiazem, respectively. PMID:25377242

  10. Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general.

    PubMed

    Boxenbaum, H

    1999-01-01

    Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.

  11. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    PubMed

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  12. Raltegravir Cerebrospinal Fluid Concentrations in HIV-1 Infection

    PubMed Central

    Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W.

    2009-01-01

    Introduction Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Methods Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Results Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0–126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37–5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Conclusions Approximately 50% of the CSF specimens exceeded the IC95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry. PMID:19721718

  13. Dynamic changes in plasma tissue plasminogen activator, plasminogen activator inhibitor-1 and beta-thromboglobulin content in ischemic stroke.

    PubMed

    Zhuang, Ping; Wo, Da; Xu, Zeng-Guang; Wei, Wei; Mao, Hui-ming

    2015-07-01

    The aim of this paper is to investigate the corresponding variations of plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activities, and beta-thromboglobulin (β-TG) content in patients during different stages of ischemic stroke. Ischemic stroke is a common disease among aging people and its occurrence is associated with abnormalities in the fibrinolytic system and platelet function. However, few reports focus on the dynamic changes in the plasma fibrinolytic system and β-TG content in patients with ischemic stroke. Patients were divided into three groups: acute, convalescent and chronic. Plasma t-PA and PAI-1 activities were determined by chromogenic substrate analysis and plasma β-TG content was detected by radioimmunoassay. Patients in the acute stage of ischemic stroke had significantly increased levels of t-PA activity and β-TG content, but PAI-1 activity was significantly decreased. Negative correlations were found between plasma t-PA and PAI-1 activities and between plasma t-PA activity and β-TG content in patients with acute ischemic stroke. There were significant differences in plasma t-PA and PAI-1 activities in the aged control group, as well as in the acute, convalescent and chronic groups. It can be speculated that the increased activity of t-PA in patients during the acute stage was the result of compensatory function, and that the increase in plasma β-TG level not only implies the presence of ischemic stroke but is likely a cause of ischemic stroke. During the later stages of ischemic stroke, greater attention is required in monitoring levels of PAI-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice.

    PubMed

    Nakamura, Takashi; Murase, Takayo; Nampei, Mai; Morimoto, Nobutaka; Ashizawa, Naoki; Iwanaga, Takashi; Sakamoto, Ryusuke

    2016-06-05

    Topiroxostat, a xanthine oxidoreductase (XOR) inhibitor, has been shown to decrease the urinary albumin-to-creatinine ratio compared with placebo in hyperuricemic patients with stage 3 chronic kidney disease. Thus, we aimed to ascertain the albuminuria-lowering effect of topiroxostat in diabetic mouse. Db/db mice were fed standard diets with or without topiroxostat (0.1, 0.3, 1, and 3mg/kg/day) and febuxostat (0.1, 0.3, and 1mg/kg/day) for four weeks. Urinary albumin and purine bodies levels, XOR activities, and drug concentrations in the liver, kidney, and plasma were measured. Moreover, the XOR inhibitory activity of each XOR inhibitor was evaluated with or without an exogenous protein in vitro. Topiroxostat decreased dose-dependently the urinary albumin excretion, but febuxostat did not show such a tendency. Treatment with topiroxostat inhibited plasma XOR activity with dose-dependent increase in plasma purine levels, which was not observed by febuxostat. Pharmacokinetic/pharmacodynamic analysis revealed that topiroxostat and febuxostat concentration in each tissue showed a good correlation with both the hypouricemic effect and plasma drug concentration, whereas the change in albuminuria correlated neither with the change in uric acid nor with drug concentration in plasma. However, the change in urinary albumin and plasma XOR activity showed good correlation in topiroxostat group. The 50% inhibitory concentration (IC50 value) of febuxostat against plasma XOR in vitro was 12-fold higher than that of topiroxostat, and increased by approximately 13-fold by interfering with an exogenous protein. Topiroxostat caused reduced urinary albumin excretion, in which potent inhibition of the plasma XOR activity might be involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. VP40 of the Ebola Virus as a Target for EboV Therapy: Comprehensive Conformational and Inhibitor Binding Landscape from Accelerated Molecular Dynamics.

    PubMed

    Balmith, Marissa; Soliman, Mahmoud E S

    2017-03-01

    The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.

  16. Functional genomic analysis identifies indoxyl sulfate as a major, poorly dialyzable uremic toxin in end-stage renal disease.

    PubMed

    Jhawar, Sachin; Singh, Prabhjot; Torres, Daniel; Ramirez-Valle, Francisco; Kassem, Hania; Banerjee, Trina; Dolgalev, Igor; Heguy, Adriana; Zavadil, Jiri; Lowenstein, Jerome

    2015-01-01

    Chronic renal failure is characterized by progressive renal scarring and accelerated arteriosclerotic cardiovascular disease despite what is considered to be adequate hemodialysis or peritoneal dialysis. In rodents with reduced renal mass, renal scarring has been attributed to poorly filtered, small protein-bound molecules. The best studied of these is indoxyl sulfate (IS). We have attempted to establish whether there are uremic toxins that are not effectively removed by hemodialysis. We examined plasma from patients undergoing hemodialysis, employing global gene expression in normal human renal cortical cells incubated in pre- and post- dialysis plasma as a reporter system. Responses in cells incubated with pre- and post-dialysis uremic plasma (n = 10) were compared with responses elicited by plasma from control subjects (n = 5). The effects of adding IS to control plasma and of adding probenecid to uremic plasma were examined. Plasma concentrations of IS were measured by HPLC (high pressure liquid chromatography). Gene expression in our reporter system revealed dysregulation of 1912 genes in cells incubated with pre-dialysis uremic plasma. In cells incubated in post-dialysis plasma, the expression of 537 of those genes returned to baseline but the majority of them (1375) remained dysregulated. IS concentration was markedly elevated in pre- and post-dialysis plasma. Addition of IS to control plasma simulated more than 80% of the effects of uremic plasma on gene expression; the addition of probenecid, an organic anion transport (OAT) inhibitor, to uremic plasma reversed the changes in gene expression. These findings provide evidence that hemodialysis fails to effectively clear one or more solutes that effect gene expression, in our reporter system, from the plasma of patients with uremia. The finding that gene dysregulation was simulated by the addition of IS to control plasma and inhibited by addition of an OAT inhibitor to uremic plasma identifies IS as a major, poorly dialyzable, uremic toxin. The signaling pathways initiated by IS and possibly other solutes not effectively removed by dialysis may participate in the pathogenesis of renal scarring and uremic vasculopathy.

  17. NKX3.1 Genotype and IGF-1 Interact in Prostate Cancer Risk

    DTIC Science & Technology

    2009-05-01

    Steadman DJ, Giuffrida D, Gelmann EP. DNA-binding sequence of the human prostate-specific homeodomain protein NKX3.1. Nucleic Acids Res 2000;28...Gelmann EP. DNA-binding sequence of the human prostate-specific homeodomain protein NKX3.1. Nucleic Acids Res 2000;28:2389–95. 20. Wu X, Senechal K...3212836 /UG=Hs.21765 fatty acid desaturase 3 204733_at 5.74 gb:NM_002774.1 /DEF=Homo sapiens kallikrein 6 (neurosin, zyme) (KLK6), mRNA. /FEA=mRNA /GEN

  18. An LC-MS/MS method for rapid and sensitive high-throughput simultaneous determination of various protein kinase inhibitors in human plasma.

    PubMed

    Abdelhameed, Ali S; Attwa, Mohamed W; Kadi, Adnan A

    2017-02-01

    A reliable, high-throughput and sensitive LC-MS/MS procedure was developed and validated for the determination of five tyrosine kinase inhibitors in human plasma. Following their extraction from human plasma, samples were eluted on a RP Luna®-PFP 100 Å column using a mobile phase system composed of acetonitrile and 0.01 m ammonium formate in water (pH ~4.1) with a ratio of (50:50, v/v) flowing at 0.3 mL min -1 . The mass spectrometer was operating with electrospray ionization in the positive ion multiple reaction monitoring mode. The proposed methodology resulted in linear calibration plots with correlation coefficients values of r 2  = 0.9995-0.9999 from concentration ranges of 2.5-100 ng mL -1 for imatinib, 5.0-100 ng mL -1 for sorafenib, tofacitinib and afatinib, and 1.0-100 ng mL -1 for cabozantinib. The procedure was validated in terms of its specificity, limit of detection (0.32-1.71 ng mL -1 ), lower limit of quantification (0.97-5.07 ng mL -1 ), intra- and inter assay accuracy (-3.83 to +2.40%) and precision (<3.37%), matrix effect and recovery and stability. Our results demonstrated that the proposed method is highly reliable for routine quantification of the investigated tyrosine kinase inhibitors in human plasma and can be efficiently applied in the rapid and sensitive analysis of their clinical samples. Copyright © 2016 John Wiley & Sons, Ltd.

  19. The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide.

    PubMed

    Niemi, M; Neuvonen, P J; Kivistö, K T

    2001-07-01

    Our objective was to study the effects of the macrolide antibiotic clarithromycin on the pharmacokinetics and pharmacodynamics of repaglinide, a novel short-acting antidiabetic drug. In a randomized, double-blind, 2-phase crossover study, 9 healthy volunteers were treated for 4 days with 250 mg oral clarithromycin or placebo twice daily. On day 5 they received a single dose of 250 mg clarithromycin or placebo, and 1 hour later a single dose of 0.25 mg repaglinide was given orally. Plasma repaglinide, serum insulin, and blood glucose concentrations were measured up to 7 hours. Clarithromycin increased the mean total area under the concentration-time curve of repaglinide by 40% (P <.0001) and the peak plasma concentration by 67% (P <.005) compared with placebo. The mean elimination half-life of repaglinide was prolonged from 1.4 to 1.7 hours (P <.05) by clarithromycin. Clarithromycin increased the mean incremental area under the concentration-time curve from 0 to 3 hours of serum insulin by 51% (P <.05) and the maximum increase in the serum insulin concentration by 61% (P <.01) compared with placebo. No statistically significant differences were found in the blood glucose concentrations between the placebo and clarithromycin phases. Even low doses of the cytochrome P4503A4 (CYP3A4) inhibitor clarithromycin increase the plasma concentrations and effects of repaglinide. Concomitant use of clarithromycin or other potent inhibitors of CYP3A4 with repaglinide may enhance its blood glucose-lowering effect and increase the risk of hypoglycemia.

  20. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor

    PubMed Central

    Waterfall, J. F.

    1989-01-01

    1 Cilazapril is the monoethyl ester prodrug form of the di-acid cilazaprilat, a new angiotensin converting enzyme (ACE) inhibitor. Cilazaprilat has an IC50 of 1.9 nM as an inhibitor of rabbit lung ACE in vitro making it one of the most potent ACE inhibitors currently available. Studies on a wide range of other enzymes show that the inhibition is highly specific. 2 An oral dose of 0.1 mg kg-1 cilazapril evoked the same maximum degree of plasma ACE inhibition (∼76%) in the rat as 0.25 mg kg-1 enalapril. Cilazapril (0.25 mg kg-1 p.o.) inhibited plasma ACE by > 95%. The rate of recovery of ACE activity was slower with cilazapril (5-6% h-1) than with enalapril (10% h-1). 3 In anaesthetised rats cilazaprilat was equipotent with ramiprilat and slightly more potent (1.5×) than enalaprilat as an inhibitor of the angiotensin I pressor response. 4 Following oral administration to conscious rats and intravenous administration to anaesthetised dogs, cilazapril was 2-4.5× more potent than enalapril as an ACE inhibitor. 5 In cats cilazapril (0.1 and 0.3 mg kg-1 p.o.) dose dependently decreased plasma ACE activity and the angiotensin pressor response. Peak effects occurred at 2 h after dosing and plasma ACE inhibition was maintained at ≥ 50% for up to 18 h. Mean arterial pressure was also decreased dose dependently with a peak effect at 3-4 h. 6 Daily oral dosing of cilazapril (30 mg kg-1 p.o.) to spontaneously hypertensive rats evoked a progressive and prolonged (24 h) antihypertensive response with a maximum decrease in systolic blood pressure of 110 mm Hg. 7 Cilazapril (10 mg kg-1 p.o. twice daily for 3.5 days) progressively decreased blood pressure in volume depleted renal hypertensive dogs. The maximum fall in systolic pressure was 39 ± 6 mm Hg. 8 Haemodynamic studies in open chest anaesthetised dogs showed that the hypotensive response to intravenous cilazapril was accompanied by a reduction in total peripheral resistance. Small decreases in cardiac output and myocardial contractile force were seen at high doses. 9 Cilazapril had no adverse effect on cardiovascular reflexes. There was no impairment of the baroreflex in rats. Exercise-induced tachycardia and pressor responses in conscious cats were unchanged. 10 Cilazapril is exceptionally well absorbed by the oral route (98% in rats). PMID:2527528

  1. Bioanalytical qualification of clinical biomarker assays in plasma using a novel multi-analyte Simple Plex™ platform.

    PubMed

    Gupta, Vinita; Davancaze, Teresa; Good, Jeremy; Kalia, Navdeep; Anderson, Michael; Wallin, Jeffrey J; Brady, Ann; Song, An; Xu, Wenfeng

    2016-12-01

    Immune-checkpoint inhibitors are presumed to break down the tolerogenic state of immune cells by activating T-lymphocytes that release cytokines and enhance effector cell function for elimination of tumors. Measurement of cytokines is being pursued for better understanding of the mechanism of action of immune-checkpoint inhibitors, as well as to identify potential predictive biomarkers. In this study, we show bioanalytical qualification of cytokine assays in plasma on a novel multi-analyte immunoassay platform, Simple Plex ™ . The qualified assays exhibited excellent sensitivity as evidenced by measurement of all samples within the quantifiable range. The accuracy and precision were 80-120% and 10%, respectively. The qualified assays will be useful in assessing mechanism of action cancer immunotherapies.

  2. Estimation of plasma tacrine concentrations using an in vitro cholinesterase inhibition assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriearty, P.L.; Kenny, W.; Kumar, V.

    THA (9-amino, 1,2,3,4-tetrahydroacridine; tacrine) is currently under study as a cholinesterase (ChE) inhibitor in Alzheimer disease. In this study, a sensitive radiometric assay for THA inhibition of human plasma ChE, suitable for detection of effects of orally administered drug, is described. The assay is sensitive in a range of 4-50 ng/ml plasma. Reversibility of the inhibition permits distinguishing of drug effects on ChE from changes in amount of enzyme synthesized during treatment.

  3. Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma Stability

    DTIC Science & Technology

    2013-09-01

    12192595 12. Yao, H., D. Veine, K. Fay, E. Staszewski, et al., The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell...Z.Z. Zeng, K.S. Fay, et al., Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung

  4. Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma Stability

    DTIC Science & Technology

    2014-09-01

    dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Research and Treatment...2011. 125: p. 363-375. PMID: 20300829 13. Yao, H., D.M. Veine, Z.Z. Zeng, K.S. Fay, et al., Increased potency of the PHSCN dendrimer as an inhibitor of

  5. Optimization of orally bioavailable alkyl amine renin inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhenrong; Cacatian, Salvacion; Yuan, Jing

    2010-09-17

    Structure-guided drug design led to new alkylamine renin inhibitors with improved in vitro and in vivo potency. Lead compound 21a, has an IC{sub 50} of 0.83 nM for the inhibition of human renin in plasma (PRA). Oral administration of 21a at 10 mg/kg resulted in >20 h reduction of blood pressure in a double transgenic rat model of hypertension.

  6. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dan, E-mail: DZhou@syntapharma.com; Liu, Yuan; Ye, Josephine

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG andmore » NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal elimination rate are linked to toxicity potential. • Rat retinotoxic responses to individual Hsp90 inhibitors reflect clinical profiles. • Rodent modeling may be used to assess ocular risks of targeted Hsp90 compounds.« less

  7. Plasma serotonin in autism.

    PubMed

    Connors, Susan L; Matteson, Karla J; Sega, Gary A; Lozzio, Carmen B; Carroll, Roger C; Zimmerman, Andrew W

    2006-09-01

    Serotonin is necessary for normal fetal brain development. Administration of serotonin inhibitors to pregnant rats results in offspring with abnormal behaviors, brain morphology, and serotonin receptor numbers. Low maternal plasma serotonin may contribute to abnormal brain development in autism. In this study, plasma serotonin levels in autism mothers and control mothers of typically developing children were compared, and plasma serotonin levels in children with autism (n = 17) and their family members were measured. Plasma serotonin levels in autism mothers were significantly lower than in mothers of normal children (P = 0.002). Plasma serotonin levels correlated between autism mothers and their children, but differed between autistic children and their fathers (P = 0.028) and siblings (P = 0.063). Low maternal plasma serotonin may be a risk factor for autism through effects on fetal brain development.

  8. In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection

    PubMed Central

    Takahashi, Yoshiaki; Byrareddy, Siddappa N.; Albrecht, Christina; Brameier, Markus; Walter, Lutz; Mayne, Ann E.; Dunbar, Paul; Russo, Robert; Little, Dawn M.; Villinger, Tara; Khowawisetsut, Ladawan; Pattanapanyasat, Kovit; Villinger, Francois; Ansari, Aftab A.

    2014-01-01

    The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses. PMID:24603870

  9. Effect of famotidine on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

    PubMed Central

    Upreti, Vijay V; Song, Yan; Wang, Jessie; Byon, Wonkyung; Boyd, Rebecca A; Pursley, Janice M; LaCreta, Frank; Frost, Charles E

    2013-01-01

    Background Apixaban is an oral, selective, direct factor Xa inhibitor approved for thromboprophylaxis after orthopedic surgery and stroke prevention in patients with atrial fibrillation, and under development for treatment of venous thromboembolism. This study investigated the effect of a gastric acid suppressant, famotidine (a histamine H2-receptor antagonist), on the pharmacokinetics of apixaban in healthy subjects. Methods This two-period, two-treatment crossover study randomized 18 healthy subjects to receive a single oral dose of apixaban 10 mg with and without a single oral dose of famotidine 40 mg administered 3 hours before dosing with apixaban. Plasma apixaban concentrations were measured up to 60 hours post-dose and pharmacokinetic parameters were calculated. Results Famotidine did not affect maximum apixaban plasma concentration (Cmax) or area under the plasma concentration-time curve from zero to infinite time (AUC∞). Point estimates for ratios of geometric means with and without famotidine were close to unity for Cmax (0.978) and AUC∞ (1.007), and 90% confidence intervals were entirely contained within the 80%–125% no-effect interval. Administration of apixaban alone and with famotidine was well tolerated. Conclusion Famotidine does not affect the pharmacokinetics of apixaban, consistent with the physicochemical properties of apixaban (lack of an ionizable group and pH-independent solubility). Apixaban pharmacokinetics would not be affected by an increase in gastrointestinal pH due to underlying conditions (eg, achlorhydria), or by gastrointestinal pH-mediated effects of other histamine H2-receptor antagonists, antacids, or proton pump inhibitors. Given that famotidine is also an inhibitor of the human organic cation transporter (hOCT), these results indicate that apixaban pharmacokinetics are not influenced by hOCT uptake transporter inhibitors. Overall, these results support that apixaban can be administered without regard to coadministration of gastric acid modifiers. PMID:23637566

  10. Clinical pharmacokinetics and efficacy of renin inhibitors.

    PubMed

    Rongen, G A; Lenders, J W; Smits, P; Thien, T

    1995-07-01

    The successful introduction of angiotensin converting enzyme (ACE) inhibitors in the treatment of patients with essential hypertension or heart failure has increased interest in the (patho)physiological role of the renin-angiotensin system (RAS). ACE is not only involved in the formation of angiotensin II from angiotensin I, but also inactivates vasoactive substances such as bradykinin and substance P. Accumulation of these substances during treatment with ACE inhibitors may contribute to both their therapeutic action and certain adverse effects associated with their use, such as cough and angioneurotic oedema. Renin inhibitors offer an alternative approach to inhibit the RAS. The major advantage of these, still experimental, drugs is their high specificity for the RAS since angiotensinogen is the only known substrate of renin. The currently available renin inhibitors are pseudopeptides that are rapidly taken up by the liver and excreted in the bile. Consequently, these drugs are subjected to a considerable first pass effect which limits their oral bioavailability. Additionally, plasma elimination half-life times are short and the duration of action is limited. Despite these shortcomings, single oral or intravenous administration results in a 80 to 90% inhibition of plasma renin activity and a slight reduction in blood pressure in patients with hypertension. The extent of blood pressure reduction is dependent on the patient's salt balance. After 1 week of oral treatment with the renin inhibitor remikiren, the antihypertensive effect was reduced in salt-repleted hypertensive patients. Subsequent intravenous administration of the drug did not further affect blood pressure, indicating that it was not the first pass effect that was limiting the efficacy of remikiren.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Effects of sample handling methods on substance P concentrations and immunoreactivity in bovine blood samples.

    PubMed

    Mosher, Ruby A; Coetzee, Johann F; Allen, Portia S; Havel, James A; Griffith, Gary R; Wang, Chong

    2014-02-01

    To determine the effects of protease inhibitors and holding times and temperatures before processing on the stability of substance P in bovine blood samples. Blood samples obtained from a healthy 6-month-old calf. Blood samples were dispensed into tubes containing exogenous substance P and 1 of 6 degradative enzyme inhibitor treatments: heparin, EDTA, EDTA with 1 of 2 concentrations of aprotinin, or EDTA with 1 of 2 concentrations of a commercially available protease inhibitor cocktail. Plasma was harvested immediately following collection or after 1, 3, 6, 12, or 24 hours of holding at ambient (20.3° to 25.4°C) or ice bath temperatures. Total substance P immunoreactivity was determined with an ELISA; concentrations of the substance P parent molecule, a metabolite composed of the 9 terminal amino acids, and a metabolite composed of the 5 terminal amino acids were determined with liquid chromatography-tandem mass spectrometry. Regarding blood samples processed immediately, no significant differences in substance P concentrations or immunoreactivity were detected among enzyme inhibitor treatments. In blood samples processed at 1 hour of holding, substance P parent molecule concentration was significantly lower for ambient temperature versus ice bath temperature holding conditions; aprotinin was the most effective inhibitor of substance P degradation at the ice bath temperature. The ELISA substance P immunoreactivity was typically lower for blood samples with heparin versus samples with other inhibitors processed at 1 hour of holding in either temperature condition. Results suggested that blood samples should be chilled and plasma harvested within 1 hour after collection to prevent substance P degradation.

  12. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Effect of quercetin on tachykinin-induced plasma extravasation in rat urinary bladder.

    PubMed

    Wille, P R; Ribeiro-do-Valle, R M; Simões, C M; Gabilan, N H; Nicolau, M

    2001-08-01

    The effect of quercetin on substance P-induced plasma extravasation in rat urinary bladder and its modulation by endogenous peptidases in conscious rats was studied. Plasma protein extravasation (PE) was assayed by measurement of extravasated Evans blue dye (microg/g dry tissue). Intravenous injection of substance P (SP, 10 nmol/kg) significantly increased PE in the urinary bladder. PE evoked by SP was increased significantly by quercetin (20 mg/kg, p.o.) pretreatment in the urinary bladder (73.5 +/- 4.9 to 152.2 +/- 9.9). Pretreatment with captopril, an angiotensin-converting enzyme (ACE) inhibitor (10 nmol/kg, i.v.), or with phosphoramidon, a neutral endopeptidase (NEP) inhibitor (2.5 micromol/kg, i.v.) also potentiated the SP-induced PE in urinary bladder, 286.2 +/- 20.4 and 323.3 +/- 34.0, respectively. Quercetin did not show any effect on neurokinin-A (NKA, 10 nmol/kg, i.v.) -induced plasma extravasation. The present study demonstrates that quercetin potentiates the PE induced by substance P in the urinary bladder. These effects suggest that this flavonoid might cause inhibition of NEP and/or ACE. Copyright 2001 John Wiley & Sons, Ltd.

  14. Successful treatment of plasma cell cheilitis with topical tacrolimus: report of two cases.

    PubMed

    Hanami, Yuka; Motoki, Yoshikazu; Yamamoto, Toshiyuki

    2011-02-15

    Plasma cell cheilitis is an uncommon chronic inflammatory dermatitis that presents with flat to slightly elevated erosive erythematous plaques. It is histologically characterized by plasma cell infiltrates into the mucosa. Other than the lip, genital areas are often involved, which is called plasma cell balanitis or vulvitis. Plasma cell cheilitis is sometimes resistant to conventional topical corticosteroid therapy. Other choices include oral griseofulvin, topical cyclosporine, and intralesional corticosteroid injection, all of which occasionally fail to produce satisfactory results. Recent reports show that topical calcineurin inhibitors are effective for plasma cell cheilitis, balanitis, and vulvitis. However, there are so far only 2 reports of plasma cell cheilitis successfully treated with topical pimecrolimus and tacrolimus. We present herein two cases of plasma cell cheilitis, in which topical tacrolimus showed beneficial effects, suggesting that this immunomodulatory agent is a promising option for plasma cell cheilitis.

  15. Biotransformation and mass balance of the SGLT2 inhibitor empagliflozin in healthy volunteers.

    PubMed

    Chen, Lin-Zhi; Jungnik, Arvid; Mao, Yanping; Philip, Elsy; Sharp, Dale; Unseld, Anna; Seman, Leo; Woerle, Hans-Jürgen; Macha, Sreeraj

    2015-01-01

    1. The absorption, biotransformation and excretion of empagliflozin, an SGLT2 inhibitor, were evaluated in eight healthy subjects following a single 50 mg oral dose of empagliflozin containing ∼100 µCi [(14)C]-empagliflozin. 2. Radioactivity was rapidly absorbed, with plasma levels peaking 1 h post-dose. Total exposure was lower in blood versus plasma, consistent with moderate (28.6-36.8%) red blood cell partitioning. Protein binding was 80.3-86.2%. 3. Most of the radioactive dose was recovered in urine (54.4%) and faeces (41.1%). Unchanged empagliflozin was the most abundant drug-related component in plasma, representing 75.5-77.4% of plasma radioactivity and 79.6% plasma radioactivity AUC0-12 h. Unchanged empagliflozin was the most abundant drug-related component in urine and faeces, representing 43.5% (23.7% of dose) and 82.9% (34.1% of dose) of radioactivity in urine and faeces, respectively. Six metabolites were identified in plasma: three glucuronide conjugates representing 4.7-7.1% of AUC0-12 h and three less abundant metabolites (<0.2-1.9% AUC0-12 h). The most abundant metabolites in urine were two glucuronide conjugates (7.8-13.2% of dose) and in faeces was a tetrahydrofuran ring-opened carboxylic acid metabolite (1.9% of dose). 4. To conclude, empagliflozin was rapidly absorbed and excreted primarily unchanged in urine and faeces. Unchanged parent was the major drug-related component in plasma. Metabolism was primarily via glucuronide conjugation.

  16. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters.

    PubMed

    Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi

    2017-09-01

    Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides.

    PubMed

    Oropesa, Ana-Lourdes; Gravato, Carlos; Sánchez, Susana; Soler, Francisco

    2013-11-01

    Blood plasma cholinesterase (ChE) activity is a sensitive biomarker of exposure to organophosphorus (OP) and carbamate (CB) insecticides in vertebrates. Several studies indicate that more than one ChE form may be present in blood of birds. In this study the predominant ChE activity (acetylcholinesterase - AChE- or butyrylcholinesterase - BChE-), the range of ChE activity as well as ChE age-dependent changes in non-exposed individuals of White stork (Ciconia ciconia) have been established. The in vitro sensitivity of ChE to OP and CB insecticides such as paraoxon-methyl, carbofuran and carbaryl was also investigated. Plasma ChE was characterised using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylcholine and butyrylcholine and the predominant enzymatic activity in plasma of White storks was BChE. Normal plasma BChE activity in White stork was 0.32±0.01μmol/min/ml for adults and 0.28±0.03μmol/min/ml for juveniles. So, the age had no significant effect on the range of BChE activity. The study on the in vitro inhibitory potential of tested anticholinesterase pesticides on plasma ChE activity revealed that paraoxon-methyl is the most potent inhibitor followed by carbofuran and finally by carbaryl. The percentage of in vitro plasma ChE inhibition was observed to be similar between adults and juveniles. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Pharmacodynamics of norepinephrine reuptake inhibition: Modeling the peripheral and central effects of atomoxetine, duloxetine, and edivoxetine on the biomarker 3,4-dihydroxyphenylglycol in humans.

    PubMed

    Kielbasa, William; Lobo, Evelyn

    2015-12-01

    Norepinephrine, a neurotransmitter in the autonomic sympathetic nervous system, is deaminated by monoamine oxidase to 3,4-dihydroxyphenylglycol (DHPG). Inhibition of the NE transporter (NET) using DHPG as a biomarker was evaluated using atomoxetine, duloxetine, and edivoxetine as probe NET inhibitors. Pharmacokinetic and pharmacodynamic data were obtained from healthy subjects (n = 160) from 5 clinical trials. An indirect response model was used to describe the relationship between drug plasma concentration and DHPG concentration in plasma and cerebrospinal fluid (CSF). The baseline plasma DHPG concentration (1130-1240 ng/mL) and Imax (33%-37%) were similar for the 3 drugs. The unbound plasma drug IC50 (IC50U ) based on plasma DHPG was 0.973 nM for duloxetine, 0.136 nM for atomoxetine, and 0.041 nM for edivoxetine. The baseline CSF DHPG concentration (1850-2260 ng/mL) was similar for the 3 drugs, but unlike plasma DHPG, the Imax for DHPG was 38% for duloxetine, 53% for atomoxetine, and75% for edivoxetine. The IC50U based on CSF DHPG was 2.72 nM for atomoxetine, 1.22 nM for duloxetine, and 0.794 nM for edivoxetine. These modeling results provide insights into the pharmacology of NET inhibitors and the use of DHPG as a biomarker. © 2015, The American College of Clinical Pharmacology.

  19. NS3 protease resistance-associated substitutions in liver tissue and plasma samples from patients infected by hepatitis C virus genotype 1A or 1B.

    PubMed

    Morsica, Giulia; Andolina, Andrea; Merli, Marco; Messina, Emanuela; Hasson, Hamid; Lazzarin, Adriano; Uberti-Foppa, Caterina; Bagaglio, Sabrina

    2017-08-01

    The presence of naturally occurring resistance-associated substitutions (RASs) in the HCV-protease domain has been poorly investigated in the liver, the main site of HCV replication. We evaluated the natural resistance of the virus to NS3 protease inhibitors in liver tissue and plasma samples taken from HCV-infected patients. RASs were investigated by means of viral population sequencing in liver tissue samples from 18 HCV-infected patients harbouring genotype 1a or genotype 1b; plasma samples from 12 of these patients were also available for virological investigation. A discordant genotype was found in two of the 12 patients (16.6%) who provided samples from both compartments. Sequence analysis of the NS3 protease domain showed the presence of RASs in four of the 18 liver tissue samples (22.2%), two of which showed cross-resistance to protease inhibitors in clinical use or phase 2-3 trials. The analysis of the 12 paired tissues and plasma samples excluded the presence of RASs in the plasma compartment. The dominance of discordant genotypes in the paired liver and plasma samples of some HCV-infected patients suggests mixed infection possibly leading to the selective advantage of different genotype in the two compartments. The presence of RASs at intra-hepatic level is not uncommon and may lead to the early emergence of cross-resistant strains.

  20. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole.

    PubMed

    Qi, Fang; Zhu, Liqin; Li, Na; Ge, Tingyue; Xu, Gaoqi; Liao, Shasha

    2017-04-01

    This study aimed to determine the influence of proton pump inhibitors (PPIs) on the pharmacokinetics of voriconazole and to characterise potential drug-drug interactions (DDIs) between voriconazole and various PPIs (omeprazole, esomeprazole, lansoprazole and rabeprazole). Using adjusted physicochemical data and the pharmacokinetic (PK) parameters of voriconazole and PPIs, physiologically based pharmacokinetic (PBPK) models were built and were verified in healthy subjects using GastroPlus TM to predict the plasma concentration-time profiles of voriconazole and PPIs. These models were then used to assess potential DDIs for voriconazole when administered with PPIs. The results indicated the PBPK model-simulated plasma concentration-time profiles of both voriconazole and PPIs were consistent with the observed profiles. In addition, the DDI simulations suggested that the PK values of voriconazole increased to various degrees when combined with several PPIs. The area under the plasma concentration-time curve for the time of the simulation (AUC 0- t ) of voriconazole was increased by 39%, 18%, 12% and 1% when co-administered with omeprazole, esomeprazole, lansoprazole and rabeprazole, respectively. Omeprazole was the most potent CYP2C19 inhibitor tested, whereas rabeprazole had no influence on voriconazole (omeprazole > esomeprazole > lansoprazole > rabeprazole). However, in consideration of the therapeutic concentration range, dosage adjustment of voriconazole is unnecessary regardless of which PPI was co-administered. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. An Unexpected Effect of Proton Pump Inhibitors: Elevation of the Cardiovascular Risk Factor ADMA

    PubMed Central

    Ghebremariam, Yohannes T.; LePendu, Paea; Lee, Jerry C.; Erlanson, Daniel A.; Slaviero, Anna; Shah, Nigam H.; Leiper, James; Cooke, John P.

    2013-01-01

    Background Proton pump inhibitors (PPIs) are gastric acid suppressing agents widely prescribed for the treatment of gastro-esophageal reflux disease (GERD). Recently, several studies in patients with acute coronary syndrome (ACS) have raised the concern that use of PPIs in these patients may increase their risk of major adverse cardiovascular events (MACE). The mechanism of this possible adverse effect is not known. Whether the general population might also be at risk has not been addressed. Methods and Results Plasma ADMA is an endogenous inhibitor of nitric oxide synthase (NOS). Elevated plasma ADMA is associated with increased risk for cardiovascular disease, likely due to its attenuation of the vasoprotective effects of endothelial NOS. We find that PPIs elevate plasma asymmetric dimethylarginine (ADMA) level and reduce nitric oxide (NO) levels and endothelium-dependent vasodilation in a murine model and ex vivo human tissues. PPIs increase ADMA because they bind to, and inhibit dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades ADMA. Conclusions We present a plausible biological mechanism to explain the association of PPIs with increased MACE in patients with unstable coronary syndromes. Of concern, this adverse mechanism is also likely to extend to the general population using PPIs. This finding compels additional clinical investigations and pharmacovigilance directed toward understanding the cardiovascular risk associated with use of the PPIs in the general population. PMID:23825361

  2. Biochemistry and pharmacology of reversible inhibitors of MAO-A agents: focus on moclobemide.

    PubMed Central

    Nair, N P; Ahmed, S K; Kin, N M

    1993-01-01

    Moclobemide, p-chloro-N-[morpholinoethyl]benzamide, is a prototype of RIMA (reversible inhibitor of MAO-A) agents. The compound possesses antidepressant efficacy that is comparable to that of tricyclic and polycyclic antidepressants. In humans, moclobemide is rapidly absorbed after a single oral administration and maximum concentration in plasma is reached within an hour. It is moderately to markedly bound to plasma proteins. MAO-A inhibition rises to 80% within two hours; the duration of MAO inhibition is usually between eight and ten hours. The activity of MAO is completely reestablished within 24 hours of the last dose, so that a quick switch to another antidepressant can be safely undertaken if clinical circumstances demand. RIMAs are potent inhibitors of MAO-A in the brain; they increase the free cytosolic concentrations of norepinephrine, serotonin and dopamine in neuronal cells and in synaptic vesicles. Extracellular concentrations of these monoamines also increase. In the case of moclobemide, increase in the level of serotonin is the most pronounced. Moclobemide administration also leads to increased monoamine receptor stimulation, reversal of reserpine induced behavioral effects, selective depression of REM sleep, down regulation of beta-adrenoceptors and increases in plasma prolactin and growth hormone levels. It reduces scopolamine-induced performance decrement and alcohol induced performance deficit which suggest a neuroprotective role. Tyramine potentiation with moclobemide and most other RIMA agents is negligible. PMID:7905288

  3. Overexpression of MMP-9 and its inhibitors in blood mononuclear cells after myocardial infarction--is it associated with depressive symptomatology?

    PubMed

    Jönsson, Simon; Lundberg, Anna K; Jonasson, Lena

    2014-01-01

    Matrix metalloproteinase (MMP)-9 may play a central role in the development and progression of atherosclerosis. Emerging evidence also indicates an association between MMP-9 and depressive symptomatology. Here, we investigated whether expression of MMP-9 and its inhibitors in blood mononuclear cells and plasma were related to depressive symptoms in patients with a recent myocardial infarction (MI). Blood sampling was performed between 6 and 18 months after MI in 57 patients. Forty-one clinically healthy subjects were included as controls. Gene expression of MMP-9 and its main tissue inhibitors TIMP-1 and -2 were analyzed in freshly isolated or cultured blood mononuclear cells. Corresponding protein levels were assessed in cell supernatants and plasma. In post-MI patients, mRNA levels of MMP-9 and TIMP-1 and -2 were significantly higher than in controls while protein levels in cell supernatants and plasma did not differ between groups. The Center for Epidemiological Studies - Depression (CES-D) scale was used to assess depressive symptomatology. Repeated assessments during the first 18 months after MI showed significantly higher CES-D scores in patients compared with controls. However, there were no relationships between depressive mood and any of the measurements of MMP-9 or TIMPs. Our findings indicate that overexpression of MMP-9 and TIMPs in blood mononuclear cells and elevated depressive symptoms represent two unrelated phenomena after MI.

  4. Improvement of bioavailability of the HIV protease inhibitor SC-52151 in the beagle dog by coadministration of the CYP3A4 inhibitor, ketoconazole.

    PubMed

    Yuan, J H; Stolzenbach, J C; Salamon, C M; Snook, S S; Schoenhard, G L

    1997-05-01

    1. SC-52151, an HIV protease inhibitor, is mainly metabolized by CYP3A4 and is poorly bioavailable after oral administration. After i.v. administration of SC-52151 to the female beagle dog (2.5 mg/kg), SC-52151 was rapidly eliminated in plasma with an elimination half-life of about 1 h, a plasma clearance of 44 ml/min/kg and an apparent steady-state volume distribution of 2.2 litre/kg. The high value of plasma clearance of SC-52151 suggests an extensive hepatic first-pass metabolism since SC-52151 is highly protein bound and does not partition itself into red blood cells. 2. The extensive hepatic first-pass metabolism was reduced by coadministration of a CYP3A4 inhibitor, ketoconazole. 3. Dogs were dosed daily with ketoconazole at dose of 100 mg ketoconazole per dog (approximately 10 mg/kg) for 5 days prior to the initiation of coadministration of SC-52151 for 15 days. The doses used for SC-52151 was 0, 60 and 120 mg SC-52151/kg/day (divided t.i.d., 8-h dosing interval). Coadministration of ketoconazole improved the bioavailability of SC-52151 from 4.1 to 9.6% and also improved the Cmax of SC-52151 from 0.41 to 0.83 microgram/ml. 4. Although the absolute bioavailability of SC-52151 was still low (approximately 10%), the Cmax and AUC achieved in this study were satisfactory for conducting chronic toxicology studies. No toxicity associated with the coadministration of ketoconazole was evident. Results from this study suggest that coadministration of ketoconazole might be a practical approach to increase the exposure of SC-52151 in both preclinical and clinical studies.

  5. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    PubMed Central

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  6. FABP4 inhibitor BMS309403 decreases saturated-fatty-acid-induced endoplasmic reticulum stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation.

    PubMed

    Bosquet, Alba; Girona, Josefa; Guaita-Esteruelas, Sandra; Heras, Mercedes; Saavedra-García, Paula; Martínez-Micaelo, Neus; Masana, Lluís; Rodríguez-Calvo, Ricardo

    2018-06-01

    Fatty acid binding protein 4 (FABP4) inhibitors have been proposed as potential therapeutic approaches against insulin resistance-related inflammation and type 2 diabetes mellitus. However, the underlying molecular mechanisms by which these molecules drive these effects in skeletal muscle remain unknown. Here, we assessed whether the FABP4 inhibitor BMS309403 prevented lipid-induced endoplasmic reticulum (ER) stress-associated inflammation in skeletal muscle. The BMS309403 treatment was assessed both in the skeletal muscle of high-fat diet (HFD)-fed mice and in palmitate-stimulated C2C12 myotubes. HFD feeding promoted insulin resistance, which is characterized by increased plasma levels of glucose, insulin, non-esterified fatty acids, triglycerides, resistin, and leptin and reduced plasma levels of adiponectin compared with control mice fed a standard diet. Additionally, insulin-resistant animals showed increased FABP4 plasma levels. In line with this evidence, recombinant FABP4 attenuated the insulin-induced AKT phosphorylation in C2C12 myotubes. Treatment with BMS309403 reduced lipid-induced ER stress and inflammation in both mouse skeletal muscle and C2C12 myotubes. The effects of the FABP4 inhibitor reducing lipid-induced ER stress-associated inflammation were related to the reduction of fatty acid-induced intramyocellular lipid deposits, ROS and nuclear factor-kappaB (NF-κB) nuclear translocation. Accordingly, BMS309403 reduced lipid-induced p38 MAPK phosphorylation, which is upstream of NF-κB activation. Overall, these findings indicate that BMS309403 reduces fatty acid-induced ER stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Expression of kallikrein-related peptidase 13 is associated with poor prognosis in esophageal squamous cell carcinoma.

    PubMed

    Nohara, Kyoko; Yamada, Kazuhiko; Yamada, Leo; Hagiwara, Teruki; Igari, Toru; Yokoi, Chizu; Soma, Daisuke; Yamashita, Satoshi; Dohi, Taeko; Kawamura, Yuki I

    2018-06-01

    Our previous differential transcriptome analysis between a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues found aberrant expression of kallikrein-related peptidase 13 (KLK13) in tumors. In this study, we evaluated the expression of KLK13 in many ESCC cases in relation with clinical features, and the prognosis. Eighty-eight ESCC cases were subjected to immunohistological staining for KLK13 and classified into KLK13-negative and KLK13-positive groups. Difference of clinical features and the prognosis between the groups was analyzed. In normal esophageal mucosa, KLK13 expression was evident but limited in the stratum granulosum in all cases. By contrast, only 27 of 88 ESCC samples showed KLK13 expression, whereas the remaining 61 tumors showed no KLK13 expression. The KLK13-positive group was significantly associated with pT classification (deeper tumor invasions; P = 0.0282), pN classification (lymph node metastasis; P = 0.0163), and advanced TNM stage (P = 0.0198). In KLK13-positive samples, KLK13-expressing cells often expressed Ki67, a proliferation marker, unlike normal mucosa, in which Ki67-expressing cells were limited to the basal layer and did not express KLK13. Compared with patients with KLK13-negative group, KLK13-positive group showed poorer postoperative prognosis. Relatively high levels of KLK13 expression in ESCC were associated with cell proliferation and correlated with tumor progression, advanced cancer stage, and poor prognosis.

  8. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets

    PubMed Central

    2015-01-01

    Background Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. Methods We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. Results Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. Conclusions Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis. PMID:26040285

  9. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets.

    PubMed

    Cordeiro, Ana Paula; Silva Pereira, Rosiane Aparecida; Chapeaurouge, Alex; Coimbra, Clarice Semião; Perales, Jonas; Oliveira, Guilherme; Sanchez Candiani, Talitah Michel; Coimbra, Roney Santos

    2015-01-01

    Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis.

  10. Irreversible 4-Aminopiperidine Transglutaminase 2 Inhibitors for Huntington's Disease.

    PubMed

    Prime, Michael E; Brookfield, Frederick A; Courtney, Stephen M; Gaines, Simon; Marston, Richard W; Ichihara, Osamu; Li, Marie; Vaidya, Darshan; Williams, Helen; Pedret-Dunn, Anna; Reed, Laura; Schaertl, Sabine; Toledo-Sherman, Leticia; Beconi, Maria; Macdonald, Douglas; Muñoz-Sanjuan, Ignacio; Dominguez, Celia; Wityak, John

    2012-09-13

    A new series of potent TG2 inhibitors are reported that employ a 4-aminopiperidine core bearing an acrylamide warhead. We establish the structure-activity relationship of this new series and report on the transglutaminase selectivity and in vitro ADME properties of selected compounds. We demonstrate that the compounds do not conjugate glutathione in an in vitro setting and have superior plasma stability over our previous series.

  11. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk

    PubMed Central

    Barter, Philip J.; Rye, Kerry-Anne

    2012-01-01

    Human and rabbit plasma contain a cholesteryl ester transfer protein (CETP) that promotes net mass transfers of cholesteryl esters from high density lipoproteins (HDL) to other plasma lipoprotein fractions. As predicted, inhibition of CETP in both humans and rabbits increases the concentration of cholesterol in the potentially protective HDL fraction, while decreasing it in potentially proatherogenic non-HDL fractions. Inhibition of CETP in rabbits also inhibits the development of diet-induced atherosclerosis. However, use of the CETP inhibitor torcetrapib in humans did not reduce atheroma in three imaging trials and caused an excess of deaths and cardiovascular events in a large clinical outcome trial. The precise explanation for the harm caused by torcetrapib is unknown but may relate to documented, potentially harmful effects unrelated to inhibition of CETP. More recently, a trial using the weak CETP inhibitor dalcetrapib, which raises HDL levels less effectively than torcetrapib and does not lower non-HDL lipoprotein levels, was terminated early for reasons of futility. There was no evidence that dalcetrapib caused harm in that trial. Despite these setbacks, the hypothesis that CETP inhibitors will be antiatherogenic in humans is still being tested in studies with anacetrapib and evacetrapib, two CETP inhibitors that are much more potent than dalcetrapib and that do not share the off-target adverse effects of torcetrapib. PMID:22550134

  12. A novel association of acquired ADAMTS13 inhibitor and acute dengue virus infection.

    PubMed

    Rossi, Fernanda C; Angerami, Rodrigo N; de Paula, Erich V; Orsi, Fernanda L; Shang, Dezhi; del Guercio, Vânia M; Resende, Mariângela R; Annichino-Bizzacchi, Joyce M; da Silva, Luiz J; Zheng, X Long; Castro, Vagner

    2010-01-01

    Dengue is a mosquito-borne viral disease with an increasing incidence worldwide. Thrombocytopenia is a common finding in dengue virus (DV) infection; however, the underlying mechanisms remain unknown. Here we provide the first evidence of a case of antibody formation against ADAMTS13 (ADAMTS13 inhibitor) in the course of a severe acute DV infection resulting in thrombotic microangiopathy (TMA). The patient presented with classical dengue symptoms (positive epidemiology, high fever, myalgia, predominantly in the lower limbs and lumbar region for 1 week) and, after 11 days of initial symptoms, developed TMA. Clinical and laboratorial investigation of dengue and TMA was performed. The patient presented with ADAMTS13 inhibitor (IgG) during the acute phase of the disease, without anti-platelet antibodies detectable. Dengue infection had laboratorial confirmation. There were excellent clinical and laboratory responses to 11 serial plasma exchanges. Anti-ADAMTS13 inhibitor disappeared after remission of TMA and dengue resolution. No recurrence of TMA symptoms was observed after 2-year follow-up. Although the real incidence of dengue-related TMA is unknown, this case provides the basis for future epidemiologic studies on acquired ADAMTS13 deficiency in DV infection. The prompt clinical recognition of this complication and early installment of specific therapy with plasma exchange are likely to improve the outcome of severe cases of dengue.

  13. Acid lipase inhibitor in chicken plasma identified as apolipoprotein A-I.

    PubMed

    Fujii, M; Higuchi, T; Mukai, S; Yonekura, M; Yano, T; Kawaguchi, H; Nonaka, K; Fukunaga, T; Sugimoto, Y; Yamada, S

    1996-10-01

    We have reported a inhibitor of acid lipases in liver lysosomes and erythrocytes from chickens [M. Fujii et al., Int. J. Biochem., 22, 895-898 (1990)]. In this paper, the properties of the inhibitor were described in comparison with those of apo A-I of chicken. The purified inhibitor migrated with the same mobility on SDS-PAGE as apo A-I, and had a molecular weight of 27,000. The peptide map from the lipase inhibitor was similar to that of apo A-I. Antibodies to the acid lipase inhibitor also reacted with apo A-I. Apo A-I inhibited the acid lipase activities of liver lysosomes and erythrocytes from chickens as strongly as the lipase inhibitor. The N-terminal amino acid sequence of lipase inhibitor was identical to that of apo A-I as far as residue 20. The amino acid sequence of peptides obtained from the inhibitor by cleavage with CNBr corresponded to internal sequence of apo A-I, and so the CNBr-peptides were derived by cleavage after the methionine residues in apo A-I. The findings showed that the inhibitor of the acid lipases in liver lysosomes and erythrocytes from chickens was identical to apo A-I.

  14. ADHD impacted by sulfotransferase (SULT1A) inhibition from artificial food colors and plant-based foods.

    PubMed

    Eagle, Ken

    2014-08-01

    Five recent reviews have analyzed trials on the association between artificial food colors and ADHD; the 50 underlying studies and the reviews in aggregate were inconclusive. Recent work has shown human in vivo SULT1A inhibition leading to incremental catecholamines, and an inverted-U relationship between brain catecholamines and proper functioning of the prefrontal cortex where ADHD behavior can arise. This study re-examined the same underlying trials for evidence that SULT1A inhibitors were in the placebos and other inactive foods, that these "inactive" materials were symptomatic, and that ADHD symptoms exhibited an inverted-U response to SULT1A inhibition. Nearly all the underlying diets, and many placebos and delivery vehicles, were found to contain SULT1A inhibitors. Eight publications provided evidence of ADHD symptoms caused by the "inactive" materials containing SULT1A inhibitors. Ten studies showed additional SULT1A inhibitors reducing the symptoms of some subjects. SULT1A inhibitors in foods, including natural substances and artificial food colors, have a role in ADHD that can both worsen or improve symptoms. Mechanistically, SULT1A enzymes normally deactivate catecholamines, especially dopamine formed in the intestines; SULT1A inhibition can influence brain catecholamines through the intermediary of plasma tyrosine levels, which are influenced by dopamine inhibition of intestinal tyrosine hydroxylase. Biochemical measurements focused on SULT1A activity and plasma tyrosine concentrations are proposed for future work. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. E3024, 3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate, is a novel, selective and competitive dipeptidyl peptidase-IV inhibitor.

    PubMed

    Yasuda, Nobuyuki; Nagakura, Tadashi; Inoue, Takashi; Yamazaki, Kazuto; Katsutani, Naruo; Takenaka, Osamu; Clark, Richard; Matsuura, Fumiyoshi; Emori, Eita; Yoshikawa, Seiji; Kira, Kazunobu; Ikuta, Hironori; Okada, Toshimi; Saeki, Takao; Asano, Osamu; Tanaka, Isao

    2006-10-24

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are expected to become a useful new class of anti-diabetic agent. The aim of the present study is to characterize the in vitro and in vivo profile of E3024, 3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate, which is a novel imidazopyridazinone-derived DPP-IV inhibitor. E3024 inhibited recombinant human and mouse DPP-IV with IC50 values of approximately 100 nM. E3024 inhibited DPP-IV in human, mouse, rat and canine plasma with IC50 values of 140 to 400 nM. In contrast, E3024 did not inhibit DPP-8 or DPP-9 activity. Kinetic analysis indicated that E3024 is a competitive DPP-IV inhibitor. In Zucker fa/fa rats, E3024 (1 mg/kg) reduced glucose excursion after glucose load, with increases in plasma insulin and active glucagon-like peptide-1 levels. In fasted rats, this compound did not cause hypoglycemia. In a rat 4-week toxicological study, no notable changes were found at doses up to 750 mg/kg. The present preclinical studies indicate that E3024 is a novel selective DPP-IV inhibitor with anti-diabetic effects and a good safety profile.

  16. The Inhibitor Ko143 Is Not Specific for ABCG2.

    PubMed

    Weidner, Lora D; Zoghbi, Sami S; Lu, Shuiyu; Shukla, Suneet; Ambudkar, Suresh V; Pike, Victor W; Mulder, Jan; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D

    2015-09-01

    Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments. U.S. Government work not protected by U.S. copyright.

  17. Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques.

    PubMed

    Malcolm, R Karl; Veazey, Ronald S; Geer, Leslie; Lowry, Deborah; Fetherston, Susan M; Murphy, Diarmaid J; Boyd, Peter; Major, Ian; Shattock, Robin J; Klasse, Per Johan; Doyle, Lara A; Rasmussen, Kelsi K; Goldman, Laurie; Ketas, Thomas J; Moore, John P

    2012-05-01

    Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 μg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ~10(6)-fold greater than the 50% inhibitory concentrations (IC(50)s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle.

  18. Sustained Release of the CCR5 Inhibitors CMPD167 and Maraviroc from Vaginal Rings in Rhesus Macaques

    PubMed Central

    Veazey, Ronald S.; Geer, Leslie; Lowry, Deborah; Fetherston, Susan M.; Murphy, Diarmaid J.; Boyd, Peter; Major, Ian; Shattock, Robin J.; Klasse, Per Johan; Doyle, Lara A.; Rasmussen, Kelsi K.; Goldman, Laurie; Ketas, Thomas J.; Moore, John P.

    2012-01-01

    Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 μg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ∼106-fold greater than the 50% inhibitory concentrations (IC50s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle. PMID:22330914

  19. Depletion of cellular cholesterol interferes with intracellular trafficking of liposome-encapsulated ovalbumin.

    PubMed

    Rao, Mangala; Peachman, Kristina K; Alving, Carl R; Rothwell, Stephen W

    2003-12-01

    Cholesterol is a major constituent of plasma cell membranes and influences the functions of proteins residing in the membrane. To assess the role of cholesterol in phagocytosis and intracellular trafficking of liposomal antigen, macrophages were treated with inhibitors of cholesterol biosynthesis for various time periods and levels of cholesterol depletion were assessed by thin layer chromatography. In control macrophages, cholesterol was present in the plasma membrane and in intracellular stores, as visualised by staining with the cholesterol-binding compound filipin, whereas macrophages treated with cholesterol inhibitors failed to stain with filipin. However, these macrophages were still capable of phagocytosis as evidenced by their internalisation of fluorescent-labelled bacteria and liposome-encapsulated Texas red labelled-ovalbumin, L(TR-OVA). While fluorescent ovalbumin (OVA) was consistently transported to the Golgi in macrophages incubated with L(TR-OVA), in cells treated with cholesterol inhibitors, OVA remained spread diffusely throughout the cytoplasm. Even though the mean fluorescence intensity of MHC class I molecules on cholesterol inhibitor-treated macrophages was equivalent to that of the control macrophages, the amount of MHC class I-liposomal OVA-peptide complex detected on the cell surface of cholesterol inhibitor-treated macrophages, was only 45.6 +/- 7.4% (n = 4, mean +/- SEM) of control levels after intracellular processing of L(OVA). We conclude that cholesterol depletion does not eliminate phagocytosis or MHC class I surface expression, but does affect the trafficking and consequently the MHC class I antigen-processing pathway.

  20. Diluted thrombin time reliably measures low to intermediate plasma dabigatran concentrations.

    PubMed

    Božič-Mijovski, Mojca; Malmström, Rickard E; Malovrh, Petra; Antovic, Jovan P; Vene, Nina; Šinigoj, Petra; Mavri, Alenka

    2016-07-01

    Direct oral anticoagulant dabigatran was first introduced as a fixed-dose drug without routine coagulation monitoring, but current recommendations suggest that diluted thrombin time can be used to estimate plasma drug level. The aim of this study was to assess a diluted thrombin time assay based on the same thrombin reagent already used for traditional thrombin time measurements that reliably measure low to intermediate plasma dabigatran levels. We included 44 patients with atrial fibrillation who started treatment with dabigatran 150 mg (23 patients) or 110 mg (21 patients) twice a day. Blood samples were collected at baseline (no dabigatran) and 2-4 weeks after the beginning of dabigatran therapy at trough and at peak. Plasma dabigatran levels were measured with diluted thrombin time and compared to liquid chromatography with tandem mass spectrometry as the reference method. The performance of the diluted thrombin time was compared to Hemoclot® Thrombin Inhibitor and Ecarin Chromogenic Assay. In ex vivo plasma samples, diluted thrombin time highly correlated with the liquid chromatography with tandem mass spectrometry (Pearson's R = 0.9799). In the low to intermediate range (dabigatran concentration ≤ 100 µg/L) diluted thrombin time correlated significantly more closely to the liquid chromatography with tandem mass spectrometry (R = 0.964) than Hemoclot® Thrombin Inhibitor (R = 0.935, p = 0.05) or Ecarin Chromogenic Assay (R = 0.915, p < 0.01). It was also the only functional assay without any significant bias in the low to intermediate range. Both trough and peak diluted thrombin time values were similar to liquid chromatography with tandem mass spectrometry. We conclude that the diluted thrombin time assay presented in this study reliably detects dabigatran and that it is superior to the Hemoclot® Thrombin Inhibitor assay in the low to intermediate range. © The Author(s) 2015.

  1. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones

    PubMed Central

    Pelayo, Juan-Carlos; Poole, Daniel P; Steinhoff, Martin; Cottrell, Graeme S; Bunnett, Nigel W

    2011-01-01

    Abstract Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK1R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nm, 10 min) induced interaction of NK1R and β-arrestin at the plasma membrane, and the SP–NK1R–β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK1R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H+ATPase inhibitor bafilomycin A1, which prevent endosomal SP degradation, suppressed NK1R recycling by >50%. Preincubation of neurones with SP (10 nm, 5 min) desensitized Ca2+ transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK1R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP–NK1R–β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK1R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling. PMID:21878523

  2. Raltegravir plasma concentrations in treatment-experienced patients receiving salvage regimens based on raltegravir with and without maraviroc coadministration.

    PubMed

    Baroncelli, Silvia; Villani, Paola; Weimer, Liliana E; Ladisa, Nicoletta; Francisci, Daniela; Tommasi, Chiara; Vullo, Vincenzo; Preziosi, Roberta; Cicalini, Stefania; Cusato, Maria; Galluzzo, Clementina; Floridia, Marco; Regazzi, Mario

    2010-05-01

    Raltegravir and maraviroc represent new, important resources for HIV-infected patients with intolerance or resistance to other antiretroviral agents. The safety and efficacy of both drugs have been investigated, but there is no information on possible pharmacokinetic interactions between these 2 drugs in clinical practice. To evaluate raltegravir plasma concentrations in heavily treatment-experienced patients receiving salvage regimens and explore, in a preliminary assessment, the potential influence of maraviroc coadministration and other cofactors on raltegravir trough concentrations (C(trough)). Fifty-four HIV-infected patients with triple class (nucleoside reverse transcriptase inhibitor, nonnucleoside reverse transcriptase inhibitor, protease inhibitor) treatment experience starting raltegravir 400 mg twice daily, with (n = 11) or without (n = 43) concomitant maraviroc 300 mg twice daily, were evaluated. All regimens included at least 3 drugs of at least 2 different classes. Raltegravir plasma Ctrough, after at least 1 month of treatment, were analyzed to compare groups of patients taking raltegravir only and raltegravir plus maraviroc. Immunovirological (CD4, HIV-RNA) and clinical data after 6 months of treatment were also collected and described. Raltegravir plasma Ctrough showed a large variability (range <0.020-2.47 microg/mL). Median levels were similar in the 2 groups (raltegravir + maraviroc 0.104 microg/mL, range 0.025-0.826; raltegravir 0.090 microg/mL, range <0.020-2.47, p = 0.400). Detectable (>0.02 microg/mL) raltegravir concentrations were observed in all patients receiving raltegravir + maraviroc and in 74% of patients receiving raltegravir alone (p = 0.060). After 6 months of treatment, the 2 groups had similar clinical, virologic, and immunologic conditions. Coadministration of maraviroc does not seem to have any relevant effects on raltegravir plasma Ctrough in heavily treatment-experienced patients receiving salvage regimens. Further studies should evaluate the potential additional benefits of maraviroc coadministration in terms of virologic and immunologic response.

  3. Determination of sperm acrosin activity in the arctic fox (Alopex lagopus L.)--using method developed for human spermatozoa.

    PubMed

    Stasiak, K; Janicki, B; Glogowski, J

    2012-01-01

    The aim of the study was to adapt a method to determine acrosin activity of human spermatozoa to arctic fox (Alopex lagopus L.) spermatozoa. We modified this method by reducing sperm count per sample from 1 divided by 10 x 10(6) to 25 divided by 200 x 10(3), incubation time from 180 minutes to 60 minutes, and Triton X-100 concentration in the reaction mixture from 0.01% to 0.005% per 100 cm3. It has also confirmed that arctic fox seminal plasma is rich in proteinases and their inhibitors. To completely abolish the inhibitory effect of seminal plasma on acrosin activity it is recommended to wash the spermatozoa four times. Benzamidine served an inhibitor of acrosin activity.

  4. Tissue-type plasminogen activator-induced fibrinolysis is enhanced in patients with breast, lung, pancreas and colon cancer.

    PubMed

    Nielsen, Vance G; Matika, Ryan W; Ley, Michele L B; Waer, Amy L; Gharagozloo, Farid; Kim, Samuel; Nfonsam, Valentine N; Ong, Evan S; Jie, Tun; Warneke, James A; Steinbrenner, Evangelina B

    2014-04-01

    Although cancer-mediated changes in hemostatic proteins unquestionably promote hypercoagulation, the effects of neoplasia on fibrinolysis in the circulation are less well defined. The goals of the present investigation were to determine if plasma obtained from patients with breast, lung, pancreas and colon cancer was less or more susceptible to lysis by tissue-type plasminogen activator (tPA) compared to plasma obtained from normal individuals. Archived plasma obtained from patients with breast (n = 18), colon/pancreas (n = 27) or lung (n = 19) was compared to normal individual plasma (n = 30) using a thrombelastographic assay that assessed fibrinolytic vulnerability to exogenously added tPA. Plasma samples were activated with tissue factor/celite, had tPA added, and had data collected until clot lysis occurred. Additional, similar samples had potato carboxypeptidase inhibitor added to assess the role played by thrombin-activatable fibrinolysis inhibitor in cancer-modulated fibrinolysis. Rather than inflicting a hypofibrinolytic state, the three groups of cancers demonstrated increased vulnerability to tPA (e.g. decreased time to lysis, increased speed of lysis, decreased clot lysis time). However, hypercoagulation manifested as increased speed of clot formation and strength compensated for enhanced fibrinolytic vulnerability, resulting in a clot residence time that was not different from normal individual thrombi. In sum, enhanced hypercoagulability associated with cancer was in part diminished by enhanced fibrinolytic vulnerability to tPA.

  5. Bisubstrate inhibitors of protein kinases: from principle to practical applications.

    PubMed

    Lavogina, Darja; Enkvist, Erki; Uri, Asko

    2010-01-01

    Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.

  6. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  7. The effect of acute angiotensin-converting enzyme and neutral endopeptidase 24.11 inhibition on plasma extravasation in the rat.

    PubMed

    Sulpizio, Anthony C; Pullen, Mark A; Edwards, Richard M; Brooks, David P

    2004-06-01

    The effect of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) inhibition on microvascular plasma leakage (extravasation) was evaluated in a rat model. Progressive inhibition of ACE using captopril caused increased extravasation when lung ACE was inhibited by >55%. In contrast, the selective inhibition of renal NEP by >90% using ecadotril did not increase extravasation. In NEP-inhibited rats, extravasation produced by the ACE inhibitors captopril and lisinopril was markedly enhanced. The dual ACE and NEP inhibitor omapatrilat, at oral doses of 0.03, 0.1, and 0.3 mg/kg, selectively inhibited lung ACE by 19, 61, and 76%, respectively, and did not cause significant extravasation. Doses of 1 and 10 mg/kg omapatrilat, which produced >90% inhibition of ACE and also inhibited renal NEP by 54 and 78%, respectively, significantly increased extravasation. In this model, bradykinin and substance P produced extravasation that could be abolished by the bradykinin 2 (B2) receptor antagonist Hoe 140 (icatibant) or the neurokinin1 (NK1) antagonist CP99994 [(+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine], respectively. Bradykinin induced extravasation was also partially ( approximately 40%) inhibited by CP99994, indicating that a portion of the response involves B2 receptor-mediated release of substance P. In conclusion, this study is the first to relate the degree of ACE and/or NEP inhibition to extravasation liability in the rat model. Our data clearly demonstrate that ACE inhibitor-induced plasma extravasation is enhanced by concomitant inhibition of NEP. In addition, this study provides further evidence for the role for B2 and NK1 receptors in mediating plasma extravasation in the rat.

  8. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects.

    PubMed

    Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J

    2014-12-01

    The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. © 2014 The British Pharmacological Society.

  9. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects

    PubMed Central

    Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J

    2014-01-01

    Aim The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. Methods This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. Results All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. Conclusion A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. PMID:25039273

  10. Pharmacokinetics of opicapone, a third-generation COMT inhibitor, after single and multiple oral administration: A comparative study in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Daniela

    Opicapone is a novel potent, reversible and purely peripheral catechol-O-methyltransferase inhibitor that has been developed to be used as an adjunct to levodopa/aromatic L-amino acid decarboxylase inhibitor therapy for Parkinson's disease. Thus, this study aimed to compare the plasma pharmacokinetics of opicapone and its active metabolite (BIA 9-1079) after the administration of single and multiple oral doses to rats. Wistar rats (n = 8 per group) were orally treated with single (30, 60 or 90 mg/kg) or multiple (30 mg/kg once-daily for seven consecutive days) oral doses of opicapone. Blood samples were collected up to 24 h post-dosing through amore » cannula introduced in the tail vein of rats. After quantifying opicapone and BIA 9-1079 in plasma, a non-compartmental pharmacokinetic analysis was performed. Opicapone was quickly absorbed (time to reach the maximum plasma concentration ≤ 2 h) in both dosage regimens and the extent of systemic exposure to opicapone increased approximately in a dose-proportional manner after single-dosing within the studied dose range (30–90 mg/kg). Opicapone and BIA 9-1079 showed a relatively short plasma elimination half-life (1.58–4.50 h) and a small systemic accumulation after multiple-dosing. Hence, no pharmacokinetic concerns are expected when opicapone is administered with a once-daily dosing regimen. - Highlights: • Opicapone is relatively rapid absorbed after oral administration to rats. • Systemic exposure to opicapone increases approximately in a dose-proportional manner. • Opicapone and BIA 9-1079 show a small systemic accumulation after multiple-dosing.« less

  11. Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes.

    PubMed

    Kudo, Toshiyuki; Hisaka, Akihiro; Sugiyama, Yuichi; Ito, Kiyomi

    2013-02-01

    The plasma concentration of repaglinide is reported to increase greatly when given after repeated oral administration of itraconazole and gemfibrozil. The present study analyzed this interaction based on a physiologically based pharmacokinetic (PBPK) model incorporating inhibition of the hepatic uptake transporter and metabolic enzymes involved in repaglinide disposition. Firstly, the plasma concentration profiles of inhibitors (itraconazole, gemfibrozil, and gemfibrozil glucuronide) were reproduced by a PBPK model to obtain their pharmacokinetic parameters. The plasma concentration profiles of repaglinide were then analyzed by a PBPK model, together with those of the inhibitors, assuming a competitive inhibition of CYP3A4 by itraconazole, mechanism-based inhibition of CYP2C8 by gemfibrozil glucuronide, and inhibition of organic anion transporting polypeptide (OATP) 1B1 by gemfibrozil and its glucuronide. The plasma concentration profiles of repaglinide were well reproduced by the PBPK model based on the above assumptions, and the optimized values for the inhibition constants (0.0676 nM for itraconazole against CYP3A4; 14.2 μM for gemfibrozil against OATP1B1; and 5.48 μM for gemfibrozil glucuronide against OATP1B1) and the fraction of repaglinide metabolized by CYP2C8 (0.801) were consistent with the reported values. The validity of the obtained parameters was further confirmed by sensitivity analyses and by reproducing the repaglinide concentration increase produced by concomitant gemfibrozil administration at various timings/doses. The present findings suggested that the reported concentration increase of repaglinide, suggestive of synergistic effects of the coadministered inhibitors, can be quantitatively explained by the simultaneous inhibition of the multiple clearance pathways of repaglinide.

  12. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy.

    PubMed

    Wright, Helen L; Bucknall, Roger C; Moots, Robert J; Edwards, Steven W

    2012-03-01

    Biologic drugs have revolutionized the care of RA, but are expensive and not universally effective. To further understand the inflammatory mechanisms underlying RA and identify potential biomarkers predicting response to therapy, we measured multiple cytokine concentrations in SF of patients with inflammatory arthritides (IAs) and, in a subset of patients with RA, correlated this with response to TNF-α inhibition. SF from 42 RA patients and 19 non-RA IA patients were analysed for 12 cytokines using a multiplex cytokine assay. Cytokines were also measured in the plasma of 16 RA patients before and following treatment with anti-TNF-α. Data were analysed using Mann-Whitney U-test, Spearman's rank correlation and cluster analysis with the Kruskal-Wallis test with Dunn's post-test analysis. RA SF contained significantly elevated levels of IL-1β, IL-1ra, IL-2, IL-4, IL-8, IL-10, IL-17, IFN-γ, G-CSF, GM-CSF and TNF-α compared with other IA SF. RA patients who did not respond to anti-TNF therapy had elevated IL-6 in their SF pre-therapy (P < 0.05), whereas responders had elevated IL-2 and G-CSF (P < 0.05). Plasma cytokine concentrations were not significantly modulated by TNF inhibitors, with the exception of IL-6, which decreased after 12 weeks (P < 0.05). Cytokine profiles in RA SF vary with treatment and response to therapy. Cytokine concentrations are significantly lower in plasma than in SF and relatively unchanged by TNF inhibitor therapy. Concentrations of IL-6, IL-2 and G-CSF in SF may predict response to TNF inhibitors.

  13. Chloramphenicol significantly affects the pharmacokinetics of oral methadone in Greyhound dogs.

    PubMed

    KuKanich, Butch; KuKanich, Kate

    2015-11-01

    To assess the effects of cytochrome P450 (CYP) inhibitors (ketoconazole, chloramphenicol, trimethoprim, fluoxetine, cimetidine and medetomidine) in various combinations on the pharmacokinetics of oral methadone in Greyhound dogs to determine the specific effects of the different inhibitors and if a clinically relevant interaction occurs. Non-randomized, sequential design. Six healthy Greyhound dogs (three male, three female). Canine CYP inhibitors (ketoconazole, chloramphenicol, trimethoprim, fluoxetine, cimetidine and medetomidine) were administered in varying combinations prior to the administration of oral methadone. Plasma was obtained from each dog to enable the determination of methadone and CYP inhibitor drug concentrations using liquid chromatography with either mass spectrometry or ultraviolet detection. Significant increases in the area under the curve (AUC) and maximum plasma concentrations (CMAX ) of methadone occurred in all groups administered chloramphenicol. The AUC (6 hours ng mL(-1)) and CMAX (6 ng mL(-1)) of methadone significantly increased to 541 hours ng mL(-1) and 47.8 ng mL(-1), respectively, when methadone was administered with chloramphenicol as a sole inhibitor. There were no significant effects of CYP inhibitors other than chloramphenicol on methadone pharmacokinetics, which suggests that chloramphenicol was primarily responsible for the pharmacokinetic interaction. This study demonstrated significant effects of chloramphenicol on the pharmacokinetics of oral methadone. Further studies should investigate the effects of chloramphenicol on methadone pharmacokinetics in multiple dog breeds and examine whether oral methadone would be an effective analgesic in dogs. In addition, the safety of chloramphenicol and its effects on the pharmacokinetics of parenteral methadone warrant assessment. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  14. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice.

    PubMed

    LoGuidice, Amanda; Wallace, Bret D; Bendel, Lauren; Redinbo, Matthew R; Boelsterli, Urs A

    2012-05-01

    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-D-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC₅₀ ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the C(max), half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-D-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure.

  15. Pharmacologic Targeting of Bacterial β-Glucuronidase Alleviates Nonsteroidal Anti-Inflammatory Drug-Induced Enteropathy in Mice

    PubMed Central

    LoGuidice, Amanda; Wallace, Bret D.; Bendel, Lauren; Redinbo, Matthew R.

    2012-01-01

    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-d-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC50 ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the Cmax, half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-d-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure. PMID:22328575

  16. Prospective surveillance study of haemophilia A patients switching from moroctocog alfa or other factor VIII products to moroctocog alfa albumin-free cell culture (AF-CC) in usual care settings.

    PubMed

    Parra Lopez, Rafael; Nemes, Laszlo; Jimenez-Yuste, Victor; Rusen, Luminita; Cid, Ana R; Charnigo, Robert J; Baumann, James A; Smith, Lynne; Korth-Bradley, Joan M; Rendo, Pablo

    2015-10-01

    This prospective, open-label, postauthorisation safety surveillance study assessed clinically significant inhibitor development in patients with severe haemophilia A transitioning from moroctocog alfa or other factor VIII (FVIII) replacement products to reformulated moroctocog alfa (AF-CC). Males aged ≥ 12 years with severe haemophilia A (FVIII:C) < 1 IU/dl), > 150 exposure days (EDs) to recombinant or plasma-derived FVIII products, and no detectable inhibitor at screening were enrolled. Primary end point was the incidence of clinically significant FVIII inhibitor development. Secondary end points included annualised bleeding rate (ABR), less-than-expected therapeutic effect (LETE), and FVIII recovery. Patients were assigned to one of two cohorts based on whether they were transitioning to moroctocog alfa (AF-CC) from moroctocog alfa (cohort 1; n=146) or from another recombinant or plasma-derived FVIII product (cohort 2; n=62). Mean number of EDs on study was 94 (range, 1-139). Six positive FVIII inhibitor results, as determined by local laboratories, were reported in four patients; none were confirmed by a central laboratory, no inhibitor-related clinical manifestations were reported, and all anti-FVIII antibody assays were negative. Median ABRs were 23.4 and 3.4 in patients categorised at baseline as following on-demand and prophylactic regimens, respectively; 86.5% of bleeding episodes resolved after one infusion. LETE incidence was 0.06% and 0.19% in the on-demand and prophylaxis settings, respectively. FVIII recovery remained constant throughout the study. No new safety concerns were identified. This study found no increased risk of clinically significant FVIII inhibitor development in patients transitioning from moroctocog alfa or other FVIII replacement products to moroctocog alfa (AF-CC).

  17. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.

    PubMed

    Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.

  18. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines

    PubMed Central

    Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283

  19. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    PubMed

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  20. Tissue Factor Coagulant Activity is Regulated by the Plasma Membrane Microenvironment.

    PubMed

    Yu, Yuanjie; Böing, Anita N; Hau, Chi M; Hajji, Najat; Ruf, Wolfram; Sturk, Auguste; Nieuwland, Rienk

    2018-06-01

     Tissue factor (TF) can be present in a non-coagulant and coagulant form. Whether the coagulant activity is affected by the plasma membrane microenvironment is unexplored.  This article studies the presence and coagulant activity of human TF in plasma membrane micro-domains.  Plasma membranes were isolated from human MIA PaCa2 cells, MDA-MB-231 cells and human vascular smooth muscle cells by Percoll gradient ultracentrifugation after cell disruption. Plasma membranes were fractionated by OptiPrep gradient ultracentrifugation, and the presence of TF, flotillin, caveolin, clathrin, protein disulphide isomerase (PDI), TF pathway inhibitor (TFPI) and phosphatidylserine (PS) were determined.  Plasma membranes contain two detergent-resistant membrane (DRM) compartments differing in density and biochemical composition. High-density DRMs (DRM-H) have a density ( ρ ) of 1.15 to 1.20 g/mL and contain clathrin, whereas low-density DRMs (DRM-L) have a density between 1.09 and 1.13 g/mL and do not contain clathrin. Both DRMs contain TF, flotillin and caveolin. PDI is detectable in DRM-H, TFPI is not detectable in either DMR-H or DRM-L and PS is detectable in DRM-L. The DRM-H-associated TF (> 95% of the TF antigen) lacks detectable coagulant activity, whereas the DRM-L-associated TF triggers coagulation. This coagulant activity is inhibited by lactadherin and thus PS-dependent, but seemed insensitive to 16F16, an inhibitor of PDI.  Non-coagulant and coagulant TF are present within different types of DRMs in the plasma membrane, and the composition of these DRMs may affect the TF coagulant activity. Schattauer GmbH Stuttgart.

  1. Optimization of quantitative proteomic analysis of clots generated from plasma of patients with venous thromboembolism.

    PubMed

    Stachowicz, Aneta; Siudut, Jakub; Suski, Maciej; Olszanecki, Rafał; Korbut, Ryszard; Undas, Anetta; Wiśniewski, Jacek R

    2017-01-01

    It is well known that fibrin network binds a large variety of proteins, including inhibitors and activators of fibrinolysis, which may affect clot properties, such as stability and susceptibility to fibrinolysis. Specific plasma clot composition differs between individuals and may change in disease states. However, the plasma clot proteome has not yet been in-depth analyzed, mainly due to technical difficulty related to the presence of a highly abundant protein-fibrinogen and fibrin that forms a plasma clot. The aim of our study was to optimize quantitative proteomic analysis of fibrin clots prepared ex vivo from citrated plasma of the peripheral blood drawn from patients with prior venous thromboembolism (VTE). We used a multiple enzyme digestion filter aided sample preparation, a multienzyme digestion (MED) FASP method combined with LC-MS/MS analysis performed on a Proxeon Easy-nLC System coupled to the Q Exactive HF mass spectrometer. We also evaluated the impact of peptide fractionation with pipet-tip strong anion exchange (SAX) method on the obtained results. Our proteomic approach revealed 476 proteins repeatedly identified in the plasma fibrin clots from patients with VTE including extracellular vesicle-derived proteins, lipoproteins, fibrinolysis inhibitors, and proteins involved in immune responses. The MED FASP method using three different enzymes: LysC, trypsin and chymotrypsin increased the number of identified peptides and proteins and their sequence coverage as compared to a single step digestion. Peptide fractionation with a pipet-tip strong anion exchange (SAX) protocol increased the depth of proteomic analyses, but also extended the time needed for sample analysis with LC-MS/MS. The MED FASP method combined with a label-free quantification is an excellent proteomic approach for the analysis of fibrin clots prepared ex vivo from citrated plasma of patients with prior VTE.

  2. Elevated Plasma Levels of sRAGE Are Associated With Nonfocal CT-Based Lung Imaging in Patients With ARDS: A Prospective Multicenter Study.

    PubMed

    Mrozek, Segolene; Jabaudon, Matthieu; Jaber, Samir; Paugam-Burtz, Catherine; Lefrant, Jean-Yves; Rouby, Jean-Jacques; Asehnoune, Karim; Allaouchiche, Bernard; Baldesi, Olivier; Leone, Marc; Lu, Qin; Bazin, Jean-Etienne; Roszyk, Laurence; Sapin, Vincent; Futier, Emmanuel; Pereira, Bruno; Constantin, Jean-Michel

    2016-11-01

    During ARDS, CT can reveal two distinct lung imaging patterns, focal or nonfocal, with different responses to positive end-expiratory pressure, recruitment maneuvers, and prone position. Nevertheless, their association with plasma biomarkers and their distinct functional/pathobiological mechanisms are unknown. The objective of this study was to characterize focal and nonfocal patterns of lung CT-based imaging with plasma markers of lung injury. A prospective multicenter cohort study involving 119 consecutive patients with ARDS. Plasma biomarkers (soluble form of the receptor for advanced glycation end product [sRAGE], plasminogen activator inhibitor-1, soluble intercellular adhesion molecule-1, and surfactant protein-D) were measured within 24 h of ARDS onset. Lung CT scan was performed within the first 48 h to assess lung morphology. Thirty-two (27%) and 87 (73%) patients had focal and nonfocal ARDS, respectively. Plasma levels of sRAGE were significantly higher in nonfocal ARDS, compared with focal ARDS. A cut-off of 1,188 pg/mL differentiated focal from nonfocal ARDS with a sensitivity of 94% and a specificity of 84%. Nonfocal patterns were associated with higher 28- and 90-day mortality than focal patterns (31% vs 12%, P = .038 and 46% vs 21%, P = .026, respectively). Plasma levels of plasminogen activator inhibitor-1 were significantly higher in nonfocal ARDS. There was no difference in other biomarkers. Plasma sRAGE is associated with a nonfocal ARDS. Such novel findings may suggest a role for RAGE pathway in an underlying endotype of impaired alveolar fluid clearance and stimulate future research on the association between ARDS phenotypes and therapeutic responses. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. Tityus serrulatus venom--A lethal cocktail.

    PubMed

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Basic Residues of β-Sheet A Contribute to Heparin Binding and Activation of Vaspin (Serpin A12).

    PubMed

    Ulbricht, David; Oertwig, Kathrin; Arnsburg, Kristin; Saalbach, Anja; Pippel, Jan; Sträter, Norbert; Heiker, John T

    2017-01-20

    Many members of the serine protease inhibitor (serpin) family are activated by glycosaminoglycans (GAGs). Visceral adipose tissue-derived serpin (vaspin), serpin A12 of the serpin family, and its target protease kallikrein 7 (KLK7) are heparin-binding proteins, and inhibition of KLK7 by vaspin is accelerated by heparin. However, the nature of GAG binding to vaspin is not known. Here, we measured vaspin binding of various glycosaminoglycans and low molecular weight heparins by microscale thermophoresis and analyzed acceleration of protease inhibition by these molecules. In addition, basic residues contributing to heparin binding and heparin activation were identified by a selective labeling approach. Together, these data show that vaspin binds heparin with high affinity (K D = 21 ± 2 nm) and that binding takes place at a basic patch on top of β-sheet A and is different from other heparin-binding serpins. Mutation of basic residues decreased heparin binding and activation of vaspin. Similarly, reactive center loop insertion into sheet A decreased heparin binding because it disturbs the basic cluster. Finally, using vaspin-overexpressing keratinocyte cells, we show that a significant part of secreted vaspin is bound in the extracellular matrix on the cell surface. Together, basic residues of central β-sheet A contribute to heparin binding and activation of vaspin. Thus, binding to GAGs in the extracellular matrix can direct and regulate vaspin interaction with target proteases or other proteins and may play an important role in the various beneficial functions of vaspin in different tissues. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Sulfated Pentagalloylglucoside is a Potent, Allosteric, and Selective Inhibitor of Factor XIa

    PubMed Central

    Al-Horani, Rami A.; Ponnusamy, Pooja; Mehta, Akul Y.; Gailani, David; Desai, Umesh R.

    2013-01-01

    Inhibition of factor XIa (FXIa) is a novel paradigm for developing anticoagulants without major bleeding consequences. We present the discovery of sulfated pentagalloylglucoside (6) as a highly selective inhibitor of human FXIa. Biochemical screening of a focused library led to the identification of 6, a sulfated aromatic mimetic of heparin. Inhibitor 6 displayed a potency of 551 nM against FXIa, which was at least 200-fold more selective than other relevant enzymes. It also prevented activation of factor IX and prolonged human plasma and whole blood clotting. Inhibitor 6 reduced VMAX of FXIa hydrolysis of chromogenic substrate without affecting the KM suggesting an allosteric mechanism. Competitive studies showed that 6 bound in the heparin-binding site of FXIa. No allosteric small molecule has been discovered to date that exhibits equivalent potency against FXIa. Inhibitor 6 is expected to open up a major route to allosteric FXIa anticoagulants with clinical relevance. PMID:23316863

  6. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold.

    PubMed

    Jansen, Koen; Heirbaut, Leen; Cheng, Jonathan D; Joossens, Jurgen; Ryabtsova, Oxana; Cos, Paul; Maes, Louis; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2013-05-09

    Fibroblast activation protein (FAP) is a serine protease that is generally accepted to play an important role in tumor growth and other diseases involving tissue remodeling. Currently there are no FAP inhibitors with reported selectivity toward both the closely related dipeptidyl peptidases (DPPs) and prolyl oligopeptidase (PREP). We present the discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold. We have explored the effects of substituting the quinoline ring and varying the position of its sp(2) hybridized nitrogen atom. The most promising inhibitors combined low nanomolar FAP inhibition and high selectivity indices (>10(3)) with respect to both the DPPs and PREP. Preliminary experiments on a representative inhibitor demonstrate that plasma stability, kinetic solubility, and log D of this class of compounds can be expected to be satisfactory.

  7. Metal Fluoride Inhibition of a P-type H+ Pump

    PubMed Central

    Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-01-01

    The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. PMID:26134563

  8. Pulmonary actions of the neurokinin1-specific agonist [Sar9,Met(O2)11]-substance P.

    PubMed

    Yiamouyiannis, C A; Stengel, P W; Cockerham, S L; Silbaugh, S A

    1995-01-01

    We examined the relationship between airway obstruction and plasma extravasation produced by the intravenous administration of the selective NK1 receptor agonist [Sar9, Met(O2)11]-substance P(SP). Conscious guinea-pigs were injected with Evans' blue dye followed by intravenous [Sar9,Met(O2)11]-SP. Animals were killed 3 min later and airway obstruction, determined via excised lung gas volumes, and plasma extravasation in the trachea, mainstem bronchi and intrapulmonary airways quantitated. Maximal plasma protein extravasation occurred at a dose about 30 times less than that required to elicit airway obstruction. Neither the neutral endopeptidase (NEP) inhibitor, thiorphan, or the angiotensin-converting enzyme (ACE) inhibitor, captopril, altered the extravasation response to [Sar9,Met(O2)11]-SP. However, thiorphan alone or combined with captopril produced a small but significant potentiation of the airway obstructive response. The marked difference between pulmonary gas trapping and Evans' blue extravasation responses suggest that [Sar9,Met(O2)11]-SP-induced airway obstruction is not secondary to increased pulmonary edema.

  9. Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors.

    PubMed

    Szilágyi, Bence; Kovács, Péter; Ferenczy, György G; Rácz, Anita; Németh, Krisztina; Visy, Júlia; Szabó, Pál; Ilas, Janez; Balogh, György T; Monostory, Katalin; Vincze, István; Tábi, Tamás; Szökő, Éva; Keserű, György M

    2018-05-01

    d-Amino acid oxidase (DAAO) is a potential target in the treatment of schizophrenia as its inhibition increases brain d-serine level and thus contributes to NMDA receptor activation. Inhibitors of DAAO were sought testing [6+5] type heterocycles and identified isatin derivatives as micromolar DAAO inhibitors. A pharmacophore and structure-activity relationship analysis of isatins and reported DAAO inhibitors led us to investigate 1H-indazol-3-ol derivatives and nanomolar inhibitors were identified. The series was further characterized by pK a and isothermal titration calorimetry measurements. Representative compounds exhibited beneficial properties in in vitro metabolic stability and PAMPA assays. 6-fluoro-1H-indazol-3-ol (37) significantly increased plasma d-serine level in an in vivo study on mice. These results show that the 1H-indazol-3-ol series represents a novel class of DAAO inhibitors with the potential to develop drug candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Liquid chromatography-tandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma.

    PubMed

    Rood, Johannes J M; van Bussel, Mark T J; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W

    2016-09-15

    A method for the quantitative analysis by ultra-performance liquid chromatography-tandem mass spectrometry of the highly selective irreversible covalent inhibitor of EGFR-TK, osimertinib in human plasma was developed and validated, using pazopanib as an internal standard. The validation was performed in a range from 1 to 1000ng/ml, with the lowest level corresponding to the lower limit of quantitation. Gradient elution was performed on a 1.8μm particle trifunctional bonded C18 column by 1% (v/v) formic acid in water, and acetonitrile as mobile phase. The analyte was detected in the selected reaction monitoring mode of a triple quadrupole mass spectrometer after positive ionization with the heated electrospray interface. Within-day precisions ranged from 3.4 to 10.3%, and between-day precisions from 3.8 to 10.4%, accuracies were 95.5-102.8%. Plasma (either lithium heparin or sodium EDTA) pretreatment was performed by salting-out assisted liquid-liquid extraction using acetonitrile and magnesium sulfate. This method was used to analyze the osimertinib blood plasma levels of five adult patients with metastatic T790M mutated non-small cellular lung carcinoma for therapeutic drug monitoring purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Antithrombin III in animal models of sepsis and organ failure.

    PubMed

    Dickneite, G

    1998-01-01

    Antithrombin III (AT III) is the physiological inhibitor of thrombin and other serine proteases of the clotting cascade. In the development of sepsis, septic shock and organ failure, the plasma levels of AT III decrease considerably, suggesting the concept of a substitution therapy with the inhibitor. A decrease of AT III plasma levels might also be associated with other pathological disorders like trauma, burns, pancreatitis or preclampsia. Activation of coagulation and consumption of AT III is the consequence of a generalized inflammation called SIRS (systemic inflammatory response syndrome). The clotting cascade is also frequently activated after organ transplantation, especially if organs are grafted between different species (xenotransplantation). During the past years AT III has been investigated in numerous corresponding disease models in different animal species which will be reviewed here. The bulk of evidence suggests, that AT III substitution reduces morbidity and mortality in the diseased animals. While gaining more experience with AT III, the concept of substitution therapy to maximal baseline plasma levels (100%) appears to become insufficient. Evidence from clinical and preclinical studies now suggests to adjust the AT III plasma levels to about 200%, i.e., doubling the normal value. During the last few years several authors proposed that AT III might not only be an anti-thrombotic agent, but to have in addition an anti-inflammatory effect.

  12. Development and validation of method for TH588 and TH287, potent MTH1 inhibitors and new anti-cancer agents, for pharmacokinetic studies in mice plasma.

    PubMed

    Saleh, Aljona; Gökturk, Camilla; Warpman-Berglund, Ulrika; Helleday, Thomas; Granelli, Ingrid

    2015-02-01

    MTH1 is a protein that is required for cancer cell survival and is overexpressed in cancer cells. TH588 and TH287 are two new compounds that inhibit the MTH1 protein. The inhibitors were tested in pharmacokinetic studies on mice. A bioanalytical method was developed and validated for determination in mice plasma. The method was based on protein precipitation followed by LC-MS/MS analysis. The separation was performed on an Ascentis Express RP-Amide C18 column. The mass spectrometer was operated in positive electrospray ionization mode and the analytes were determined with multiple reaction monitoring (MRM). Abundant monoisotopic fragments were used for quantification. Two additional fragments were used for conformational analysis. The recovery of the compounds in plasma varied between 61 and 91% and the matrix effects were low and ranged between -3% and +2%. The method showed to be selective, linear, accurate and precise, and applicable for preclinical pharmacokinetic studies of TH588 and TH287 in mouse plasma. Half-life (T1/2) was ≤3.5h and maximum concentration (Cmax) ranged between 0.82 and 338μM for the different administration routes and compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Evaluation of sensitivity and specificity of a standardized procedure using different reagents for the detection of lupus anticoagulants. The Working Group on Hemostasis of the Société Française de Biologie Clinique and for the Groupe d'Etudes sur I'Hémostase et la Thrombose.

    PubMed

    Goudemand, J; Caron, C; De Prost, D; Derlon, A; Borg, J Y; Sampol, J; Sié, P

    1997-02-01

    This study was designed to test the sensitivity and specificity of a combination of 3 phospholipid-dependent assays performed with various reagents, for the detection of lupus anticoagulant (LA). Plasmas containing an LA (n = 56) or displaying various confounding pathologies [58 intrinsic pathway factor deficiencies, 9 factor VIII inhibitors, 28 plasmas from patients treated with an oral anticoagulant (OAC)] were selected. In a first step, the efficiency of each assay and reagent was assessed using the Receiving Operating Characteristic (ROC) method. Optimal cut-offs providing both sensitivity and specificity > or = 80% were determined. The APTT assay and most of the phospholipid neutralization assays failed to discriminate factor VIII inhibitors from LA. In a second step, using the optimal cut-offs determined above, the results of all the possible combinations of the 3 assays performed with 4 different reagents were analyzed. Thirteen combinations of reagents allowed > or = 80% of plasmas of each category (LA, factor deficiency or OAC) to be correctly classified (3/3 positive test results in LA-containing plasmas and 0/3 positive results in LA-negative samples).

  14. Simultaneous determination of paclitaxel and a new P-glycoprotein inhibitor HM-30181 in rat plasma by liquid chromatography with tandem mass spectrometry.

    PubMed

    Paek, In Bok; Ji, Hye Young; Kim, Maeng Seop; Lee, Gwan Sun; Lee, Hye Suk

    2006-03-01

    An LC-MS/MS method for the simultaneous determination of a new P-glycoprotein inhibitor 4-oxo-4H-chromene-2-carboxylic acid [2-(2-(4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl)-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide (HM-30181) and a P-glycoprotein substrate paclitaxel in rat plasma was developed to simultaneously evaluate the pharmacokinetics of paclitaxel and HM-30181 in the rats. HM-30181, paclitaxel, HM-30059 (internal standard (I.S.) for HM-30181), and docetaxel (I.S. for paclitaxel) were extracted from rat plasma with methyl-tert-butyl ether and analyzed on an Atlantis C18 column (5 microm, 2.1 x 100 mm) with the mobile phase of ACN/10 mM ammonium formate (75:25 v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring (MRM) mode. The standard curves for HM-30181 and paclitaxel in plasma were linear (r > 0.999) over the concentration range of 2.0-500 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2 ng/mL using 50 microL plasma), precision (CV: < or = 6.6%), accuracy (relative error: -6.3 to 2.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of HM-30181 and paclitaxel in rat plasma after oral-coadministration of paclitaxel and HM-30181 to male Sprague- Dawley rats.

  15. High-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of raltegravir, dolutegravir and elvitegravir concentrations in human plasma and cerebrospinal fluid samples.

    PubMed

    Tsuchiya, Kiyoto; Ohuchi, Mayu; Yamane, Naoe; Aikawa, Hiroaki; Gatanaga, Hiroyuki; Oka, Shinichi; Hamada, Akinobu

    2018-02-01

    A simple sample treatment procedure and sensitive liquid chromatography-tandem mass spectrometry method were developed for the simultaneous quantification of the concentrations of human immunodeficiency virus-1 integrase strand transfer inhibitors - raltegravir, dolutegravir and elvitegravir - in human plasma and cerebrospinal fluid (CSF). Plasma and CSF samples (20 μL each) were deproteinized with acetonitrile. Raltegravir-d 3 was used as the internal standard. Chromatographic separation was achieved on an XBridge C 18 column (50 × 2.1 mm i.d., particle size 3.5 μm) using acetonitrile-water (7:3, v/v) containing 0.1% formic acid as the mobile phase at a flow rate of 0.2 mL/min. The run time was 5 min. Calibration curves for all three drugs were linear in the range 5-1500 ng/mL for plasma and 1-200 ng/mL for CSF. The intra- and inter-day precision and accuracy of all three drugs in plasma were coefficient of variation (CV) <12.9% and 100.0 ± 12.2%, respectively, while those in CSF were CV <12.3% and 100.0 ± 7.9%, respectively. Successful validation under the same LC-MS/MS conditions for both plasma and CSF indicates this analytical method is useful for monitoring the levels of these integrase strand transfer inhibitors in the management of treatment of HIV-1 carriers. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Integrase inhibitor versus protease inhibitor based regimen for HIV-1 infected women (WAVES): a randomised, controlled, double-blind, phase 3 study

    PubMed Central

    Squires, Kathleen; Kityo, Cissy; Hodder, Sally; Johnson, Margaret; Voronin, Evgeny; Hagins, Debbie; Avihingsanon, Anchalee; Koenig, Ellen; Jiang, Shuping; White, Kirsten; Cheng, Andrew; Szwarcberg, Javier; Cao, Huyen

    2018-01-01

    Summary Background Women are under-represented in HIV antiretroviral therapy (ART) studies. Guidelines for selection of ART as initial therapy in patients with HIV-1 infection do not contain sex-specific treatment. We aimed to assess the safety and efficacy of the single tablet integrase inhibitor regimen containing elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate compared with a boosted protease inhibitor regimen of ritonavir-boosted atazanavir with emtricitabine and tenofovir disoproxil fumarate. Methods In this international, randomised, controlled, double-blind, phase 3 study (Women AntiretroViral Efficacy and Safety study [WAVES]), we recruited treatment-naive HIV-infected women with an estimated creatinine clearance of 70 mL/min or higher from 80 centres in 11 countries. Women were randomly assigned (1:1) to receive elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate (integrase inhibitor regimen) or ritonavir-boosted atazanavir with emtricitabine and tenofovir disoproxil fumarate (protease inhibitor based regimen); regimens were masked with matching placebos. Randomisation was done by a computer-generated allocation sequence (block size four) and was stratified by HIV-1 RNA viral load and race. Investigators, patients, study staff, and those assessing outcomes were masked to treatment group. All participants who received one dose of study drug were included in the primary efficacy and safety analyses. The main outcome was the proportion of patients with plasma HIV-1 RNA less than 50 copies per mL at week 48 as defined by US Food and Drug Administration snapshot algorithm (prespecified non-inferiority margin of 12%). This study is registered with ClinicalTrials.gov, number NCT01705574. Findings Between Nov 28, 2012, and March 12, 2014, 575 women were enrolled. 289 were randomly assigned to receive the integrase inhibitor regimen and 286 to receive the protease inhibitor based regimen. 252 (87%) women in the integrase inhibitor group had plasma HIV-1 RNA less than 50 copies per mL at week 48 compared with 231 (81%) women in the protease inhibitor group (adjusted difference 6·5%; 95% CI 0·4–12·6). No participant had virological failure with resistance in the integrase inhibitor group compared with three participants ([1%]; all Met184Val/Ile) in the protease inhibitor group. 19 women in the protease inhibitor group discontinued because of adverse events compared with five in the integrase inhibitor group. Interpretation WAVES shows that clinical trials of ART regimens in global and diverse populations of treatment-naive women are possible. The findings support guidelines recommending integrase inhibitor based regimens in first-line antiretroviral therapy. PMID:27562742

  17. Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model

    PubMed Central

    Demin, Oleg; Yakovleva, Tatiana; Kolobkov, Dmitry; Demin, Oleg

    2014-01-01

    The Renal sodium-dependent glucose co-transporter 2 (SGLT2) is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin, and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies). All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: (1) the site of action of SGLT2 inhibitors is not in the lumen of the kidney's proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells); and (2) there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family). PMID:25352807

  18. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de; Bhandari, Anita; Sarde, Sandeep J.

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical propertiesmore » and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.« less

  19. Effect of atropine and somatostatin on bombesin-stimulated plasma immunoreactive trypsin release in man.

    PubMed

    de Jong, A J; Klamer, M; Lamers, C B

    1987-01-01

    This study was undertaken to determine the effect of atropine and somatostatin, two inhibitors of intraduodenal pancreatic enzyme secretion, on bombesin-stimulated release of plasma immunoreactive trypsin in 6 healthy volunteers. Infusion of 5 ng/kg.min bombesin during 30 min induced significant increases in plasma trypsin from 206 +/- 20 to 334 +/- 44 ng/ml (p less than 0.01). Atropine (15 ng/kg as i.v. bolus followed by 5 ng/kg.h) had no influence on the bombesin-stimulated increase in plasma immunoreactive trypsin (207 +/- 20 to 326 +/- 54 ng/ml). Somatostatin (125 micrograms as i.v. bolus followed by 125 micrograms/h) also failed to inhibit the plasma trypsin response to bombesin (207 +/- 18 to 663 +/- 166 ng/ml). These results point to major differences in the regulation of plasma and intraduodenal trypsin secretion.

  20. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is currently available in a research program focused on a variety of key aspects of HIV-1 assembly and release.  Of particular interest are the interplay between viral and host factors in the targeting of assembly to the plasma membrane and the mechanism by which the viral envelope glycoproteins are incorporated into virions.  Recent studies have been aimed at defining the cellular pathways and host factors involved in envelope glycoprotein incorporation and the budding of retrovirus particles from the plasma membrane and identifying inhibitors of virus budding and entry.  Mechanisms of HIV-1 drug resistance are also under investigation, and studies are underway to define the target and mechanism of action of a novel HIV-1 maturation inhibitor.  Further details and a list of relevant publications can be found at http://home.ncifcrf.gov/hivdrp/Freed.html.

  1. Quantification of the HIV-integrase inhibitor raltegravir (MK-0518) in human plasma by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice

    2008-05-15

    A simple and sensitive HLPC method with fluorescence detection was developed for the accurate determination of the first licensed HIV integrase inhibitor raltegravir in human plasma. A 500-microL plasma sample was spiked with delavirdine as internal standard and subjected to liquid-liquid extraction based on a previously described assay i.e. using hexane/methylene chloride (1:1, v/v%) at pH 4.0. HPLC was performed using a Symmetry Shield RP18 column (150 mm x 4.6 mm), a gradient elution of acetonitrile -0.01% (v/v) triethylamine in water adjusted to pH 3.0 at a flow rate of 1 mL/min and a fluorimetric detector set at 299 and 396 nm as excitation and emission wavelengths, respectively. The retention time was 5.0 min for internal standard and 6.4 min for raltegravir. Calibration curves were linear in the range 5-1000 ng/mL and the accuracy of quality control samples in the range 10-750 ng/mL varied from 98.3 to 99.1% and 98.3 to 101.0% of the nominal concentrations for intra-day and day-to-day analysis, respectively with a precision of 6.3% or less. Among the other antiretroviral drugs which can be given in association to HIV-infected patients, none was found to interfere with internal standard or raltegravir. The described assay was developed for the purpose of therapeutic drug of this HIV integrase inhibitor.

  2. Efficacy and safety of switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from boosted protease inhibitor-based regimens in virologically suppressed adults with HIV-1: 48 week results of a randomised, open-label, multicentre, phase 3, non-inferiority trial.

    PubMed

    Daar, Eric S; DeJesus, Edwin; Ruane, Peter; Crofoot, Gordon; Oguchi, Godson; Creticos, Catherine; Rockstroh, Jürgen K; Molina, Jean-Michel; Koenig, Ellen; Liu, Ya-Pei; Custodio, Joseph; Andreatta, Kristen; Graham, Hiba; Cheng, Andrew; Martin, Hal; Quirk, Erin

    2018-06-15

    Switching from therapy based on a boosted protease inhibitor to bictegravir, emtricitabine, and tenofovir alafenamide could avoid drug interactions and unwanted side-effects in virologically suppressed adults with HIV-1 infection, while maintaining a high barrier to resistance and providing a simplified once-daily, single-tablet regimen. Here, we report 48 week results of a phase 3 study investigating this switch. In this multicentre, randomised, open-label, active-controlled, non-inferiority, phase 3 trial, adults with HIV-1 infection were enrolled at 121 outpatient centres in ten countries. Eligible participants were aged 18 years or older, had an estimated glomerular filtration rate of 50 mL per min or higher, had been virologically suppressed (plasma HIV-1 RNA <50 copies per mL) for 6 months or more before screening, and were on a regimen consisting of boosted atazanavir or darunavir plus either emtricitabine and tenofovir disoproxil fumarate or abacavir and lamivudine. We randomly assigned participants (1:1), using a computer-generated randomisation sequence, to switch to co-formulated once-daily bictegravir (50 mg), emtricitabine (200 mg), and tenofovir alafenamide (25 mg), herein known as the bictegravir group, or to remain on their baseline boosted protease inhibitor regimen, herein known as the boosted protease inhibitor group, for 48 weeks. Randomisation was stratified by use of tenofovir disoproxil fumarate or abacavir at screening. The primary endpoint was the proportion of participants with plasma HIV-1 RNA of 50 copies per mL or higher at week 48 (by US Food and Drug Administration snapshot algorithm), with a prespecified non-inferiority margin of 4%. Efficacy and safety analyses included all participants who received at least one dose of study drug. This study is ongoing but not actively recruiting patients and is registered with ClinicalTrials.gov, number NCT02603107. Between Dec 2, 2015, and July 15, 2016, 578 participants were randomly assigned and 577 were treated (290 in the bictegravir group and 287 in the boosted protease inhibitor group). At week 48, five participants (2%) in the bictegravir group and five (2%) in the boosted protease inhibitor group had plasma HIV-1 RNA of 50 copies per mL or higher (difference 0·0%, 95·002% CI -2·5 to 2·5), thus switching to the bictegravir regimen was non-inferior to continued boosted protease inhibitor therapy. The overall incidence and severity of adverse events was similar between groups, although headache occurred more frequently in the bictegravir group than in the boosted protease inhibitor group. 233 (80%) participants in the bictegravir group and 226 (79%) in the boosted protease inhibitor group had an adverse event. Only two (1%) participants in the bictegravir group and one (<1%) in the boosted protease inhibitor group discontinued treatment because of adverse events. 54 participants (19%) in the bictegravir group had drug-related adverse events compared with six (2%) in the protease inhibitor group. Fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide might be a safe and efficacious alternative to continued boosted protease inhibitor therapy in adults with HIV-1 infection. Gilead Sciences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Interaction of murine intestinal mast cell proteinase with inhibitors (serpins) in blood; analysis by SDS-PAGE and western blotting.

    PubMed Central

    Irvine, J; Newlands, G F; Huntley, J F; Miller, H R

    1990-01-01

    The interaction of mouse intestinal mast cell proteinase (IMCP) with serine proteinase inhibitors (serpins) in blood was analysed: (i) by examining the capacity of the inhibitors in blood to block the binding of the irreversible serine esterase inhibitor [3H]diisopropyl fluorophosphate (DFP); (ii) by Western blotting. The binding of [3H]DFP to IMCP was blocked very rapidly by inhibitors in mouse serum and, by Western blotting, this inhibition was associated with the appearance of a 73,000 MW proteinase/inhibitor complex together with a series of higher (greater than 100,000) MW complexes. IMCP was not dissociated from these complexes when electrophoresed under reducing conditions, although prior heat treatment of mouse serum (60 for 30-160 min) abolished the formation of all proteinase/inhibitor complexes. Similarly, the activity of a 48,000 MW inhibitor of chymotrypsin was abolished by heat treatment. A titration experiment established that between 0.5 and 5 mg IMCP were inhibited per ml of serum. The properties and MW of the IMCP inhibitor complexes are typical of serpins and suggest that IMCP secreted during intestinal immunological reactions would be rapidly and irreversibly inactivated by plasma-derived inhibitors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:2312150

  4. [Reversibility of the leukocyte activation state studied in a model of endogenous pyrogen formation by granulocytes].

    PubMed

    Rybakina, E G; Sorokin, A V

    1980-08-01

    The pyrogen-releasing capacity of rabbit exudate granulocytes can be temporarily suppressed during incubation in the whole plasma and then recovered during cell transfer into 0.15 M NaCl or stimulation with the bacterial lipopolysaccharide, pyrogenal. The inhibitors of protein synthesis added to the granulocytes when they are being transferred from plasma to 0.15 M NaCl do not suppress the pyrogen release. The inhibitory action of the whole plasma on the pyrogen release is due to the presence in it of potassium and calcium ions. The inhibitory factors of plasma reversibly suppress the pyrogen release but do not eliminate the leukocyte activation.

  5. A study of proteases and protease-inhibitor complexes in biological fluids

    PubMed Central

    Granelli-Piperno, A; Reich, E

    1978-01-01

    We have (a) screened a variety of cell lines and body fluids for plasminogen activators and (b) studied the activity of proteases bound to α2- macroglobulin after exposing the complexes to partial degradation and/or denaturing procedures to unmask proteolytic activity. The respective results show (a) that the plasminogen activators in urine and cell culture media are generally of lower molecular weight than those in plasma; and (b) that proteases bound to α2-macroglobulin recover the ability to attack macromolecular substrates after exposure to sodium dodecyl sulfate while retaining the electrophoretic mobility of the protease inhibitor complex. This indicates that the protease and inhibitor are probably linked by covalent bonds. In contrast, other complexes formed between proteases and inhibitors of lower molecular weight (such as soybean or Kunitz inhibitors) are fully dissociated by sodium dodecyl sulfate (SDS). The experiments described were based on a new procedure for detecting proteolytic enzyme activity in SDS-polyacrylamide gels. The method relies on solutions of nonionic detergents for extracting SDS, after which the electrophoretic gel is applied to an indicator gel consisting of a fibrin- agar mixture. The method is sensitive, permitting the detection of proteinases in less than 1 μl of fresh plasma, and it is effective for resolving small differences in molecular weight. The procedure can be quantitated and, with minor modifications appropriate to each particular system, it has been applied to a broad spectrum of serine enzymes and proenzymes, including some that function in the pathways of fibrinolysis, coagulation and kinin-generation. Other potential applications appear likely. PMID:78958

  6. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    PubMed

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  7. A novel association of acquired ADAMTS13 inhibitor and acute dengue virus infection

    PubMed Central

    Rossi, Fernanda C.; Angerami, Rodrigo N.; de Paula, Erich V.; Orsi, Fernanda L.; Shang, Dezhi; del Guercio, Vânia M.; Resende, Mariângela R.; Annichino-Bizzacchi, Joyce M.; da Silva, Luiz J.; Zheng, X. Long; Castro, Vagner

    2011-01-01

    BACKGROUND Dengue is a mosquito-borne viral disease with an increasing incidence worldwide. Thrombocytopenia is a common finding in dengue virus (DV) infection; however, the underlying mechanisms remain unknown. CASE REPORT Here we provide the first evidence of a case of antibody formation against ADAMTS13 (ADAMTS13 inhibitor) in the course of a severe acute DV infection resulting in thrombotic microangiopathy (TMA). The patient presented with classical dengue symptoms (positive epidemiology, high fever, myalgia, predominantly in the lower limbs and lumbar region for 1 week) and, after 11 days of initial symptoms, developed TMA. Clinical and laboratorial investigation of dengue and TMA was performed. RESULTS The patient presented with ADAMTS13 inhibitor (IgG) during the acute phase of the disease, without anti-platelet antibodies detectable. Dengue infection had laboratorial confirmation. There were excellent clinical and laboratory responses to 11 serial plasma exchanges. Anti-ADAMTS13 inhibitor disappeared after remission of TMA and dengue resolution. No recurrence of TMA symptoms was observed after 2-year follow-up. CONCLUSIONS Although the real incidence of dengue-related TMA is unknown, this case provides the basis for future epidemiologic studies on acquired ADAMTS13 deficiency in DV infection. The prompt clinical recognition of this complication and early installment of specific therapy with plasma exchange are likely to improve the outcome of severe cases of dengue. PMID:19788513

  8. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  9. Use of enzyme inhibitors to evaluate the conversion pathways of ester and amide prodrugs: a case study example with the prodrug ceftobiprole medocaril.

    PubMed

    Eichenbaum, Gary; Skibbe, Jennifer; Parkinson, Andrew; Johnson, Mark D; Baumgardner, Dawn; Ogilvie, Brian; Usuki, Etsuko; Tonelli, Fred; Holsapple, Jeff; Schmitt-Hoffmann, Anne

    2012-03-01

    An approach was developed that uses enzyme inhibitors to support the assessment of the pathways that are responsible for the conversion of intravenously administered ester and amide prodrugs in different biological matrices. The methodology was applied to ceftobiprole medocaril (BAL5788), the prodrug of the cephalosporin antibiotic, ceftobiprole. The prodrug was incubated in plasma, postmitochondrial supernatant fractions from human liver (impaired and nonimpaired), kidney, and intestine as well as erythrocytes, in the presence and absence of different enzyme inhibitors (acetylcholinesterase, pseudocholinesterase, retinyl palmitoyl hydrolase, serine esterases, amidases, and cholinesterase). Hydrolysis was rapid, extensive, and not dependent on the presence of β-nicotinamide-adenine dinucleotide phosphate (reduced form) in all matrices tested, suggesting the involvement of carboxylesterases but not P450 enzymes. Hydrolysis in healthy human plasma was rapid and complete and only partially inhibited in the presence of paraoxonase inhibitors or in liver from hepatic impaired patients, suggesting involvement of nonparaoxonase pathways. The results demonstrate the utility of this approach in confirming the presence of multiple conversion pathways of intravenously administered prodrugs and in the case of BAL5788 demonstrated that this prodrug is unlikely to be affected by genetic polymorphisms, drug interactions, or other environmental factors that might inhibit or induce the enzymes involved in its conversion. Copyright © 2011 Wiley Periodicals, Inc.

  10. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats.

    PubMed

    Galdino, Giovane; Romero, Thiago; Silva, José Felippe Pinho da; Aguiar, Daniele; Paula, Ana Maria de; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-09-01

    Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.

  11. The association between the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor-1 gene and extension of postsurgical calf vein thrombosis.

    PubMed

    Ferrara, Filippo; Meli, Francesco; Raimondi, Francesco; Montalto, Salvatore; Cospite, Valentina; Novo, Giuseppina; Novo, Salvatore

    2013-04-01

    The objective of this study was to evaluate whether the presence of a plasminogen activator inhibitor type 1 (PAI-1) promoter polymorphism 4G/5G could significantly influence the proximal extension of vein thrombosis in spite of anticoagulant treatment in patients with calf vein thrombosis (CVT) following orthopaedic, urological and abdominal surgery. We studied 168 patients with CVT, who had undergone orthopaedic, urological and abdominal surgery, subdivided as follows: first, 50 patients with thrombosis progression; second, 118 patients without thrombosis progression. The 4G/5G polymorphism of the plasminogen activator inhibitor 1 was evaluated in all patients and in 70 healthy matched controls. We also studied PAI-1 activity in plasma. The presence of 4G/5G genotype was significantly increased in the group of patients with the extension of thrombotic lesions and was associated with an increase in CVT extension risk (odds ratio adjusted for sex 2.692; 95% confidence interval 1.302-4.702). Moreover, we observed a significant increase of PAI-1 plasma activity in patients with extension of thrombotic lesion vs. patients without extension (P=0.0001). Patients with 4G/5G genotype in the promoter of the plasminogen activator inhibitor - 1 gene present a higher risk of extension of thrombotic lesions.

  12. Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity

    PubMed Central

    Lan, Hong; Cheng, Cliff C.; Kowalski, Timothy J.; Pang, Ling; Shan, Lixin; Chuang, Cheng-Chi; Jackson, James; Rojas-Triana, Alberto; Bober, Loretta; Liu, Li; Voigt, Johannes; Orth, Peter; Yang, Xianshu; Shipps, Gerald W.; Hedrick, Joseph A.

    2011-01-01

    Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lepob/Lepob (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1–3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice. PMID:21296956

  13. Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity.

    PubMed

    Lan, Hong; Cheng, Cliff C; Kowalski, Timothy J; Pang, Ling; Shan, Lixin; Chuang, Cheng-Chi; Jackson, James; Rojas-Triana, Alberto; Bober, Loretta; Liu, Li; Voigt, Johannes; Orth, Peter; Yang, Xianshu; Shipps, Gerald W; Hedrick, Joseph A

    2011-04-01

    Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lep(ob)/Lep(ob) (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1-3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice.

  14. Fluorescence of prostate-specific antigen as measured with a portable 1D scanner

    NASA Astrophysics Data System (ADS)

    Kim, Byeong C.; Jeong, Jin H.; Jeong, Dong S.; Kim, Young M.; Oh, Sang W.; Choi, Eui Y.; Kim, Jae H.; Nahm, Kie B.

    2005-01-01

    Prostate-specific antigen (PSA) is an androgen-dependent glycoprotein protease (M.W. 33 kDa) and a member of kallikrein super-family of serine protease, and has chymotrypsin-like enzymatic activity. It is synthesized by the prostate epithelial cells and found in the prostate gland and seminal plasma as a major protein. It is widely used as a clinical marker for diagnosis, screening, monitoring and prognosis of prostate cancer. In normal male adults, the concentration of PSA in the blood is below 4 ng/ml and this value increases in patients with the prostate cancer or the benign prostatic hyperplasia (BPH) due to its leakage into the circulatory system. As such, systematic monitoring of the PSA level in the blood can provide critical information about the progress of the prostatic disease. We have developed a compact integral system that can quantitatively measure the concentration of total PSA in human blood. This system utilizes the fluorescence emitted from the dye molecules attached to PSA molecules after appropriate immunoassay-based processing. Developed for the purpose of providing an affordable means of fast point-of-care testing of the prostate cancer, this system proved to be able to detect the presence of the PSA at the level of 0.18 ng/ml in less than 12 minutes, with the actual measurement taking less than 2 minutes. The design concept for this system is presented together with the result for a few representative samples.

  15. Genome-wide association reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-arginine levels.

    PubMed

    Zhang, Weihua; Jernerén, Fredrik; Lehne, Benjamin C; Chen, Ming-Huei; Luben, Robert N; Johnston, Carole; Elshorbagy, Amany; Eppinga, Ruben N; Scott, William R; Adeyeye, Elizabeth; Scott, James; Böger, Rainer H; Khaw, Kay-Tee; van der Harst, Pim; Wareham, Nicholas J; Vasan, Ramachandran S; Chambers, John C; Refsum, Helga; Kooner, Jaspal S

    2016-11-30

    L-arginine is the essential precursor of nitric oxide, and is involved in multiple key physiological processes, including vascular and immune function. The genetic regulation of blood L-arginine levels is largely unknown. We performed a genome-wide association study (GWAS) to identify genetic factors determining serum L-arginine levels, amongst 901 Europeans and 1,394 Indian Asians. We show that common genetic variations at the KLKB1 and F12 loci are strongly associated with serum L-arginine levels. The G allele of single nucleotide polymorphism (SNP) rs71640036 (T/G) in KLKB1 is associated with lower serum L-arginine concentrations (10 µmol/l per allele copy, p=1×10 -24 ), while allele T of rs2545801 (T/C) near the F12 gene is associated with lower serum L-arginine levels (7 µmol/l per allele copy, p=7×10 -12 ). Together these two loci explain 7 % of the total variance in serum L-arginine concentrations. The associations at both loci were replicated in independent cohorts with plasma L-arginine measurements (p<0.004). The two sentinel SNPs are in nearly complete LD with the nonsynonymous SNP rs3733402 at KLKB1 and the 5'-UTR SNP rs1801020 at F12, respectively. SNPs at both loci are associated with blood pressure. Our findings provide new insight into the genetic regulation of L-arginine and its potential relationship with cardiovascular risk.

  16. Anaphylaxis and intimate behaviour.

    PubMed

    Liccardi, Gennaro; Caminati, Marco; Senna, Gianenrico; Calzetta, Luigino; Rogliani, Paola

    2017-10-01

    Intimate behaviours may represent an unusual way of exposure to a culprit allergen, or the frame for sex-related allergies due to triggers typically linked to that situation. The present review aims at summarizing the state of the art about the topic, in order to spread the awareness and the basic know-how in the field of sexual-related allergies. Kiss-related IgE-mediated reactions are caused in sensitized partners mainly by the passive transport of allergenic molecules through saliva, skin or oral mucosa. It has also been recently suggested that kissing may act as an epicutaneous way for induction of allergic sensitization. Among food and drugs, not only but mostly, peanuts and beta-lactams, respectively, are the usual trigger. Although controversial, 1-hour wait before kissing and a proper mouth cleaning have been suggested as prevention strategies. Sexual intercourse related local or systemic symptoms can be caused by seminal plasma hypersensitivity, an IgE-mediated/type IV reaction due to prostate-specific antigen, which carries high homology to the canine prostatic kallikrein (Can f 5). Although applied to few patients, successful desensitization and immunotherapy protocols have been proposed. Intimate behaviours are possible modalities of contact with the allergen. The exact prevalence of such hypersensitivity reactions is not known, but for its implications on Quality of Life and reproductive wishes, the possible link between sex and allergy should become part of the personal culture of clinical allergists and every clinician, in order to extend and improve the diagnosis of unusual or unexplained conditions.

  17. UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays.

    PubMed

    Kuhn, Joachim; Gripp, Tatjana; Flieder, Tobias; Dittrich, Marcus; Hendig, Doris; Busse, Jessica; Knabbe, Cornelius; Birschmann, Ingvild

    2015-01-01

    The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients' plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients' blood before major surgery. Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 μg/L (r >0.99). Limits of detection (LOD) in the plasma matrix were 0.21 μg/L for dabigatran and 0.34 μg/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 μg/L for dabigatran and 0.54 μg/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were < 4% and 6%; respectively, the interassay CVs were < 6% for dabigatran and < 9% for rivaroxaban. Inaccuracy was < 5% for both substances. The mean recovery was 104.5% (range 83.8-113.0%) for dabigatran and 87.0% (range 73.6-105.4%) for rivaroxaban. No significant ion suppressions were detected at the elution times of dabigatran or rivaroxaban. Both coagulation inhibitors were stable in citrate plasma at -20°C, 4°C and even at RT for at least one week. A method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay) for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional assays measuring activities of various coagulation factors which are susceptible to interference by other coagulant drugs. Overall, we developed and validated a sensitive and specific UPLC-MRM MS assay for the quick and specific measurement of dabigatran and rivaroxaban in human plasma.

  18. UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays

    PubMed Central

    Kuhn, Joachim; Gripp, Tatjana; Flieder, Tobias; Dittrich, Marcus; Hendig, Doris; Busse, Jessica; Knabbe, Cornelius; Birschmann, Ingvild

    2015-01-01

    Introduction The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients’ plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients’ blood before major surgery. Methods Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. Results The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 μg/L (r >0.99). Limits of detection (LOD) in the plasma matrix were 0.21 μg/L for dabigatran and 0.34 μg/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 μg/L for dabigatran and 0.54 μg/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were < 4% and 6%; respectively, the interassay CVs were < 6% for dabigatran and < 9% for rivaroxaban. Inaccuracy was < 5% for both substances. The mean recovery was 104.5% (range 83.8–113.0%) for dabigatran and 87.0% (range 73.6–105.4%) for rivaroxaban. No significant ion suppressions were detected at the elution times of dabigatran or rivaroxaban. Both coagulation inhibitors were stable in citrate plasma at -20°C, 4°C and even at RT for at least one week. A method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay) for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional assays measuring activities of various coagulation factors which are susceptible to interference by other coagulant drugs. Conclusions Overall, we developed and validated a sensitive and specific UPLC-MRM MS assay for the quick and specific measurement of dabigatran and rivaroxaban in human plasma. PMID:26699714

  19. Treatment with patiromer decreases aldosterone in patients with chronic kidney disease and hyperkalemia on renin-angiotensin system inhibitors.

    PubMed

    Weir, Matthew R; Bakris, George L; Gross, Coleman; Mayo, Martha R; Garza, Dahlia; Stasiv, Yuri; Yuan, Jinwei; Berman, Lance; Williams, Gordon H

    2016-09-01

    Elevated serum aldosterone can be vasculotoxic and facilitate cardiorenal damage. Renin-angiotensin system inhibitors reduce serum aldosterone levels and/or block its effects but can cause hyperkalemia. Patiromer, a nonabsorbed potassium binder, decreases serum potassium in patients with chronic kidney disease on renin-angiotensin system inhibitors. Here we examined the effect of patiromer treatment on serum aldosterone, blood pressure, and albuminuria in patients with chronic kidney disease on renin-angiotensin system inhibitors with hyperkalemia (serum potassium 5.1-6.5 mEq/l). We analyzed data from the phase 3 OPAL-HK study (4-week initial treatment phase of 243 patients; 8-week randomized withdrawal phase of 107 patients). In the treatment phase, the (mean ± standard error) serum potassium was decreased concordantly with the serum aldosterone (-1.99 ± 0.51 ng/dl), systolic/diastolic blood pressure (-5.64 ± 1.04 mm Hg/-3.84 ± 0.69 mm Hg), and albumin-to-creatinine ratio (-203.7 ± 54.7 mg/g), all in a statistically significant manner. The change in the plasma renin activity (-0.44 ± 0.63 μg/l/hr) was not significant. In the withdrawal phase, mean aldosterone levels were sustained with patiromer (+0.23 ± 1.07 ng/dl) and significantly increased with placebo (+2.78 ± 1.25 ng/dl). Patients on patiromer had significant reductions in mean systolic/diastolic blood pressure (-6.70 ± 1.59/-2.15 ± 1.06 mm Hg), whereas those on placebo did not (-1.21 ± 1.89 mm Hg/+1.72 ± 1.26 mm Hg). Significant changes in plasma renin activity were found only in the placebo group (-3.90 ± 1.41 μg/l/hr). Thus, patiromer reduced serum potassium and aldosterone levels independent of plasma renin activity in patients with chronic kidney disease and hyperkalemia on renin-angiotensin system inhibitors. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney

    PubMed Central

    Ramani, Kritika; Garg, Abhishek V.; Jawale, Chetan V.; Jackson, Edwin K.; Shiva, Sruti S.; Horne, William; Kolls, Jay K.; Gaffen, Sarah L.; Biswas, Partha S.

    2016-01-01

    The incidence of life-threatening disseminated Candida albicans infections is increasing in hospitalized patients, with fatalities as high as 60%. Death from disseminated candidiasis in a significant percentage of cases is due to fungal invasion of the kidney, leading to renal failure. Treatment of candidiasis is hampered by drug toxicity, the emergence of antifungal drug resistance and lack of vaccines against fungal pathogens. IL-17 is a key mediator of defense against candidiasis. The underlying mechanisms of IL-17-mediated renal immunity have so far been assumed to occur solely through the regulation of antimicrobial mechanisms, particularly activation of neutrophils. Here, we identify an unexpected role for IL-17 in inducing the Kallikrein (Klk)-Kinin System (KKS) in C. albicans-infected kidney, and we show that the KKS provides significant renal protection in candidiasis. Microarray data indicated that Klk1 was upregulated in infected kidney in an IL-17-dependent manner. Overexpression of Klk1 or treatment with bradykinin rescued IL-17RA-/- mice from candidiasis. Therapeutic manipulation of IL-17-KKS pathways restored renal function and prolonged survival by preventing apoptosis of renal cells following C. albicans infection. Furthermore, combining a minimally effective dose of fluconazole with bradykinin markedly improved survival compared to either drug alone. These results indicate that IL-17 not only limits fungal growth in the kidney, but also prevents renal tissue damage and preserves kidney function during disseminated candidiasis through the KKS. Since drugs targeting the KKS are approved clinically, these findings offer potential avenues for the treatment of this fatal nosocomial infection. PMID:27814401

  1. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.

    PubMed

    Somogyi-Ganss, Eszter; Nakayama, Yohei; Iwasaki, Kengo; Nakano, Yukiko; Stolf, Daiana; McKee, Marc D; Ganss, Bernhard

    2012-01-01

    Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization. Copyright © 2011 S. Karger AG, Basel.

  2. Effect of Kallikrein 4 Loss on Enamel Mineralization

    PubMed Central

    Smith, Charles E.; Richardson, Amelia S.; Hu, Yuanyuan; Bartlett, John D.; Hu, Jan C-C.; Simmer, James P.

    2011-01-01

    Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition. PMID:21454549

  3. Involvement of skeletal renin-angiotensin system and kallikrein-kinin system in bone deteriorations of type 1 diabetic mice with estrogen deficiency.

    PubMed

    Zhang, Yan; Wang, Liang; Liu, Jin-Xin; Wang, Xin-Luan; Shi, Qi; Wang, Yong-Jun

    This study was aimed to investigate the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) in bone deteriorations of mice in response to the combination treatment of estrogen deficiency and hyperglycemia. The female C57BL/6J mice were sham-operated or ovariectomized with vehicle or streptozotocin (STZ) treatment. Two weeks later, the biochemistries in serum and urine were determined by standard colorimetric methods or ELISA. The H&E and TRAP staining were performed at the tibial proximal metaphysis. The polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. The mice after treating with ovariectomy and STZ showed the decreased level of serum Ca and the increased level of serum PTH and urine Ca. The H&E staining showed trabecular bone abnormalities as demonstrated by the loss, disconnection and separation of trabecular bone network as well as the loss of chondrocytes and appearance of chondrocyte cluster at growth plate of tibia. The significant increase of matured osteoclast number was shown in group with double treatments. The combination treatment significantly up-regulated mRNA expression of AGT, ACE, renin receptor, MMP-9 and CAII, and protein expression of renin, and decreased the ratio of OPG/RANKL and the expression of bradykinin receptors in bone tissue. Ovariectomy combined with STZ induction produced more detrimental actions on bone through the activation of local bone RAS and the down-regulation of bradykinin receptors, as compared to the respective single treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Characterization of kallikrein-related peptidase 4 glycosylations

    PubMed Central

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C.; Simmer, James P.

    2012-01-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1–6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. PMID:22243251

  5. Characterization of kallikrein-related peptidase 4 glycosylations.

    PubMed

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C; Simmer, James P

    2011-12-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. © 2011 Eur J Oral Sci.

  6. Short-term and long-term effects of dipeptidyl peptidase-4 inhibitors in type 2 diabetes mellitus patients with renal impairment: a meta-analysis of randomized controlled trials.

    PubMed

    Li, Ruifei; Wang, Rui; Li, Haixia; Sun, Sihao; Zou, Meijuan; Cheng, Gang

    2016-09-01

    To assess the short-term and long-term effects of dipeptidyl peptidase-4 (DPP-4) inhibitors in type 2 diabetes mellitus patients with renal impairment, a meta-analysis of randomized clinical trials of DPP-4 inhibitor interventions in type 2 diabetes mellitus patients with renal impairment was performed. PubMed, Embase, Cochrane Library and ClinicalTrials.gov were searched through the end of March 2015. Randomized clinical trials were selected if (1) DPP-4 inhibitors were compared with a placebo or other active-comparators, (2) the treatment duration was ≥12 weeks and (3) data regarding changes in haemoglobin A1c (HbA1c ), changes in fasting plasma glucose or hypoglycaemia and other adverse events were reported. Of 790 studies, ten studies on eight randomized clinical trials were included. Compared with the control group, DPP-4 inhibitors were associated with a greater HbA1c reduction in both the short-term [mean differences (MD) = -0.45, 95% confidence intervals (-0.57, -0.33), p < 0.0001] and long-term [MD = -0.33, 95% confidence intervals (-0.63, -0.03), p = 0.03] treatments. However, the long-term greater reduction in HbA1c with DPP-4 inhibitor treatment was only significant when the control treatment comprised placebo plus stable background treatment, but not glipizide plus stable background treatment. DPP-4 inhibitors were associated with a greater fasting plasma glucose reduction [MD = -12.59, 95% confidence intervals (-22.01, -3.17), p = 0.009] over the short-term; however, this effect was not present over the long-term. Regarding the hypoglycaemia adverse events assessment, the long-term treatment data indicated there was no increased risk of hypoglycaemia compared with placebo or active-controlled anti-diabetic drugs. The present meta-analysis confirms that DPP-4 inhibitors are effective and equivalent to other agents in type 2 diabetes mellitus patients with renal impairment. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation.

    PubMed

    Samih, N; Hovsepian, S; Aouani, A; Lombardo, D; Fayet, G

    2000-11-01

    It was previously demonstrated that insulin or TSH treatment of FRTL-5 cells resulted in an elevation of glucose transport and in an increase of cell surface expression of the glucose transporter Glut-1. However, the signaling mechanisms leading to the insulin or TSH-induced increase in the cell surface expression of Glut-1 were not investigated. In the present study, we demonstrated that wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), interfere both in the signaling pathways of insulin and TSH leading to glucose consumption enhancement and Glut-1 translocation. Two hours after insulin treatment, TSH or cAMP analog (Bu)2cAMP stimulation, glucose transport was increased and most of the intracellular Glut-1 pool was translocated to plasma membranes. Wortmannin or LY294002 blocked the insulin, (Bu)2cAMP, and the TSH-induced translocation of Glut-1. Wortmannin or LY294002 alone did not alter the basal ratio between intracellular and cell surface Glut-1 molecules. These results suggest that in FRTL-5 cells wortmannin and LY294002 inhibited the insulin, (Bu)2cAMP and TSH events leading to Glut-1 translocation from an intracellular compartment to the plasma membrane. Likewise, (Bu)2cAMP effects on glucose transport and Glut-1 translocation to plasma membrane were repressed by PI3-kinase inhibitors but not by the protein kinase A (PKA) inhibitor H89. We suggest that (Bu)2cAMP stimulates Glut-1 translocation to plasma membrane through PI3-kinase-dependent and PKA-independent signaling pathways. To further elucidate mechanisms that regulate the translocation of Glut-1 to cell membrane, we extended this study to the role played by the N-glycosylation in the translocation and in the biological activity of Glut-1 in FRTL-5 cells. For this purpose we used tunicamycin, an inhibitor of the N-glycosylation. Our experiments with tunicamycin clearly showed that both the glycosylated and unglycosylated forms of the transporter reached the cell surface. Likewise, a decrease in glucose consumption (-50%) after treatment of cells with tunicamycin was accompanied by a decrease (-70% vs. control) in the membrane expression of a 50-kDa form of Glut-1 and an increase in its unglycosylated 41-kDa form. These results suggest that carbohydrate moiety is essential for the biological activity of glucose transport but is not required for the translocation of Glut-1 from the intracellular membrane pool to the plasma membrane.

  8. Pharmacokinetics and pharmacodynamics of edivoxetine (LY2216684), a norepinephrine reuptake inhibitor, in pediatric patients with attention-deficit/hyperactivity disorder.

    PubMed

    Kielbasa, William; Quinlan, Tonya; Jin, Ling; Xu, Wen; Lachno, D Richard; Dean, Robert A; Allen, Albert J

    2012-08-01

    Edivoxetine (LY2216684) is a selective and potent norepinephrine reuptake inhibitor (NERI). The pharmacokinetics (PK) and pharmacodynamics (PD) of edivoxetine were assessed in children and adolescent patients with attention-deficit/hyperactivity disorder (ADHD) following single and once-daily oral doses of edivoxetine. During a phase 1 open-label safety, tolerability, and PK study, pediatric patients were administered edivoxetine at target doses of 0.05, 0.1, 0.2 and 0.3 mg/kg, and blood samples were collected to determine plasma concentrations of edivoxetine for PK assessments and plasma 3,4-dihydroxyphenylglycol (DHPG) concentrations for PD assessments. Edivoxetine plasma concentrations were measured using liquid chromatography with tandem mass spectrometric detection, and DHPG was measured using liquid chromatography with electrochemical detection. Edivoxetine PK was comparable between children and adolescents. The time to maximum concentration (t(max)) of edivoxetine was ∼2 hours, which was followed by a mono-exponential decline in plasma concentrations with a terminal elimination half-life (t(1/2)) of ∼6 hours. Dose-dependent increases in area under the edivoxetine plasma concentration versus time curve from zero to infinity (AUC(0-∞)) and maximum plasma concentration (C(max)) were observed, and there was no discernable difference in the apparent clearance (CL/F) or the apparent volume of distribution at steady state (V(ss)/F) across the dose range. In adolescents, edivoxetine caused a maximum decrease in plasma DHPG concentrations from baseline of ∼28%, most notably within 8 hours of edivoxetine administration. This initial study in pediatric patients with ADHD provides new information on the PK profile of edivoxetine, and exposures that decrease plasma DHPG consistent with the mechanism of action of a NERI. The PK and PD data inform edivoxetine pharmacology and can be used to develop comprehensive population PK and/or PK-PD models to guide dosing strategies.

  9. Chemically treated plasma Aβ is a potential blood-based biomarker for screening cerebral amyloid deposition.

    PubMed

    Park, Jong-Chan; Han, Sun-Ho; Cho, Hyun Jin; Byun, Min Soo; Yi, Dahyun; Choe, Young Min; Kang, Seokjo; Jung, Eun Sun; Won, Su Jin; Kim, Eun Hye; Kim, Yu Kyeong; Lee, Dong Young; Mook-Jung, Inhee

    2017-03-22

    Plasma β-amyloid (Aβ) is a potential candidate for an Alzheimer's disease (AD) biomarker because blood is an easily accessible bio-fluid, which can be collected routinely, and Aβ is one of the major hallmarks of AD pathogenesis in the brain. However, the association between plasma Aβ levels and AD diagnosis is still unclear due to the instability and inaccurate measurements of plasma Aβ levels in the blood of patients with AD. If a consistent value of plasma Aβ from the blood can be obtained, this might help determine whether plasma Aβ is a potential biomarker for AD diagnosis. We predicted the brain amyloid deposit by measuring the plasma Aβ levels. This cross-sectional study included 353 participants (215 cognitively normal, 79 with mild cognitive impairment, and 59 with AD dementia) who underwent Pittsburgh-compound B positron emission tomography (PiB-PET) scans. We treated a mixture of protease inhibitors and phosphatase inhibitors (MPP) and detected plasma Aβ42 and Aβ40 (MPP-Aβ42 and MPP-Aβ40) in a stable manner using xMAP technology. MPP-Aβ40 and MPP-Aβ42/40 (MPP-Aβs) were significantly different between subjects with positive amyloid deposition (PiB+) and those with negative amyloid deposition (PiB-) (P < 0.0001). Furthermore, MPP-Aβ40 (P < 0.0001, r = 0.23) and MPP-Aβ42/40 ratio (P < 0.0001, r = -0.23) showed significant correlation with global PiB deposition (standardized uptake value ratio). In addition, our integrated multivariable (MPP-Aβ42/40, gender, age, and apolipoprotein E genotypes) logistic regression model proposes a new standard for the prediction of cerebral amyloid deposition. MPP-Aβ might be one of the potential blood biomarkers for the prediction of PiB-PET positivity in the brain.

  10. Involvement of the TRPV1 receptor in plasma extravasation in airways of rats treated with an angiotensin-converting enzyme inhibitor.

    PubMed

    de Oliveira, Janiana Raíza Jentsch Matias; Otuki, Michel Fleith; Cabrini, Daniela Almeida; Brusco, Indiara; Oliveira, Sara Marchesan; Ferreira, Juliano; André, Eunice

    2016-12-01

    Angiotensin-converting enzyme inhibitors (ACEIs) are widely used in the treatment of hypertension, congestive heart failure and renal disease, and are considered relatively safe and generally well-tolerated drugs. However, adverse effects of ACEIs have been reported, including non-productive cough and angioedema, which can lead to poor adherence to therapy. The mechanisms by which ACEIs promote adverse effects are not fully elucidated, although increased bradykinin plasma levels following ACEI therapy seem to play an important role. Since bradykinin can sensitise the transient potential vanilloid receptor 1 (TRPV1), we investigated the role of TRPV1 in plasma extravasation in the trachea and bronchi of rats treated with the ACEI captopril. We observed that intravenous (i.v.) administration of captopril did not cause plasma extravasation in the trachea or bronchi of spontaneously breathing rats, but induced plasma extravasation in the trachea and bronchi of artificially ventilated rats. The intratracheal (i.t.) instillation of capsaicin or bradykinin also induced an increase in plasma extravasation in the trachea and bronchi of artificially ventilated rats. As expected, capsaicin-induced plasma extravasation was inhibited by i.t. pretreatment with the TRPV1 selective antagonist capsazepine (CPZ) while bradykinin-induced plasma extravasation was reduced by i.t. pretreatment with the selective B 2 receptor antagonist Icatibant, originally known as HOE 140 (HOE). Interestingly, bradykinin-induced plasma extravasation was also inhibited by CPZ. The pretreatment with HOE and CPZ, singly or in combination and at doses which do not cause inhibitory effects per se, significantly inhibited the plasma extravasation induced by captopril treatment in artificially ventilated rats. In addition, treatment with a high dose of capsaicin in newborn rats, which induces degeneration of TRPV1-expressing sensory neurons, abolished both capsaicin and captopril-induced plasma extravasation in artificially ventilated rats. In conclusion, our study identified that captopril treatment promoted sensitisation of TRPV1, via B 2 receptor activation, inducing plasma extravasation in the airways of mechanically ventilated rats. The present findings add a new view about the role of TRPV1 in the plasma extravasation induced by captopril and could to contribute to the elucidation of mechanisms by which ACEI induces adverse effects on airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  12. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    PubMed Central

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  13. The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma.

    PubMed

    Evans, Robert P; Naber, Claudia; Steffler, Tara; Checkland, Tamara; Maxwell, Christopher A; Keats, Jonathan J; Belch, Andrew R; Pilarski, Linda M; Lai, Raymond; Reiman, Tony

    2008-02-01

    Aurora kinases are potential targets for cancer therapy. Previous studies have validated Aurora kinase A as a therapeutic target in multiple myeloma (MM), and have demonstrated in vitro anti-myeloma effects of small molecule Aurora kinase inhibitors that inhibit both Aurora A and B. This study demonstrated that Aurora B kinase was strongly expressed in myeloma cell lines and primary plasma cells. The selective Aurora B inhibitor AZD1152-induced apoptotic death in myeloma cell lines at nanomolar concentrations, with a cell cycle phenotype consistent with that reported previously for Aurora B inhibition. In some cases, AZD1152 in combination with dexamethasone showed increased anti-myeloma activity compared with the use of either agent alone. AZD1152 was active against sorted CD138(+) BM plasma cells from myeloma patients but also, as expected, was toxic to CD138(-) marrow cells from the same patients. In a murine myeloma xenograft model, AZD1152-inhibited tumour growth at well-tolerated doses and induced cell death in established tumours, with associated mild, transient leucopenia. AZD1152 shows promise in these preclinical studies as a novel treatment for MM.

  14. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma.

    PubMed

    Urbaniak-Kujda, Donata; Kapelko-Slowik, Katarzyna; Prajs, Iwona; Dybko, Jarosław; Wolowiec, Dariusz; Biernat, Monika; Slowik, Miroslaw; Kuliczkowski, Kazimierz

    2016-01-01

    Activity of metalloproteinases (MMP) is controlled both by specific tissue inhibitors (TIMP) and activators (extracellular matrix metalloproteinase inducer, EMMPRIN). There are few data available concerning concentration the bone marrow of MMP-2, MMP-9, TIMP-1, and TIMP-2, or EMMPRIM expression by bone marrow mesenchymal stromal cells (BMSCs) in patients with multiple myeloma (MM). We studied 40 newly diagnosed, untreated patients: 18 males and 22 females with de novo MM and 11 healthy controls. Bone marrow was collected prior to therapy. BMSCs were derived by culturing bone marrow cells on MesenCult. Protein concentrations were determined in bone marrow plasma and culture supernatants by ELISA. EMMPRIN expression by BMSCs was assessed by flow cytometry. The median concentrations of MMP-9, TIMP-1, and TIMP-2 in both marrow plasma and culture supernatants were significantly higher in MM patients than controls. EMMPRIN expression and ratios MMP-9/TIMP-1 and MMP-2/TIMP-2 were higher in MM patients, our results demonstrate that in MM patients MMP-2 and MMP-9 are secreted in higher amounts and are not balanced by inhibitors.

  15. Diagnostic and therapeutic problems associated with hereditary deficiency of the C1 esterase inhibitor.

    PubMed

    Molina, C; Brun, J; Coulet, M; Betail, G; Wahl, D; Hartmann, L

    1977-03-01

    Six patients in a family with a history of hereditary angioedema reported swelling of the extremities and recurrent abdominal pain occurring spontaneously or after trauma. Attacks of oedema involving the airways, the greatest danger with this disorder, were present only in one case. This autosomal dominant disease is due to deficient activity of the inhibitor of the first component of complement. Low levels of C4, and absence of C1 esterase inhibitor confirm the diagnosis. Two asymptomatic cases with the appropriate biochemical abnormality are reported in this study. For short term prophylaxis of attacks (before surgery expecially), fresh frozen plasma is used, or better still, C1 esterase inhibitor. For long term prophylaxis of attacks antifibrinolytic and hormonal drugs are used: in two cases, the authors obtained good results with methyltestosterone after failure of tranexamic acid.

  16. Discovery and Validation of a Series of Aryl Sulfonamides as Selective Inhibitors of Tissue-Nonspecific Alkaline Phosphatase (TNAP)

    PubMed Central

    Dahl, Russell; Sergienko, Eduard A.; Mostofi, Yalda S.; Yang, Li; Su, Ying; Simao, Ana Maria; Narisawa, Sonoko; Brown, Brock; Mangravita-Novo, Arianna; Vicchiarelli, Michael; Smith, Layton H.; O’Neill, W. Charles; Millán, José Luis; Cosford, Nicholas D. P.

    2009-01-01

    We report the characterization and optimization of drug-like small molecule inhibitors of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme critical for the regulation of extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) of a small molecule library led to the identification of arylsulfonamides as potent and selective inhibitors of TNAP. Critical structural requirements for activity were determined, and the compounds were subsequently profiled for in vitro activity and bioavailability parameters including metabolic stability and permeability. The plasma levels following subcutaneous administration of a member of the lead series in rat was determined, demonstrating the potential of these TNAP inhibitors as systemically active therapeutic agents to target various diseases involving soft tissue calcification. A representative member of the series was also characterized in mechanistic and kinetic studies. PMID:19821572

  17. International consensus and practical guidelines on the gynecologic and obstetric management of female patients with hereditary angioedema caused by C1 inhibitor deficiency.

    PubMed

    Caballero, Teresa; Farkas, Henriette; Bouillet, Laurence; Bowen, Tom; Gompel, Anne; Fagerberg, Christina; Bjökander, Janne; Bork, Konrad; Bygum, Anette; Cicardi, Marco; de Carolis, Caterina; Frank, Michael; Gooi, Jimmy H C; Longhurst, Hilary; Martínez-Saguer, Inmaculada; Nielsen, Erik Waage; Obtulowitz, Krystina; Perricone, Roberto; Prior, Nieves

    2012-02-01

    There are a limited number of publications on the management of gynecologic/obstetric events in female patients with hereditary angioedema caused by C1 inhibitor deficiency (HAE-C1-INH). We sought to elaborate guidelines for optimizing the management of gynecologic/obstetric events in female patients with HAE-C1-INH. A roundtable discussion took place at the 6th C1 Inhibitor Deficiency Workshop (May 2009, Budapest, Hungary). A review of related literature in English was performed. Contraception: Estrogens should be avoided. Barrier methods, intrauterine devices, and progestins can be used. Pregnancy: Attenuated androgens are contraindicated and should be discontinued before attempting conception. Plasma-derived human C1 inhibitor concentrate (pdhC1INH) is preferred for acute treatment, short-term prophylaxis, or long-term prophylaxis. Tranexamic acid or virally inactivated fresh frozen plasma can be used for long-term prophylaxis if human plasma-derived C1-INH is not available. No safety data are available on icatibant, ecallantide, or recombinant human C1-INH (rhC1INH). Parturition: Complications during vaginal delivery are rare. Prophylaxis before labor and delivery might not be clinically indicated, but pdhC1INH therapeutic doses (20 U/kg) should be available. Nevertheless, each case should be treated based on HAE-C1-INH symptoms during pregnancy and previous labors. pdhC1INH prophylaxis is advised before forceps or vacuum extraction or cesarean section. Regional anesthesia is preferred to endotracheal intubation. Breast cancer: Attenuated androgens should be avoided. Antiestrogens can worsen angioedema symptoms. In these cases anastrozole might be an alternative. Other issues addressed include special features of HAE-C1-INH treatment in female patients, genetic counseling, infertility, abortion, lactation, menopause treatment, and endometrial cancer. A consensus for the management of female patients with HAE-C1-INH is presented. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties

    PubMed Central

    Sendobry, Sandra M; Cornicelli, Joseph A; Welch, Kathryn; Bocan, Thomas; Tait, Bradley; Trivedi, Bharat K; Colbry, Norman; Dyer, Richard D; Feinmark, Steven J; Daugherty, Alan

    1997-01-01

    15-Lipoxygenase (15-LO) has been implicated in the pathogenesis of atherosclerosis because of its localization in lesions and the many biological activities exhibited by its products. To provide further evidence for a role of 15-LO, the effects of PD 146176 on the development of atherosclerosis in cholesterol-fed rabbits were assessed. This novel drug is a specific inhibitor of the enzyme in vitro and lacks significant non specific antioxidant properties.PD 146176 inhibited rabbit reticulocyte 15-LO through a mixed noncompetitive mode with a Ki of 197 nM. The drug had minimal effects on either copper or 2,2′-azobis(2-amidinopropane)hydrochloride (ABAP) induced oxidation of LDL except at concentrations 2 orders higher than the Ki.Control New Zealand rabbits were fed a high-fat diet containing 0.25% wt./wt. cholesterol; treated animals received inhibitor in this diet (175 mg kg−1, b.i.d.). Plasma concentrations of inhibitor were similar to the estimated Ki (197 nM). During the 12 week study, there were no significant differences in weight gain, haematocrit, plasma total cholesterol concentrations, or distribution of lipoprotein cholesterol.The drug plasma concentrations achieved in vivo did not inhibit low-density lipoprotein (LDL) oxidation in vitro. Furthermore, LDL isolated from PD 146176-treated animals was as susceptible as that from controls to oxidation ex vivo by either copper or ABAP.PD 146176 was very effective in suppressing atherogenesis, especially in the aortic arch where lesion coverage diminished from 15±4 to 0% (P<0.02); esterified cholesterol content was reduced from 2.1±0.7 to 0 μg mg−1 (P<0.02) in this region. Immunostainable lipid-laden macrophages present in aortic intima of control animals were totally absent in the drug-treated group.Results of these studies are consistent with a role for 15-LO in atherogenesis. PMID:9105693

  19. Discovery of a low-systemic-exposure DGAT-1 inhibitor with a picolinoylpyrrolidine-2-carboxylic acid moiety.

    PubMed

    Yan, Jianwei; Wang, Gaihong; Dang, Xiangyu; Guo, Binbin; Chen, Wuhong; Wang, Ting; Zeng, Limin; Wang, Heyao; Hu, Youhong

    2017-09-01

    A series of diacylglycerol O-acyltransferase 1 (DGAT-1) inhibitors with a picolinoylpyrrolidine-2-carboxylic acid moiety were designed and synthesized. Of these compounds, compound 22 exhibited excellent DGAT-1-inhibitory activity (hDGAT-1 enzyme assay, 50% inhibitory concentration [IC 50 ]=3.5±0.9nM) and effectively reduced the intracellular triglyceride contents in 3T3-L1, HepG2 and Caco-2 cells. A preliminary study of the plasma and tissue distributions of compound 22 in mice revealed low plasma exposure and high concentrations in different segments of the intestine and liver, which may facilitate targeting DGAT-1. Furthermore, in an acute lipid challenge test, compound 22 showed a dose-dependent inhibitory effect on high-serum triglycerides in C57/KSJ mice induced by olive oil (1, 3, and 10mg/kg, i.g.). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity

    PubMed Central

    Sant'Anna, Ricardo; Gallego, Pablo; Robinson, Lei Z.; Pereira-Henriques, Alda; Ferreira, Nelson; Pinheiro, Francisca; Esperante, Sebastian; Pallares, Irantzu; Huertas, Oscar; Rosário Almeida, Maria; Reixach, Natàlia; Insa, Raul; Velazquez-Campoy, Adrian; Reverter, David; Reig, Núria; Ventura, Salvador

    2016-01-01

    Transthyretin (TTR) is a plasma homotetrameric protein implicated in fatal systemic amyloidoses. TTR tetramer dissociation precedes pathological TTR aggregation. Native state stabilizers are promising drugs to treat TTR amyloidoses. Here we repurpose tolcapone, an FDA-approved molecule for Parkinson's disease, as a potent TTR aggregation inhibitor. Tolcapone binds specifically to TTR in human plasma, stabilizes the native tetramer in vivo in mice and humans and inhibits TTR cytotoxicity. Crystal structures of tolcapone bound to wild-type TTR and to the V122I cardiomyopathy-associated variant show that it docks better into the TTR T4 pocket than tafamidis, so far the only drug on the market to treat TTR amyloidoses. These data indicate that tolcapone, already in clinical trials for familial amyloid polyneuropathy, is a strong candidate for therapeutic intervention in these diseases, including those affecting the central nervous system, for which no small-molecule therapy exists. PMID:26902880

  1. Testicular distribution and toxicity of a novel LTA4H inhibitor in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, P.D., E-mail: pward4@its.jnj.com; La, D.

    JNJ 40929837, a novel leukotriene A4 hydrolase inhibitor in drug development, was reported to induce testicular toxicity in rats. The mechanism of toxicity was considered to be rodent specific and not relevant to humans. To further investigate this finding in rats, the distribution and toxicokinetics of JNJ 40929837 and its two metabolites, M1 and M2, were investigated. A quantitative whole body autoradiography study showed preferential distribution and retention of JNJ 40929837-derived radioactivity in the testes consistent with the observed site of toxicity. Subsequent studies with unlabeled JNJ 40929837 showed different metabolite profiles between the plasma and testes. Following a singlemore » oral 50 mg/kg dose of JNJ 40929837, M2 was the primary metabolite in plasma whereas M1 was the primary metabolite in testes. The exposure of M1 was 386-fold higher in the testes compared to plasma whereas M2 had limited exposure in testes. Furthermore, the T{sub max} of M1 was 48 h in testes suggesting a large accumulation potential of this metabolite in testes compared to plasma. Following six months of repeated daily oral dosing, M1 accumulated approximately five-fold in the testes whereas the parent did not accumulate. These results indicate that the toxicokinetic profiles of JNJ 40929837 and its two metabolites in testes are markedly different compared to plasma and support the importance of understanding the toxicokinetic profiles of compounds and their metabolites in organs/tissues where toxicity is observed. - Highlights: • JNJ 40929837-derived radioactivity preferentially distributed into testes • Primary metabolite flip-flop in plasma and testes • The primary metabolite in testes accumulated 5-fold but not parent.« less

  2. Factor V Has Anticoagulant Activity in Plasma in the Presence of TFPIα: Difference between FV1 and FV2.

    PubMed

    van Doorn, Peter; Rosing, Jan; Duckers, Connie; Hackeng, Tilman M; Simioni, Paolo; Castoldi, Elisabetta

    2018-06-04

     Activated factor V (FVa) is a potent procoagulant cofactor in the prothrombinase complex, whereas its precursor factor V (FV) stimulates the inhibition of factor Xa (FXa) by tissue factor pathway inhibitor-α (TFPIα), presumably by promoting TFPIα binding to phospholipids. Plasma FV comprises two glycosylation isoforms (FV1 and FV2) with low and high phospholipid-binding affinity, respectively. The FV1/FV2 ratio is increased in carriers of the FV R2 haplotype.  This article demonstrates the TFPIα-cofactor function of FV in plasma and compares FV1 and FV2.  Thrombin generation at low TF concentration was measured in FV-depleted plasma reconstituted with 0 to 100% FV, FV1 or FV2, and in 122 individuals genotyped for the R2 haplotype. The TFPIα-cofactor activities of FV1 and FV2 were also investigated in a model system of TFPIα-mediated FXa inhibition.  In the FV titration, thrombin generation first increased (up to 5% FV) and then progressively decreased at higher FV concentrations. This anticoagulant effect of FV, which was also observed with FV2 but not with FV1, was largely abolished by anti-TFPIα antibodies, suggesting that it reflects TFPIα-cofactor activity of FV. In the model system of TFPIα-mediated FXa inhibition, FV2 was a more potent TFPIα-cofactor than FV1, in line with their respective phospholipid affinities. Accordingly, FV R2 carriers had higher thrombin generation than non-carriers, even after correction for demographics and plasma levels of coagulation factors and inhibitors.  FV (and particularly its FV2 isoform) contributes to the TFPIα-dependent down-regulation of thrombin generation in plasma triggered with low TF. Schattauer GmbH Stuttgart.

  3. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients.

    PubMed

    Yung, Tony K F; Chan, K C Allen; Mok, Tony S K; Tong, Joanna; To, Ka-Fai; Lo, Y M Dennis

    2009-03-15

    We aim to develop a digital PCR-based method for the quantitative detection of the two common epidermal growth factor receptor (EGFR) mutations (in-frame deletion at exon 19 and L858R at exon 21) in the plasma and tumor tissues of patients suffering from non-small cell lung cancers. These two mutations account for >85% of clinically important EGFR mutations associated with responsiveness to tyrosine kinase inhibitors. DNA samples were analyzed using a microfluidics system that simultaneously performed 9,180 PCRs at nanoliter scale. A single-mutant DNA molecule in a clinical specimen could be detected and the quantities of mutant and wild-type sequences were precisely determined. Exon 19 deletion and L858R mutation were detectable in 6 (17%) and 9 (26%) of 35 pretreatment plasma samples, respectively. When compared with the sequencing results of the tumor samples, the sensitivity and specificity of plasma EGFR mutation analysis were 92% and 100%, respectively. The plasma concentration of the mutant sequences correlated well with the clinical response. Decreased concentration was observed in all patients with partial or complete clinical remission, whereas persistence of mutation was observed in a patient with cancer progression. In one patient, tyrosine kinase inhibitor was stopped after an initial response and the tumor-associated EGFR mutation reemerged 4 weeks after stopping treatment. The sensitive detection and accurate quantification of low abundance EGFR mutations in tumor tissues and plasma by microfluidics digital PCR would be useful for predicting treatment response, monitoring disease progression and early detection of treatment failure associated with acquired drug resistance.

  4. Leveraging cell type specific regulatory regions to detect SNPs associated with tissue factor pathway inhibitor plasma levels.

    PubMed

    Dennis, Jessica; Medina-Rivera, Alejandra; Truong, Vinh; Antounians, Lina; Zwingerman, Nora; Carrasco, Giovana; Strug, Lisa; Wells, Phil; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel; Wilson, Michael D; Gagnon, France

    2017-07-01

    Tissue factor pathway inhibitor (TFPI) regulates the formation of intravascular blood clots, which manifest clinically as ischemic heart disease, ischemic stroke, and venous thromboembolism (VTE). TFPI plasma levels are heritable, but the genetics underlying TFPI plasma level variability are poorly understood. Herein we report the first genome-wide association scan (GWAS) of TFPI plasma levels, conducted in 251 individuals from five extended French-Canadian Families ascertained on VTE. To improve discovery, we also applied a hypothesis-driven (HD) GWAS approach that prioritized single nucleotide polymorphisms (SNPs) in (1) hemostasis pathway genes, and (2) vascular endothelial cell (EC) regulatory regions, which are among the highest expressers of TFPI. Our GWAS identified 131 SNPs with suggestive evidence of association (P-value < 5 × 10 -8 ), but no SNPs reached the genome-wide threshold for statistical significance. Hemostasis pathway genes were not enriched for TFPI plasma level associated SNPs (global hypothesis test P-value = 0.147), but EC regulatory regions contained more TFPI plasma level associated SNPs than expected by chance (global hypothesis test P-value = 0.046). We therefore stratified our genome-wide SNPs, prioritizing those in EC regulatory regions via stratified false discovery rate (sFDR) control, and reranked the SNPs by q-value. The minimum q-value was 0.27, and the top-ranked SNPs did not show association evidence in the MARTHA replication sample of 1,033 unrelated VTE cases. Although this study did not result in new loci for TFPI, our work lays out a strategy to utilize epigenomic data in prioritization schemes for future GWAS studies. © 2017 WILEY PERIODICALS, INC.

  5. Extravascular plasminogen activator and inhibitor activities detected at the site of a chronic mycobacterial-induced inflammation.

    PubMed Central

    O'Rourke, J.; Wang, W. P.; Donnelly, L.; Wang, E.; Kreutzer, D. L.

    1987-01-01

    Levels of extravascular tissue plasminogen activator activity (PA) and those of inhibitors of PA and of urokinase (UK) present within the anterior chamber of normal and inflamed feline eyes were assessed with the use of a direct PA assay of microsamples of aqueous humor. Purposes of the study were, first, to confirm prior indirect evidence that this extravascular space normally contains higher levels of uninhibited PA, but lower levels of inhibitor activity, than does plasma and, second, to determine patterns of change in these activities under in vivo conditions imposed by a chronic mycobacterial-induced uveitis (CMIU) disease model. The PA assay utilized a 125I-plasminogen substrate whose cleavage by PA contained in samples was both visualized during gel electrophoreis, and quantified by gamma counting. The results provided the first direct evidence that the higher fibrinolytic activity previously observed in normal aqueous in comparison with plasma is in fact associated with higher levels of available (uninhibited) PA (P less than 0.01) The data also indicated that normal aqueous contains a much higher level of PA inhibitor activity than previously suspected--roughly 40 times more than available PA levels. These normal values for PA and inhibitors occupied a relatively narrow, threefold range, in contrast to the wide scattering of individual values that appeared during 18-20 weeks of the chronic inflammation disease model. Despite this, however, the general pattern of observation for all individual eyes during CMIU was a significant increase in levels of both PA and inhibitors. The net effect of CMIU was thus to cause the 1:40 ratio noted above to be tilted more strongly in favor of inhibitor activity, ie, up to 1:80. Increases in local vasopermeability in this disease model were believed contributory to this change. However, local generations of PA and APA in vivo by inflammatory cells, especially monocyte-macrophages, must also be considered. Assays for UK inhibitor showed levels of activity and directions of change that closely followed those of PA inhibitor, which suggests the possibility that they may be identical. It is surmised that the above patterns, along with results of our prior studies, indicate an apparent need for a multistep, strict inhibitory control of plasmin generation and proteolysis in vivo within normal extravascular spaces such as the anterior chamber.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 2 PMID:3493701

  6. Pancreatic polyamine concentrations and cholecystokinin plasma levels in rats after feeding raw or heat-inactivated soybean flour.

    PubMed

    Löser, C; Fölsch, U R; Mustroph, D; Cantor, P; Wunderlich, U; Creutzfeldt, W

    1988-01-01

    We investigated the trophic effect on the pancreas of male Wistar rats fed up to 20 days with either raw soybean flour (RSF) containing an active trypsin inhibitor or heat-inactivated soybean flour (HSF). The concentrations of the polyamines putrescine, spermidine, and spermine in the pancreas as well as cholecystokinin (CCK) concentrations in arterial and portal vein plasma were measured. Plasma CCK concentrations were measured by a sensitive radioimmunoassay specific for the sulfated region of CCK, whereas polyamine concentrations are determined by reversed phase high-performance liquid chromatography. The levels of CCK in both arterial and portal vein plasma were significantly higher in RSF- compared with HSF-fed rats, the concentration in the portal vein being twice as high compared with the aorta. A significant increase in pancreatic weight and protein content was positively correlated to an increase in putrescine and spermidine in the pancreas of RSF-fed rats compared with HSF-fed controls, whereas the spermine content did not differ between the two groups. The pancreatic DNA content in RSF-fed rats was significantly above control values of day 20 only. These data support the hypothesis that the trophic effect of soybean trypsin inhibitor on the pancreas is mediated by CCK and that polyamines might play an important role in CCK-induced pancreatic growth.

  7. Perioperative haemostatic management of haemophilic mice using normal mouse plasma.

    PubMed

    Tatsumi, K; Ohashi, K; Kanegae, K; Shim, I K; Okano, T

    2013-11-01

    Intense haemostatic interventions are required to avoid bleeding complications when surgical procedures are performed on haemophilia patients. The objective of this study was to establish an appropriate protocol for perioperative haemostatic management of haemophilic mice. We assessed the prophylactic haemostatic effects of normal mouse plasma (NMP) on haemophilia B (HB) mice for both a skin flap procedure and a laparotomy. When 500 μL of NMP was administered to the mice, plasma factor IX (FIX:C) levels peaked at 15.1% immediately after intravenous (IV) administration, at 6.1% 2 h after intraperitoneal (IP) administration and at 2.7% 6 h after subcutaneous administration. Administering 500 μL of NMP via IP or IV 30 min in advance enabled the skin flap procedure to be performed safely without any complications. After the laparotomy procedure, several mice in the IP administration group exhibited lethal bleeding, but all mice survived in the IV administration group. Anti-mouse FIX inhibitors did not develop, even after repetitive administrations of NMP. However, human FIX concentrates, especially plasma-derived concentrates, elicited the anti-human FIX inhibitors. The results show that administering 500 μL of NMP via IV or IP 30 min in advance enables surgical procedures to be safely performed on HB mice, and that IV administration is more desirable than IP if the procedure requires opening of the abdominal wall. © 2013 John Wiley & Sons Ltd.

  8. Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers

    PubMed Central

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Ahsan, Habibul; Chen, Yu

    2012-01-01

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007–2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease. PMID:22534204

  9. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers.

    PubMed

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L; van Geen, Alexander; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu

    2012-06-15

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.

  10. Gelatinases and their tissue inhibitors in a group of subjects with obstructive sleep apnea syndrome.

    PubMed

    Hopps, Eugenia; Canino, Baldassare; Montana, Maria; Calandrino, Vincenzo; Urso, Caterina; Lo Presti, Rosalia; Caimi, Gregorio

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with an elevated risk of cardiovascular events and stroke. Matrix metalloproteinases (MMPs) are endopeptidases involved in extracellular matrix degradation and then in the development and progression of cardiovascular diseases. Our aim was to evaluate plasma levels of gelatinases (MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) in a group of subjects with OSAS. We enrolled 48 subjects (36 men and 12 women; mean age 49.7 ± 14.68 yrs) with OSAS diagnosed with a 1-night cardiorespiratory study and then we subdivided these subjects into two subgroups according to the apnea/hypopnea index (AHI): Low (L = 21 subjects with AHI <30) and High (H = 27 subjects with AHI >30). We measured plasma concentration of the gelatinases and their inhibitors using ELISA kits. We observed a significant increase in plasma concentration of MMP-9, MMP-2, TIMP-1 and TIMP-2 in the entire group of OSAS subjects and in the two subgroups, with higher levels in the H in comparison with the L subgroup. In the whole group of OSAS subjects we also noted a significant decrease in MMP-9/TIMP-1 ratio in comparison with normal controls. Only MMP-9 was significantly correlated with the severity of the disease, expressed as AHI, with the oxygen desaturation index and also with the mean oxygen saturation. MMPs pattern is altered in OSAS and significantly influenced by the severity of the disease; it probably contributes to the vascular remodeling that leads to the atherosclerotic disease and cardiovascular complications.

  11. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    PubMed Central

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  12. Clinical Predictors of Venetoclax Pharmacokinetics in Chronic Lymphocytic Leukemia and Non-Hodgkin's Lymphoma Patients: a Pooled Population Pharmacokinetic Analysis.

    PubMed

    Jones, Aksana K; Freise, Kevin J; Agarwal, Suresh K; Humerickhouse, Rod A; Wong, Shekman L; Salem, Ahmed Hamed

    2016-09-01

    Venetoclax (ABT-199/GDC-0199) is a selective, potent, first-in-class BCL-2 inhibitor that restores apoptosis in cancer cells and has demonstrated clinical efficacy in a variety of hematological malignancies. The objective of this analysis was to characterize the population pharmacokinetics of venetoclax and identify demographic, pathophysiologic, and treatment factors that influence its pharmacokinetics. Plasma concentration samples from 505 subjects enrolled in 8 clinical studies were analyzed using non-linear mixed-effects modeling. Venetoclax plasma concentrations were best described by a two-compartment PK model with first-order absorption and elimination. The terminal half-life in cancer subjects was estimated to be approximately 26 h. Moderate and strong CYP3A inhibitors decreased venetoclax apparent clearance by 19% and 84%, respectively, while weak CYP3A inhibitors and inducers did not affect clearance. Additionally, concomitant rituximab administration was estimated to increase venetoclax apparent clearance by 21%. Gastric acid-reducing agent co-administration had no impact on the rate or extent of venetoclax absorption. Females had 32% lower central volume of distribution when compared to males. Food increased the bioavailability by 2.99- to 4.25-fold when compared to the fasting state. Mild and moderate renal and hepatic impairment, body weight, age, race, weak CYP3A inhibitors and inducers as well as OATP1B1 transporter phenotype and P-gp, BCRP, and OATP1B1/OATP1B3 modulators had no impact on venetoclax pharmacokinetics. Venetoclax showed minimal accumulation with accumulation ratio of 1.30-1.44. In conclusion, the concomitant administration of moderate and strong CYP3A inhibitors and rituximab as well as food were the main factors impacting venetoclax pharmacokinetics, while patient characteristics had only minimal impact.

  13. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL‐2 inhibitor, in patients with non‐Hodgkin lymphoma

    PubMed Central

    Agarwal, Suresh K.; Danilov, Alexey V.; Hu, Beibei; Puvvada, Soham; Gutierrez, Martin; Chien, David; Lewis, Lionel D.; Wong, Shekman L.

    2017-01-01

    Aims To examine the effect of a strong cytochrome P450 (CYP) 3A inhibitor, ketoconazole, on the pharmacokinetics, safety and tolerability of venetoclax. Methods Twelve patients with non‐Hodgkin lymphoma (NHL) were enrolled in this Phase 1, open‐label, fixed‐sequence study. Patients received a single 50 mg dose of venetoclax orally on Day 1 and Day 8, and a 400 mg once daily dose of ketoconazole on Days 5–11. Blood samples were collected predose and up to 96 h after each venetoclax dose on Day 1 and Day 8. Results Eleven patients had evaluable pharmacokinetic data and were therefore included in the statistical analyses. Compared to administration of a single 50 mg dose of venetoclax alone, ketoconazole increased the venetoclax mean maximum observed plasma concentration (C max) and area under the plasma concentration–time curve from time 0 to infinity (AUC∞) by 2.3‐fold (90% confidence interval [CI]: 2.0–2.7) and 6.4‐fold (90% CI: 4.5–9.2; range: 2‐ to 12‐fold), respectively. Conclusions Coadministration of venetoclax with multiple doses of ketoconazole resulted in a significant increase of venetoclax exposures, strongly suggesting that CYP3A plays a major role in elimination of venetoclax in patients. These results suggest the need to avoid concomitant use with strong and moderate inhibitors or inducers of CYP3A during the venetoclax ramp‐up phase in chronic lymphocytic leukaemia (CLL) patients. For patients who have completed the ramp‐up phase, a modification in venetoclax dose for use with strong and moderate inhibitors or inducers of CYP3A is recommended. PMID:27859472

  14. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma.

    PubMed

    Agarwal, Suresh K; Salem, Ahmed Hamed; Danilov, Alexey V; Hu, Beibei; Puvvada, Soham; Gutierrez, Martin; Chien, David; Lewis, Lionel D; Wong, Shekman L

    2017-04-01

    To examine the effect of a strong cytochrome P450 (CYP) 3A inhibitor, ketoconazole, on the pharmacokinetics, safety and tolerability of venetoclax. Twelve patients with non-Hodgkin lymphoma (NHL) were enrolled in this Phase 1, open-label, fixed-sequence study. Patients received a single 50 mg dose of venetoclax orally on Day 1 and Day 8, and a 400 mg once daily dose of ketoconazole on Days 5-11. Blood samples were collected predose and up to 96 h after each venetoclax dose on Day 1 and Day 8. Eleven patients had evaluable pharmacokinetic data and were therefore included in the statistical analyses. Compared to administration of a single 50 mg dose of venetoclax alone, ketoconazole increased the venetoclax mean maximum observed plasma concentration (C max ) and area under the plasma concentration-time curve from time 0 to infinity (AUC ∞ ) by 2.3-fold (90% confidence interval [CI]: 2.0-2.7) and 6.4-fold (90% CI: 4.5-9.2; range: 2- to 12-fold), respectively. Coadministration of venetoclax with multiple doses of ketoconazole resulted in a significant increase of venetoclax exposures, strongly suggesting that CYP3A plays a major role in elimination of venetoclax in patients. These results suggest the need to avoid concomitant use with strong and moderate inhibitors or inducers of CYP3A during the venetoclax ramp-up phase in chronic lymphocytic leukaemia (CLL) patients. For patients who have completed the ramp-up phase, a modification in venetoclax dose for use with strong and moderate inhibitors or inducers of CYP3A is recommended. © 2016 The British Pharmacological Society.

  15. Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032)

    PubMed Central

    Sheaffer, Amy K.; Friborg, Jacques; Hernandez, Dennis; Falk, Paul; Zhai, Guangzhi; Levine, Steven; Chaniewski, Susan; Yu, Fei; Barry, Diana; Chen, Chaoqun; Lee, Min S.; Mosure, Kathy; Sun, Li-Qiang; Sinz, Michael; Meanwell, Nicholas A.; Colonno, Richard J.; Knipe, Jay; Scola, Paul

    2012-01-01

    Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with Ki values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC50s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC50, 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC50, >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC50s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients. PMID:22869577

  16. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins.

    PubMed

    Bonuccelli, Gloria; Sotgia, Federica; Schubert, William; Park, David S; Frank, Philippe G; Woodman, Scott E; Insabato, Luigi; Cammer, Michael; Minetti, Carlo; Lisanti, Michael P

    2003-10-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.

  17. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice

    PubMed Central

    Wang, Dong; Luo, Yuhuan; Wang, Xiaoxin; Orlicky, David J.; Myakala, Komuraiah; Yang, Pengyuan; Levi, Moshe

    2018-01-01

    Obesity and obesity related kidney and liver disease have become more prevalent over the past few decades, especially in the western world. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with promising effects on cardiovascular and renal function. Given SGLT2 inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of the highly selective renal SGLT2 inhibitor dapagliflozin in mice with Western diet (WD) induced obesity. Low fat (LF) diet or WD-fed male C57BL/6J mice were treated with dapagliflozin for 26 weeks. Dapagliflozin attenuated the WD-mediated increases in body weight, plasma glucose and plasma triglycerides. Treatment with dapagliflozin prevented podocyte injury, glomerular pathology and renal fibrosis determined by second harmonic generation (SHG), nephrin, synaptopodin, collagen IV, and fibronectin immunofluorescence microscopy. Oil Red O staining showed dapagliflozin also decreased renal lipid accumulation associated with decreased SREBP-1c mRNA abundance. Moreover, renal inflammation and oxidative stress were lower in the dapagliflozin-treated WD-fed mice than in the untreated WD-fed mice. In addition, dapagliflozin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic lipid accumulation as determined by H&E and Oil Red O staining, and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, and hepatic fibrosis as determined by picrosirius red (PSR) staining and TPE-SHG microscopy in WD-fed mice. Thus, our study demonstrated that the co-administration of the SGLT2 inhibitor dapagliflozin attenuates renal and liver disease during WD feeding of mice. PMID:29301371

  18. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice.

    PubMed

    Wang, Dong; Luo, Yuhuan; Wang, Xiaoxin; Orlicky, David J; Myakala, Komuraiah; Yang, Pengyuan; Levi, Moshe

    2018-01-03

    Obesity and obesity related kidney and liver disease have become more prevalent over the past few decades, especially in the western world. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with promising effects on cardiovascular and renal function. Given SGLT2 inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of the highly selective renal SGLT2 inhibitor dapagliflozin in mice with Western diet (WD) induced obesity. Low fat (LF) diet or WD-fed male C57BL/6J mice were treated with dapagliflozin for 26 weeks. Dapagliflozin attenuated the WD-mediated increases in body weight, plasma glucose and plasma triglycerides. Treatment with dapagliflozin prevented podocyte injury, glomerular pathology and renal fibrosis determined by second harmonic generation (SHG), nephrin, synaptopodin, collagen IV, and fibronectin immunofluorescence microscopy. Oil Red O staining showed dapagliflozin also decreased renal lipid accumulation associated with decreased SREBP-1c mRNA abundance. Moreover, renal inflammation and oxidative stress were lower in the dapagliflozin-treated WD-fed mice than in the untreated WD-fed mice. In addition, dapagliflozin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic lipid accumulation as determined by H&E and Oil Red O staining, and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, and hepatic fibrosis as determined by picrosirius red (PSR) staining and TPE-SHG microscopy in WD-fed mice. Thus, our study demonstrated that the co-administration of the SGLT2 inhibitor dapagliflozin attenuates renal and liver disease during WD feeding of mice.

  19. Increased leukocyte adhesion to vascular endothelium in preeclampsia is inhibited by antioxidants.

    PubMed

    Ryu, Seongho; Huppmann, Alison R; Sambangi, Nirmala; Takacs, Peter; Kauma, Scott W

    2007-04-01

    To test the hypothesis that plasma from women with preeclampsia increases leukocyte adhesion to vascular endothelial cells and that antioxidants inhibit this effect. Plasma from 12 women with severe preeclampsia and 12 with normal pregnancy was tested in an in vitro leukocyte-endothelium adhesion assay in the presence or absence of vitamin E, vitamin C, or N-acetylcysteine. Preeclamptic plasma significantly increased monocyte (U937 cells) and T-cell (Jurkat) adhesion to human umbilical vein (HUVEC) and microvascular endothelial cells, compared with normal pregnant plasma. The antioxidants vitamin E, vitamin C, and N-acetylcysteine significantly inhibited monocyte adhesion to HUVEC in the presence of preeclamptic but not normal pregnant plasma. Increased adhesion in response to preeclamptic plasma was not mediated through a protein kinase C (PKC) mechanism, because the PKC inhibitor bisindolylmaleimide I had no effect on adhesion in the presence of preeclamptic plasma. Severe preeclampsia is associated with increased leukocyte-endothelium adhesion and clinically useful antioxidants can inhibit this effect.

  20. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?

    PubMed

    Lovshin, J A; Gilbert, R E

    2015-06-01

    By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.

  1. Tethered Hsp90 Inhibitors Carrying Optical or Radioiodinated Probes Reveal Selective Internalization of Ectopic Hsp90 in Malignant Breast Tumor Cells

    PubMed Central

    Barrott, Jared J.; Hughes, Philip F.; Osada, Takuya; Yang, Xiao-Yi; Hartman, Zachary C.; Loiselle, David R.; Spector, Neil L.; Neckers, Len; Rajaram, Narasimhan; Hu, Fangyao; Ramanujam, Nimmi; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Lyerly, H. Kim; Haystead, Timothy A.

    2013-01-01

    Summary Hsp90 inhibitors have demonstrated unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained but could be influenced by ectopically expressed Hsp90 in tumors. We have synthesized novel Hsp90 inhibitors that can carry optical or radioiodinated probes via a PEG tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein is occurring at the plasma membrane. In mice, we show exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors targeting ectopic Hsp90 can be used to detect breast cancer malignancies through non-invasive imaging. PMID:24035283

  2. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.

    PubMed

    Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin

    2016-01-01

    Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.

  3. Von Willebrand factor-containing factor VIII concentrates and inhibitors in haemophilia A. A critical literature review.

    PubMed

    Franchini, Massimo; Lippi, Giuseppe

    2010-11-01

    The development of inhibitors that neutralise the function of factor VIII (FVIII) is currently not only the most challenging complication associated with the treatment of haemophilia A but it also increases the disease-related morbidity as bleeding episodes do not respond to standard therapy. The main short-term goal of the treatment of inhibitor patients is to control bleeding episodes while the long-term one is to permanently eradicate the inhibitor by immune tolerance induction, particularly in the case of high-titer antibodies. Due to some in vitro studies and clinical observations, some investigators have suggested that FVIII concentrates containing von Willebrand factor (VWF) may be less immunogenic than high-purity or recombinant FVIII products. It has also been suggested that success rates for immune tolerance induction are higher when plasma-derived FVIII products are used. The currently available data from laboratory and clinical studies on the role of VWF in inhibitor development and eradication in haemophilia A is critically analysed in this review. As a result, we have not found definitive evidence supporting a role for product type on inhibitor incidence and inhibitor eradication in haemophilia A patients.

  4. LEGO-Inspired Drug Design: Unveiling a Class of Benzo[d]thiazoles Containing a 3,4-Dihydroxyphenyl Moiety as Plasma Membrane H+ -ATPase Inhibitors.

    PubMed

    Tung, Truong-Thanh; Dao, Trong T; Junyent, Marta G; Palmgren, Michael; Günther-Pomorski, Thomas; Fuglsang, Anja T; Christensen, Søren B; Nielsen, John

    2018-01-08

    The fungal plasma membrane H + -ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for the design, synthesis, and discovery of benzo[d]thiazoles containing a 3,4-dihydroxyphenyl moiety as potential Pma1p inhibitors. A series of 2-(benzo[d]thiazol-2-ylthio)-1-(3,4-dihydroxyphenyl)ethanones was found to inhibit Pma1p, with the most potent IC 50 value of 8 μm in an in vitro plasma membrane H + -ATPase assay. These compounds were also found to strongly inhibit the action of proton pumping when Pma1p was reconstituted into liposomes. 1-(3,4-Dihydroxyphenyl)-2-((6-(trifluoromethyl)benzo[d]thiazol-2-yl)thio)ethan-1-one (compound 38) showed inhibitory activities on the growth of Candida albicans and Saccharomyces cerevisiae, which could be correlated and substantiated with the ability to inhibit Pma1p in vitro. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative analysis of a novel HIV fusion inhibitor (sifuvirtide) in HIV infected human plasma using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Che, Jinjing; Meng, Qingfang; Chen, Zhihang; Hou, Yunan; Shan, Chengqi; Cheng, Yuanguo

    2010-03-11

    A sensitive method for measuring sifuvirtide, a novel HIV fusion inhibitor peptide drug in HIV-1(+) human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The plasma samples were treated by solvent/detergent (S/D) method to inactivate viral activity before analysis. After protein precipitation sifuvirtide was determined by LC-MS/MS. A structure analog was used as internal standard (IS). The mass spectrometer was operated in positive ion and multiple reaction monitoring mode with transitions m/z 946.3-->159.0 for sifuvirtide and 951.7-->159.2 for IS. The intra-day precision ranged from 2.74% to 7.57% with accuracy from 91.63% to 102.53%. The inter-day precision ranged from 2.65% to 3.58% and the accuracy from 95.53% to 105.28%. Stability studies showed that sifuvirtide was stable both during the assay procedure and long-term storage. The lower limit of quantitation (LLOQ) was 9.75ngml(-1). The method was used for analyzing samples from phase IIa clinical study of sifuvirtide in China. Copyright 2009 Elsevier B.V. All rights reserved.

  6. LC-MS/MS assay for the quantitation of the tyrosine kinase inhibitor neratinib in human plasma.

    PubMed

    Kiesel, Brian F; Parise, Robert A; Wong, Alvin; Keyvanjah, Kiana; Jacobs, Samuel; Beumer, Jan H

    2017-02-05

    Neratinib is an orally available tyrosine kinase inhibitor targeting HER2 (ERBB2) and EGFR (ERBB). It is being clinically evaluated for the treatment of breast and other solid tumors types as a single agent or in combination with other chemotherapies. In support of several phase I/II clinical trials investigating neratinib combinations, we developed and validated a novel LC-MS/MS assay for the quantification of neratinib in 100μL of human plasma with a stable isotopic internal standard. Analytes were extracted from plasma using protein precipitation and evaporation of the resulting supernatant followed by resuspension. Chromatographic separation was achieved using an Acquity UPLC BEH Shield RP18 column and a gradient methanol-water mobile phase containing 10% ammonium acetate. An ABI 4000 mass spectrometer and electrospray positive mode ionization were used for detection. The assay was linear from 2 to 1,000ng/mL and proved to be accurate (98.9-106.5%) and precise (<6.2%CV), and met the FDA guidance for bioanalytical method validation. This LC-MS/MS assay will be an essential tool to further define the pharmacokinetics of neratinib. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fenretinide metabolism in humans and mice: utilizing pharmacological modulation of its metabolic pathway to increase systemic exposure

    PubMed Central

    Cooper, Jason P; Hwang, Kyunghwa; Singh, Hardeep; Wang, Dong; Reynolds, C Patrick; Curley, Robert W; Williams, Simon C; Maurer, Barry J; Kang, Min H

    2011-01-01

    BACKGROUND AND PURPOSE High plasma levels of fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] were associated with improved outcome in a phase II clinical trial. Low bioavailability of 4-HPR has been limiting its therapeutic applications. This study characterized metabolism of 4-HPR in humans and mice, and to explore the effects of ketoconazole, an inhibitor of CYP3A4, as a modulator to increase 4-HPR plasma levels in mice and to increase the low bioavailability of 4-HPR. EXPERIMENTAL APPROACH 4-HPR metabolites were identified by mass spectrometric analysis and levels of 4-HPR and its metabolites [N-(4-methoxyphenyl)retinamide (4-MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR)] were quantified by high-performance liquid chromatography (HPLC). Kinetic analysis of enzyme activities and the effects of enzyme inhibitors were performed in pooled human and pooled mouse liver microsomes, and in human cytochrome P450 (CYP) 3A4 isoenzyme microsomes. In vivo metabolism of 4-HPR was inhibited in mice. KEY RESULTS Six 4-HPR metabolites were identified in the plasma of patients and mice. 4-HPR was oxidized to 4-oxo-4-HPR, at least in part via human CYP3A4. The CYP3A4 inhibitor ketoconazole significantly reduced 4-oxo-4-HPR formation in both human and mouse liver microsomes. In two strains of mice, co-administration of ketoconazole with 4-HPR in vivo significantly increased 4-HPR plasma concentrations by > twofold over 4-HPR alone and also increased 4-oxo-4-HPR levels. CONCLUSIONS AND IMPLICATIONS Mice may serve as an in vivo model of human 4-HPR pharmacokinetics. In vivo data suggest that the co-administration of ketoconazole at normal clinical doses with 4-HPR may increase systemic exposure to 4-HPR in humans. PMID:21391977

  8. (2S,4S)-4-Fluoro-1-{[(2-hydroxy-1,1-dimethylethyl)amino]acetyl}-pyrrolidine-2-carbonitrile monobenzenesulfonate (TS-021) is a selective and reversible dipeptidyl peptidase IV inhibitor.

    PubMed

    Tajima, Atsushi; Yamamoto, Koji; Kozakai, Akinori; Okumura-Kitajima, Lisa; Mita, Yasuo; Kitano, Kiyokazu; Jingu, Shigeji; Nakaike, Shiro

    2011-03-25

    The incretin hormone glucagon-like peptide-1 (GLP-1) has significant roles in the regulation of postprandial glucose metabolism, and the active form of GLP-1 is rapidly degraded by dipeptidyl peptidase (DPP)-IV. Therefore, DPP-IV inhibition is a promising approach for the treatment of type 2 diabetes. In the present study, we investigated the character of a DPP-IV inhibitor, TS-021, (2S, 4S)-4-fluoro-1-{[(2-hydroxy-1,1-dimethylethyl)amino]acetyl}-pyrrolidine-2-carbonitrile monobenzenesulfonate both in vitro and in vivo. TS-021 inhibits DPP-IV activity in human plasma with an IC(50) value of 5.34nM. In kinetics experiments, TS-021 had a relatively higher dissociation rate constant, with a k(off) value of 1.09×10(-3)s, despite exhibiting a potent human plasma DPP-IV inhibition activity with a K(i) value of 4.96nM. TS-021 exhibited significant inhibition selectivity against DPP-8 (>600 fold), DPP-9 (>1200 fold) and other peptidases examined (>15,000 fold). In normal rats, dogs and monkeys, a single oral dose of TS-021 exhibited favorable pharmacokinetic profiles. In Zucker fatty (fa/fa) rats, a rat model of obesity and impaired glucose tolerance, the oral administration of TS-021 resulted in the suppression of plasma DPP-IV activity and an increase in the active form of GLP-1. Furthermore, TS-021 exhibited a significant improvement in glucose tolerance by increasing the plasma insulin level during oral glucose tolerance tests at doses of 0.02-0.5mg/kg. These results suggest that TS-021 is a selective and reversible dipeptidyl peptidase IV inhibitor and has excellent characteristics as an oral anti-diabetic agent for postprandial hyperglycemia in patients with impaired glucose tolerance or type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and Cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ROS1 inhibitor lorlatinib.

    PubMed

    Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2018-05-09

    Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.

  10. Pharmacodynamic and Pharmacokinetic Profiles of Sacubitril/Valsartan (LCZ696) in Patients with Heart Failure and Reduced Ejection Fraction.

    PubMed

    Kobalava, Zhanna; Kotovskaya, Yulia; Averkov, Oleg; Pavlikova, Elena; Moiseev, Valentine; Albrecht, Diego; Chandra, Priya; Ayalasomayajula, Surya; Prescott, Margaret F; Pal, Parasar; Langenickel, Thomas H; Jordaan, Pierre; Rajman, Iris

    2016-08-01

    Concomitant renin-angiotensin-aldosterone system blockade and natriuretic peptide system enhancement may provide unique therapeutic benefits to patients with heart failure and reduced ejection fraction (HFrEF). This study assessed the pharmacodynamics and pharmacokinetics of LCZ696 in patients with HFrEF. This was an open-label, noncontrolled single-sequence study. After a 24-h run-in period, patients (n = 30) with HFrEF (EF ≤ 40%; NYHA class II-IV) received LCZ696 100 mg twice daily (bid) for 7 days and 200 mg bid for 14 days, along with standard treatment for heart failure (HF) (except angiotensin-converting enzyme inhibitors [ACEIs] or angiotensin receptor blockers [ARBs]). On Day 21, significant increases were observed in the plasma biomarkers indicative of neprilysin and RAAS inhibition (ratio-to-baseline: cyclic guanosine monophosphate [cGMP], 1.38; renin concentration and activity, 3.50 and 2.27, respectively; all, P < 0.05). Plasma NT-proBNP levels significantly decreased at all the time points on Days 7 and 21; plasma aldosterone and endothelin-1 levels significantly decreased on Day 21 (all, P < 0.05). Following administration of LCZ696, the Cmax of sacubitril (neprilysin inhibitor prodrug), LBQ657 (active neprilysin inhibitor), and valsartan were reached within 0.5, 2.5, and 2 h. Between 100- and 200-mg doses, the Cmax and AUC0-12 h for sacubitril and LBQ657 were approximately dose-proportional while that of valsartan was less than dose-proportional. Treatment with LCZ696 for 21 days was well tolerated and resulted in plasma biomarker changes indicative of neprilysin and RAAS inhibition in patients with HF. The pharmacokinetic exposure of the LCZ696 analytes in patients with HF observed in this study is comparable to that observed in the pivotal Phase III study. © 2016 John Wiley & Sons Ltd.

  11. Pharmacokinetics and Pharmacodynamics of Azeloprazole Sodium, a Novel Proton Pump Inhibitor, in Healthy Japanese Volunteers.

    PubMed

    Toda, Ryoko; Shiramoto, Masanari; Komai, Emi; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro

    2018-04-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of proton pump inhibitors differ among cytochrome P450 (CYP) 2C19 genotypes. Therefore, we developed azeloprazole sodium (Z-215), a novel proton pump inhibitor, whose metabolism is not affected by CYP2C19 activity in vitro. However, the PK and PD of azeloprazole sodium have not been evaluated in Japanese subjects. We conducted an open-label, crossover study in healthy Japanese male volunteers to evaluate the plasma concentration and intragastric pH with respect to CYP2C19 genotype after repeated administration of 10, 20, and 40 mg azeloprazole sodium and 10 and 20 mg rabeprazole sodium (rabeprazole). The plasma concentration profile of azeloprazole sodium was similar among genotypes, whereas that of rabeprazole differed. The 24-hour intragastric pH ≥ 4 holding time ratio (pH ≥ 4 HTR) of azeloprazole sodium was similar among genotypes. The pH ≥ 4 HTR was 52.5%-60.3%, 55.1%-65.8%, and 69.4%-77.1% after administration of 10, 20, and 40 mg azeloprazole sodium, respectively, and 59.2%-72.3% and 64.4%-91.2% after administration of 10 and 20 mg rabeprazole, respectively, on the fifth day of dosing. The maximum plasma concentration (C max ), area under the plasma concentration-time curve (AUC), and pH ≥ 4 HTR of azeloprazole sodium were proportional to dose. The C max , AUC, and pH ≥ 4 HTR on day 5 were slightly higher following administration of 20 mg azeloprazole sodium before comparison with after a meal. No serious adverse events were observed. These results suggest that azeloprazole sodium is useful for treating gastroesophageal reflux disease in all CYP2C19 genotypes. © 2017, The American College of Clinical Pharmacology.

  12. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    PubMed

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.

  13. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats

    PubMed Central

    Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-01-01

    Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916

  14. Effect of inhibitors of prostaglandin synthesis on gonadotropin release in the rat.

    PubMed

    Ojeda, S R; Harms, P G; McCann, S M

    1975-10-01

    To study the effect of blockade of prostaglandin (PG) synthesis on gonadotropin release in the rat, inhibitors of PG synthesis were injected by various routes in various experimental conditions. The injection of 5-, 8-, 11-, 14-eicosatetraynoic acid (TYA) into the third ventricle (3rd V) significantly decreased plasma LH of ovariectomized (OVX) rats 1, 2, and 4 h following its injection; however, TYA failed to alter plasma LH in OVX rats when administered as a single sc injection and also failed to prevent the post-castration rise in plasma LH when administered sc once daily for 4 days to short-term OVX rats. None of these treatments altered plasma FSH concentrations. Indomethacin (Id) injected into the 3rd V or implanted into the medial basal hypothalamus (MBH) of OVX rats depressed plasma LH 1--6 h later. This effect was no longer observed 24--72 h following its implantation in the MBH. When different doses of Id were administered as single sc injections to OVX rats, plasma LH titers were depressed 24--32 h later, whereas plasma FSH remained either unaltered or was slightly increased. Similarly, the post-castration rise of plasma LH but not that of FSH in male rats was suppressed by a single sc injection of Id given 6 h before orchidectomy. Id administered acutely iv failed to modify the pulsatile release of LH in OVX rats, but it effectively inhibited this release when injected sc 20--30 h before the initiation of blood collection. Moreover, Id blocked the progesterone-induced LH and FSH release in OVX estrogen-primed rats when given sc 24 h before progesterone, but not when it was injected either sc or iv shortly (2 h) before or shortly after (1--3 h) progesterone treatment. Rats treated with Id showed a decrease in BW 24--32 h afters its sc injection. However, the effects of Id on LH release could not be explained by lack of food intake since fasted controls showed LH titers similar to fed rats. Id did not significantly inhibit the LH release in response to synthetic LH-releasing hormone (LHRH) in OVX rats, but partially blocked the response in OVX estrogen, progesterone-treated (OEP) rats. Surprisingly, in OEP rats, Id appeared to potentiate the FSH release in response to LHRH. The results of this study indicate that inhibitors of PG synthesis administered at high doses can inhibit LH release in the rat and that this effect is mainly due to a direct effect of the drug or drugs on the central nervous systen. Consequently, the results of this study give further support to the hypothesis that PGs play a physiological role in the control of gonadotropin secretion.

  15. Comparison of the neurobiological effects of attribution retraining group therapy with those of selective serotonin reuptake inhibitors

    PubMed Central

    Wang, C.; Zhang, N.; Zhang, Y.L.; Zhang, J.; Yang, H.; Timothy, T.C.

    2013-01-01

    The aim of this study was to compare the effectiveness of attribution retraining group therapy (ARGT) with selective serotonin reuptake inhibitors (SSRIs) in the treatment of major depressive disorder (MDD), generalized anxiety disorder (GAD), and obsessive-compulsive disorder (OCD). Subjects were sequentially recruited and randomized into two groups, one receiving ARGT (n = 63) and the other SSRIs (n = 66) for 8 weeks. Fifty-four ARGT outpatients with MDD (n = 19), GAD (n = 19), and OCD (n = 16) and 55 SSRI outpatients with MDD (n = 19), GAD (n = 19), and OCD (n = 17) completed the study. All subjects were assessed using the Hamilton Depression Scale and Hamilton Anxiety Scale before and after treatment. The 10-item Yale-Brown Obsessive Compulsive Scale was employed only for OCD subjects. Plasma levels of serotonin, norepinephrine, cortisol, and adrenocorticotropic hormone were also measured at baseline and 8 weeks after completion of treatment. Symptom scores were significantly reduced (P < 0.001) in both the ARGT and SSRI groups at the end of treatment. However, MDD, GAD and OCD patients in the ARGT group had significantly lower plasma cortisol concentrations compared to baseline (P < 0.05), whereas MDD and OCD patients receiving SSRIs showed significantly increased plasma levels of serotonin (P < 0.05). These findings suggest that ARGT may modulate plasma cortisol levels and affect the hypothalamus-pituitary-adrenal axis as opposed to SSRIs, which may up-regulate plasma serotonin levels via a different pathway to produce an overall improvement in the clinical condition of the patients. PMID:23558857

  16. Association of the plasminogen activator inhibitor-1 (PAI-1) Gene -675 4G/5G and -844 A/G promoter polymorphism with risk of keloid in a Chinese Han population.

    PubMed

    Wang, Yongjie; Long, Jianhong; Wang, Xiaoyan; Sun, Yang

    2014-10-28

    A keloid is pathological scar caused by aberrant response to skin injuries, characterized by excessive accumulation of histological extracellular matrix, and occurs in genetically susceptible individuals. Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of keloid. We investigated the association between PAI-1 polymorphisms and plasma PAI-1 level with keloid risk. A total of 242 Chinese keloid patients and 207 controls were enrolled in this study. Polymerase chain reaction-restriction technique was used to determine PAI-1 promoter polymorphism (-675 4G/5G and -844 A/G) distribution. Plasma PAI-1 levels were detected using enzyme-linked immunosorbent assay (ELISA). There was a statistically significant difference in the distribution of PAI-1 -675 4G/5G polymorphism between keloid patients and healthy controls. 4G/4G carriers were more likely to develop keloid. In contrast, the -844 A/G polymorphism distribution did not vary significantly between keloid patients and controls. The keloid patients group had a significantly higher plasma PAI-1 level than the control group. In the -675 4G/4G carrier population, the plasma PAI-1 levels were significant higher in keloid patients compared with controls. Our study provides evidence that PAI-1 promoter polymorphism -675 4G/5G and plasma PAI-1 level are associated with keloid risk. PAI-1 -675 4G/5G polymorphism may be an important hereditary factor responsible for keloid development in the Chinese Han population.

  17. Clinical Pharmacokinetics of Sacubitril/Valsartan (LCZ696): A Novel Angiotensin Receptor-Neprilysin Inhibitor.

    PubMed

    Ayalasomayajula, Surya; Langenickel, Thomas; Pal, Parasar; Boggarapu, Sreedevi; Sunkara, Gangadhar

    2017-12-01

    Sacubitril/valsartan (LCZ696) is indicated for the treatment of heart failure with reduced ejection fraction. Absorption of sacubitril/valsartan and conversion of sacubitril (prodrug) to sacubitrilat (neprilysin inhibitor) was rapid with maximum plasma concentrations of sacubitril, sacubitrilat, and valsartan (angiotensin receptor blocker) reaching within 0.5, 1.5-2.0, and 2.0-3.0 h, respectively. With a two-fold increase in dose, an increase in the area under the plasma concentration-time curve was proportional for sacubitril, ~1.9-fold for sacubitrilat, and ~1.7-fold for valsartan in healthy subjects. Following multiple twice-daily administration, steady-state maximum plasma concentration was reached within 3 days, showing no accumulation for sacubitril and valsartan, while ~1.6-fold accumulation for sacubitrilat. Sacubitril is eliminated predominantly as sacubitrilat through the kidney; valsartan is eliminated mainly by biliary route. Drug-drug interactions of sacubitril/valsartan were evaluated with medications commonly used in patients with heart failure including furosemide, warfarin, digoxin, carvedilol, levonorgestrel/ethinyl estradiol combination, amlodipine, omeprazole, hydrochlorothiazide, intravenous nitrates, metformin, statins, and sildenafil. Co-administration with sacubitril/valsartan increased the maximum plasma concentration (~2.0-fold) and area under the plasma concentration-time curve (1.3-fold) of atorvastatin; however, it did not affect the pharmacokinetics of simvastatin. Age, sex, or ethnicity did not affect the pharmacokinetics of sacubitril/valsartan. In patients with heart failure vs. healthy subjects, area under the plasma concentration-time curves of sacubitril, sacubitrilat, and valsartan were higher by approximately 1.6-, 2.1-, and 2.3-fold, respectively. Renal impairment had no significant impact on sacubitril and valsartan area under the plasma concentration-time curves, while the area under the plasma concentration-time curve of sacubitrilat correlated with degree of renal function (1.3-, 2.3-, 2.9-, and 3.3-fold with mild, moderate, and severe renal impairment, and end-stage renal disease, respectively). Moderate hepatic impairment increased the area under the plasma concentration-time curves of valsartan and sacubitrilat ~2.1-fold.

  18. Erratum to: Clinical Pharmacokinetics of Sacubitril/Valsartan (LCZ696): A Novel Angiotensin Receptor-Neprilysin Inhibitor.

    PubMed

    Ayalasomayajula, Surya; Langenickel, Thomas; Pal, Parasar; Boggarapu, Sreedevi; Sunkara, Gangadhar

    2018-01-01

    Sacubitril/valsartan (LCZ696) is indicated for the treatment of heart failure with reduced ejection fraction. Absorption of sacubitril/valsartan and conversion of sacubitril (prodrug) to sacubitrilat (neprilysin inhibitor) was rapid with maximum plasma concentrations of sacubitril, sacubitrilat, and valsartan (angiotensin receptor blocker) reaching within 0.5, 1.5-2.0, and 2.0-3.0 h, respectively. With a twofold increase in dose, an increase in the area under the plasma concentration-time curve was proportional for sacubitril, ~1.9-fold for sacubitrilat, and ~1.7-fold for valsartan in healthy subjects. Following multiple twice-daily administration, steady-state maximum plasma concentration was reached within 3 days, showing no accumulation for sacubitril and valsartan, while ~1.6-fold accumulation for sacubitrilat. Sacubitril is eliminated predominantly as sacubitrilat through the kidney; valsartan is eliminated mainly by biliary route. Drug-drug interactions of sacubitril/valsartan were evaluated with medications commonly used in patients with heart failure including furosemide, warfarin, digoxin, carvedilol, levonorgestrel/ethinyl estradiol combination, amlodipine, omeprazole, hydrochlorothiazide, intravenous nitrates, metformin, statins, and sildenafil. Co-administration with sacubitril/valsartan increased the maximum plasma concentration (~2.0-fold) and area under the plasma concentration-time curve (1.3-fold) of atorvastatin; however, it did not affect the pharmacokinetics of simvastatin. Age, sex, or ethnicity did not affect the pharmacokinetics of sacubitril/valsartan. In patients with heart failure vs. healthy subjects, area under the plasma concentration-time curves of sacubitril, sacubitrilat, and valsartan were higher by approximately 1.6-, 2.1-, and 2.3-fold, respectively. Renal impairment had no significant impact on sacubitril and valsartan area under the plasma concentration-time curves, while the area under the plasma concentration-time curve of sacubitrilat correlated with degree of renal function (1.3-, 2.3-, 2.9-, and 3.3-fold with mild, moderate, and severe renal impairment, and end-stage renal disease, respectively). Moderate hepatic impairment increased the area under the plasma concentration-time curves of valsartan and sacubitrilat ~2.1-fold.

  19. Hemophilia and von Willebrand's disease: 2. Management. Association of Hemophilia Clinic Directors of Canada.

    PubMed Central

    1995-01-01

    OBJECTIVE: To present current strategies for the treatment of hemophilia and von Willebrand's disease. OPTIONS: Prophylactic and corrective therapy with hemostatic and adjunctive agents: DDAVP (1-desamino-8-D-arginine vasopressin [desmopressin acetate]), recombinant coagulation products (human Factor VIII and human Factor VIIa) or virally inactivated plasma-derived products (high- or ultra-high-purity human Factor VIII or human Factor VIII concentrate containing von Willebrand factor activity, porcine Factor VIII, high-purity human Factor IX, human prothrombin-complex concentrate, human activated prothrombin-complex concentrate), adjunctive antifibrinolytic agents, topical thrombin and fibrin sealant. The induction of immune tolerance in patients in whom inhibitors develop should also be considered. OUTCOMES: Morbidity and quality of life associated with bleeding and treatment. EVIDENCE: Relevant clinical studies and reports published from 1974 to 1994 were examined. A search was conducted of our reprint files, MEDLINE, citations in the articles reviewed and references provided by colleagues. In the MEDLINE search the following terms were used singly or in combination: "hemophilia," "von Willebrand's disease," "Factor VIII," "Factor IX," "von Willebrand factor," "diagnosis," "management," "home care," "comprehensive care," "inhibitor," "AIDS," "hepatitis," "life expectancy," "complications," "practice guidelines," "consensus statement" and "controlled trial." The in-depth review included only articles written in English from North America and Europe that were relevant to human disease and pertinent to a predetermined outline. The availability of treatment products in Canada was also considered. VALUES: Minimizing morbidity and maximizing functional status and quality of life were given a high value. BENEFITS, HARMS AND COSTS: Proper prophylactic or early treatment with appropriate hemostatic agents minimizes morbidity and functional disability and improves quality of life. Economic gains are realized through the reduction of mortality and morbidity and their associated costs. The patient has a better opportunity to contribute to society through gainful employment and the fulfillment of social roles. Potential harms include HIV infection, hepatitis B, hepatitis C and the development of inhibitor antibodies to clotting-factor concentrates. The risk of viral transmission has been minimized through the development of procedures for the viral inactivation of plasma-derived clotting-factor concentrates and through the use of recombinant coagulation-factor concentrates and other non-plasma-derived hemostatic agents. RECOMMENDATIONS: DDAVP is the drug of choice for patients with mild hemophilia or type 1 or 2 (except 2B) von Willebrand's disease whose response to DDAVP in previous testing has been found to be adequate. Therapeutic blood components of choice include recombinant products and virally inactivated plasma-derived products. In Canada the recommended products are recombinant Factor VIII for hemophilia A, high-purity plasma-derived Factor IX for hemophilia B and plasma-derived Factor VIII concentrates containing adequate von Willebrand factor (e.g., Haemate P) for von Willebrand's disease. Dosages vary according to specific indications. Adjunctive antifibrinolytic agents, topical thrombin and fibrin sealant are useful for the treatment of oral or dental bleeds and localized bleeds in accessible sites. In patients with inhibitor antibodies, high-dose human or porcine Factor VIII is usually effective when the inhibitor titre is less than 5 Bethesda units/mL. In nonresponsive patients, or in those whose inhibitor titre is higher, "bypassing" agents (e.g., activated prothrombin-complex concentrate and recombinant Factor VIIa) are useful. Long-term management may include immune-tolerance induction.VALIDATION: These recommendations were reviewed and approved by the Association of Hemophilia Clinic Directors of Canada (AHCDC) and the Medical and Scientific Advisory Committee of the Canadian Hemophilia Society. No similar consensus statements or practice guidelines are available for comparison. SPONSORS: These recommendations were developed at the request of the Canadian Blood Agency, which funds the provision of all coagulation-factor concentrates for people with congenital bleeding disorders, and were developed and endorsed by the AHCDC and the Medical and Scientific Advisory Committee of the Canadian Hemophilia Society. PMID:7600466

  20. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release From Platelet-Rich Plasma.

    PubMed

    Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P

    2017-12-01

    It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor concentrations in HGT-activated samples. This COX-2 inhibitor did not impair platelet activation, growth factor release, or TXB2 production in this canine PRP when using HGT as an activator. Studies are warranted to determine whether COX-2 inhibitors affect platelet activation and growth factor release from human PRPs. These results suggest that there is no need to withhold a COX-2 inhibitor before PRP preparation, particularly if thrombin is going to be used to activate the PRP. This is clinically relevant information because many patients who are candidates for PRP therapy for treatment of musculoskeletal injury are also using COX-2 inhibitors.

  1. Inhibition of monoamine oxidase by moclobemide: effects on monoamine metabolism and secretion of anterior pituitary hormones and cortisol in healthy volunteers.

    PubMed Central

    Koulu, M; Scheinin, M; Kaarttinen, A; Kallio, J; Pyykkö, K; Vuorinen, J; Zimmer, R H

    1989-01-01

    1. Single oral doses (100, 200 and 300 mg) of moclobemide, a reversible inhibitor of monoamine oxidase (MAO) with predominant effects on the A-type of the enzyme, were administered to eight young, healthy male volunteers in a double-blind, random-order, placebo-controlled study. The investigation was thereafter continued in an open fashion by administering a single 10 mg dose of the MAO-B inhibitor deprenyl to the same subjects. 2. Deamination of catecholamines was powerfully and dose-dependently inhibited by moclobemide, as evidenced by up to 40% decreases in the urinary excretion of deaminated catecholamine metabolites, corresponding increases in the excretion of non-deaminated, methylated metabolites, and up to 79% average decreases in the plasma concentration of 3,4-dihydroxyphenylglycol (DHPG), a deaminated metabolite of noradrenaline (NA), and up to 75% average decreases in the plasma concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), a deaminated metabolite of dopamine. The urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) was only slightly reduced. In contrast, deprenyl, in a dose which almost totally inhibited MAO-B activity in blood platelets, did not appreciably affect the plasma concentrations of DHPG or DOPAC. 3. Due to the rapid, reversible, dose-dependent and MAO-A specific effect of moclobemide on plasma concentrations of DHPG, it is suggested that DHPG in plasma may be a useful indicator of the magnitude and duration of MAO-A inhibition in man. 4. Sympatho-adrenal function at rest was not significantly altered by moclobemide, as judged by unchanged plasma catecholamine concentrations and stable blood pressure and heart rate recordings. 5. Monoamine oxidase type B activity in blood platelets was slightly (less than 30%) and transiently inhibited after moclobemide. 6. The secretion of prolactin was dose-dependently stimulated by moclobemide, whereas the plasma concentrations of growth hormone (hGH) and cortisol remained unchanged. PMID:2469451

  2. Plasma oxytocin changes and anti-obsessive response during serotonin reuptake inhibitor treatment: a placebo controlled study.

    PubMed

    Humble, Mats B; Uvnäs-Moberg, Kerstin; Engström, Ingemar; Bejerot, Susanne

    2013-12-23

    The drug treatments of choice for obsessive-compulsive disorder (OCD) are serotonin reuptake inhibitors (SRIs). However, a correlation between the neuropeptide oxytocin in cerebrospinal fluid and the severity of OCD has previously been shown, and oxytocin and serotonin are interconnected within the brain. Few studies have investigated whether SRIs have any effect on oxytocin; thus, our aim was to explore the possibility that oxytocinergic mechanisms contribute to the anti-obsessive effect of SRIs. In a randomized, double-blind trial, comparing SRIs (clomipramine and paroxetine) with placebo in 36 adults with OCD (characterized for subtypes), plasma oxytocin was measured with radioimmunoassay after plasma extraction, at baseline, after 1 week, and after 4 weeks of treatment, and related to baseline severity and clinical response after 12 weeks, as measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Baseline oxytocin levels correlated positively with baseline Y-BOCS ratings, but only among the future SRI responders. Patients with early onset of OCD had higher baseline oxytocin. During treatment, plasma oxytocin did not differ between SRI and placebo treatment. In SRI responders, plasma oxytocin first decreased and then increased; in non-responders (to SRI as well as to placebo), the reverse was the case. After 4 weeks, treatment responders had attained higher oxytocin levels compared to non-responders. The intra-individual range (i.e., the variability) of plasma oxytocin between measurements was the measure that best differentiated responders from non-responders. This range was higher in responders than non-responders, and lower in patients with autistic traits. SRIs have highly variable effects on plasma oxytocin between individuals. The associations between baseline oxytocin and OCD severity and between oxytocin changes and treatment response support the notions that oxytocin is involved in OCD pathophysiology, and that the anti-obsessive effects of SRIs are partly exerted through oxytocinergic mechanisms.

  3. Plasma oxytocin changes and anti-obsessive response during serotonin reuptake inhibitor treatment: a placebo controlled study

    PubMed Central

    2013-01-01

    Background The drug treatments of choice for obsessive-compulsive disorder (OCD) are serotonin reuptake inhibitors (SRIs). However, a correlation between the neuropeptide oxytocin in cerebrospinal fluid and the severity of OCD has previously been shown, and oxytocin and serotonin are interconnected within the brain. Few studies have investigated whether SRIs have any effect on oxytocin; thus, our aim was to explore the possibility that oxytocinergic mechanisms contribute to the anti-obsessive effect of SRIs. Method In a randomized, double-blind trial, comparing SRIs (clomipramine and paroxetine) with placebo in 36 adults with OCD (characterized for subtypes), plasma oxytocin was measured with radioimmunoassay after plasma extraction, at baseline, after 1 week, and after 4 weeks of treatment, and related to baseline severity and clinical response after 12 weeks, as measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Results Baseline oxytocin levels correlated positively with baseline Y-BOCS ratings, but only among the future SRI responders. Patients with early onset of OCD had higher baseline oxytocin. During treatment, plasma oxytocin did not differ between SRI and placebo treatment. In SRI responders, plasma oxytocin first decreased and then increased; in non-responders (to SRI as well as to placebo), the reverse was the case. After 4 weeks, treatment responders had attained higher oxytocin levels compared to non-responders. The intra-individual range (i.e. the variability) of plasma oxytocin between measurements was the measure that best differentiated responders from non-responders. This range was higher in responders than non-responders, and lower in patients with autistic traits. Conclusions SRIs have highly variable effects on plasma oxytocin between individuals. The associations between baseline oxytocin and OCD severity and between oxytocin changes and treatment response support the notions that oxytocin is involved in OCD pathophysiology, and that the anti-obsessive effects of SRIs are partly exerted through oxytocinergic mechanisms. PMID:24359174

  4. Defining the key pharmacophore elements of PF-04620110: discovery of a potent, orally-active, neutral DGAT-1 inhibitor.

    PubMed

    Dow, Robert L; Andrews, Melissa P; Li, Jian-Cheng; Michael Gibbs, E; Guzman-Perez, Angel; Laperle, Jennifer L; Li, Qifang; Mather, Dawn; Munchhof, Michael J; Niosi, Mark; Patel, Leena; Perreault, Christian; Tapley, Susan; Zavadoski, William J

    2013-09-01

    DGAT-1 is an enzyme that catalyzes the final step in triglyceride synthesis. mRNA knockout experiments in rodent models suggest that inhibitors of this enzyme could be of value in the treatment of obesity and type II diabetes. The carboxylic acid-based DGAT-1 inhibitor 1 was advanced to clinical trials for the treatment of type 2 diabetes, despite of the low passive permeability of 1. Because of questions relating to the potential attenuation of distribution and efficacy of a poorly permeable agent, efforts were initiated to identify compounds with improved permeability. Replacement of the acid moiety in 1 with an oxadiazole led to the discovery of 52, which possesses substantially improved passive permeability. The resulting pharmacodynamic profile of this neutral DGAT-1 inhibitor was found to be similar to 1 at comparable plasma exposures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; Longenecker, Kenton; von Geldern, Thomas W; Wiedeman, Paul E; Lubben, Thomas H; Zinker, Bradley A; Stewart, Kent; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Long, Michelle; Wells, Heidi; Kempf-Grote, Anita J; Madar, David J; McDermott, Todd S; Bhagavatula, Lakshmi; Fickes, Michael G; Pireh, Daisy; Solomon, Larry R; Lake, Marc R; Edalji, Rohinton; Fry, Elizabeth H; Sham, Hing L; Trevillyan, James M

    2006-06-15

    A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.

  6. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    PubMed

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  7. Chymase inhibition prevents fibronectin and myofibrillar loss and improves cardiomyocyte function and LV torsion angle in dogs with isolated mitral regurgitation.

    PubMed

    Pat, Betty; Chen, Yuanwen; Killingsworth, Cheryl; Gladden, James D; Shi, Ke; Zheng, Junying; Powell, Pamela C; Walcott, Greg; Ahmed, Mustafa I; Gupta, Himanshu; Desai, Ravi; Wei, Chih-Chang; Hase, Naoki; Kobayashi, Tsunefumi; Sabri, Abdelkarim; Granzier, Henk; Denney, Thomas; Tillson, Michael; Dillon, A Ray; Husain, Ahsan; Dell'italia, Louis J

    2010-10-12

    The left ventricular (LV) dilatation of isolated mitral regurgitation (MR) is associated with an increase in chymase and a decrease in interstitial collagen and extracellular matrix. In addition to profibrotic effects, chymase has significant antifibrotic actions because it activates matrix metalloproteinases and kallikrein and degrades fibronectin. Thus, we hypothesize that chymase inhibitor (CI) will attenuate extracellular matrix loss and LV remodeling in MR. We studied dogs with 4 months of untreated MR (MR; n=9) or MR treated with CI (MR+CI; n=8). Cine MRI demonstrated a >40% increase in LV end-diastolic volume in both groups, consistent with a failure of CI to improve a 25% decrease in interstitial collagen in MR. However, LV cardiomyocyte fractional shortening was decreased in MR versus normal dogs (3.71±0.24% versus 4.81±0.31%; P<0.05) and normalized in MR+CI dogs (4.85±0.44%). MRI with tissue tagging demonstrated an increase in LV torsion angle in MR+CI versus MR dogs. CI normalized the significant decrease in fibronectin and FAK phosphorylation and prevented cardiomyocyte myofibrillar degeneration in MR dogs. In addition, total titin and its stiffer isoform were increased in the LV epicardium and paralleled the changes in fibronectin and FAK phosphorylation in MR+CI dogs. These results suggest that chymase disrupts cell surface-fibronectin connections and FAK phosphorylation that can adversely affect cardiomyocyte myofibrillar structure and function. The greater effect of CI on epicardial versus endocardial titin and noncollagen cell surface proteins may be responsible for the increase in torsion angle in chronic MR.

  8. The Renin-Angiotensin System, Not the Kinin-Kallikrein System, Affects Post-Exercise Proteinuria.

    PubMed

    Koçer, Günnur; Basralı, Filiz; Kuru, Oktay; Şentürk, Ümit Kemal

    2018-05-17

    Temporary proteinuria post-exercise is common and is caused predominantly by renal haemodynamic alterations. One reason is up-regulation of angiotensin II (Ang II) due to the reducing effect of angiotensin-converting enzyme (ACE) inhibitors. However, another, ignored, reason could be the kininase effect of ACE inhibition. This study investigated how ACE inhibition reduces post-exercise proteinuria: by either Ang II up-regulation inhibition or bradykinin elevation due to kininase activity inhibition. Our study included 10 volunteers, who completed 3 high-intensity exercise protocols involving cycling at 1-week intervals. The first protocol was a control arm, the second evaluated the effect of ACE inhibition and the third examined the effect of angiotensin type 1 receptor blockade. Upon application, both agents reduced systolic and diastolic blood pressure; however, there were no statistically significant -differences. In addition, total protein, microalbumin and -β2-microglobulin excretion levels in urine specimens were analysed before, 30 min after and 120 min after the exercise protocols. Total protein levels in urine samples were elevated in all 3 protocols after 30 min of high-intensity exercise, compared to baseline levels. However, both ACE inhibition and angiotensin type 1 receptor blockade suppressed total protein in the 30th min. In each protocol, total protein levels returned to the baseline after 120 min. Urinary microalbumin and β2-microglobulin levels during the control protocol were significantly higher 30 min post-exercise; however, only angiotensin type 1 receptor blockade suppressed microalbumin levels. The results indicated Ang II up-regulation, not bradykinin elevation, plays a role in post-exercise proteinuria. © 2018 S. Karger AG, Basel.

  9. Single-domain angiotensin I converting enzyme (kininase II): characterization and properties.

    PubMed

    Deddish, P A; Wang, L X; Jackman, H L; Michel, B; Wang, J; Skidgel, R A; Erdös, E G

    1996-12-01

    Somatic angiotensin I converting enzyme (ACE; kininase II) has two active sites, in two (N and C) domains. We studied the active centers with separate N-domain ACE (N-ACE), testicular C-domain ACE (germinal ACE) and, as control, renal somatic ACE. Germinal ACE cleaved the nonapeptide bradykinin about two times faster than N-ACE in 20 mM Cl-. Bradykinin1-7 was hydrolyzed further to bradykinin1-5 by N-ACE four times faster in the absence of Cl-, but at 300 mM Cl- the C-domain hydrolyzed it twice as fast. The hematopoietic system regulatory peptide acetyl-Ser-Asp-Lys-Pro was split to two dipeptides by N-ACE, depending on the chloride concentration, 8 to 24 times faster than by germinal ACE; at 100 mM Cl-, the Kcat with N-ACE was eight times higher. One millimolar 1-fluoro-2,4-dinitrobenzene inhibited germinal ACE 96% but it inhibited N-ACE by only 31%. [3H]Ramiprilat was displaced by other unlabeled ACE inhibitors to establish their relative affinities. Captopril had the lowest IC50 (0.5 nM) with N-ACE and the highest IC50 (8.3 nM) with the germinal ACE. The IC50 values of ramiprilat and quinaprilat were about the same with both active sites. The association and dissociation constants of [3H]ramiprilat indicated faster association with and faster dissociation from N-ACE than from germinal ACE. After exposure to alkali or moderate heat, somatic ACE was cleaved by plasmin and kallikrein, releasing N-ACE and apparently inactivating the C-domain. These studies affirm the differences in the activity, stability and inhibition of the two active sites of ACE.

  10. Inhibitor development in non-severe haemophilia across Europe.

    PubMed

    Fischer, Kathelijn; Iorio, Alfonso; Lassila, Riitta; Peyvandi, Flora; Calizzani, Gabriele; Gatt, Alex; Lambert, Thierry; Windyga, Jerzy; Gilman, Estelle A; Hollingsworth, R; Makris, Michael

    2015-10-01

    Evidence about inhibitor formation in non-severe haemophilia and the potential role for clotting factor concentrate type is scant. It was the aim of this study to report inhibitor development in non-severe haemophilia patients enrolled in the European Haemophilia Safety Surveillance (EUHASS) study. Inhibitors are reported quarterly and total treated patients annually. Incidence rates and 95% confidence intervals (95% CI) were calculated according to diagnosis and concentrate used. Between 1-10-2008 and 31-12-2012, 68 centres reported on 7,969 patients with non-severe haemophilia A and 1,863 patients with non-severe haemophilia B. For haemophilia A, 37 inhibitors occurred in 8,622 treatment years, resulting in an inhibitor rate of 0.43/100 treatment years (95% CI 0.30-0.59). Inhibitors occurred at a median age of 35 years, after a median of 38 exposure days (EDs; P25-P75: 20-80); with 72% occurring within the first 50 EDs. In haemophilia B, one inhibitor was detected in 2,149 treatment years, resulting in an inhibitor rate of 0.05/100 years (95% CI 0.001-0.26). This inhibitor developed at the age of six years, after six EDs. The rate of inhibitors appeared similar across recombinant and plasma derived factor VIII (FVIII) concentrates. Rates for individual concentrates could not be calculated at this stage due to low number of events. In conclusion, inhibitors in non-severe haemophilia occur three times more frequently than in previously treated patients with severe haemophilia at a rate of 0.43/100 patient years (haemophilia A) and 0.05/100 years (haemophilia B). Although the majority of inhibitors developed in the first 50 EDs, inhibitor development continued with increasing exposure to FVIII.

  11. Effect of carvedilol on plasma adiponectin concentration in patients with chronic heart failure.

    PubMed

    Yamaji, Masayuki; Tsutamoto, Takayoshi; Tanaka, Toshinari; Kawahara, Chiho; Nishiyama, Keizo; Yamamoto, Takashi; Fujii, Masanori; Horie, Minoru

    2009-06-01

    Patients with a high plasma adiponectin have a poor prognosis in chronic heart failure (CHF). Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are reported to increase the plasma adiponectin concentration, but the effect of beta-blockers on plasma adiponectin in patients with CHF remains unknown. Blood samples were collected at before and 6 months after administration of carvedilol in 44 CHF patients. The hemodynamic parameters, echocardiography, plasma concentrations of brain natriuretic peptide (BNP), norepinephrine and adiponectin were measured. Six months after treatment, there were significantly decreased plasma concentrations of adiponectin (15.8 +/-1.4 to 11.0 +/-1.1 microg/ml, P<0.0001), BNP and norepinephrine and increased left ventricular ejection fraction (LVEF). On stepwise multivariable analyses, a higher plasma adiponectin concentration before treatment (rs=-0.561, P<0.0001) was a significant independent predictor of a greater decrease in adiponectin concentration and the decrease in plasma adiponectin concentration was significantly correlated with the improvement of LVEF (r=-0.561, P<0.0001). These findings indicate that carvedilol decreases plasma adiponectin concentration and that the decrease in plasma adiponectin is associated with the improvement of LVEF after treatment with carvedilol in CHF patients.

  12. Involvement of DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP Pathways in Human Tissue Kallikrein 1 Protecting Erectile Function in Aged Rats

    PubMed Central

    Tang, Zhe; Rao, Ke; Wang, Tao; Chen, Zhong; Wang, Shaogang; Liu, Jihong; Wang, Daowen

    2017-01-01

    Our previous studies had reported that Human Tissue Kallikrein 1 (hKLK1) preserved erectile function in aged transgenic rats, while the detailed mechanism of hKLK1 protecting erectile function in aged rats through activation of cGMP and cAMP was not mentioned. To explore the latent mechanism, male wild-type Sprague-Dawley rats (WTR) and transgenic rats harboring the hKLK1 gene (TGR) were fed to 4 and 18 months old and divided into four groups: young WTR (yWTR) as the control, aged WTR (aWTR), aged TGR (aTGR) and aged TGRs with HOE140 (aTGRH). Erectile function of all rats was evaluated by cavernous nerve electrostimulation method and measured by the ratio of intracavernous pressure/ mean arterial pressure (ICP/MAP) in rats. Expression levels of cAMP and cGMP were assessed, and related signaling pathways were detected by western blot, immunohistochemistry and RT-PCR. Our experiment results showed erectile function of the aWTR group and aTGRH group was lower compared with those of other two groups. Also, expression levels of cAMP and cGMP were significantly lower than those of other two groups. Moreover, expressions of related signaling pathways including DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP were also downregulated in the corpus cavernosum of rats in aWTR group. Our finding revealed hKLK1 played a protective role in age-related ED. The DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP pathways that were linked to the mechanism hKLK1 could increase the levels of cGMP and cAMP, which might provide novel therapy targets for age-related ED. PMID:28103290

  13. A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Prostate Health Index and 4-Kallikrein Panel Score in Predicting Overall and High-grade Prostate Cancer.

    PubMed

    Russo, Giorgio Ivan; Regis, Federica; Castelli, Tommaso; Favilla, Vincenzo; Privitera, Salvatore; Giardina, Raimondo; Cimino, Sebastiano; Morgia, Giuseppe

    2017-08-01

    Markers for prostate cancer (PCa) have progressed over recent years. In particular, the prostate health index (PHI) and the 4-kallikrein (4K) panel have been demonstrated to improve the diagnosis of PCa. We aimed to review the diagnostic accuracy of PHI and the 4K panel for PCa detection. We performed a systematic literature search of PubMed, EMBASE, Cochrane, and Academic One File databases until July 2016. We included diagnostic accuracy studies that used PHI or 4K panel for the diagnosis of PCa or high-grade PCa. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Twenty-eight studies including 16,762 patients have been included for the analysis. The pooled data showed a sensitivity of 0.89 and 0.74 for PHI and 4K panel, respectively, for PCa detection and a pooled specificity of 0.34 and 0.60 for PHI and 4K panel, respectively. The derived area under the curve (AUC) from the hierarchical summary receiver operating characteristic (HSROC) showed an accuracy of 0.76 and 0.72 for PHI and 4K panel respectively. For high-grade PCa detection, the pooled sensitivity was 0.93 and 0.87 for PHI and 4K panel, respectively, whereas the pooled specificity was 0.34 and 0.61 for PHI and 4K panel, respectively. The derived AUC from the HSROC showed an accuracy of 0.82 and 0.81 for PHI and 4K panel, respectively. Both PHI and the 4K panel provided good diagnostic accuracy in detecting overall and high-grade PCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Activity of human kallikrein-related peptidase 6 (KLK6) on substrates containing sequences of basic amino acids. Is it a processing protease?

    PubMed

    Silva, Roberta N; Oliveira, Lilian C G; Parise, Carolina B; Oliveira, Juliana R; Severino, Beatrice; Corvino, Angela; di Vaio, Paola; Temussi, Piero A; Caliendo, Giuseppe; Santagada, Vincenzo; Juliano, Luiz; Juliano, Maria A

    2017-05-01

    Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R ↓ R-ACC and Z-R ↓ R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. DGAT inhibitors for obesity.

    PubMed

    Matsuda, Daisuke; Tomoda, Hiroshi

    2007-10-01

    Obesity is characterized by the accumulation of triacylglycerol in adipocytes. Diacylglycerol acyltransferase (DGAT) catalyzes the final reaction of triacylgycerol synthesis. Two isozymes of DGAT, DGAT1 and DGAT2, have been reported. Increased DGAT2 activity has a role in steatosis, while DGAT1 plays a role in very (V)LDL synthesis; increased plasma VLDL concentrations may promote obesity and thus DGAT1 is considered a potential therapeutic target of inhibition for obesity control. Several DGAT inhibitors of natural and synthetic origin have been reported, and their future prospect as anti-obesity drugs is discussed in this review.

  16. Discovery and Optimization of 4-(8-(3-Fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic Acid, an Improved PDE4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease (COPD).

    PubMed

    Press, Neil J; Taylor, Roger J; Fullerton, Joseph D; Tranter, Pamela; McCarthy, Clive; Keller, Thomas H; Arnold, Nicola; Beer, David; Brown, Lyndon; Cheung, Robert; Christie, Julie; Denholm, Alastair; Haberthuer, Sandra; Hatto, Julia D I; Keenan, Mark; Mercer, Mark K; Oakman, Helen; Sahri, Helene; Tuffnell, Andrew R; Tweed, Morris; Trifilieff, Alexandre

    2015-09-10

    Herein we describe the optimization of a series of PDE4 inhibitors, with special focus on solubility and pharamcokinetics, to clinical compound 2, 4-(8-(3-fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic acid. Although compound 2 produces emesis in humans when given as a single dose, its exemplary pharmacokinetic properties enabled a novel dosing regime comprising multiple escalating doses and the resultant achievement of high plasma drug levels without associated nausea or emesis.

  17. Amoxicillin-potassium clavulanate: a novel beta-lactamase inhibitor.

    PubMed

    Smith, B R; LeFrock, J L

    1985-06-01

    Potassium clavulanate is a novel beta-lactamase inhibitor, which, in combination, expands the spectrum of amoxicillin to include many amoxicillin-resistant organisms. Potassium clavulanate is excreted 30-50 percent unchanged renally and its plasma time-course parallels that of amoxicillin. Several studies suggest that an increased incidence of gastrointestinal side effects may occur with this combination. In the current oral formulation, its greatest utility may be in pediatric infections due to beta-lactamase-producing Haemophilus influenzae and B. cattarhalis. In adults, the combination has not been adequately studied against other effective antibiotics.

  18. Comparison of efficacies of a dipeptidyl peptidase IV inhibitor and alpha-glucosidase inhibitors in oral carbohydrate and meal tolerance tests and the effects of their combination in mice.

    PubMed

    Yamazaki, Kazuto; Inoue, Takashi; Yasuda, Nobuyuki; Sato, Yoshiaki; Nagakura, Tadashi; Takenaka, Osamu; Clark, Richard; Saeki, Takao; Tanaka, Isao

    2007-05-01

    E3024 (3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate) is a dipeptidyl peptidase IV (DPP-IV) inhibitor. Since the target of both DPP-IV inhibitors and alpha-glucosidase inhibitors is the lowering of postprandial hyperglycemia, we compared antihyperglycemic effects for E3024 and alpha-glucosidase inhibitors in various oral carbohydrate and meal tolerance tests using normal mice. In addition, we investigated the combination effects of E3024 and voglibose on blood glucose levels in a meal tolerance test using mice fed a high-fat diet. ER-235516-15 (the trifluoroacetate salt form of E3024, 1 mg/kg) lowered glucose excursions consistently, regardless of the kind of carbohydrate loaded. However, the efficacy of acarbose (10 mg/kg) and of voglibose (0.1 mg/kg) varied with the type of carbohydrate administered. The combination of E3024 (3 mg/kg) and voglibose (0.3 mg/kg) improved glucose tolerance additively, with the highest plasma active glucagon-like peptide-1 levels. This study shows that compared to alpha-glucosidase inhibitors, DPP-IV inhibitors may have more consistent efficacy to reduce postprandial hyperglycemia, independent of the types of carbohydrate contained in a meal, and that the combination of a DPP-IV inhibitor and an alpha-glucosidase inhibitor is expected to be a promising option for lowering postprandial hyperglycemia.

  19. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    PubMed Central

    Pulido-Olmo, Helena; Rodríguez-Sánchez, Elena; Navarro-García, José Alberto; Barderas, María G.; Álvarez-Llamas, Gloria; Segura, Julián; Fernández-Alfonso, Marisol; Ruilope, Luis M.; Ruiz-Hurtado, Gema

    2017-01-01

    The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) based on AlphaLISA® technology. We describe two procedures: (i) one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii) the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid. PMID:28791014

  20. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis.

    PubMed

    Katewa, Arna; Wang, Yugang; Hackney, Jason A; Huang, Tao; Suto, Eric; Ramamoorthi, Nandhini; Austin, Cary D; Bremer, Meire; Chen, Jacob Zhi; Crawford, James J; Currie, Kevin S; Blomgren, Peter; DeVoss, Jason; DiPaolo, Julie A; Hau, Jonathan; Johnson, Adam; Lesch, Justin; DeForge, Laura E; Lin, Zhonghua; Liimatta, Marya; Lubach, Joseph W; McVay, Sami; Modrusan, Zora; Nguyen, Allen; Poon, Chungkee; Wang, Jianyong; Liu, Lichuan; Lee, Wyne P; Wong, Harvey; Young, Wendy B; Townsend, Michael J; Reif, Karin

    2017-04-06

    Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton's tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and - similar to cyclophosphamide - improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell-mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.

Top