Science.gov

Sample records for plasma membrane prevents

  1. Plasma membrane disruption: repair, prevention, adaptation

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  2. FAM21 directs SNX27–retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus

    PubMed Central

    Lee, Seongju; Chang, Jaerak; Blackstone, Craig

    2016-01-01

    The endosomal network maintains cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Retromer organizes the endosomal sorting pathway in conjunction with various sorting nexin (SNX) proteins. The SNX27–retromer complex has recently been identified as a major endosomal hub that regulates endosome-to-plasma membrane recycling by preventing lysosomal entry of cargoes. Here, we show that SNX27 directly interacts with FAM21, which also binds retromer, within the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex. This interaction is required for the precise localization of SNX27 at an endosomal subdomain as well as for recycling of SNX27-retromer cargoes. Furthermore, FAM21 prevents cargo transport to the Golgi apparatus by controlling levels of phosphatidylinositol 4-phosphate, which facilitates cargo dissociation at the Golgi. Together, our results demonstrate that the SNX27–retromer–WASH complex directs cargoes to the plasma membrane by blocking their transport to lysosomes and the Golgi. PMID:26956659

  3. Criticality in Plasma Membranes

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; Papanikolaou, Stefanos; Sethna, James; Veatch, Sarah

    2011-03-01

    We are motivated by recent observations of micron-sized critical fluctuations in the 2d Ising Universality class in plasma membrane vesicles that are isolated from cortical cytoskeleton. We construct a minimal model of the plasma membrane's interaction with intact cytoskeleton which explains why large scale phase separation has not been observed in Vivo. In addition, we use analytical techniques from conformal field theory and numerical simulations to investigate the form of effective forces mediated by the membrane's proximity to criticality. We show that the range of this force is maximized near a critical point and we quantify its usefulness in mediating communication using techniques from information theory. Finally we use theoretical techniques from statistical physics in conjunction with Monte-Carlo simulations to understand how criticality can be used to increase the efficiency of membrane bound receptor mediated signaling. We expect that this sort of analysis will be broadly useful in understanding and quantifying the role of lipid ``rafts'' in a wide variety of membrane bound processes. Generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over relatively large distances.

  4. Membrane plasma exchange in Goodpasture's syndrome.

    PubMed

    Keller, F; Offermann, G; Schultze, G; Wagner, K; Aulbert, E; Scholle, J; Faber, U; Maiga, M; Pommer, W

    1984-01-01

    We report two cases with Goodpasture's syndrome successfully treated by membrane plasma exchange. In both patients, pulmonary infiltrations and hemoptysis had already resolved after the first pulse methylprednisolone dose (1000 mg IV). Following plasma exchange, renal function did not further deteriorate in one patient and returned to normal in the other patient. From the clinical course of our patients and a review of the literature, we conclude that membrane plasma exchange is effective in preventing deterioration of renal function in Goodpasture's syndrome. Analysis of the literature shows that patients who respond to plasma exchange have significantly fewer crescents and lower plasma creatinine, while non-responders are more often oliguric or anuric and require dialysis at the time of plasma exchange.

  5. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  6. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  7. Plant Plasma Membrane Proteins 1

    PubMed Central

    Grimes, Howard D.; Breidenbach, R. William

    1987-01-01

    A major 75 kD protein group from the tomato plasma membrane was semipurified on polyacrylamide gels and used to raise a rabbit antiserum. The resulting antiserum recognized a single 75 kilodalton band from phase partitioned tomato plasma membrane (from both suspension cells and mature, green fruit) after resolution on one-dimensional polyacrylamide gels. Two-dimensional polyacrylamide gel analysis of proteins from tomato plasma membrane showed that the 75 kilodalton antiserum recognized a group of proteins ranging from 63.1 to 88.2 kilodaltons (mean = 75.6 kilodaltons) and with isoelectric point values ranging from 5.7 to 6.3. No other spots were visible on the two-dimensional blots. This antiserum was shown to bind protoplast surface epitopes by indirect immunofluorescence. The presence of this protein group in both monocotyledonous and dicotyledonous plants was established by immunoblotting the tomato 75 kilodalton antiserum against proteins obtained from plasma membrane-enriched fractions from corn roots and soybean roots. The data suggest that this 75 kilodalton protein group is a major proteinaceous component of the plant plasma membrane. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:16665801

  8. Ablation of plasma membrane Ca(2+)-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophic cardiomyopathy.

    PubMed

    Prasad, Vikram; Lorenz, John N; Lasko, Valerie M; Nieman, Michelle L; Jiang, Min; Gao, Xu; Rubinstein, Jack; Wieczorek, David F; Shull, Gary E

    2014-12-01

    The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy. PMID:25280781

  9. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  10. Lipid organization of the plasma membrane.

    PubMed

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-10-15

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of life's fundamental structures, the cell membrane.

  11. Rat mammary carcinogenesis induced by in situ expression of constitutive Raf kinase activity is prevented by tethering Raf to the plasma membrane.

    PubMed

    McFarlin, Daniel R; Gould, Michael N

    2003-06-01

    Mammary carcinogenesis induced through expression of activated Raf was investigated using a model in which retroviral vectors were infused into the central ducts of rat mammary glands. This model allows efficient expression of experimental proteins in a small fraction of endogenous mammary epithelial cells in situ. We previously reported that Raf is the dominant oncogenic signaling pathway from activated Ras in rat mammary glands. We show here that mammary gland carcinogenesis is rapidly induced by the expression of c-Raf-1 kinase that is activated by N-terminal truncation (Delta-Raf). Interestingly, targeting Raf to the plasma membrane via C-terminal fusion with Ras membrane localization signals (Raf-Caax) induces Raf kinase activity that transforms 3T3 cells more frequently than Delta-Raf, yet in situ expression of Raf-Caax does not induce mammary carcinomas. To investigate these contrasting results and begin elucidating the mechanisms of Raf-induced mammary carcinogenesis, we combined both activating mutations (N-terminal truncation and C-terminal membrane localization motifs) in one Raf construct (Delta-Raf-Caax). While Delta-Raf-Caax transforms 3T3 cells more efficiently than Delta-Raf or Raf-Caax, in situ expression of Delta-Raf-Caax does not induce carcinomas in vivo, demonstrating that lipid modification on the C-terminus of Delta-Raf negates its oncogenic potential in rat mammary gland.

  12. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  13. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  14. Pollution prevention drives membrane technologies

    SciTech Connect

    Cartwright, P.

    1994-09-01

    Currently, such membrane technologies as crossflow micro-, ultra-, and nanofiltration, reverse osmosis, electrodialysis and pervaporation offer interesting possibilities, each tackling a specific aspect of pollution control. Although none of these methods can, on its own, alter or break down pollutants, each has the ability to separate, fractionate and concentrate contaminants. In addition, they: permit continuous, uninterrupted processing via automatic control; use far less energy than traditional treatment methods; require only minimal temperature changes and no chemical additives; exert no impact on contaminants, and keep them physically separated from the stream; and are easy to install, either alone or combined with other treatment systems, since they are modular and contain few moving parts. The paper discusses the benefits and disadvantages of membrane technology and recommends thorough testing.

  15. Microcompartments within the yeast plasma membrane.

    PubMed

    Merzendorfer, Hans; Heinisch, Jürgen J

    2013-02-01

    Recent research in cell biology makes it increasingly clear that the classical concept of compartmentation of eukaryotic cells into different organelles performing distinct functions has to be extended by microcompartmentation, i.e., the dynamic interaction of proteins, sugars, and lipids at a suborganellar level, which contributes significantly to a proper physiology. As different membrane compartments (MCs) have been described in the yeast plasma membrane, such as those defined by Can1 and Pma1 (MCCs and MCPs), Saccharomyces cerevisiae can serve as a model organism, which is amenable to genetic, biochemical, and microscopic studies. In this review, we compare the specialized microcompartment of the yeast bud neck with other plasma membrane substructures, focusing on eisosomes, cell wall integrity-sensing units, and chitin-synthesizing complexes. Together, they ensure a proper cell division at the end of mitosis, an intricately regulated process, which is essential for the survival and proliferation not only of fungal, but of all eukaryotic cells.

  16. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  17. Oxygen plasma modification of polyurethane membranes.

    PubMed

    Ozdemir, Yesim; Hasirci, Nesrin; Serbetci, Kemal

    2002-12-01

    Polyurethane membranes were prepared under nitrogen atmosphere by using various proportions of toluene diisocyanates (TDI) and polypropylene-ethylene glycol (P) with addition of no other ingredients such as catalysts, initiator or solvent in order to achieve medical purity. Effects of composition on mechanical properties were examined. In general, modulus and UTS values demonstrated an increase and PSBR demonstrated a decrease as the TDI/Polyol ratio of the polymer increased. Elastic modulus, ultimate tensile strength (UTS) and per cent strain before rupture (PSBR) values were found to be in the range of 1.4-5.4 MPa, 0.9-1.9 MPa, and 60.4-99.7%, respectively. Surfaces of the membranes were modified by oxygen plasma applying glow-discharge technique and the effect of applied plasma power (10 W or 100 W, 15 min) on surface hydrophilicity and on the attachment of Vero cells were studied. Water contact angle values of the plasma modified surfaces varied between 67 degrees and 46 degrees, demonstrating a decrease as the applied plasma power was increased. The unmodified material had 42-45 cells attached per cm(2). It was observed that as the applied power increased the number of attached cells first increased (60-70 cells/cm(2) at 10 W) and then decreased (27-40 cells/cm(2) at 100 W). These demonstrated that surface properties of polyurethanes can be modified by plasma-glow discharge technique to achieve the optimum levels of cell attachment. PMID:15348657

  18. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  19. Cellular membrane collapse by atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  20. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.

  1. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  2. Mechanotransduction through the plasma membrane & cytoskeleton

    NASA Astrophysics Data System (ADS)

    Haase, Kristina; Pelling, Andrew

    2012-02-01

    Mechanical forces initiate immediate and long-term changes in cells; however the exact mechanisms remain unclear, albeit crucial for understanding the pathology of disease. We used combined confocal and atomic force microscopy (AFM) to investigate changes in cell morphology and elasticity in response to a mechanical stimulus. The AFM was used as a nano-indentor to gauge the response of the membrane and cytoskeleton (CSK) of HeLa cells. We observed their viscoelastic nature by probing cells transfected with a green fluorescent protein localized at the plasma membrane. Inhibition of acto-myosin contractility (AMc) resulted in a significant decrease of cellular elasticity, and a corresponding increase in mean deformation. We also investigated the rate at which the membrane and CSK deform and relax in response to a local force. The response to a local perturbation is nearly instantaneous for control cells and shows no statistical difference when compared to cells treated with CSK-inhibiting drugs. Inhibition of AMc affects the rate of recovery, in comparison to control cells which recover quite quickly (30-60s). Overall, we demonstrated short and long-term deformation and subsequent recovery of both the cell membrane and actin network in response to a local force.

  3. Regulation of Plasma Membrane Recycling by CFTR

    NASA Astrophysics Data System (ADS)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  4. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    PubMed

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  5. Reversal of carbon tetrachloride induced changes in microviscosity and lipid composition of liver plasma membrane by colchicine in rats.

    PubMed Central

    Solis-Herruzo, J A; De Gando, M; Ferrer, M P; Hernandez Muñoz, I; Fernandez-Boya, B; De la Torre, M P; Muñoz-Yague, M T

    1993-01-01

    Colchicine is beneficial in the treatment of cirrhotic patients, it prevents changes in plasma membrane bound enzymes induced by CCl4 intoxication. In this study, lipid composition and microviscosity were measured in liver plasma membranes isolated from rats given CCl4. Microviscosity values increased in rats given CCl4 for six weeks but fell considerably in those given CCl4 for 10 weeks. Both these changes were absent when colchicine was given with CCl4. The cholesterol/phospholipid molar ratios and lipid peroxide values increased but plasma membrane phospholipids, the length of fatty acyl chains, and the unsaturation index fell significantly after CCl4 intoxication. Colchicine treatment also prevented these changes. Changes in the lipid composition of liver plasma membranes were significantly correlated with lipid peroxidation. Colchicine prevents changes in the physicochemical properties of liver plasma membranes induced by longterm CCl4 treatment, probably by blocking peroxidation of unsaturated fatty acids. PMID:8244117

  6. Flow in a rotating membrane plasma separator.

    PubMed

    Lueptow, R M; Hajiloo, A

    1995-01-01

    Rotating filter separators are very effective in the separation of plasma from whole blood, but details of the flow field in the device have not been investigated. The flow in a commercial device has been modeled computationally using the finite element code FIDAP. Taylor vortices appear in the upstream end of the annulus but disappear in the downstream end because of increasing blood viscosity as plasma is removed. Fluid transport at the upstream end of the annulus results from both translation of Taylor vortices and fluid winding around the vortices. If the inertial effects of the axial flow are reduced, less fluid winds around the vortices and more fluid is transported by the translation of the vortices. The pressure at the membrane is nonuniform in the region where vortices appear, although the relative magnitude of the fluctuations is small.

  7. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  8. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy.

    PubMed

    Kim, Jiyoung; Santos, Olavo Amorim; Park, Ji-Ho

    2014-10-10

    Subcellular localization of photosensitizers (PSs) determines the therapeutic efficacy in the photodynamic therapy. However, among the subcellular compartments, there has been little effort to deliver the PSs selectively into the plasma membrane and examine the phototherapeutic efficacy of membrane-localized PSs. Here, we developed a liposomal delivery system to localize the hydrophobic PSs selectively into the plasma membrane. The membrane fusogenic liposomes (MFLs), the membrane of which is engineered to fuse with the plasma membrane, was prepared for the membrane localization of PSs. The phototherapeutic efficacy of cells treated with ZnPc-loaded MFLs was superior over that of cells treated with ZnPc-loaded non-fusogenic liposomes, which is the conventional liposomal formulation that delivers the PSs into the intracellular compartments via endocytosis. The membrane localization of ZnPc molecules led to rapid membrane disruption upon irradiation and subsequent necrosis-like cell death. The membrane-localized generation of reactive oxygen species in the cells treated with ZnPc-loaded MFLs was likely to account for the effective disruption of plasma membrane. Thus, this work provides a novel delivery method to localize the PSs selectively into the plasma membrane with the enhanced phototherapeutic efficacy.

  9. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  10. Order of lipid phases in model and plasma membranes

    PubMed Central

    Kaiser, Hermann-Josef; Lingwood, Daniel; Levental, Ilya; Sampaio, Julio L.; Kalvodova, Lucie; Rajendran, Lawrence; Simons, Kai

    2009-01-01

    Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partitioning of raft-associated transmembrane (TM) proteins. To assess membrane order as a component of raft organization, we performed fluorescence spectroscopy and microscopy with the membrane probes Laurdan and C-laurdan. First, we assessed lipid packing in model membranes of various compositions and found cholesterol and acyl chain dependence of membrane order. Then we probed cell membranes by using two novel systems that exhibit inducible phase separation: giant plasma membrane vesicles [Baumgart et al. (2007) Proc Natl Acad Sci USA 104:3165–3170] and plasma membrane spheres. Notably, only the latter support selective inclusion of raft TM proteins with the ganglioside GM1 into one phase. We measured comparable small differences in order between the separated phases of both biomembranes. Lateral packing in the ordered phase of giant plasma membrane vesicles resembled the Lo domain of model membranes, whereas the GM1 phase in plasma membrane spheres exhibited considerably lower order, consistent with different partitioning of lipid and TM protein markers. Thus, lipid-mediated coalescence of the GM1 raft domain seems to be distinct from the formation of a Lo phase, suggesting additional interactions between proteins and lipids to be effective. PMID:19805351

  11. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  12. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    PubMed

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  13. Preparation of plasma-membrane subfractions from isolated rat hepatocytes.

    PubMed Central

    Wisher, M H; Evans, W H

    1977-01-01

    1. Rat livers were dissociated into their constituent cells by perfusion through the portal vein with a medium containing collagenase, and hepatocytes separated from non-parenchymal cells. 2. It is shown that the procedure described by Wisher & Evans [(1975) Biochem. J. 146, 375-388] for preparation of plasma membranes from liver tissue when applied to isolated hepatocytes also yielded subfractions of similar morphology and marker-enzyme distribution. 3. Thus the distribution of alkaline phosphodiesterase, 5'-nucleotidase and the basal and glucagon-stimulated adenylate cyclase among two 'light' vesicular and one 'heavy' junction-containing plasma-membrane subfractions paralleled that reported for tissue-derived plasma-membrane subfractions. 4. Increased recoveries and specific activities of plasma-membrane marker enzymes were obtained when soya-bean trypsin inhibitor was included in the collagenase-containing perfusion media used to dissociate the liver. 5. Polyacrylamide-gel-electrophoretic analysis of the corresponding plasma-membrane subfractions prepared from liver tissue and isolated hepatocytes were generally similar. 6. The results indicate that the functional polarity of the hepatocyte's plasma membrane is retained after tissue dissociation. The damage occurring to plasma-membrane ectoenzymes by the collagenase-perfusion procedure is discussed. Images PLATE 1 PLATE 2 PLATE 3 PMID:880246

  14. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast.

    PubMed

    Grossmann, Guido; Opekarová, Miroslava; Malinsky, Jan; Weig-Meckl, Ina; Tanner, Widmar

    2007-01-10

    The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).

  15. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  16. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.

  17. Plasma membrane reorganization induced by chemical transformation in cultura

    SciTech Connect

    Packard, B.S.

    1984-04-01

    Induction of increased rigidity in the plasma membrane paralleling properties associated with a transformed state was suggested by two experiments. Fluorescence recovery after photobleaching (FRAP) indicated the induction of an environment in the plasma membrane where the synthetic fluorescent phospholipid collarein was immobile on the FRAP timescale. The other technique revealed the binding of epidermal growth factor (EGF) to a cryptic class of receptors which become accessible upon chemical transformation. These two lines of evidence are consistent with a reorganization of the plasma membrane induced by tumor promoters. 110 references, 38 figures, 4 tables.

  18. Functional roles of plasma membrane localized estrogen receptors.

    PubMed

    Sreeja, S; Thampan, RaghavaVarman

    2003-07-01

    A series of emerging data supports the existence and importance of plasma membrane localized estrogen receptors in a variety of cells that are targets for the steroid hormone action. When estradiol (E2) binds to the cell surface protein, the ensuing signal transduction event triggers downstream signaling cascades that contribute to important biological functions. Aside from the classical signaling through nuclear estrogen receptors, we have provided evidence for the functional roles of an estrogen receptor localized in the plasma membrane. This review highlights some of the recent advances made in the understanding of the genomic/non-genomic actions of plasma membrane localized estrogen receptors. PMID:15255376

  19. Characterization of α-Crystallin-Plasma Membrane Binding*

    PubMed Central

    Cobb, Brian A.; Petrash, J. Mark

    2010-01-01

    α-Crystallin, a large lenticular protein complex made up of two related subunits (αA- and αB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and recombinant human αA- and αB-crystallins conjugated to a small fluorescent tag (Alexa350®). Both αA and αB homopolymer complexes, as well as a reconstituted 3:1 heteromeric complex, bind to lens membranes in a specific, saturable, and partially irreversible manner that is sensitive to both time and temperature. The amount of α-crystallin that binds to the membrane increases under acidic pH conditions and upon removal of exposed intrinsic membrane protein domains but is not affected at high ionic strength, suggesting that α-crystallin binds to the fiber cell plasma membranes mainly through hydrophobic interactions. The binding capacity and affinity for the reconstituted 3:1 heteromeric complex were measured to be 3.45 ± 0.11 ng/μg of membrane and 4.57 ± 0.50 × 10−4 μg−1 of membrane, respectively. The present membrane binding data support the hypothesis that the physical properties of a mixed α-crystallin complex may hold particular relevance for the function of α-crystallin within the lens. PMID:10692476

  20. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    SciTech Connect

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  1. Protein-Centric N-Glycoproteomics Analysis of Membrane and Plasma Membrane Proteins

    PubMed Central

    2015-01-01

    The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed. PMID:24754784

  2. Enhancement of polycarbonate membrane permeability due to plasma polymerization precursors

    NASA Astrophysics Data System (ADS)

    Çökeliler, Dilek

    2013-03-01

    The diffusivity of different species through a membrane depends on several factors to illustrate the structure of the matrix, molecular size and concentration of the species and temperature. This study concerns the use of the low-pressure plasma process with different monomers to confer surface chemical character to polycarbonate membranes without altering their bulk properties for change membrane permeability. Track-etched polycarbonate membranes with 0.03 μm pore sizes were modified by plasma polymerization technique with two precursors; acrylic acid and allylamine in radio frequency discharge at certain plasma process conditions (discharge power: 20 W, exposure time: 10 min, frequency: 13.56 MHz). The transport properties of model organic acid (citric acid) was studied through unmodified and modified polycarbonate membranes by using diffusion cell system. Such plasma treated membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and surface energy changes were studied by static contact angle measurements. These results showed that the change of surface properties could be used to improve the transport properties of the target substrates. The diffusion of citric acid through plasma treated polycarbonate membrane was increased about 54.1 ± 3.5% with precursor: allylamine while it was decreased 48.7 ± 2.5% with precursor acrylic acid. It was observed that the presences of proper functional group (like amino) in surfaces of pores can raise the affinity to citric acid and improve its transport rate.

  3. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  4. Glycan Moieties as Bait to Fish Plasma Membrane Proteins.

    PubMed

    Fang, Fei; Zhao, Qun; Sui, Zhigang; Liang, Yu; Jiang, Hao; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-05-17

    Plasma membrane proteome analysis is of significance for screening candidate biomarkers and drug targets. However, due to their low abundance and lack of specific groups that can enable their capture, the plasma membrane proteins (PMPs) are under-represented. On the basis of the fact that PMPs are embedded in or anchored to the phospholipid bilayer of the plasma membrane and the glycan moieties of proteins and lipids located on the plasma membrane are exposed outside of the cell surface, we proposed a strategy to capture PMPs, termed as glycan moieties-directed PMPs enrichment (GMDPE). With the glycan moieties exposed outside of the cells as bait to ensure the selectivity and the phospholipid bilayer as raft to provide the sensitivity, we applied this strategy into the plasma membrane proteome analysis of HeLa cells, and in total, 772 PMPs were identified, increased by 4.5 times compared to those identified by the reported cell surface biotinylation method. Notably, among them, 86 CD antigens and 16 ion channel proteins were confidently identified. All these results demonstrated that our proposed approach has great potential in the large scale plasma membrane proteome profiling.

  5. Importance of plasma membrane dynamics in chemical-induced carcinogenesis.

    PubMed

    Tekpli, Xavier; Holme, Jørn A; Sergent, Odile; Lagadic-Gossmann, Dominique

    2011-09-01

    In the last decade, a lot of patents have been filled regarding molecular biology and functions of cellular membranes. The membrane bilayer model has evolved from a static, passive, homogeneous barrier to a highly dynamic, asymmetric, heterogeneous structure composed of distinct domains. Changes in membrane fluidity and composition of microdomains have been proven to be involved in the regulation of many important physiological signaling pathways. Recently, several xenobiotics, including various drugs and environmental pollutants, have been reported to change plasma membrane characteristics, thereby altering cell physiology. Interestingly, it has been suggested that a cross talk between chemical-induced cellular membrane effects and DNA damages may be important for the final mutation outcome of genotoxic chemicals. Thus, effects on plasma membrane remodeling may give additional mechanistic explanations to how certain chemicals exert their carcinogenic effect. With respect to such effects, recent patents suggest to focus on plasma membrane and its components like caveolin-1 for cancer screening and chemotherapy. Here, we review the effects of environmental toxicants on cellular plasma membrane structure and function, and further describe possible implication for health and disease.

  6. Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events.

    PubMed

    Astro, Veronica; de Curtis, Ivan

    2015-03-10

    Specialized regions of the plasma membrane dedicated to diverse cellular processes, such as vesicle exocytosis, extracellular matrix remodeling, and cell migration, share a few cytosolic scaffold proteins that associate to form large plasma membrane-associated platforms (PMAPs). PMAPs organize signaling events and trafficking of membranes and molecules at specific membrane domains. On the basis of the intrinsic disorder of the proteins constituting the core of these PMAPs and of the dynamics of these structures at the periphery of motile cells, we propose a working model for the assembly and turnover of these platforms.

  7. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    PubMed

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  8. Homeostasis of plasma membrane viscosity in fluctuating temperatures.

    PubMed

    Martinière, Alexandre; Shvedunova, Maria; Thomson, Adrian J W; Evans, Nicola H; Penfield, Steven; Runions, John; McWatters, Harriet G

    2011-10-01

    Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. PMID:21762166

  9. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  10. [Role of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease].

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin

    2016-08-25

    Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease. PMID:27546511

  11. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  12. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    SciTech Connect

    Haylett, T.; Thilo, L.

    1986-10-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D/sub 1/, was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from <0.1% to a steady-state level of approx.2.5% of the total label. As analyzed by NaDodSO/sub 4/ PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only approx.1% of internalized membrane is recycled via a membrane pool of secondary lysosomes.

  13. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  14. Tools for phospho- and glycoproteomics of plasma membranes.

    PubMed

    Wiśniewski, Jacek R

    2011-07-01

    Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.

  15. Mechanisms underlying anomalous diffusion in the plasma membrane.

    PubMed

    Krapf, Diego

    2015-01-01

    The plasma membrane is a complex fluid where lipids and proteins undergo diffusive motion critical to biochemical reactions. Through quantitative imaging analyses such as single-particle tracking, it is observed that diffusion in the cell membrane is usually anomalous in the sense that the mean squared displacement is not linear with time. This chapter describes the different models that are employed to describe anomalous diffusion, paying special attention to the experimental evidence that supports these models in the plasma membrane. We review models based on anticorrelated displacements, such as fractional Brownian motion and obstructed diffusion, and nonstationary models such as continuous time random walks. We also emphasize evidence for the formation of distinct compartments that transiently form on the cell surface. Finally, we overview heterogeneous diffusion processes in the plasma membrane, which have recently attracted considerable interest. PMID:26015283

  16. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  17. The dynamics of plant plasma membrane proteins: PINs and beyond.

    PubMed

    Luschnig, Christian; Vert, Grégory

    2014-08-01

    Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.

  18. Surface modification of nanoporous alumina membranes by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Cole, Martin A.; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J.

    2008-06-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  19. Does ATP cross the cell plasma membrane.

    PubMed Central

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes. PMID:7051582

  20. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  1. Detection of glycoproteins in the Acanthamoeba plasma membrane

    SciTech Connect

    Paatero, G.I.L. ); Gahmberg, C.G. )

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  2. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    SciTech Connect

    Hu Chuan Hardee, Deborah; Minnear, Fred

    2007-09-10

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of {alpha}-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.

  3. Nanodomain stabilization dynamics in plasma membranes of biological cells

    NASA Astrophysics Data System (ADS)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  4. The plasma membrane of microaerophilic protists: oxidative and nitrosative stress.

    PubMed

    Lloyd, D; Harris, J C; Biagini, G A; Hughes, M R; Maroulis, S; Bernard, C; Wadley, R B; Edwards, M R

    2004-05-01

    The trans-plasma-membrane electrochemical potential of microaerophilic protists was monitored by the use of voltage-sensitive charged lipophilic fluorophores; of the many available probes, the anionic oxonol dye bis(1,3-dibarbituric acid)-trimethine oxonol [DiBAC(4)(3)] is an example of one which has been successfully employed using fluorescence microscopy, confocal laser-scanning microscopy and flow cytometry. Several microaerophilic protists have been investigated with this dye; these were Giardia intestinalis, Trichomonas vaginalis, Tritrichomonas foetus, Hexamita inflata and Mastigamoeba punctachora. Under conditions where they exhibit normal vitality, these organisms exclude DiBAC(4)(3) by virtue of their maintenance of a plasma-membrane potential (negative inside). Uptake of the fluorophore is indicative of disturbance to this membrane (i.e. by inhibition of pump/leak balance, blockage of channels or generation of ionic leaks), and is indicative of metabolic perturbation or environmental stress. Here, it is shown that oxidative or nitrosative stress depolarizes the plasma membranes of the aforementioned O(2)-sensitive organisms and allows DiBAC(4)(3) influx. Oxonol uptake thereby provides a sensitive and early indication of plasma-membrane perturbation by agents that may lead to cytotoxicity and eventually to cell death by necrotic or apoptotic pathways.

  5. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-01

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  6. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications

    PubMed Central

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.

    2014-01-01

    Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566

  7. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  8. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    PubMed

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  9. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  10. Mechanical properties of the plasma membrane of isolated plant protoplasts

    SciTech Connect

    Wolfe, J.; Steponkus, P.L.

    1983-01-01

    The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration. Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law--the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

  11. H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae.

    PubMed

    Folmer, Vanderlei; Pedroso, Nuno; Matias, Ana C; Lopes, Sílvia C D N; Antunes, Fernando; Cyrne, Luísa; Marinho, H Susana

    2008-04-01

    In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.

  12. Granuphilin exclusively mediates functional granule docking to the plasma membrane

    PubMed Central

    Mizuno, Kouichi; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2016-01-01

    In regulated exocytosis, it is generally assumed that vesicles must stably “dock” at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca2+ -triggered release, while others are accelerated to fuse without a pause for stable docking. These findings suggest that stable docking is unnecessary, and can even be inhibitory or nonfunctional, for fusion. Consistently, pancreatic β cells deficient in the Rab27 effector, granuphilin, lack insulin granules directly attached to the plasma membrane in electron micrographs but nevertheless exhibit augmented exocytosis. Here we directly compare the exocytic behaviors between granuphilin-positive and -negative insulin granules. Although granuphilin makes granules immobile and fusion-reluctant beneath the plasma membrane, those granuphilin-positive, docked granules release a portion of granuphilin upon fusion, and fuse at a frequency and time course similar to those of granuphilin-negative undocked granules. Furthermore, granuphilin forms a 180-nm cluster at the site of each docked granule, along with granuphilin-interacting Rab27a and Munc18-1 clusters. These findings indicate that granuphilin is an exclusive component of the functional and fusion-inhibitory docking machinery of secretory granules. PMID:27032672

  13. Regulation of the plasma membrane potential in Pneumocystis carinii.

    PubMed

    VanderHeyden, N; McLaughlin, G L; Docampo, R

    2000-02-15

    Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.

  14. Exclusive photorelease of signalling lipids at the plasma membrane

    PubMed Central

    Nadler, André; Yushchenko, Dmytro A.; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-01-01

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems. PMID:26686736

  15. Exclusive photorelease of signalling lipids at the plasma membrane.

    PubMed

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  16. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  17. Control of Plasma Membrane Permeability by ABC Transporters

    PubMed Central

    Khakhina, Svetlana; Johnson, Soraya S.; Manoharlal, Raman; Russo, Sarah B.; Blugeon, Corinne; Lemoine, Sophie; Sunshine, Anna B.; Dunham, Maitreya J.; Cowart, L. Ashley; Devaux, Frédéric

    2014-01-01

    ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2. PMID:25724885

  18. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    PubMed

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-01-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. PMID:27479506

  19. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning.

    PubMed

    Kim, Lan Hee; Jung, Yongmoon; Kim, Sung-Jo; Kim, Chang-Min; Yu, Hye-Weon; Park, Hee-Deung; Kim, In S

    2015-01-01

    Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml(-1), 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling. PMID:25789851

  20. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning.

    PubMed

    Kim, Lan Hee; Jung, Yongmoon; Kim, Sung-Jo; Kim, Chang-Min; Yu, Hye-Weon; Park, Hee-Deung; Kim, In S

    2015-01-01

    Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml(-1), 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.

  1. Lipid signalling dynamics at the β-cell plasma membrane.

    PubMed

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  2. Imaging plasma membrane deformations with pTIRFM.

    PubMed

    Passmore, Daniel R; Rao, Tejeshwar C; Peleman, Andrew R; Anantharam, Arun

    2014-01-01

    To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation. PMID:24747638

  3. Imaging Plasma Membrane Deformations With pTIRFM

    PubMed Central

    Passmore, Daniel R.; Rao, Tejeshwar C.; Peleman, Andrew R.; Anantharam, Arun

    2014-01-01

    To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation. PMID:24747638

  4. Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content.

    PubMed

    Aureli, Massimo; Bassi, Rosaria; Prinetti, Alessandro; Chiricozzi, Elena; Pappalardi, Brigida; Chigorno, Vanna; Di Muzio, Nadia; Loberto, Nicoletta; Sonnino, Sandro

    2012-12-01

    We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

  5. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed Central

    Yu, Q. C.; McNeil, P. L.

    1992-01-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 11 Figure 6 Figure 8 PMID:1466399

  6. Analysis of lipid-composition changes in plasma membrane microdomains.

    PubMed

    Ogiso, Hideo; Taniguchi, Makoto; Okazaki, Toshiro

    2015-08-01

    Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.

  7. A mechanism of raft formation on both plasma membrane layers

    NASA Astrophysics Data System (ADS)

    Sornbundit, Kan; Modchang, Charin; Triampo, Wannapong; Triampo, Darapond; Nuttavut, Narin

    2013-10-01

    A double-layered membrane model is proposed to explain raft formation and induction on extracellular (outer) and cytoplasmic (inner) leaflets of plasma membranes in a situation where only the outer layer has a tendency to phase-separate. In the model, lipid exchange with the surrounding medium is allowed on both layers, but lipid exchange between layers is not allowed. Simulations display domain stabilization on both layers. The effect of the lipid recycling frequencies on stationary domain sizes is also investigated. It is found that stationary domain sizes decrease when lipid recycling frequencies are stronger. Linear stability analysis is used to verify the results.

  8. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  9. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin.

    PubMed

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b 5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  10. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. PMID:26248320

  11. Plasma Membrane Voltage Changes during Nanosecond Pulsed Electric Field Exposure

    PubMed Central

    Frey, W.; White, J. A.; Price, R. O.; Blackmore, P. F.; Joshi, R. P.; Nuccitelli, R.; Beebe, S. J.; Schoenbach, K. H.; Kolb, J. F.

    2006-01-01

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of ∼100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6–1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/μm penetrates into the interior of the cell and every organelle. PMID:16513782

  12. Plasma membrane voltage changes during nanosecond pulsed electric field exposure.

    PubMed

    Frey, W; White, J A; Price, R O; Blackmore, P F; Joshi, R P; Nuccitelli, R; Beebe, S J; Schoenbach, K H; Kolb, J F

    2006-05-15

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.

  13. Neobiosynthesis of Glycosphingolipids by Plasma Membrane-associated Glycosyltransferases*

    PubMed Central

    Crespo, Pilar M.; Demichelis, Vanina Torres; Daniotti, José L.

    2010-01-01

    Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli. PMID:20639193

  14. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  15. Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter.

    PubMed

    Aliverdieva, D A; Mamaev, D V; Bondarenko, D I; Sholtz, K F

    2006-10-01

    Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K(m) value of the mitochondrial "succinate oxidase" was fivefold less than that of the cellular "succinate oxidase". O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K(i) values were 6.6 +/- 1.3 microM and 17.5 +/- 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K(i) = 7.8 +/- 1.2 microM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate).

  16. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.

  17. Molecular Cloning of Tomato Plasma Membrane H+-ATPase 1

    PubMed Central

    Ewing, Nicholas N.; Wimmers, Larry E.; Meyer, David J.; Chetelat, Roger T.; Bennett, Alan B.

    1990-01-01

    Two cDNA clones (LHA1 and LHA2) from tomato (Lycopersicon esculentum) which likely encode isoforms of the plasma membrane H+-ATPase were isolated. The longest cDNA (3229 base pairs), LHA1, comprises an open reading frame that encodes a 956 amino acid, 105 kilodalton polypeptide with several potential transmembrane domains. In vitro transcription and translation of LHA1 yields a major translation product of approximately 100 kilodaltons that is immunoprecipitable with antiserum to the corn root plasma membrane H+-ATPase. LHA2 encodes a portion of a coding sequence that is 96% identical to LHA1, suggesting that LHA2 encodes an isoform of the H+-ATPase. Genomic DNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to a common set of six to eight restriction fragments at moderate stringency and to single distinct fragments at high stringency. LHA1 and LHA2 map to distinct sites on chromosomes three and six, respectively. RNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to 3.4 kilobase pair transcripts present in both leaves and roots, although the LHA2 transcript is relatively more abundant in leaves than in roots. These results indicate that in tomato as many as six to eight genes may encode the plasma membrane H+-ATPase, two of which are expressed at the level of mRNA in both roots and leaves. Images Figure 3 Figure 4 Figure 5 Figure 7 PMID:16667929

  18. A critical survey of methods to detect plasma membrane rafts

    PubMed Central

    Klotzsch, Enrico; Schütz, Gerhard J.

    2013-01-01

    The plasma membrane is still one of the enigmatic cellular structures. Although the microscopic structure is getting clearer, not much is known about the organization at the nanometre level. Experimental difficulties have precluded unambiguous approaches, making the current picture rather fuzzy. In consequence, a variety of different membrane models has been proposed over the years, on the basis of different experimental strategies. Recent data obtained via high-resolution single-molecule microscopy shed new light on the existing hypotheses. We thus think it is a good time for reviewing the consistency of the existing models with the new data. In this paper, we summarize the available models in ten propositions, each of which is discussed critically with respect to the applied technologies and the strengths and weaknesses of the approaches. Our aim is to provide the reader with a sound basis for his own assessment. We close this chapter by exposing our picture of the membrane organization at the nanoscale. PMID:23267184

  19. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  20. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    PubMed

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory. PMID:25658345

  1. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    PubMed

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  2. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    NASA Astrophysics Data System (ADS)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  3. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  4. Dysferlinopathy Fibroblasts Are Defective in Plasma Membrane Repair

    PubMed Central

    Matsuda, Chie; Kiyosue, Kazuyuki; Nishino, Ichizo; Goto, Yuichi; Hayashi, Yukiko K.

    2015-01-01

    Background: Dysferlin is a sarcolemmal protein that is defective in Miyoshi myopathy and limb-girdle muscular dystrophy type 2B, and is involved in sarcolemmal repair. Primary cultured myoblasts and myotubes established from patient muscle biopsies have been widely utilized to explore the molecular mechanism of dysferlinopathy. Objectives: The purpose of this study was to explore the possible utility of dermal fibroblasts from dysferlin-deficient patients and SJL mice as a tool for studying dysferlinopathy. Methods: Dysferlin protein expression in fibroblasts from dysferlin-deficient patients and SJL mice was analyzed by immunoblotting and immunocytochemistry. The membrane wound-repair assay was performed on the fibroblasts using a confocal microscope equipped with a UV-laser. The membrane blebbing assay using hypotonic shock, in which normal membrane blebbing is detected only in the presence of dysferlin, was also performed using human and mouse fibroblasts. Results: Mis-sense mutated dysferlin was expressed at a very low level in fibroblasts from a dysferlinopathy patient, and lower expression level of truncated dysferlin was observed in SJL mouse fibroblast. Fibroblasts from patients with dysferlinopathy and SJL mice showed attenuated membrane repair and did not form membrane blebs in response to hypoosmotic shock. Proteosomal inhibitior increased mis-sense mutated or truncated dysferlin levels, and restored membrane blebbing, however, proteosomal inhibition failed to improve levels of dysferlin with non-sense or frame-shift mutation. Conclusion: Fibroblasts from dysferlinopathy patients and SJL mice showed attenuated plasma membrane repair, and could be a tool for studying dysferlinopathy. PMID:26579332

  5. A Single Divergent Exon Inhibits Ankyrin-B Association with the Plasma Membrane

    PubMed Central

    He, Meng; Tseng, Wei-Chou; Bennett, Vann

    2013-01-01

    Vertebrate ankyrin-B and ankyrin-G exhibit divergent subcellular localization and function despite their high sequence and structural similarity and common origin from a single ancestral gene at the onset of chordate evolution. Previous studies of ankyrin family diversity have focused on the C-terminal regulatory domain. Here, we identify an ankyrin-B-specific linker peptide connecting the ankyrin repeat domain to the ZU52-UPA module that inhibits binding of ankyrin-B to membrane protein partners E-cadherin and neurofascin 186 and prevents association of ankyrin-B with epithelial lateral membranes as well as neuronal plasma membranes. The residues of the ankyrin-B linker required for autoinhibition are encoded by a small exon that is highly divergent between ankyrin family members but conserved in the ankyrin-B lineage. We show that the ankyrin-B linker suppresses activity of the ANK repeat domain through an intramolecular interaction, likely with a groove on the surface of the ANK repeat solenoid, thereby regulating the affinities between ankyrin-B and its binding partners. These results provide a simple evolutionary explanation for how ankyrin-B and ankyrin-G have acquired striking differences in their plasma membrane association while maintaining overall high levels of sequence similarity. PMID:23569209

  6. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    PubMed

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  7. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts, progress report

    SciTech Connect

    Steponkus, P L

    1993-01-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the fracture-jump lesion,'' which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane jumps'' from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  8. Plasma membrane domains participate in pH banding of Chara internodal cells.

    PubMed

    Schmölzer, Patric M; Höftberger, Margit; Foissner, Ilse

    2011-08-01

    We investigated the identity and distribution of cortical domains, stained by the endocytic marker FM 1-43, in branchlet internodal cells of the characean green algae Chara corallina and Chara braunii. Co-labeling with NBD C(6)-sphingomyelin, a plasma membrane dye, which is not internalized, confirmed their location in the plasma membrane, and co-labelling with the fluorescent pH indicator Lysotracker red indicated an acidic environment. The plasma membrane domains co-localized with the distribution of an antibody against a proton-translocating ATPase, and electron microscopic data confirmed their identity with elaborate plasma membrane invaginations known as charasomes. The average size and the distribution pattern of charasomes correlated with the pH banding pattern of the cell. Charasomes were larger and more frequent at the acidic regions than at the alkaline bands, indicating that they are involved in outward-directed proton transport. Inhibition of photosynthesis by DCMU prevented charasome formation, and incubation in pH buffers resulted in smaller, homogenously distributed charasomes irrespective of whether the pH was clamped at 5.5 or 8.5. These data indicate that the differential size and distribution of charasomes is not due to differences in external pH but reflects active, photosynthesis-dependent pH banding. The fact that pH banding recovered within several minutes in unbuffered medium, however, confirms that pH banding is also possible in cells with evenly distributed charasomes or without charasomes. Cortical mitochondria were also larger and more abundant at the acid bands, and their intimate association with charasomes and chloroplasts suggests an involvement in carbon uptake and photorespiration.

  9. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    PubMed Central

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control), spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min, spermatozoa treated with sodium arsenite (10 μM) for 180 min and spermatozoa treated with silymarin (20 μM) for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001) and acrosome integrity (p< 0.05) of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001) ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group) showed a significant (p< 0.001) decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05) increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity. PMID:27141548

  10. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  11. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  12. Na sup + -glycine cotransport in canalicular liver plasma membrane vesicles

    SciTech Connect

    Moseley, R.H.; Ballatori, N.; Murphy, S.M. Yale Univ. School of Medicine, New Haven, CT Univ. of Rochester School of Medicine and Dentistry, NY )

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of ({sup 3}H)glycine uptake in cLPM vesicles were stimulated by an inwardly directed Na{sup +} gradient but not by a K{sup +} gradient. Na{sup +} gradient-dependent uptake of glycine demonstrated cation specificity for Na{sup +}, dependence on extravesicular Cl{sup {minus}}, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na{sup +} gradient with gramicidin D. Na{sup +} gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of ({sup 3}H)glycine was demonstrated in the presence of Na{sup +} when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na{sup +}-dependent ({sup 3}H)glycine uptake over the range of amino acid concentrations from 5 {mu}M to 5 mM demonstrated two saturable transport systems, one of high capacity and low affinity and one of low capacity and comparatively high affinity. These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na{sup +} gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

  13. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  14. Revisiting transbilayer distribution of lipids in the plasma membrane.

    PubMed

    Murate, Motohide; Kobayashi, Toshihide

    2016-01-01

    Whereas asymmetric transbilayer lipid distribution in the plasma membrane is well recognized, methods to examine the precise localization of lipids are limited. In this review, we critically evaluate the methods that are applied to study transbilayer asymmetry of lipids, summarizing the factors that influence the measurement. Although none of the present methods is perfect, the current application of immunoelectron microscopy-based technique provides a new picture of lipid asymmetry. Next, we summarize the transbilayer distribution of individual lipid in both erythrocytes and nucleated cells. Finally we discuss the concept of the interbilayer communication of lipids.

  15. Modification of polysulfone porous hollow fiber membranes by air plasma treatment

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Ibragimov, R. G.; Abdullin, I. Sh; Gallyamov, R. T.; Ovcharova, A. A.; Bildyukevich, A. V.

    2016-09-01

    Air plasma treatment was used to enhance the surface hydrophilic properties of the polysulfone porous hollow fiber membranes prepared via a dry-wet phase invertion technique in the free spinning mode in air. Membranes prepared had porous asymmetric structure with macroporous support on the shell side and fine-porous selective layer on the lumen side. The wettability of the inner membrane surfaces were checked by contact angle measurements and FTIR was used to compare the surfaces before and after plasma treatment. Membrane morphology was examined with confocal scanning laser microscopy (CSLM). Contact angle measurements confirm that air plasma treatment affords improvement in the wettability of polysulfone membranes and FTIR results show that air plasmas chemically modify the lumen side membrane surface, however, there is no significant change in membranes chemical structure after modification. CSLM data obtained, as well as gas permeability (He and CO2) measurements show that after plasma treatment pore etching occurs.

  16. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  17. PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity

    PubMed Central

    Nakatsu, Fubito; Baskin, Jeremy M.; Chung, Jeeyun; Tanner, Lukas B.; Shui, Guanghou; Lee, Sang Yoon; Pirruccello, Michelle; Hao, Mingming; Ingolia, Nicholas T.; Wenk, Markus R.

    2012-01-01

    Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P2) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. PI4KIIIα, the enzyme thought to synthesize this PtdIns4P pool, is reported to localize in the ER, contrary to the plasma membrane localization of its yeast homologue, Stt4. In this paper, we show that PI4KIIIα was targeted to the plasma membrane as part of an evolutionarily conserved complex containing Efr3/rolling blackout, which we found was a palmitoylated peripheral membrane protein. PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P2 because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P2 was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity. PMID:23229899

  18. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing.

    PubMed

    Jhong, Jheng-Fong; Venault, Antoine; Hou, Chun-Chung; Chen, Sheng-Han; Wei, Ta-Chin; Zheng, Jie; Huang, James; Chang, Yung

    2013-07-24

    Development of bioinert membranes to prevent blood clotting, tissue adhesion, and bacterial attachment is important for the wound healing process. In this work, two wound-contacting membranes of expanded poly(tetrafluoroethylene) (ePTFE) grafted with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and hydrophilic poly(ethylene glycol) methacrylate (PEGMA) via atmospheric plasma-induced surface copolymerization were studied. The surface grafting chemical structure, hydrophilicity, and hydration capability of the membranes were determined to illustrate the correlations between bioadhesive properties and wound recovery of PEGylated and zwitterionic ePTFE membranes. Bioadhesive properties of the membranes were evaluated by the plasma protein adsorption, platelet activation, blood cell hemolysis, tissue cell adhesion, and bacterial attachment. It was found that the zwitterionic PSBMA-grafted ePTFE membrane presented high hydration capability and exhibited the best nonbioadhesive character in contact with protein solution, human blood, tissue cells, and bacterial medium. This work shows that zwitterionic membrane dressing provides a moist environment, essential for "deep" skin wound healing observed from the animal rat model in vivo and permits a complete recovery after 14 days, with histology of repaired skin similar to that of normal skin tissue. This work suggests that the bioinert nature of grafted PSBMA polymers obtained by controlling grafting structures gives them great potential in the molecular design of antibioadhesive membranes for use in skin tissue regeneration. PMID:23795955

  19. Preventing Clogging In A Vacuum Plasma Spray Gun

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  20. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  1. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  2. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  3. Differential association of rat liver heparan sulfate proteoglycans in membranes of the Golgi apparatus and the plasma membrane

    SciTech Connect

    Brandan, E.; Hirschberg, C.B.

    1989-06-25

    Heparan sulfate proteoglycans (HSPG) of rat liver are associated with the plasma membrane in a hydrophobic intrinsic and a hydrophilic extrinsic form. We were interested in determining whether or not these two forms could be detected in the Golgi apparatus, the subcellular site of addition of oligosaccharides and sulfate to HSPG. In vivo and in vitro radiolabeled HSPG from rat liver Golgi apparatus membranes could only be solubilized with detergents that disrupt the membrane lipid bilayer, suggesting that they are solely associated via hydrophobic interactions. Both forms of HSPG were detected in plasma membranes of rat liver and isolated rat hepatocytes. The detergent-solubilized HSPG bound to octyl-Sepharose columns, whereas the hydrophilic form did not; this latter form, however, was released from the membrane by heparin. The hydrophobic anchor of HSPG in the Golgi and plasma membranes was insensitive to treatment with phosphatidylinositol-specific phospholipase C under conditions in which alkaline phosphatase was sensitive; this suggests that the hydrophobic anchor of HSPG is the core protein itself. Preliminary experiments suggest that the subcellular site of processing of the hydrophobic to the hydrophilic form of HSPG is the plasma membrane. A specific processing activity, probably a protease of the plasma membrane not present in serum or the endoplasmic reticulum membrane, converted hydrophobic HSPG of the Golgi membrane to the hydrophilic form. In addition, pulse-chase experiments with (35S)Na2SO4 in rats demonstrated that at short times, the bulk of the radiolabeled cellular HSPG was in the Golgi apparatus; later on, the bulk of the radioactivity was found in the plasma membrane, the only subcellular site where the hydrophilic form of HSPG was detected.

  4. Isolation of plasma and nuclear membranes of thymocytes. II. Biochemical composition

    PubMed Central

    1978-01-01

    Thymocyte plasma and nuclear membranes obtained by the procedure described in the accompanying paper were analyzed for their biochemical composition. Plasma membranes were very rich in phospholipid, cholesterol, sialic aicd; they did not contain nucleic acids. In comparison, nuclear membranes had a lower phospholipid to protein ratio and contained much less sialic acid and cholesterol. 50% of the cellular cholesterol and of the membrane-bound sialic acid were found in the plasma membranes, 14% in the nuclear membranes. Live cells were labeled with 131I, and the acid-insoluble radioactivity was followed in the subfractions. A good correlation with the distribution and enrichment of plasma membrane market-enzymes was obtained. Label enrichment was about 50-fold in the two lightest of the three plasma membrane fractions. 60% of the label was contained in the plasma membranes, only 4% in the nuclear membranes. Cross-contamination of these two types of membranes was thus negligible. Sodium dodecyl sulfate-gel electrophoresis revealed three different patterns specific for, respectively, plasma membranes, the microsomal-mitochondrial fraction, and nuclear membranes. Each pattern was characterized by a set of proteins and glycoproteins, among which high molecular weight glycoproteins could be considered as marker-proteins of, respectively, 280,000, 260,000, and 230,000 daltons. 131I-labeling of live cells tagged with a very high specific activity three glycoproteins of mol wt 280,000, 200,000, and 135,000 daltons. Nuclear membranes prepared from labeled isolated nuclei had a set of labeled proteins completely different from plasma membranes. PMID:307000

  5. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  6. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins.

    PubMed

    Zhang, Lijun; Xie, Jinyun; Wang, Xi'e; Liu, Xiaohui; Tang, Xinke; Cao, Rui; Hu, Weijun; Nie, Song; Fan, Chunming; Liang, Songping

    2005-11-01

    To comprehensively identify proteins of liver plasma membrane (PM), we isolated PMs from mouse liver by sucrose density gradient centrifugation. An optimized extraction method for whole PM proteins and several methods of differential extraction expected to enrich hydrophobic membrane proteins were tested. The extracted PM proteins were separated by 2-DE, and were identified by MALDI-TOF-MS, and ESI-quadrupole-TOF MS. As the complementary method, 1-DE-MS/MS was also used to identify PM proteins. The optimized lysis buffer containing urea, thiourea, CHAPS and NP-40 was able to extract more PM proteins, and treatment of PM samples with chloroform/methanol and sodium carbonate led to enrichment of more hydrophobic PM proteins. From the mouse liver PM fraction, 175 non-redundant gene products were identified, of which 88 (about 50%) were integral membrane proteins with one to seven transmembrane domains. The remaining products were probably membrane-associated and cytosolic proteins. The function distribution of all the identified liver PM proteins was analyzed; 40% represented enzymes, 12% receptors and 9% proteins with unknown function.

  7. Characterization of Membrane Protein Interactions in Plasma Membrane Derived Vesicles with Quantitative Imaging FRET

    PubMed Central

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2016-01-01

    CONSPECTUS Here we describe an experimental tool, termed Quantitative Imaging Förster Resonance Energy Transfer (QI-FRET), which enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles which bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), an RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor

  8. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    PubMed

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.

  9. HIV-1 Nef disrupts membrane-microdomain-associated anterograde transport for plasma membrane delivery of selected Src family kinases.

    PubMed

    Pan, Xiaoyu; Geist, Miriam M; Rudolph, Jochen M; Nickel, Walter; Fackler, Oliver T

    2013-10-01

    HIV-1 Nef, an essential factor in AIDS pathogenesis, boosts virus replication in vivo. As one of its activities in CD4(+) T-lymphocytes, Nef potently retargets the Src family kinase (SFK) Lck but not closely related Fyn from the plasma membrane to recycling endosomes and the trans-Golgi network to tailor T-cell activation and optimize virus replication. Investigating the underlying mechanism we find Lck retargeting involves removal of the kinase from membrane microdomains. Moreover, Nef interferes with rapid vesicular transport of Lck to block anterograde transport and plasma membrane delivery of newly synthesized Lck. The sensitivity of Lck to Nef does not depend on functional domains of Lck but requires membrane insertion of the kinase. Surprisingly, the short N-terminal SH4 domain membrane anchor of Lck is necessary and sufficient to confer sensitivity to Nef-mediated anterograde transport block and microdomain extraction. In contrast, the SH4 domain of Fyn is inert to Nef-mediated manipulation. Nef thus interferes with a specialized membrane microdomain-associated pathway for plasma membrane delivery of newly synthesized Lck whose specificity is determined by the affinity of cargo for these sorting platforms. These results provide new insight into the mechanism of Nef action and the pathways used for SFK plasma membrane delivery. PMID:23601552

  10. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  11. Thymocyte plasma membrane: the location of specific glucocorticoid binding sites

    SciTech Connect

    Sergeev, P.V.; Kalinin, G.V.; Dukhanin, A.S.

    1987-01-01

    In modern molecular endocrinology it is now possible to determine the localization of receptors for biologically active substances with the aid of ligands, with high affinity for the receptor, immobilized on polymers. The purpose of this paper is to study the ability of hydrocortisone (HC), immobilized on polyvinylpyrrolidone (PVP-HC), to reduce binding of tritium-HC by thymocytes of adrenalectomized rats. It is determined that specific binding sites for HC on rat thymocytes are also accessible for PVP-HC, which, due to the fact that this immobilized version of HC does not penetrate into the cell, leads to the conclusion that the binding sites for HC itself are located in the plasma membrane.

  12. METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY

    SciTech Connect

    Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

    2009-06-22

    HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

  13. Detection of boar sperm plasma membrane protein using Rhodamine 640; implications for cryobiology and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhodamine 640 (R640) was used to detect changes in boar sperm plasma membrane protein (PMP) during cryopreservation; a poorly understood phenomenon. The protocol was adapted for boar sperm so that semen samples (n = 17) could be analyzed for PMP (R640 positive) and plasma membrane integrity (PMI; Y...

  14. Interaction between La(III) and proteins on the plasma membrane of horseradish

    NASA Astrophysics Data System (ADS)

    Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua

    2012-06-01

    Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.

  15. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  16. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings. PMID:25087500

  17. Liquid General Anesthetics Lower Critical Temperatures in Plasma Membrane Vesicles

    PubMed Central

    Gray, Ellyn; Karslake, Joshua; Machta, Benjamin B.; Veatch, Sarah L.

    2013-01-01

    A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand-gated ion channels. In this study we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell-derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4°C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critical temperatures are also lowered to a similar extent by propofol, phenylethanol, and isopropanol when added at anesthetic concentrations, but not by tetradecanol or 2,6 diterbutylphenol, two structural analogs of general anesthetics that are hydrophobic but have no anesthetic potency. We propose that liquid general anesthetics provide an experimental tool for lowering critical temperatures in plasma membranes of intact cells, which we predict will reduce lipid-mediated heterogeneity in a way that is complimentary to increasing or decreasing cholesterol. Also, several possible implications of our results are discussed in the context of current models of anesthetic action on ligand-gated ion channels. PMID:24359747

  18. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane

    PubMed Central

    Wen, Peter J.; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N.; Jin, Albert; Liu, Allen P.; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30–300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  19. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane.

    PubMed

    Wen, Peter J; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N; Jin, Albert; Liu, Allen P; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  20. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  1. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles.

    PubMed

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R; Edwards, Nathan J; Lee, Sang Bok; Fenselau, Catherine

    2013-03-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation, and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein, we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins.

  2. Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.

    PubMed

    Bastin, Guillaume; Singh, Kevin; Dissanayake, Kaveesh; Mighiu, Alexandra S; Nurmohamed, Aliya; Heximer, Scott P

    2012-08-17

    Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.

  3. A membrane-separator interface for mass-spectrometric analysis of blood plasma

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Gerasimov, D. G.

    2014-09-01

    We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.

  4. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate.

    PubMed

    Tang, Xiaoyun; Zhao, Yuan Y; Dewald, Jay; Curtis, Jonathan M; Brindley, David N

    2016-04-01

    Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs.

  6. Evidence that plasma fibrinogen and platelet membrane GPIIb-IIIa are involved in the adhesion of platelets to an artificial surface exposed to plasma.

    PubMed

    Nagai, H; Handa, M; Kawai, Y; Watanabe, K; Ikeda, Y

    1993-09-15

    We investigated the molecular mechanism(s) by which platelets adhere to an artificial surface exposed to plasma, using polystyrene microtiter plates pretreated with plasma. Washed platelets labelled with 51Cr were incubated with the plates under static conditions. Prostaglandin E1(PGE1) was added to the platelets to prevent platelet-platelet interactions. Adhesion required the presence of a divalent cation such as Mg++ or Ca++. Polyclonal anti-fibrinogen antibody inhibited adhesion by 70%. Polyclonal antibodies against fibronectin, vitronectin, von Willebrand's Factor, and the Fc portion of human IgG, had no effect on adhesion. Platelets adhered normally to a surface pretreated with plasma from a patient with severe von Willebrand's disease. No platelet adhesion occurred when the surface was pretreated with an afibrinogenemic plasma. Monoclonal antibodies against platelet membrane GPIIb-IIIa, potent inhibitors of ADP-induced fibrinogen binding to platelets, completely inhibited adhesion. Monoclonal antibodies against the GPIb alpha subunit and GPIc(VLA alpha 5) showed no inhibitory effects on adhesion. Platelets from a patient with Glanzmann's thrombasthenia (type I) did not adhere to the surface pretreated with normal plasma. These results suggest that plasma fibrinogen adsorbed onto the surface and that platelet membrane glycoprotein(GP)IIb-IIIa were responsible for adhesion in an activation-independent manner.

  7. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  8. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  9. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  10. Golgi complex-plasma membrane trafficking directed by an autonomous, tribasic Golgi export signal.

    PubMed

    Parmar, Hirendrasinh B; Barry, Christopher; Kai, Fuiboon; Duncan, Roy

    2014-03-01

    Although numerous linear motifs that direct protein trafficking within cells have been identified, there are few examples of linear sorting signals mediating directed export of membrane proteins from the Golgi complex to the plasma membrane. The reovirus fusion-associated small transmembrane proteins are simple, single-pass transmembrane proteins that traffic through the endoplasmic reticulum-Golgi pathway to the plasma membrane, where they induce cell-cell membrane fusion. Here we show that a membrane-proximal, polybasic motif (PBM) in the cytosolic tail of p14 is essential for efficient export of p14 from the Golgi complex to the plasma membrane. Extensive mutagenic analysis reveals that the number, but not the identity or position, of basic residues present in the PBM dictates p14 export from the Golgi complex, with a minimum of three basic residues required for efficient Golgi export. Results further indicate that the tribasic motif does not affect plasma membrane retention of p14. Furthermore, introduction of the tribasic motif into a Golgi-localized, chimeric ERGIC-53 protein directs export from the Golgi complex to the plasma membrane. The p14 PBM is the first example of an autonomous, tribasic signal required for Golgi export to the plasma membrane.

  11. Non-equilibrium plasma prevention of Schistosoma japonicum transmission

    PubMed Central

    Wang, Xing-Quan; Wang, Feng-Peng; Chen, Wei; Huang, Jun; Bazaka, Kateryna; Ostrikov, Kostya (Ken)

    2016-01-01

    Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O2 and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O2 plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes. PMID:27739459

  12. Non-equilibrium plasma prevention of Schistosoma japonicum transmission

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Wang, Feng-Peng; Chen, Wei; Huang, Jun; Bazaka, Kateryna; Ostrikov, Kostya (Ken)

    2016-10-01

    Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O2 and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O2 plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes.

  13. The myristoylated amino-terminus of an Arabidopsis calcium-dependent protein kinase mediates plasma membrane localization.

    PubMed

    Lu, Sheen X; Hrabak, Estelle M

    2013-06-01

    Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.

  14. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  15. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  16. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  17. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  18. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  19. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  20. Ultrastructural preservation of plasma membranes by non-lethal slow freezing to liquid nitrogen temperature.

    PubMed

    Fujikawa, S; Miura, K

    1987-02-01

    Secondary hyphae of Lyophyllum ulmarium were shown to tolerate slow freezing, which allowed extracellular freezing, to -196 degrees C. A freeze-fracture study showed that under this non-lethal freezing condition, the plasma membrane of the secondary hyphae did not show any ultrastructural changes as compared with the control, except gross cellular shrinkage. Tertiary hyphae of Lyophyllum ulmarium, on the other hand, were completely injured by slow freezing to -196 degrees C, and the plasma membrane showed distinct intramembrane particle aggregation as a result of direct membrane contact caused by severe cellular deformation. It is suggested that the absence of freezing injury in the secondary hyphae was due to ultrastructural preservation of the plasma membrane, which resulted from avoidance of severe cellular deformation, while occurrence of freezing injury in the tertiary hyphae is considered to be due to ultrastructural changes in the plasma membrane caused by severe cellular deformation. PMID:3568151

  1. LIPID RAFTS, FLUID/FLUID PHASE SEPARATION, AND THEIR RELEVANCE TO PLASMA MEMBRANE STRUCTURE AND FUNCTION

    PubMed Central

    Sengupta, Prabuddha; Baird, Barbara; Holowka, David

    2007-01-01

    Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-disordered phases in plasma membrane vesicles demonstrate this capacity within the complex milieu of plasma membrane proteins and lipids. Roles for membrane heterogeneity and reorganization in immune cell activation are discussed in light of this new information. PMID:17764993

  2. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching.

    PubMed

    Olde Riekerink, M B; Engbers, G H M; Wessling, M; Feijen, J

    2002-01-15

    Cellulose triacetate (CTA) ultrafilters and cellulose acetate blend (CAB) desalination membranes were treated with a radiofrequency gas plasma (tetrafluoromethane (CF(4)) or carbon dioxide (CO(2)), 47-49 W, 0.04-0.08 mbar). Treatment times were varied between 15 s and 120 min. The plasma-treated top layer of the membranes was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements to obtain information about surface structure, chemistry, and wettability, respectively. The membrane properties (e.g., permeability, selectivity, fouling) were studied by waterflux measurements, molecular weight cutoff measurements, and fouling experiments with bovine serum albumin. CO(2) plasma treatment resulted in gradual etching of the membrane's dense top layer. Permeation and selectivity changed significantly for treatment times of 0-15 min for CTA and 5-60 min for CAB membranes. Moreover, CTA membranes were hydrophilized during CO(2) plasma treatment whereas CF(4) plasma treatment led to hydrophobic surfaces due to strong fluorination of the top layer. This study shows that gas plasma etching can tailor the properties of asymmetric cellulose acetate membranes by simultaneously modifying the chemistry and structure of the top layer. The low fouling properties of CTA membranes were thereby largely maintained.

  3. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    SciTech Connect

    Block, E.R.; Edwards, D. )

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.

  4. Insulin-induced changes in mechanical characteristics of lipid bilayers modified by liver plasma membrane fragments.

    PubMed

    Hianik, T; Kavecanský, J; Zórad, S; Macho, L

    1988-04-01

    Insulin interaction with BLM with incorporated fragments of rat liver plasma membranes, containing hormone receptors, was studied by determining Young modulus of elasticity of bilayer lipid membranes in direction perpendicular to the surface, E. The presence of membrane proteins in a concentration of 60 micrograms.ml-1 induced a significant decrease in parameter E (to approx. 50%) as compared with values obtained in non-modified membranes during insulin action (concentration interval 10(-11)-10(-9) mol.l-1). The extent of the effect was dependent on the initial phase state of the membrane, on cholesterol content in BLM as well as on membrane proteins concentration in lipid bilayer.

  5. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization.

    PubMed

    Cadwallader, K A; Paterson, H; Macdonald, S G; Hancock, J F

    1994-07-01

    Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.

  6. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    SciTech Connect

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi; Ohno-Iwashita, Yoshiko . E-mail: iwashita@tmig.or.jp

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.

  7. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

    PubMed

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar

    2009-04-21

    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  8. Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction.

    PubMed

    Maximyuk, O; Khmyz, V; Lindskog, C-J; Vukojević, V; Ivanova, T; Bazov, I; Hauser, K F; Bakalkin, G; Krishtal, O

    2015-01-01

    Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death. PMID:25766322

  9. The strength of side chain hydrogen bonds in the plasma membrane

    NASA Astrophysics Data System (ADS)

    Hristova, Kalina; Sarabipour, Sarvenaz

    2013-03-01

    There are no direct quantitative measurements of hydrogen bond strengths in membrane proteins residing in their native cellular environment. To address this knowledge gap, here we use fluorescence resonance energy transfer (FRET) to measure the impact of hydrogen bonds on the stability of a membrane protein dimer in vesicles derived from eukaryotic plasma membranes, and we compare these results to previous measurements of hydrogen bond strengths in model lipid bilayers. We demonstrate that FRET measurements of membrane protein interactions in plasma membrane vesicles have the requisite sensitivity to quantify the strength of hydrogen bonds. We find that the hydrogen bond-mediated stabilization in the plasma membrane is small, only -0.7 kcal/mole. It is the same as in model lipid bilayers, despite the different nature and dielectric properties of the two environments.

  10. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  11. A pulsatile cardiopulmonary bypass system that prevents negative pressure at the membrane oxygenator.

    PubMed

    Komoda, T; Maeta, H; Imawaki, S; Shiraishi, Y; Arioka, I; Fukunaga, S; Tanaka, S; Nasu, N

    1993-01-01

    Negative pressure is a problem in pulsatile cardiopulmonary bypass (CPB). To avoid this, the authors designed a pulsatile CPB system containing a Sarns centrifugal pump (CP) and a Univox membrane oxygenator, in which the inertial flow is not obstructed by the CP. In both an in vitro study and a clinical study, negative pressure was not observed in the arterial line of the CPB circuit when this system was used. When a roller pump (RP) was used, however, instead of a CP, negative pressure did occur. In a clinical study using this system, mean pulse pressure was 36 mmHg and hemolysis, expressed as the rate of rise in plasma free hemoglobin from 10 to 70 min of CPB, was 26.2 mg/dl/hr, which did not exceed that seen with a pulsatile CPB using an RP instead of a CP. The hemolysis seen in the study caused no clinical problems. Thus, pulsatile CPB using a CP and Univox membrane oxygenator should be considered for clinical use to prevent the occurrence of negative pressure.

  12. Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes

    PubMed Central

    Zang, Yiran; Wan, Ming; Liu, Min; Ke, Hongmei; Ma, Shuangchun; Liu, Lu-Ping; Ni, Jian-Quan; Carlos Pastor-Pareja, José

    2015-01-01

    Many chronic diseases are associated with fibrotic deposition of Collagen and other matrix proteins. Little is known about the factors that determine preferential onset of fibrosis in particular tissues. Here we show that plasma membrane (PM) overgrowth causes pericellular Collagen accumulation in Drosophila adipocytes. We found that loss of Dynamin and other endocytic components causes pericellular trapping of outgoing Collagen IV due to dramatic cortex expansion when endocytic removal of PM is prevented. Deposits also form in the absence of negative Toll immune regulator Cactus, excess PM being caused in this case by increased secretion. Finally, we show that trimeric Collagen accumulation, downstream of Toll or endocytic defects, activates a tissue damage response. Our work indicates that traffic imbalances and PM topology may contribute to fibrosis. It also places fibrotic deposits both downstream and upstream of immune signaling, consistent with the chronic character of fibrotic diseases. DOI: http://dx.doi.org/10.7554/eLife.07187.001 PMID:26090908

  13. Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane.

    PubMed

    Dason, Jeffrey S; Smith, Alex J; Marin, Leo; Charlton, Milton P

    2014-02-15

    Synaptic vesicles (SVs) and their proteins must be recycled for sustained synaptic transmission. We tested the hypothesis that SV cholesterol is required for proper sorting of SV proteins during recycling in live presynaptic terminals. We used the reversible block of endocytosis in the Drosophila temperature-sensitive dynamin mutant shibire-ts1 to trap exocytosed SV proteins, and then examined the effect of experimental treatments on the distribution of these proteins within the presynaptic plasma membrane by confocal microscopy. SV proteins synaptotagmin, vglut and csp were clustered following SV trapping in control experiments but dispersed in samples treated with the cholesterol chelator methyl-β-cyclodextrin to extract SV cholesterol. There was accumulation of phosphatidylinositol (4,5)-bisphosphate (PIP2) in presynaptic terminals following SV trapping and this was reduced following SV cholesterol extraction. Reduced PIP2 accumulation was associated with disrupted accumulation of actin in presynaptic terminals. Similar to vesicular cholesterol extraction, disruption of actin by latrunculin A after SV proteins had been trapped on the plasma membrane resulted in the dispersal of SV proteins and prevented recovery of synaptic transmission due to impaired endocytosis following relief of the endocytic block. Our results demonstrate that vesicular cholesterol is required for aggregation of exocytosed SV proteins in the presynaptic plasma membrane and are consistent with a mechanism involving regulation of PIP2 accumulation and local actin polymerization by cholesterol. Thus, alteration of membrane or SV lipids may affect the ability of synapses to undergo sustained synaptic transmission by compromising the recycling of SV proteins.

  14. Photomodification of the electrical properties of the plasma membrane: a comparison between 6 different membrane-active photosensitizers.

    PubMed

    Killig, F; Kunz, L; Stark, G

    2001-05-01

    The present study deals with photomodification of the electrical properties of the plasma membrane of an epithelial cell line (opossum kidney (OK) cells). The effect of photofrin II (previously investigated) is compared with that of 5 other membrane-active sensitizers: sulfonated Zn-phthalocyanine, merocyanine 540, rose bengal, methylene blue and protoporphyrin IX (an endogenous sensitizer induced by addition of its biosynthetic precursor 5-aminolaevulinic acid). The study was performed in order to investigate whether photomodification of the ion transport properties of the plasma membrane by membrane-active sensitizers is a general and early event in cellular photosensitization. The changes in the electrical properties were monitored by application of the whole-cell and the inside-out configuration of the patch-clamp technique. Illumination in the presence of the compounds (apart from merocyanine 540) gave rise to similar changes of the electrical properties of the membrane: depolarization of the membrane potential, inactivation of a large-conductance, Ca2+-dependent K+-channel (maxi-KCa), and a strong increase of the leak conductance of the membrane. This similarity indicates the general character of the functional photomodifications by membrane-active sensitizers previously reported for photofrin II.

  15. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.

    PubMed Central

    van den Broek, P J; van Gompel, A E; Luttik, M A; Pronk, J T; van Leeuwen, C C

    1997-01-01

    Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome c oxidase as a proton-motive-force-generating system. Addition of reduced cytochrome c generated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40-50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+-glucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+-maltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilis the transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different. PMID:9020885

  16. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  17. Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2014-01-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794

  18. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids

    PubMed Central

    Sahl, Steffen J.; Leutenegger, Marcel; Hilbert, Michael; Hell, Stefan W.; Eggeling, Christian

    2010-01-01

    We describe an optical method capable of tracking a single fluorescent molecule with a flexible choice of high spatial accuracy (∼10–20 nm standard deviation or ∼20–40 nm full-width-at-half-maximum) and temporal resolution (< 1 ms). The fluorescence signal during individual passages of fluorescent molecules through a spot of excitation light allows the sequential localization and thus spatio-temporal tracking of the molecule if its fluorescence is collected on at least three separate point detectors arranged in close proximity. We show two-dimensional trajectories of individual, small organic dye labeled lipids diffusing in the plasma membrane of living cells and directly observe transient events of trapping on < 20 nm spatial scales. The trapping is cholesterol-assisted and much more pronounced for a sphingo- than for a phosphoglycero-lipid, with average trapping times of ∼15 ms and < 4 ms, respectively. The results support previous STED nanoscopy measurements and suggest that, at least for nontreated cells, the transient interaction of a single lipid is confined to macromolecular dimensions. Our experimental approach demonstrates that fast molecular movements can be tracked with minimal invasion, which can reveal new important details of cellular nano-organization. PMID:20351247

  19. Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment.

    PubMed

    Kasvandik, Sergo; Sillaste, Gerly; Velthut-Meikas, Agne; Mikelsaar, Aavo-Valdur; Hallap, Triin; Padrik, Peeter; Tenson, Tanel; Jaakma, Ülle; Kõks, Sulev; Salumets, Andres

    2015-06-01

    A significant proportion of mammalian fertilization is mediated through the proteomic composition of the sperm surface. These protein constituents can present as biomarkers to control and regulate breeding of agricultural animals. Previous studies have addressed the bovine sperm cell apical plasma membrane (PM) proteome with nitrogen cavitation enrichment. Alternative workflows would enable to expand the compositional data more globally around the entire sperm's surface. We used a cell surface biotin-labeling in combination with differential centrifugation to enrich sperm surface proteins. Using nano-LC MS/MS, 338 proteins were confidently identified in the PM-enriched proteome. Functional categories of sperm-egg interaction, protein turnover, metabolism as well as molecular transport, spermatogenesis, and signal transduction were represented by proteins with high quantitative signal in our study. A highly significant degree of enrichment was found for transmembrane and PM-targeted proteins. Among them, we also report proteins previously not described on bovine sperm (CPQ, CD58, CKLF, CPVL, GLB1L3, and LPCAT2B) of which CPQ and CPVL cell surface localization was further validated. A descriptive overview of the bovine sperm PM integral and peripheral proteins is provided to complement future studies on animal reproduction and its relation to sperm cell surface. All MS data have been deposited in the ProteomeXchange with identifier PXD001096 (http://proteomecentral.proteomexchange.org/dataset/PXD001096).

  20. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  1. Arrestin-mediated endocytosis of yeast plasma membrane transporters.

    PubMed

    Nikko, Elina; Pelham, Hugh R B

    2009-12-01

    Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.

  2. Control of plasma membrane lipid homeostasis by the extended synaptotagmins

    PubMed Central

    Saheki, Yasunori; Bian, Xin; Schauder, Curtis M.; Sawaki, Yujin; Surma, Michal A.; Klose, Christian; Pincet, Frederic; Reinisch, Karin M.; De Camilli, Pietro

    2016-01-01

    Acute metabolic changes of plasma membrane (PM) lipids, such as those mediating signaling reactions, are rapidly compensated by homeostatic responses whose molecular basis is poorly understood. Here we show that the Extended-Synaptotagmins (E-Syts), ER proteins which function as PI(4,5)P2 and Ca2+-regulated tethers to the PM, participate in these responses. E-Syts transfer glycerolipids between bilayers in vitro and such transfer requires Ca2+ and their SMP domain, a lipid-harboring module. Genome edited cells lacking E-Syts do not exhibit abnormalities in the major glycerolipids at rest, but display enhanced and sustained accumulation of PM diacylglycerol (DAG) upon PI(4,5)P2 hydrolysis by PLC activation, which can be rescued by expression of E-Syt1, but not by mutant E-Syt1 lacking the SMP domain. The formation of E-Syts-dependent ER-PM tethers in response to stimuli that cleave PI(4,5)P2 and elevate Ca2+ may help reverse accumulation of DAG in the PM by transferring it to the ER for metabolic recycling. PMID:27065097

  3. Endocytic adaptors – social networking at the plasma membrane

    PubMed Central

    Reider, Amanda; Wendland, Beverly

    2011-01-01

    Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors. PMID:21536832

  4. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  5. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Wakefield, Devin L; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-09-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  6. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. PMID:25262536

  7. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    SciTech Connect

    Hasan, Nazarul; Hu, Chuan

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  8. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    PubMed

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.

  9. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    PubMed Central

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  10. Plasma membrane potential of the alga dunaliella, and its relation to osmoregulation.

    PubMed

    Oren-Shamir, M; Pick, U; Avron, M

    1990-06-01

    A fluorescent dye sensitive to membrane potential was used to follow the plasma-membrane potential in the unicellular halo-tolerant alga Dunaliella salina. The signal observed during dissipation of the plasma membrane potential by the addition of excess K(+) and valinomycin, or a protonophore, was taken as a measure of the preexisting potential. A resting potential of -85 to -100 millivolts (negative inside) was calculated. Following a hypertonic shock, the plasma membrane was rapidly hyperpolarized. This hyperpolarization was transient, and the algae resumed their resting potential about 30 minutes after the shock. The resting plasma membrane potential was decreased by vanadate and is concluded to be generated mostly by the plasma membrane ATPase of Dunaliella. The transient hyperpolarization following a hypertonic shock indicates, therefore, a transient activation of the ATPase. This is further corroborated by a rapid transient decrease in the intracellular ATP following a hypertonic shock and its inhibition by vanadate. It is suggested that activation of the plasma membrane ATPase may be the trigger for osmoregulation in Dunaliella. PMID:16667480

  11. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane.

    PubMed

    Jokhadar, Špela Zemljič; Derganc, Jure

    2015-04-01

    Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure. PMID:25395197

  12. [H2O2 induces changes in the plasma membrane of Saccharomyces cerevisiae].

    PubMed

    Sun, Tingli; Shi, Qingshan; Ouyang, Yousheng; Chen, Yiben

    2009-12-01

    This article reviews the recent studies on H2O2 adaptation of Saccharomyces cerevisiae. When the cell exposed in the H2O2 sub-lethal doses, the plasma membrane permeability decreased, meanwhile the plasma membrane fluidity is minished. These changes resulted in a gradient across the plasma membrane, which conferring a higher resistance to oxidative stress. Recent work has also shown that the yeast cells adapted to H2O2 would lead to several changes in the expression of genes coding the key enzymes involved in the biosynthesis of lipid profile and in the organization of lipid microdomains of the plasma membrane, which finally decreased its' permeability and fluidity. The reorganization of the plasma membrane might be the major mechanism of the H2O2 adaptation. Once the yeast cells adapted to the external H2O2, changes in plasma occurred. The H2O2 dependent signaling pathways in the plasma membrane might be activated by high levels of H2O2. But the details of the signaling events should still be further studies.

  13. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    PubMed Central

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  14. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  15. Estradiol-mediated internalisation of the non-activated estrogen receptor from the goat uterine plasma membrane: identification of the proteins involved.

    PubMed

    Sreeja, S; Thampan, Raghava Varman

    2004-04-01

    An indirect approach has been made to study the molecular details associated with the estradiol-induced internalisation of the non-activated estrogen receptor (naER) from the goat uterine plasma membrane. The internalisation of naER appears to be an energy dependent process. Exposure of the plasma membrane to estradiol results in the activation of a Mg2+ dependent ATPase associated with the membrane fraction. Presence of quercetin in the medium prevented the activation of the Mg2+ ATPase as well as the dissociation of naER from the plasma membrane. Using isolated plasma membrane preparations it has been possible to identify the proteins which interact with naER during various stages of its internalisation. The main proteins identified are: (1) a 58 kDa protein, p58, which apparently recognizes the nuclear localization signals on the naER and transports it to the nucleus: (2) hsp70: (3) hsp90, the functional roles of which remain unknown at this stage; (4) a 50 kDa protein associated with the clathrin coated vesicles, presumed to be involved in recognizing the tyrosine based internalisation signals on the naER; (5) actin which mediates the plasma membrane-to-nucleus movement of the naER-p58 complex. PMID:15124916

  16. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    PubMed

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. PMID:21388227

  17. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.

    PubMed

    Nishino, Kanako; Obara, Keisuke; Kihara, Akio

    2015-12-25

    Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.

  18. Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids.

    PubMed

    Wilson, Robert L; Frisz, Jessica F; Klitzing, Haley A; Zimmerberg, Joshua; Weber, Peter K; Kraft, Mary L

    2015-04-01

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane. PMID:25863057

  19. Rapid preparation of plasma membranes from avian lymphoid cells and fibroblasts for virus binding studies.

    PubMed

    Nieper, H; Müller, H

    1998-06-01

    A simple and rapid protocol for the preparation of plasma membranes from chicken embryo fibroblasts and chicken lymphoid cells was developed. Characterization of the preparations by morphological, biochemical and serological methods indicated the specific enrichment of the plasma membranes as well as cell surface proteins. Binding of infectious bursal disease virus (IBDV) particles was demonstrated after immobilization of the plasma membranes, and cell type-specific differences were observed. Although the results of these studies reflect the interaction between IBDV and isolated cells only partially, the advantages of these plasma membrane preparations, the specific enrichment of cell surface proteins, their constant quality and the possibility to store aliquots over several months, make them a useful tool for virus binding studies with avian cells. PMID:9694323

  20. Membrane-based Therapeutic Plasma Exchange: A New Frontier for Nephrologists.

    PubMed

    Gashti, Casey N

    2016-09-01

    Therapeutic plasma exchange has long been utilized to manage a variety of immune-mediated diseases. The underlying principle is the removal of a circulating pathogenic substance from the plasma and substitution with a replacement fluid. Different methodologies of plasma separation include the use of centrifuge, which relies on the variation in the specific gravity of blood components, and membrane-based separation, which relies on particle size. With advancements in technology and clinical insight into disease pathophysiology, membrane technology has become more biocompatible, safer, and more adaptable to conventional hemodialysis and hemofiltration machines. As such, nephrologists, who are familiar with management of extracorporeal blood purification systems, are increasingly involved with membrane-based plasma separation. This review aims to highlight the technical aspects of membrane-based separation, review the prescription for therapy, and draw comparisons with the centrifuge-based technique when applicable. PMID:27062015

  1. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    SciTech Connect

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.

  2. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    DOE PAGESBeta

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize themore » cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.« less

  3. Hemagglutinin Clusters in the Plasma Membrane Are Not Enriched with Cholesterol and Sphingolipids

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Klitzing, Haley A.; Zimmerberg, Joshua; Weber, Peter K.; Kraft, Mary L.

    2015-01-01

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane. PMID:25863057

  4. Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol*

    PubMed Central

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-01-01

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton. PMID:23609440

  5. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target.

    PubMed

    Ciesielska, Anna; Kwiatkowska, Katarzyna

    2015-07-01

    You are what you eat - this well-known phrase properly describes the phenomenon of the effects of diet on acute and chronic inflammation. Several lipids and lipophilic compounds that are delivered with food or are produced in situ in pathological conditions exert immunomodulatory activity due to their interactions with the plasma membrane. This group of compounds includes cholesterol and its oxidized derivatives, fatty acids, α-tocopherol, and polyphenols. Despite their structural heterogeneity, all these compounds ultimately induce changes in plasma membrane architecture and fluidity. By doing this, they modulate the dynamics of plasma membrane receptors, such as TLR4. This receptor is activated by lipopolysaccharide, triggering acute inflammation during bacterial infection, which often leads to sepsis and is linked with diverse chronic inflammatory diseases. In this review, we discuss how the impact on plasma membrane properties contributes to the immunomodulatory activity of dietary compounds, pointing to the therapeutic potential of some of them. Also watch the Video Abstract. PMID:25966354

  6. Characterization and quantitation of concanavalin A binding by plasma membrane enriched fractions from soybean root

    SciTech Connect

    Berkowitz, R.L.; Travis, R.L.

    1981-11-01

    The binding of concanavalin A (Con A) to soybean root membranes in plasma membrane enriched fractions (recovered from the 34/45% interface of simplified discontinuous sucrose density gradients) was studied using a radiochemical assay employing tritated (/sup 3/H)-Con A. The effect of lectin concentration, time, and membrane protein concentration on the specific binding of /sup 3/H-Con A by the membranes was evaluated. Kinetic analyses showed that Con A will react with membranes in that fraction in a characteristic and predictable manner. The parameters for an optimal and standard binding assay were established. Maximal binding occurred with Con A concentrations in the range of 8 to 16% of the total membrane protein with incubation times greater than 40 min at 22 C. Approximately 10/sup 15/ molecules of /sup 3/H-Con A were bound per microgram of membrane protein at saturation. Binding was reversible. Greater than 92% of the total Con A bound at saturation was released by addition of ..cap alpha..-methyl mannoside. A major peak of /sup 3/H-Con A binding was also observed in fractions recovered from the 25/30% interface of a complex discontinuous sucrose density gradient when membranes were isolated in the absence of Mg/sup 2 +/. When high Mg/sup 2 +/ was present in the isolation and gradient media, the peak was shifted to a fraction recovered from the 34/38% sucrose interface. These results suggest that Con A binding sites are also present on membranes of the endoplasmic reticulum. The amount of Con A bound by endoplasmic reticulum membranes was at least twice the amount bound by membranes in plasma membrane enriched fractions when binding was compared on a per unit membrane protein basis. In contrast, mitochondrial inner membranes, which equilibrate at the same density as plasma membranes, had little ability to bind the lectin.

  7. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton.

    PubMed Central

    Cox, D N; Muday, G K

    1994-01-01

    N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro. PMID:11536654

  8. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  9. Adhesion and receptor clustering stabilizes lateral heterogeneity in cell plasma membranes

    NASA Astrophysics Data System (ADS)

    Veatch, Sarah

    2013-03-01

    The thermodynamic properties of plasma membrane lipids play a vital role in many functions that initiate at the mammalian cell surface. Some functions are thought to occur, at least in part, because plasma membrane lipids have a tendency to separate into two distinct liquid phases, called liquid-ordered and liquid-disordered. We find that isolated cell plasma membranes are poised near a miscibility critical point separating these two liquid phases, and postulate that critical composition fluctuations provide the physical basis of functional membrane heterogeneity in intact cells. In this talk I will describe several possible mechanisms through which dynamic fluctuations can be stabilized in super-critical membranes, and will present some preliminary evidence suggesting that these structures can be visualized in intact cells using quantitative super-resolution fluorescence localization imaging.

  10. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  11. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  12. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases. PMID:26577786

  13. Prefracture and cold-fracture images of yeast plasma membranes.

    PubMed

    Steere, R L; Erbe, E F; Moseley, J M

    1980-07-01

    Fracture-temperature related differences in the ultrastructure of plasmalemma P faces of freeze-fractured baker's yeast (Saccharomyces cerevisiae) have been observed in high-resolution replicas prepared in freeze-etch systems pumped to 2 X 10(-7) torr in which the specimens were protected from contamination by use of liquid nitrogen-cooled shrouds. Two major P-face images were observed regardless of the source of the yeast, the age of the culture, the growth temperature, the physiological condition, or the suspending medium used: (a) a "cold-fracture image" with many strands closely associuated with tubelike particles (essentially the same image as those previously published for yeast freeze-fractured at 77 degrees K), and (b) a "prefracture image" characterized by the presence of more distinct tubelike particles with few or no associated strands (for aging cultures, the image recently referred to as "paracrystalline arrays" of "craterlike particles"). Both types of P-face image can be found in separate areas of single replicas and occasionally even within a single plasma membrane. Whereas portions of replicas known to be fractured at any temperature colder than 218 degrees K reveal only the cold-fracture image, prefracture images are found in cells intentionally fractured at 243 degrees K and in cracks or fissures which develop during the freezing of other specimens. These findings demonstrate that the prefracture image results from the fracturing of specimens at some temperature above 230 degrees K, no t from fracturing specimens at some temperature between 173 degrees and 77 degrees K, and not from the use of "starved" yeast cells. PMID:6998983

  14. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV.

    PubMed

    Fan, Jinxin; Luo, Jianquan; Song, Weijie; Chen, Xiangrong; Wan, Yinhua

    2015-12-01

    The surging demand for plasma proteins, mainly driven by the growing market and the development of new therapeutic indications, is promoting manufacturers to improve the throughput of plasma proteins. Due to the inherent convective mass transfer, membrane chromatography has been proved to be an efficient approach for extracting a small amount of target proteins from large-volume feed. In this study, α1-antitrypsin (AAT) was extracted from human plasma fraction IV by a two-step membrane chromatography. An anion-exchange membrane chromatography (AEMC) was used to capture the plasma proteins in bind/elute mode, and the obtained effluent was further polished by a hydrophobic interaction membrane chromatography (HIMC) in flow-through mode. Under optimal conditions, the recovery and purity of AAT achieved 87.0% and 0.58 AAT/protein (g/g) by AEMC, respectively. After the precise polishing by HIMC, the purity of AAT was 1.22 AAT/protein (g/g). The comparison results showed that membrane chromatography outperformed column chromatography in both steps because of its high throughput. This two-step membrane chromatography could obtain an AAT recovery of 83.3% and an activity recovery of 91.4%. The outcome of this work not only offers an alternative process for protein purification from plasma, but also provides guidelines for manufacturing product from a large-volume feed with multi-components by membrane chromatography.

  15. Phospholipase D2 Localizes to the Plasma Membrane and Regulates Angiotensin II Receptor Endocytosis

    PubMed Central

    Du, Guangwei; Huang, Ping; Liang, Bruce T.; Frohman, Michael A.

    2004-01-01

    Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor. PMID:14718562

  16. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes.

    PubMed

    Ortegren, Unn; Karlsson, Margareta; Blazic, Natascha; Blomqvist, Maria; Nystrom, Fredrik H; Gustavsson, Johanna; Fredman, Pam; Strålfors, Peter

    2004-05-01

    We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.

  17. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots.

    PubMed

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Burzyński, Marek; Kłobus, Grazyna

    2008-01-01

    The effect of heavy metals on the modification of plasma membrane H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. In plants stressed for 2 h with 10 microM or 100 microM Cd, Cu or Ni the hydrolytic as well as the transporting activity of H(+)-ATPase in the plasma membranes of root cells was decreased. Transcript levels of Cucumis sativus plasma membrane H(+)-ATPase in roots treated with 10 microM Cd, Cu, or Ni as well as with 100 microM Cu or Ni were similar to the control, indicating that the action of metals did not involve the gene expression level. Only in roots exposed to 100 microM Cd was the level of plasma membrane H(+)-ATPase mRNA markedly decreased. The inhibition of the plasma membrane proton pump caused by 100 microM Cd, Cu and Ni was partially diminished in the presence of cantharidin, a specific inhibitor of protein phosphatases. Western blot analysis with the antibody against phosphothreonine confirmed that decreased activity of plasma membrane H(+)-ATPase under heavy metals resulted from dephosphorylation of the enzyme protein. Taken together, these data strongly indicated that alteration of the enzyme under heavy metal stresses was mainly due to the post-translational modification of its proteins in short-term experiments.

  18. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots

    PubMed Central

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Burzyński, Marek; Kłobus, Grażyna

    2008-01-01

    The effect of heavy metals on the modification of plasma membrane H+-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. In plants stressed for 2 h with 10 μM or 100 μM Cd, Cu or Ni the hydrolytic as well as the transporting activity of H+-ATPase in the plasma membranes of root cells was decreased. Transcript levels of Cucumis sativus plasma membrane H+-ATPase in roots treated with 10 μM Cd, Cu, or Ni as well as with 100 μM Cu or Ni were similar to the control, indicating that the action of metals did not involve the gene expression level. Only in roots exposed to 100 μM Cd was the level of plasma membrane H+-ATPase mRNA markedly decreased. The inhibition of the plasma membrane proton pump caused by 100 μM Cd, Cu and Ni was partially diminished in the presence of cantharidin, a specific inhibitor of protein phosphatases. Western blot analysis with the antibody against phosphothreonine confirmed that decreased activity of plasma membrane H+-ATPase under heavy metals resulted from dephosphorylation of the enzyme protein. Taken together, these data strongly indicated that alteration of the enzyme under heavy metal stresses was mainly due to the post-translational modification of its proteins in short-term experiments. PMID:18820260

  19. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells.

    PubMed

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jéro Me; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-01-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  20. The Ebola virus matrix protein deeply penetrates the plasma membrane: an important step in viral egress.

    PubMed

    Soni, Smita P; Adu-Gyamfi, Emmanuel; Yong, Sylvia S; Jee, Clara S; Stahelin, Robert V

    2013-05-01

    Ebola virus, from the Filoviridae family has a high fatality rate in humans and nonhuman primates and to date, to the best of our knowledge, has no FDA approved vaccines or therapeutics. Viral protein 40 (VP40) is the major Ebola virus matrix protein that regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of VP40 membrane binding that are important for viral release remain to be elucidated. In this study, we used fluorescence quenching of a tryptophan on the membrane-binding interface with brominated lipids along with mutagenesis of VP40 to understand the depth of membrane penetration into lipid bilayers. Experimental results indicate that VP40 penetrates 8.1 Å into the hydrocarbon core of the plasma membrane bilayer. VP40 also induces substantial changes to membrane curvature as it tubulates liposomes and induces vesiculation into giant unilamellar vesicles, effects that are abrogated by hydrophobic mutations. This is a critical step in viral egress as cellular assays demonstrate that hydrophobic residues that penetrate deeply into the plasma membrane are essential for plasma membrane localization and virus-like particle formation and release from cells.

  1. [Isolation and characteristics of the plasma membrane fraction from the swine myometrium].

    PubMed

    Kondratiuk, T P; Bychenok, S F; Prishchepa, L A; Babich, L G; Kurskiĭ, M D

    1986-01-01

    An accelerated method is developed for isolating a fraction of plasma membranes of pig myometrium using ultracentrifugation within the sucrose density gradient (15% and 30%). The membranes possessed the high activity of 5'-nucleotidase and Na+, K+-ATPase and the low activity of rhotenon-insensitive NADH-cytochrome c reductase. The vesicularized preparations of plasma membranes are able of ATP-dependent accumulation of Ca2+ (7.5 +/- 0.3 nmol. 45Ca2+ per 1 mg of protein for 15 min). Phosphate increases the calcium accumulation in the presence of ATP and Mg2+. Ionophore A 23187 promotes a complete and rapid release of the previously active-accumulated calcium. The release of 45Ca2+ accumulated by the membrane fraction may be reached by introduction of 1 mM EGTA or DS-Na into the incubation medium, that evidences for the cation accumulation inside closed structures. Using concanavalin-A-sepharose 4B it is shown that 60% of membrane vesicles are turned inside out. The low saponine concentrations (0.0005%) which inhibit Ca2+-accumulation by plasma membranes but not by the endoplasmic reticulum inhibit this process by 60-70% in preparations of the isolated membrane fraction. The method has certain advantages over the previously applied methods used for isolating of plasma membrane fragments from smooth muscles. PMID:3016962

  2. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  3. Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts.

    PubMed

    Gombos, Imre; Crul, Tim; Piotto, Stefano; Güngör, Burcin; Török, Zsolt; Balogh, Gábor; Péter, Mária; Slotte, J Peter; Campana, Federica; Pilbat, Ana-Maria; Hunya, Akos; Tóth, Noémi; Literati-Nagy, Zsuzsanna; Vígh, László; Glatz, Attila; Brameshuber, Mario; Schütz, Gerhard J; Hevener, Andrea; Febbraio, Mark A; Horváth, Ibolya; Vígh, László

    2011-01-01

    Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.

  4. Effect of a membrane-stabilizing compound on calcium binding to the plasma membrane of Acanthamoeba castellanii.

    PubMed

    Przełecka, A; Fritsch, R S; Wollweber, L; Sobota, A

    1980-01-01

    Binding of calcium ions at the plasma membrane was studied in Acanthamoeba cells pretreated with ZIMET 3164, a benzimidazole nitrogen mustard derivative, which is known to show a potent immunosuppressive action combined with a membrane-stabilizing effect in mice. For reference, 2 compounds were applied: ZIMET 3393 (Cytostasan¿), another benzimidazole mustard derivative, which exerts only a moderate membrane effect and acts as a strong cytostatic, and ZIMET 176/68, a barbituric acid derivative, which acts as an inhibitor of humoral immune responses but without membrane-stabilizing effect. Application of any of the 3 compounds does not reduce the appearance of calcium binding sites, visualized by means of ultracytochemical reaction, notwithstanding their different action in the mammalian organism. On the contrary, it was estimated by morphometric analysis that the number of Ca-dependent deposits was augmented after treatment with low doses of any of the 3 compounds, what seems to be connected with the induced metabolic disturbances in low molecular phosphates level. High doses and/or prolongation of treatment of the cells resulted in diminution of the number of deposits and induces profound disturbances in cell ultrastructure, probably due to the toxic action of the applied doses. In these cases, band-like structures crosslinking the two leaflets of the plasma membrane may be observed; it is suggested that they represent integral membrane proteins. PMID:6774578

  5. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.

    PubMed

    Piper, P W; Ortiz-Calderon, C; Holyoak, C; Coote, P; Cole, M

    1997-03-01

    Saccharomyces cerevisiae has a single integral plasma membrane heat shock protein (Hsp). This Hsp30 is induced by several stresses, including heat shock, ethanol exposure, severe osmostress, weak organic acid exposure and glucose limitation. Plasma membrane H(+)-ATPase activities of heat shocked and weak acid-adapted, hsp30 mutant and wild-type cells, revealed that Hsp30 induction leads to a downregulation of the stress-stimulation of this H(+)-ATPase. Plasma membrane H(+)-ATPase activity consumes a substantial fraction of the ATP generated by the cell, a usage that will be increased by the H(+)-ATPase stimulation occurring with several Hsp30-inducing stresses. Hsp30 might therefore provide an energy conservation role, limiting excessive ATP consumption by plasma membrane H(+)-ATPase during prolonged stress exposure or glucose limitation. Consistent with the role of Hsp30 being energy conservation, Hsp30 null cultures give lower final biomass yields. They also have lower ATP levels, consistent with higher H(+)-ATPase activity, at the glucose exhaustion stage of batch fermentations (diauxic lag), when Hsp30 is normally induced. Loss of Hsp30 does not affect several stress tolerances but it extends the time needed for cells to adapt to growth under several stressful conditions where the maintenance of homeostasis will demand an unusually high usage of energy, hsp30 is the first yeast gene identified as both weak organic acid-inducible and assisting the adaptation to growth in the presence of these acids.

  6. Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1.

    PubMed

    Heinisch, Jürgen J; Dupres, Vincent; Wilk, Sabrina; Jendretzki, Arne; Dufrêne, Yves F

    2010-06-14

    Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma membrane. How such protein clustering is achieved within membrane microdomains ("rafts") is an important, yet largely unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since it features protein domains that are sufficiently large and stable to be observed by fluorescence microscopy. Here, we demonstrate the ability of single-molecule atomic force microscopy to resolve lateral clustering of the cell integrity sensor Wsc1 in living Saccharomyces cerevisiae cells. We first localize individual wild-type sensors on the cell surface, revealing that they form clusters of approximately 200 nm size. Analyses of three different mutants indicate that the cysteine-rich domain of Wsc1 has a crucial, not yet anticipated function in sensor clustering and signalling. Clustering of Wsc1 is strongly enhanced in deionized water or at elevated temperature, suggesting its relevance in proper stress response. Using in vivo GFP-localization, we also find that non-clustering mutant sensors accumulate in the vacuole, indicating that clustering may prevent endocytosis and sensor turnover. This study represents the first in vivo single-molecule demonstration for clustering of a transmembrane protein in S. cerevisiae. Our findings indicate that in yeast, like in higher eukaryotes, signalling is coupled to the localized enrichment of sensors and receptors within membrane patches.

  7. Mechanism and structure of the plant plasma membrane Ca{sup 2+}-ATPase

    SciTech Connect

    Briskin, D.P.

    1993-12-31

    Objectives of this project were the following: development of an enriched preparation of the red beet plasma membrane Ca{sup 2+} ATPase in order to develop a procedure for detergent solubilization of the enzyme from the membrane using detergents, resolution by a method which could be upscaled for batch isolation, and then reconstitution into liposomes to allow characterization of Ca{sup 2+} transport by the purified enzyme and; characterization of the reaction mechanism for the coupling of nucleoside triphosphate hydrolysis to Ca{sup 2+} transport as mediated by the plasma membrane Ca{sup 2+} ATPase.

  8. Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil.

    PubMed Central

    Sehested, M.; Skovsgaard, T.; van Deurs, B.; Winther-Nielsen, H.

    1987-01-01

    Numerous studies have indicated that the plasma membrane plays an important role in the development of resistance to anthracycline and vinca alkaloid drugs (pleiotropic resistance). We have previously shown that pleiotropically resistant Ehrlich ascites tumour cells, which are of epithelial origin, have a significantly increased plasma membrane traffic (endo/exocytosis) to the endosomal compartment compared to sensitive cells. The present study, using the same ultrastructural morphometric technique, has demonstrated a similar significant difference in plasma membrane traffic between daunorubicin resistant and sensitive P388 cell lines (which are of lymphoid origin). Furthermore, we have shown that this difference between the P388 sublines is accompanied by an approximately 4 fold increase in the plasma membrane area participating in recycling together with an increased endosomal volume, number and membrane area in resistant cells. Plasma membrane traffic in resistant cells was significantly inhibited by the calcium channel blocker verapamil, a well known modulator of anthracycline resistance, but unaffected by daunorubicin itself. The confirmation of this phenotype in an additional pleiotropically resistant cell type with a different histogenesis further supports a hypothesis of endosomal drug trapping and vesicular extrusion as a possible resistance mechanism. Images Figure 1 Figure 2 Figure 3 PMID:3435701

  9. Molecular characterization of a cold-induced plasma membrane protein gene from wheat.

    PubMed

    Koike, Michiya; Sutoh, Keita; Kawakami, Akira; Torada, Atsushi; Oono, Kiyoharu; Imai, Ryozo

    2005-12-01

    As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.

  10. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  11. Characterization of a nucleotide stimulated aspartic proteinase in rat liver plasma membranes.

    PubMed

    Paule, C R; Larner, J

    1996-01-01

    Inositol phosphoglycan molecules are believed to mediate multiple intracellular actions of insulin. They are released from plasma membranes in response to insulin binding and are transported into the cell. Release of insulin mediators is stimulated by MnATP and MgATP and is inhibited by p-aminobenzamidine. Inositol phosphoglycan mediators may be released by a poorly characterized mechanism requiring proteolytic cleavage of an attached protein from the mediator and phospholipase cleavage of the mediator from its membrane anchor. We examined rat liver plasma membranes for proteinase activity stimulated by insulin and MnATP. Although we could not demonstrate insulin stimulation, we have found and characterized a nucleotide-stimulated aspartic proteinase bound to rat liver plasma membranes. We also detected and separated a soluble activating factor for the proteinase. The activating factor appears to be a protein with M(r) approximately 70 kDa. PMID:8876431

  12. Isolation and chemical characterization of plasma membranes from the yeast and mycelial forms of Candida albicans.

    PubMed

    Marriott, M S

    1975-01-01

    It has been possible to induce the yeast-mycelium transformation in Candida albicans by growth of the organism under completely defined conditions in batch culture. Protoplasts have been obtained from the two forms by using a lytic enzyme preparation from Streptomyces violaceus. A plasma membrane fraction was prepared by osmotic lysis of these protoplasts and fractionated by using a combination of differential and discontinuous sucrose density-gradient flotation centrifugation. The purity of this fraction was determined by radioactive dansylation and iodination of plasma membranes of intact protoplasts followed by localization of the radioactivity upon fractionation. This procedure demonstrated less than 4% contamination of the plasma membrane fraction with other cell membranes. Chemical analysis of this fraction revealed that the major components were protein and lipid. Membranes from the yeast form contained (w/w): 50% protein, 45% lipid, 9% carbohydrate and 0.3% nucleic acid. Plasma membranes from the mycelial form contained significantly more carbohydrate and were found to be composed of (w/w): 43% protein, 31% lipid, 25% carbohydrate and 0.5% nucleic acid. Marked differences were also observed between the phospholipid, free and esterified sterols, and total fatty acids of membranes from the two forms of the organism. PMID:1089750

  13. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation.

    PubMed

    Kawamura, Yukio; Uemura, Matsuo

    2003-10-01

    Although enhancement of freezing tolerance in plants during cold acclimation is closely associated with an increase in the cryostability of plasma membrane, the molecular mechanism for the increased cryostability of plasma membrane is still to be elucidated. In Arabidopsis, enhanced freezing tolerance was detectable after cold acclimation at 2 degrees C for as short as 1 day, and maximum freezing tolerance was attained after 1 week. To identify the plasma membrane proteins that change in quantity in response to cold acclimation, a highly purified plasma membrane fraction was isolated from leaves before and during cold acclimation, and the proteins in the fraction were separated with gel electrophoresis. We found that there were substantial changes in the protein profiles after as short as 1 day of cold acclimation. Subsequently, using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), we identified 38 proteins that changed in quantity during cold acclimation. The proteins that changed in quantity during the first day of cold acclimation include those that are associated with membrane repair by membrane fusion, protection of the membrane against osmotic stress, enhancement of CO2 fixation, and proteolysis.

  14. Discs-Large and Strabismus are functionally linked to plasma membrane formation.

    PubMed

    Lee, Ok-Kyung; Frese, Kristopher K; James, Jennifer S; Chadda, Darshana; Chen, Zhi-Hong; Javier, Ronald T; Cho, Kyung-Ok

    2003-11-01

    During early embryogenesis in Drosophila melanogaster, extensive vesicle transport occurs to build cell boundaries for 6,000 nuclei. Here we show that this important process depends on a functional complex formed between the tumour suppressor and adaptor protein Discs-Large (Dlg) and the integral membrane protein Strabismus (Stbm)/Van Gogh (Vang). In support of this idea, embryos with mutations in either dlg or stbm displayed severe defects in plasma membrane formation. Conversely, overexpression of Dlg and Stbm synergistically induced excessive plasma membrane formation. In addition, ectopic co-expression of Stbm (which associated with post-Golgi vesicles) and the mammalian Dlg homologue SAP97/hDlg promoted translocation of SAP97 from the cytoplasm to both post-Golgi vesicles and the plasma membrane. This effect was dependent on the interaction between Stbm and SAP97. These findings suggest that the Dlg-Stbm complex recruits membrane-associated proteins and lipids from internal membranes to sites of new plasma membrane formation.

  15. Insulinotropic effect of high potassium concentration beyond plasma membrane depolarization.

    PubMed

    Belz, M; Willenborg, M; Görgler, N; Hamada, A; Schumacher, K; Rustenbeck, I

    2014-03-01

    The question whether K⁺ depolarization is an appropriate experimental substitute for the physiological nutrient-induced depolarization of the β-cell plasma membrane was investigated using primary mouse β-cells and islets. At basal glucose 40 mM K⁺ induced a massive monophasic response, whereas 15 mM K⁺ had only a minimal insulinotropic effect, even though the increase in the cytosolic Ca²⁺ concentration ([Ca²⁺]i) was not inferior to that by 20 mM glucose. In voltage-clamp experiments, Ca²⁺ influx appeared as nifedipine-inhibitable inward action currents in the presence of sulfonylurea plus TEA to block compensatory outward K⁺ currents. Under these conditions, 15 mM K⁺ induced prolonged action currents and 40 mM K⁺ transformed the action current pattern into a continuous inward current. Correspondingly, 15 mM K⁺ led to an oscillatory increase and 40 mM K⁺ to a plateau of [Ca²⁺]i superimposed on the [Ca²⁺]i elevated by sulfonylurea plus TEA. Raising K⁺ to 15 or 40 mM in the presence of sulfonylurea (±TEA) led to a fast further increase of insulin secretion. This was reduced to basal levels by nifedipine or CoCl₂. The effects of 15 mM K⁺ on depolarization, action currents, and insulin secretion were mimicked by adding 35 mM Cs⁺ and those of 40 mM K⁺ by adding 35 mM Rb⁺, in parallel with their ability to substitute for K⁺ as permeant cation. In conclusion, the alkali metals K⁺, Rb⁺, or Cs⁺ concentration-dependently transform the pattern of Ca²⁺ influx into the β-cell and may thus generate stimuli of supraphysiological strength for insulin secretion.

  16. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    PubMed

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  17. Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex

    SciTech Connect

    O'Reilly, C.A.; Reith, M.E.A.

    1988-05-05

    Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement of Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.

  18. Tuning the resistance of polycarbonate membranes by plasma-induced graft surface modification

    NASA Astrophysics Data System (ADS)

    Baumann, Lukas; Hegemann, Dirk; de Courten, Damien; Wolf, Martin; Rossi, René M.; Meier, Wolfgang P.; Scherer, Lukas J.

    2013-03-01

    To tune the permeability resistance of porous polycarbonate (PC) membranes for caffeine, their surfaces were plasma modified with different monomers in a grafting from process. These coatings provided characteristic surface hydrophilicities. It was found that membranes with more hydrophilic surfaces have lower resistances to let caffeine pass through than membranes with hydrophobic surfaces. Additionally, it was possible to post-modify a poly(2-aminoethyl methacrylate) (AEMA) coated PC membrane with octanoic acid (Oct) under mild conditions. This post modification allowed transforming a slightly hydrophilic PC-AEMA membrane with a moderate permeability resistance into a hydrophobic PC-AEMA-Oct membrane with a high permeability resistance. Overall, it was possible to tune the PC membrane resistance for caffeine in a range from 5100 up to 15,100 s/cm.

  19. Plasma Membrane Repair in Health and Disease.

    PubMed

    Demonbreun, Alexis R; McNally, Elizabeth M

    2016-01-01

    Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury. PMID:26781830

  20. Plasma Membrane Repair in Health and Disease.

    PubMed

    Demonbreun, Alexis R; McNally, Elizabeth M

    2016-01-01

    Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury.

  1. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  2. Plasma Membrane Factor XIIIA Transglutaminase Activity Regulates Osteoblast Matrix Secretion and Deposition by Affecting Microtubule Dynamics

    PubMed Central

    Al-Jallad, Hadil F.; Myneni, Vamsee D.; Piercy-Kotb, Sarah A.; Chabot, Nicolas; Mulani, Amina; Keillor, Jeffrey W.; Kaartinen, Mari T.

    2011-01-01

    Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to ‘block –and-track’ enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics. PMID:21283799

  3. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    PubMed Central

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-01-01

    The organization of proteins and lipids in the plasma membrane has been subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here, we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase, nor result in any enrichment of nanoscopic ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane. PMID:25897971

  4. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  5. Presence of membranous vesicles in cat seminal plasma: ultrastructural characteristics, protein profile and enzymatic activity.

    PubMed

    Polisca, A; Troisi, A; Minelli, A; Bellezza, I; Fontbonne, A; Zelli, R

    2015-02-01

    This study sought to verify the presence of membranous vesicles in cat seminal plasma by means of transmission electron microscopy and to identify protein profile and some of the enzymatic activities associated with these particles. The transmission electron microscopy observations showed the existence of different sized vesicular membranous structures of more or less spherical shape. These vesicles were surrounded by single-, double- or multiple-layered laminar membranes. The vesicle diameters ranged from 16.3 to 387.4 nm, with a mean of 116.5 ± 70.7 nm. Enzyme activity determinations showed the presence of dipeptilpeptidase IV, aminopeptidase, alkaline and acid phosphatase. To our knowledge, this is the first report that identifies and characterizes the membranous vesicles in cat seminal plasma. However, further studies are necessary to identify the exact site of production of these membranous vesicles in the cat male genital tract and to determine their specific roles in the reproductive events of this species.

  6. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  7. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    PubMed

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  8. Heat shock protein 27 is required for sex steroid receptor trafficking to and functioning at the plasma membrane.

    PubMed

    Razandi, Mahnaz; Pedram, Ali; Levin, Ellis R

    2010-07-01

    Classical sex steroid receptors (SRs) localize at the plasma membranes (PMs) of cells, initiating signal transduction through kinase cascades that contribute to steroid hormone action. Palmitoylation of the SRs is required for membrane localization and function, but the proteins that facilitate this modification and subsequent receptor trafficking are unknown. Initially using a proteomic approach, we identified that heat shock protein 27 (Hsp27) binds to a motif in estrogen receptor alpha (ERalpha) and promotes palmitoylation of the SR. Hsp27-induced acylation occurred on the ERalpha monomer and augmented caveolin-1 interactions with ERalpha, resulting in membrane localization, kinase activation, and DNA synthesis in breast cancer cells. Oligomerization of Hsp27 was required, and similar results were found for the trafficking of endogenous progesterone and androgen receptors to the PMs of breast and prostate cancer cells, respectively. Small interfering RNA (siRNA) knockdown of Hsp27 prevented sex SR trafficking to and signaling from the membrane. These results identify a conserved and novel function for Hsp27 with potential as a target for interrupting signaling from membrane sex SRs to tumor biology in hormone-responsive cancers. PMID:20439495

  9. Electrochemical mineral scale prevention and removal on electrically conducting carbon nanotube--polyamide reverse osmosis membranes.

    PubMed

    Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David

    2014-05-01

    The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.

  10. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  11. A rapid immunological procedure for the isolation of hormonally sensitive rat fat-cell plasma membrane.

    PubMed Central

    Luzio, J P; Newby, A C; Hales, C N

    1976-01-01

    1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5'-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 mum-adrenaline. Images PLATE 1 PMID:776177

  12. A phytochrome–phototropin light signaling complex at the plasma membrane

    PubMed Central

    Jaedicke, Katharina; Lichtenthäler, Anna Lena; Meyberg, Rabea; Zeidler, Mathias; Hughes, Jon

    2012-01-01

    Phytochromes are red/far-red photochromic photoreceptors central to regulating plant development. Although they are known to enter the nucleus upon light activation and, once there, regulate transcription, this is not the complete picture. Various phytochrome effects are manifested much too rapidly to derive from changes in gene expression, whereas others seem to occur without phytochrome entering the nucleus. Phytochromes also guide directional responses to light, excluding a genetic signaling route and implying instead plasma membrane association and a direct cytoplasmic signal. However, to date, no such association has been demonstrated. Here we report that a phytochrome subpopulation indeed associates physically with another photoreceptor, phototropin, at the plasma membrane. Yeast two-hybrid methods using functional photoreceptor molecules showed that the phytochrome steering growth direction in Physcomitrella protonemata binds several phototropins specifically in the photoactivated Pfr state. Split-YFP studies in planta showed that the interaction occurs exclusively at the plasma membrane. Coimmunoprecipitation experiments provided independent confirmation of in vivo phy-phot binding. Consistent with this interaction being associated with a cellular signal, we found that phytochrome-mediated tropic responses are impaired in Physcomitrella phot− mutants. Split-YFP revealed a similar interaction between Arabidopsis phytochrome A and phototropin 1 at the plasma membrane. These associations additionally provide a functional explanation for the evolution of neochrome photoreceptors. Our results imply that the elusive phytochrome cytoplasmic signal arises through binding and coaction with phototropin at the plasma membrane. PMID:22773817

  13. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  14. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  15. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  16. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana.

    PubMed

    Fendrych, Matyás; Synek, Lukás; Pecenková, Tamara; Drdová, Edita Janková; Sekeres, Juraj; de Rycke, Riet; Nowack, Moritz K; Zársky, Viktor

    2013-02-01

    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering.

  17. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    NASA Astrophysics Data System (ADS)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  18. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane.

    PubMed

    Fuglsang, Anja T; Kristensen, Astrid; Cuin, Tracey A; Schulze, Waltraud X; Persson, Jörgen; Thuesen, Kristina H; Ytting, Cecilie K; Oehlenschlæger, Christian B; Mahmood, Khalid; Sondergaard, Teis E; Shabala, Sergey; Palmgren, Michael G

    2014-12-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.

  19. Activation of Raf as a result of recruitment to the plasma membrane.

    PubMed

    Stokoe, D; Macdonald, S G; Cadwallader, K; Symons, M; Hancock, J F

    1994-06-01

    The small guanine nucleotide binding protein Ras participates in a growth promoting signal transduction pathway. The mechanism by which interaction of Ras with the protein kinase Raf leads to activation of Raf was studied. Raf was targeted to the plasma membrane by addition of the COOH-terminal localization signals of K-ras. This modified form of Raf (RafCAAX) was activated to the same extent as Raf coexpressed with oncogenic mutant Ras. Plasma membrane localization rather than farnesylation or the presence of the additional COOH-terminal sequence accounted for the activation of RafCAAX. The activation of RafCAAX was completely independent of Ras; it was neither potentiated by oncogenic mutant Ras nor abrogated by dominant negative Ras. Raf, once recruited to the plasma membrane, was not anchored there by Ras; most activated Raf in cells was associated with plasma membrane cytoskeletal elements, not the lipid bilayer. Thus, Ras functions in the activation of Raf by recruiting Raf to the plasma membrane where a separate, Ras-independent, activation of Raf occurs.

  20. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  1. Purification of an Ion-Stimulated Adenosine Triphosphatase from Plant Roots: Association with Plasma Membranes

    PubMed Central

    Hodges, T. K.; Leonard, R. T.; Bracker, C. E.; Keenan, T. W.

    1972-01-01

    A membrane-bound adenosine triphosphatase (EC 3.6.1.3) that requires Mg++ and that is stimulated by monovalent ions has been purified 7- to 8-fold from homogenates of oat (Avena sativa L. Cult. Goodfield) roots by discontinuous sucrose-gradient centrifugation. The enzyme was substrate specific; adenosine triphosphate was hydrolyzed 25 times more rapidly than other nucleoside triphosphates. The membrane fraction containing adenosine triphosphatase was enriched in plasma membranes, which were identified by the presence of a glucan synthetase (EC 2.4.1.12), a high sterol to phospholipid ratio, and by a stain consisting of periodic acid, chromic acid, and phosphotungstic acid that is specific for plant plasma membranes. Oat-root plasma membranes and the associated adenosine triphosphatase were purified on either a 6-layer discontinuous sucrose gradient or on a simplified gradient consisting of only two sucrose layers. These results represent the first demonstration that plant plasma membranes contain an adenosine triphosphatase that is activated by monovalent ions, and this finding further implicates the enzyme in the absorption of inorganic ions by plant roots. Images PMID:16592027

  2. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect.

    PubMed

    Wang, Yingjun; Yin, Shiheng; Ren, Li; Zhao, Lianna

    2009-06-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH(2) toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  3. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.

    PubMed

    Bhagatji, Pinkesh; Leventis, Rania; Rich, Rebecca; Lin, Chen-ju; Silvius, John R

    2010-11-17

    Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions.

  4. Accumulation of chlamydial lipopolysaccharide antigen in the plasma membranes of infected cells.

    PubMed Central

    Karimi, S. T.; Schloemer, R. H.; Wilde, C. E.

    1989-01-01

    The presence of a chlamydia-specified antigen associated with the plasma membrane of infected cell lines was demonstrated by indirect immunofluorescence staining with a monoclonal antibody, designated 47A2, specific for the chlamydial genus-specific lipopolysaccharide (LPS) antigen. Staining of HeLa, L-929, and McCoy cells infected with the L2 or F serovar of Chlamydia trachomatis was observed either without fixation or following aldehyde fixation and brief drying. The 47A2-reactive antigen appeared to be present on the plasma membrane, on bleb-like structures on the host cell surface, and on proximal processes of neighboring uninfected cells. Antibodies to chlamydial protein antigens such as the major outer membrane protein produced no surface staining under similar conditions. Membrane vesicles elaborated from infected cells were enriched for the 47A2-reactive antigen. Superinfection of chlamydia-infected cells with vesicular stomatitis virus, an enveloped virus which buds from the plasma membrane, allowed purification of progeny virions that were enriched with chlamydial LPS. These results are consistent with the presence of chlamydial LPS in the plasma membranes of infected host cells. Images PMID:2470679

  5. Adenosine triphosphate-dependent copper transport in isolated rat liver plasma membranes.

    PubMed Central

    Dijkstra, M; In 't Veld, G; van den Berg, G J; Müller, M; Kuipers, F; Vonk, R J

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be mediated by a Cu transporting P-type ATPase. Biochemical evidence for ATP-dependent Cu transport in mammalian systems, however, has not been reported so far. We have investigated Cu transport in rat liver plasma membrane vesicles enriched in canalicular or basolateral membranes in the presence and absence of ATP (4 mM) and an ATP-regenerating system. The presence of ATP clearly stimulated uptake of radiolabeled Cu (64Cu, 10 microM) into canalicular plasma membrane vesicles and, to a lesser extent, also into basolateral plasma membrane vesicles. ATP-dependent Cu transport was dose-dependently inhibited by the P-type ATPase inhibitor vanadate, and showed saturation kinetics with an estimated Km of 8.6 microM and a Vmax of 6.9 nmol/min/mg protein. ATP-stimulated Cu uptake was similar in canalicular membrane vesicles of normal Wistar rats and those of mutant GY rats, expressing a congenital defect in the activity of the ATP-dependent canalicular glutathione-conjugate transporter (cMOAT). These studies demonstrate the presence of an ATP-dependent Cu transporting system in isolated plasma membrane fractions of rat liver distinct from cMOAT. PMID:7814642

  6. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans

    PubMed Central

    Wang, Hong X.; Douglas, Lois M.; Veselá, Petra; Rachel, Reinhard; Malinsky, Jan; Konopka, James B.

    2016-01-01

    The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7. These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization. PMID:27009204

  7. Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy.

    PubMed

    Lärmer, J; Schneider, S W; Danker, T; Schwab, A; Oberleithner, H

    1997-07-01

    We combined the patch-clamp technique with atomic force microscopy (AFM) to visualize plasma membrane proteins protruding from the extracellular surface of cultured kidney cells (MDCK cells). To achieve molecular resolution, patches were mechanically isolated from whole MDCK cells by applying the patch-clamp technique. The excised inside-out patches were transferred on freshly cleaved mica and imaged with the AFM in air and under physiological conditions (i. e. in fluid). Thus, the resolution could be increased considerably (lateral and vertical resolutions 5 and 0.1 nm, respectively) as compared to experiments on intact cells, where plasma membrane proteins were hardly detectable. The apical plasma membrane surface of the MDCK cells showed multiple protrusions which could be identified as membrane proteins through the use of pronase. These proteins had a density of about 90 per micron(2), with heights between 1 and 9 nm, and lateral dimensions of 20-60 nm. Their frequency distribution showed a peak value of 3 nm for the protein height. A simplified assumption - modelling plasma membrane proteins as spherical structures protruding from the lipid bilayer - allowed an estimation of the possible molecular weights of these proteins. They range from 50 kDa to 710 kDa with a peak value of 125 kDa. We conclude that AFM can be used to study the molecular structures of membranes which were isolated with the patch-clamp technique. Individual membrane proteins and protein clusters, and their arrangement and distribution in a native plasma membrane can be visualized under physiological conditions, which is a first step for their identification. PMID:9178623

  8. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.

  9. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  10. Rapid intramolecular turnover of N-linked glycans in plasma membrane glycoproteins. Extension of intramolecular turnover to the core sugars in plasma membrane glycoproteins of hepatoma.

    PubMed

    Tauber, R; Park, C S; Becker, A; Geyer, R; Reutter, W

    1989-12-01

    Plasma membrane glycoproteins of rat hepatocytes undergo a rapid terminal deglycosylation in that the terminal sugars of the oligosaccharide side chains are rapidly removed from the otherwise intact glycoproteins [Tauber, R., Park, C.S. & Reutter, W. (1983) Proc. Natl Acad. Sci. USA 80, 4026-4029]. The present paper demonstrates that this rapid intramolecular turnover of plasma membrane glycoproteins is not restricted to peripheral sugars but, in contrast to liver, in hepatoma the core sugars of the oligosaccharide chains are also involved. Intramolecular turnover was measured in Morris hepatoma 7777 in five plasma membrane glycoproteins with Mr of 85,000 (hgp85), 105,000 (hgp105), 115,000 (hgp115), 125,000 (hgp125), 175,000 (hgp175) (hgp = hepatoma glycoprotein) that were isolated and purified to homogeneity by concanavalin-A--Sepharose affinity chromatography and semipreparative SDS gel electrophoresis. Analysis of the carbohydrates of hgp85, hgp105, hgp115 and hgp125 revealed the presence of N-linked oligosaccharides containing L-fucose, D-galactose, D-mannose and N-acetyl-D-glucosamine, but only of trace amounts of N-acetyl-D-galactosamine; hgp175 additionally contained significant amounts of N-acetyl-D-galactosamine, indicating the presence of both N- and O-linked oligosaccharides. As shown by digestion with endoglucosaminidase H, the N-linked oligosaccharides of hgp105, hgp115, hgp125 and hgp175 were of the complex type, whereas hgp85 also contained oligosaccharides of the high-mannose type. Half-lives of the turnover of the oligosacharide chains and of the protein backbone of the five glycoproteins were measured in the plasma membrane in pulse-chase experiments in vivo, using L-[3H]fucose as a marker of terminal sugars, D-[3H]mannose as marker of a core sugar and L-[3H]leucine for labelling the protein backbone. Protein backbones of the five glycoproteins were degraded with individual half-lives ranging over 41-90 h with a mean of 66 h. Compared to the

  11. The relationship between cAMP, Ca(2)+, and transport of CFTR to the plasma membrane.

    PubMed

    Chen, P; Hwang, T C; Gillis, K D

    2001-08-01

    The mechanism whereby cAMP stimulates Cl(-) flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1-43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl(-) current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1-43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca(2)+ in Calu-3 cells. However, no increase in Cl(-) current accompanies Ca(2)+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca(2)+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur. PMID:11479341

  12. ATP-dependent calcium transport across basal plasma membranes of human placental trophoblast

    SciTech Connect

    Fisher, G.J.; Kelley, L.K.; Smith, C.H.

    1987-01-01

    As a first step in understanding the cellular basis of maternal-fetal calcium transfer, the authors examined the characteristics of calcium uptake by a highly purified preparation of the syncytiotrophoblast basal (fetal facing) plasma membrane. In the presence of nanomolar concentrations of free calcium, basal membranes demonstrated substantial ATP-dependent calcium uptake. This uptake required magnesium, was not significantly affected by Na/sup +/ or K/sup +/ (50 mM), or sodium azide (10 mM). Intravesicular calcium was rapidly and completely released by the calcium ionophore rapidly and completely released by the calcium ionophore A23187. Calcium transport was significantly stimulated by the calcium-dependent regulatory protein calmodulin. Placental membrane fractions enriched in endoplasmic reticulum (ER) and mitochondria also demonstrated ATP-dependent calcium uptake. In contrast to basal membrane, mitochondrial calcium uptake was completely inhibited by azide. The rate of calcium uptake was completely inhibited by azide. The rate of calcium uptake by the ER was only 20% of that of basal membranes. They conclude that the placental basal plasma membrane possesses a high-affinity calcium transport system similar to that found in plasma membranes of a variety of cell types. This transporter is situated to permit it to function in vivo in maternal-fetal calcium transfer.

  13. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  14. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    PubMed

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  15. Plasma membrane calcium pump activity is affected by the membrane protein concentration. Evidence for the involvement of the actin cytoskeleton

    PubMed Central

    Vanagas, Laura; Rossi, Rolando C.; Caride, Ariel J.; Filoteo, Adelaida G.; Strehler, Emanuel E.; Rossi, Juan Pablo F.C.

    2007-01-01

    Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca2+ from the cell. Specific Ca2+-ATPase activity of erythrocyte membranes increased steeply up to 1.5–5 times when the membrane protein concentration decreased from 50 μg/ml to 1 μg/ml. The activation by dilution was also observed for ATP-dependent Ca2+ uptake into vesicles from Sf9 over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca2+ or Ca2+-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs. PMID:17481573

  16. Feedback regulation between plasma membrane tension and membrane-bending proteins organizes cell polarity during leading edge formation.

    PubMed

    Tsujita, Kazuya; Takenawa, Tadaomi; Itoh, Toshiki

    2015-06-01

    Tension applied to the plasma membrane (PM) is a global mechanical parameter involved in cell migration. However, how membrane tension regulates actin assembly is unknown. Here, we demonstrate that FBP17, a membrane-bending protein and an activator of WASP/N-WASP-dependent actin nucleation, is a PM tension sensor involved in leading edge formation. In migrating cells, FBP17 localizes to short membrane invaginations at the leading edge, while diminishing from the cell rear in response to PM tension increase. Conversely, following reduced PM tension, FBP17 dots randomly distribute throughout the cell, correlating with loss of polarized actin assembly on PM tension reduction. Actin protrusive force is required for the polarized accumulation, indicating a role for FBP17-mediated activation of WASP/N-WASP in PM tension generation. In vitro experiments show that FBP17 membrane-bending activity depends on liposomal membrane tension. Thus, FBP17 is the local activator of actin polymerization that is inhibited by PM tension in the feedback loop that regulates cell migration.

  17. Rab11 Regulates Trafficking of Trans-sialidase to the Plasma Membrane through the Contractile Vacuole Complex of Trypanosoma cruzi

    PubMed Central

    Niyogi, Sayantanee; Mucci, Juan; Campetella, Oscar; Docampo, Roberto

    2014-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease. Although this is not a free-living organism it has conserved a contractile vacuole complex (CVC) to regulate its osmolarity. This obligate intracellular pathogen is, in addition, dependent on surface proteins to invade its hosts. Here we used a combination of genetic and biochemical approaches to delineate the contribution of the CVC to the traffic of glycosylphosphatidylinositol (GPI)-anchored proteins to the plasma membrane of the parasite and promote host invasion. While T. cruzi Rab11 (GFP-TcRab11) localized to the CVC, a dominant negative (DN) mutant tagged with GFP (GFP-TcRab11DN) localized to the cytosol, and epimastigotes expressing this mutant were less responsive to hyposmotic and hyperosmotic stress. Mutant parasites were still able to differentiate into metacyclic forms and infect host cells. GPI-anchored trans-sialidase (TcTS), mucins of the 60–200 KDa family, and trypomastigote small surface antigen (TcTSSA II) co-localized with GFP-TcRab11 to the CVC during transformation of intracellular amastigotes into trypomastigotes. Mucins of the gp35/50 family also co-localized with the CVC during metacyclogenesis. Parasites expressing GFP-TcRab11DN prevented TcTS, but not other membrane proteins, from reaching the plasma membrane, and were less infective as compared to wild type cells. Incubation of these mutants in the presence of exogenous recombinant active, but not inactive, TcTS, and a sialic acid donor, before infecting host cells, partially rescued infectivity of trypomastigotes. Taking together these results reveal roles of TcRab11 in osmoregulation and trafficking of trans-sialidase to the plasma membrane, the role of trans-sialidase in promoting infection, and a novel unconventional mechanism of GPI-anchored protein secretion. PMID:24968013

  18. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    PubMed

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-01

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  19. Multi-Layer Electrospun Membrane Mimicking Tendon Sheath for Prevention of Tendon Adhesions

    PubMed Central

    Jiang, Shichao; Yan, Hede; Fan, Dapeng; Song, Jialin; Fan, Cunyi

    2015-01-01

    Defect of the tendon sheath after tendon injury is a main reason for tendon adhesions, but it is a daunting challenge for the biomimetic substitute of the tendon sheath after injury due to its multi-layer membrane-like structure and complex biologic functions. In this study, a multi-layer membrane with celecoxib-loaded poly(l-lactic acid)-polyethylene glycol (PELA) electrospun fibrous membrane as the outer layer, hyaluronic acid (HA) gel as middle layer, and PELA electrospun fibrous membrane as the inner layer was designed. The anti-adhesion efficacy of this multi-layer membrane was compared with a single-layer use in rabbit flexor digitorum profundus tendon model. The surface morphology showed that both PELA fibers and celecoxib-loaded PELA fibers in multi-layer membrane were uniform in size, randomly arrayed, very porous, and smooth without beads. Multi-layer membrane group had fewer peritendinous adhesions and better gliding than the PELA membrane group and control group in gross and histological observation. The similar mechanical characteristic and collagen expression of tendon repair site in the three groups indicated that the multi-layer membrane did not impair tendon healing. Taken together, our results demonstrated that such a biomimetic multi-layer sheath could be used as a potential strategy in clinics for promoting tendon gliding and preventing adhesion without poor tendon healing. PMID:25822877

  20. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  1. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    PubMed

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  2. Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-10-01

    Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-(2-/sup 3/H)inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in (/sup 3/H)inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/). An additional (/sup 3/H)inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP/sub 2/ on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily in the lower phase, microsomal/mitchrondrial-rich fraction.

  3. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  4. A fluorescent cholesterol analogue for observation of free cholesterol in the plasma membrane of live cells.

    PubMed

    Ogawa, Yoshikatsu; Tanaka, Mutsuo

    2016-01-01

    Free cholesterol in mammalian cells resides mostly in the plasma membrane, where it plays an important role in cellular homeostasis. We synthesized a new fluorescent cholesterol analogue that retained an intact alkyl chain and the sterane backbone of cholesterol. The hydroxyl group of cholesterol was converted into an amino group that was covalently linked to the fluorophore tetramethylrhodamine to retain the ability to form hydrogen bonds with adjacent molecules. Incubating live MDCK (Madin-Darby canine kidney) cells with our fluorescent cholesterol analogue resulted in the generation of intense signals that were detected by microscopy at the plasma membrane. Incubation with the analogue exerted minimal, if any, influence on cell growth, indicating that it could serve as a useful tool for analyzing free cholesterol at the plasma membrane.

  5. Transport of endocannabinoids across the plasma membrane and within the cell.

    PubMed

    Fowler, Christopher J

    2013-05-01

    Endocannabinoids are readily accumulated from the extracellular space by cells. Although their uptake properties have the appearance of a process of facilitated diffusion, it is by no means clear as to whether there is a plasma membrane transporter dedicated to this task. Intracellular carrier proteins that shuttle the endocannabinoid anandamide from the plasma membrane to its intracellular targets such as the metabolic enzyme, fatty acid amide hydrolase, have been identified. These include proteins with other primary functions, such as fatty-acid-binding proteins and heat shock protein 70, and possibly a fatty acid amide hydrolase-like anandamide transporter protein. Thus, anandamide uptake can be adequately described as a diffusion process across the plasma membrane followed by intracellular carrier-mediated transport to effector molecules, catabolic enzymes and sequestration sites, although it is recognized that different cells are likely to utilize different mechanisms of endocannabinoid transport depending upon the utility of the endocannabinoid for the cell in question. PMID:23441874

  6. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  7. The connection of cytoskeletal network with plasma membrane and the cell wall.

    PubMed

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-04-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.

  8. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  9. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking

    PubMed Central

    Weigel, Aubrey V.; Simon, Blair; Tamkun, Michael M.; Krapf, Diego

    2011-01-01

    Diffusion in the plasma membrane of living cells is often found to display anomalous dynamics. However, the mechanism underlying this diffusion pattern remains highly controversial. Here, we study the physical mechanism underlying Kv2.1 potassium channel anomalous dynamics using single-molecule tracking. Our analysis includes both time series of individual trajectories and ensemble averages. We show that an ergodic and a nonergodic process coexist in the plasma membrane. The ergodic process resembles a fractal structure with its origin in macromolecular crowding in the cell membrane. The nonergodic process is found to be regulated by transient binding to the actin cytoskeleton and can be accurately modeled by a continuous-time random walk. When the cell is treated with drugs that inhibit actin polymerization, the diffusion pattern of Kv2.1 channels recovers ergodicity. However, the fractal structure that induces anomalous diffusion remains unaltered. These results have direct implications on the regulation of membrane receptor trafficking and signaling. PMID:21464280

  10. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  11. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  12. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    The principal goal of our program is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. Our immediate goals are (1) to provide an understanding of the mechanism by which freeze-induced dehydration affects the formation of aparticulate domains and lamellar-to-hexagonal{sub {parallel}} phase transitions in the plasma membrane of NA protoplasts, (2) to characterize the cellular and molecular mechanisms by which cold acclimation and cryoprotectants preclude or diminish these alterations in the plasma membrane of ACC protoplasts and (3) to elucidate the molecular basis for the lesion that limits the maximum freezing tolerance of cold-acclimated winter rye and which is believed to be the formation of domains of interdigitated lipids in the L{sub {beta}} phase. This past year our efforts have included (a) characterization of the ultrastructural changes in the plasma membrane that are associated with freezing injury of protoplasts isolated from cold-acclimated rye leaves; (b) determinations of the hydration characteristics of plasma membrane lipids and model lipid mixtures, including the thermal dependence of the hydration characteristics; (c) studies of dehydration-induced phase transitions and demixing in model systems of plasma membrane lipids; (d) differential scanning calorimetry studies to determine the amount of freezable/unfreezable water that is associated with lipids; and (e) preliminary cryo-SEM observations of in situ ice formation in rye leaves. 11 refs.

  13. Identification of type-2 phosphatidic acid phosphohydrolase (PAPH-2) in neutrophil plasma membranes.

    PubMed

    Boder, E; Taylor, G; Akard, L; Jansen, J; English, D

    1994-11-01

    Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg(2+)-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase D-dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergent availability and cation sensitivity on the apparent distribution of PAPH in neutrophil subcellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzymes was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.

  14. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  15. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    PubMed Central

    Dimitrakoudis, D; Ramlal, T; Rastogi, S; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of

  16. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  17. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    PubMed

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  18. Identification of DNA-binding proteins on human umbilical vein endothelial cell plasma membrane.

    PubMed Central

    Chan, T M; Frampton, G; Cameron, J S

    1993-01-01

    The binding of anti-DNA antibodies to the endothelial cell is mediated through DNA, which forms a bridge between the immunoglobulin and the plasma membrane. We have shown that 32P-labelled DNA bound to the plasma membrane of human umbilical vein endothelial cells (HUVEC) by a saturable process, which could be competitively inhibited by non-radiolabelled DNA. In addition, DNA-binding was enhanced in HUVEC that had been treated with IL-1 alpha or tumour necrosis factor-alpha (TNF-alpha). DNA-binding proteins of mol. wt 46,000, 92,000, and 84,000 were identified by the binding of 32P-labelled DNA to plasma membrane proteins separated on SDS-PAGE. DNA-binding proteins of mol. wt 46,000 and 84,000 were also present in the cytosol and nucleus. Murine anti-DNA MoAb410 bound to a single band, at mol. wt 46,000, of plasma membrane protein, in the presence of DNA. Our results showed that DNA-binding proteins are present in different cellular fractions of endothelial cells. DNA-binding proteins on the cell membrane could participate in the in situ formation of immune deposits; and their presence in the cell nucleus suggests a potential role in the modulation of cell function. Images Fig. 3 Fig. 4 PMID:8419070

  19. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    PubMed

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.

  20. Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W

    PubMed Central

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François

    2012-01-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  1. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.

    PubMed

    Kota, Jhansi; Melin-Larsson, Monika; Ljungdahl, Per O; Forsberg, Hanna

    2007-04-01

    Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibit greatly reduced rates of amino acid uptake due to lower levels of AAPs in their plasma membranes. To further our understanding of mechanisms affecting AAP localization, we identified SSH4 and RCR2 as high-copy suppressors of shr3 null mutations. The overexpression of SSH4, RCR2, or the RCR2 homolog RCR1 increases steady-state AAP levels, whereas the genetic inactivation of these genes reduces steady-state AAP levels. Additionally, the overexpression of any of these suppressor genes exerts a positive effect on phosphate and uracil uptake systems. Ssh4 and Rcr2 primarily localize to structures associated with the vacuole; however, Rcr2 also localizes to endosome-like vesicles. Our findings are consistent with a model in which Ssh4, Rcr2, and presumably Rcr1, function within the endosome-vacuole trafficking pathway, where they affect events that determine whether plasma membrane proteins are degraded or routed to the plasma membrane.

  2. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes

    PubMed Central

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W.

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  3. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    PubMed

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  4. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces. PMID:26083007

  5. Ca2+-Transport through Plasma Membrane as a Test of Auxin Sensitivity

    PubMed Central

    Kirpichnikova, Anastasia A.; Rudashevskaya, Elena L.; Yemelyanov, Vladislav V.; Shishova, Maria F.

    2014-01-01

    Auxin is one of the crucial regulators of plant growth and development. The discovered auxin cytosolic receptor (TIR1) is not involved in the perception of the hormone signal at the plasma membrane. Instead, another receptor, related to the ABP1, auxin binding protein1, is supposed to be responsible for the perception at the plasma membrane. One of the fast and sensitive auxin-induced reactions is an increase of Ca2+ cytosolic concentration, which is suggested to be dependent on the activation of Ca2+ influx through the plasma membrane. This investigation was carried out with a plasmalemma enriched vesicle fraction, obtained from etiolated maize coleoptiles. The magnitude of Ca2+ efflux through the membrane vesicles was estimated according to the shift of potential dependent fluorescent dye diS-C3-(5). The obtained results showed that during coleoptiles ageing (3rd, 4th and 5th days of seedling etiolated growth) the magnitude of Ca2+ efflux from inside-out vesicles was decreased. Addition of ABP1 led to a recovery of Ca2+ efflux to the level of the youngest and most sensitive cells. Moreover, the efflux was more sensitive, responding from 10−8 to 10−6 M 1-NAA, in vesicles containing ABP1, whereas native vesicles showed the highest efflux at 10−6 M 1-NAA. We suggest that auxin increases plasma membrane permeability to Ca2+ and that ABP1 is involved in modulation of this reaction. PMID:27135501

  6. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  7. Structure-Function Relationships of ErbB RTKs in the Plasma Membrane of Living Cells

    PubMed Central

    Arndt-Jovin, Donna J.; Botelho, Michelle G.; Jovin, Thomas M.

    2014-01-01

    We review the states of the ErbB family of receptor tyrosine kinases (RTKs), primarily the EGF receptor (EGFR, ErbB1, HER1) and the orphan receptor ErbB2 as they exist in living mammalian cells, focusing on four main aspects: (1) aggregation state and distribution in the plasma membrane; (2) conformational features of the receptors situated in the plasma membrane, compared to the crystallographic structures of the isolated extracellular domains; (3) coupling of receptor disposition on filopodia with the transduction of signaling ligand gradients; and (4) ligand-independent receptor activation by application of a magnetic field. PMID:24691959

  8. Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM

    PubMed Central

    Onoa, Bibiana; Edwards, Robert H.; Holz, Ronald W.; Axelrod, Daniel

    2010-01-01

    Total internal reflection fluorescence microscopy (TIRFM) images the plasma membrane–cytosol interface and has allowed insights into the behavior of individual secretory granules before and during exocytosis. Much less is known about the dynamics of the other partner in exocytosis, the plasma membrane. In this study, we report the implementation of a TIRFM-based polarization technique to detect rapid submicrometer changes in plasma membrane topology as a result of exocytosis. A theoretical analysis of the technique is presented together with image simulations of predicted topologies of the postfusion granule membrane–plasma membrane complex. Experiments on diI-stained bovine adrenal chromaffin cells using polarized TIRFM demonstrate rapid and varied submicrometer changes in plasma membrane topology at sites of exocytosis that occur immediately upon fusion. We provide direct evidence for a persistent curvature in the exocytotic region that is altered by inhibition of dynamin guanosine triphosphatase activity and is temporally distinct from endocytosis measured by VMAT2-pHluorin. PMID:20142424

  9. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    NASA Astrophysics Data System (ADS)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  10. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    SciTech Connect

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L. )

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-(7-{sup 3}H)IAA(({sup 3}H)N{sub 3}IAA), in a manner similar to the accumulation of ({sup 3}H)IAA. The association of the ({sup 3}H)N{sub 3}IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of ({sup 3}H)N{sub 3}IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO{sub 4}/PAGE and fluorography. When the reaction temperature was lowered to {minus}196{degree}C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  11. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages.

    PubMed

    de la Haba, Carlos; Palacio, José R; Martínez, Paz; Morros, Antoni

    2013-02-01

    Plasma membrane is one of the preferential targets of reactive oxygen species which cause lipid peroxidation. This process modifies membrane properties such as membrane fluidity, a very important physical feature known to modulate membrane protein localization and function. The aim of this study is to evaluate the effect of oxidative stress on plasma membrane fluidity regionalization of single living THP-1 macrophages. These cells were oxidized with H(2)O(2) at different concentrations, and plasma membrane fluidity was analyzed by two-photon microscopy in combination with the environment-sensitive probe Laurdan. Results show a significant H(2)O(2) concentration dependent increase in the frequency of rigid lipid regions, mainly attributable to lipid rafts, at the expense of the intermediate fluidity regions. A novel statistical analysis evaluated changes in size and number of lipid raft domains under oxidative stress conditions, as lipid rafts are platforms aiding cell signaling and are thought to have relevant roles in macrophage functions. It is shown that H(2)O(2) causes an increase in the number, but not the size, of raft domains. As macrophages are highly resistant to H(2)O(2), these new raft domains might be involved in cell survival pathways.

  12. Prostasomes of canine seminal plasma - zinc-binding ability and effects on motility characteristics and plasma membrane integrity of spermatozoa.

    PubMed

    Mogielnicka-Brzozowska, M; Strzeżek, R; Wasilewska, K; Kordan, W

    2015-06-01

    Prostasomes are small lipid membrane-confined vesicles that are involved in various fertilization-related processes. The aim of this study was to demonstrate canine seminal plasma prostasomes' ability to bind zinc ions, as well as examining their effects on sperm motility characteristics and plasma membrane integrity during cold storage. Ejaculates, collected from five cross-bred dogs (n = 50), were subjected to ultracentrifugation followed by gel filtration (GF) on a Superose 6 column. Prostasomes appeared as a single fraction in the elution profile. Transmission electron microscopy (TEM) analysis of canine prostasomes revealed the presence of membrane vesicles with diameters ranging from 20.3 to 301 nm. The zinc-affinity chromatography on a Chelating Sepharose Fast Flow - Zn(2 +) showed that from 93 to 100% of the prostasome proteins bind zinc ions (P(+) Zn). SDS-PAGE revealed that canine P(+) Zn comprised four protein bands, with low molecular weights (10.2-12 kDa). We have also shown a positive effect of prostasomes (p < 0.05), especially variant B (2% of total seminal plasma protein) on canine sperm motility parameters after 2 h storage at 5°C (TMOT%, 44.75 ± 5.18) and PMOT%, 12.42 ± 1.59) and VAP, VSL, VCL, when compared with Control (TMOT%, 7.30 ± 1.41 and PMOT%, 1.70 ± 0.42). Higher percentage of spermatozoa with intact plasma membrane (SYBR/PI dual staining) and intact acrosome (Giemsa stained), after 2 h storage at 5°C, was showed, in variant A (1.5% of total seminal plasma protein) and B, when compared with Control and variant C (2.5% of total seminal plasma protein). The prostasomes' effect on motility and plasma membrane integrity of canine cold-stored spermatozoa may be related to their ability to bind zinc ions and regulate their availability to the sperm.

  13. [Experimental research on the prevention of rabbit postoperative abdominal cavity adhesion with PLGA membrane].

    PubMed

    Pang, Xiubing; Pan, Yongming; Hua, Fei; Sun, Chaoying; Chen, Liang; Chen, Fangming; Zhu, Keyan; Xu, Jianqin; Chen, Minli

    2015-02-01

    The aim of this paper is to explore the prevention of rabbit postoperative abdominal cavity adhesion with poly (lactic-co-glycotic acid) (PLGA) membrane and the mechanism of this prevention function. Sixty-six Japanese white rabbits were randomly divided into normal control group, model control group and PLGA membrane group. The rabbits were treated with multifactor methods to establish the postoperative abdominal cavity adhesion models except for those in the normal control group. PLGA membrane was used to cover the wounds of rabbits in the PLGA membrane group and nothing covered the wounds of rabbits in the model control group. The hematologic parameters, liver and kidney functions and fibrinogen contents were detected at different time. The rabbit were sacrificed 1, 2, 4, 6, 12 weeks after the operations, respectively. The adhesions were graded blindly, and Masson staining and immunohistochemistry methods were used to observe the proliferation of collagen fiber and the expression of transforming growth factor β1 (TGF-β1) on the cecal tissues, respectively. The grade of abdominal cavity adhesion showed that the PLGA membrane-treated group was significant lower than that in the model control group, and it has no influence on liver and kidney function and hematologic parameters. But the fibrinogen content and the number of white blood cell in the PLGA membrane group were significant lower than those of model control group 1 week and 2 weeks after operation, respectively. The density of collagen fiber and optical density of TGF-β1 in the PLGA membrane group were significant lower than those of model control group. The results demonstrated that PLGA membrane could be effective in preventing the abdominal adhesions in rabbits, and it was mostly involved in the reducing of fibrinogen exudation, and inhibited the proliferation of collagen fiber and over-expression of TGF-β1.

  14. Onset of electrical excitability during a period of circus plasma membrane movements in differentiating Xenopus neurons.

    PubMed

    Olson, E C

    1996-08-15

    Living neurons are usually first identifiable in primary cultures at the time of neurite initiation, and studies of excitability have been restricted largely to the subsequent period. A morphological early marker is described that identifies neurons for whole-cell voltage-clamp recordings before neurite initiation. Video time-lapse recordings of cultured cells dissociated from neurectoderm of Xenopus neural plate stage embryos reveal cells demonstrating circus movements, in which blebs of plasma membrane propagate around the cell circumference within a period of several minutes. All neurons demonstrate circus movements before morphological differentiation; the fraction of cells exhibiting circus movements that differentiate morphologically depends on the substrate on which they are cultured. Blockade of circus activity with cytochalasin B does not prevent neuronal differentiation. Circus movements are not neurectoderm-specific because they similarly predict differentiation of myocytes developing in mesodermal cultures. Initially inexcitable, neurons develop voltage-dependent K+, Na+, and Ca2+ currents during the period of several hours in which they exhibit circus movements. The early development of depolarization-induced elevations of [Ca2+]i several hours before morphological differentiation corresponds to the previously described onset of functionally significant spontaneous elevations of [Ca2+]i in these neurons and demonstrates a role for early expression of voltage-dependent ion channels.

  15. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation.

    PubMed

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel J D

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores. PMID:27436142

  16. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-07-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.

  17. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    PubMed Central

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores. PMID:27436142

  18. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation.

    PubMed

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel J D

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.

  19. Role of lipid-induced changes in plasma membrane in the biophysical shunt theory of psychopathology.

    PubMed

    Naisberg, Y; Weizman, A

    1997-04-01

    The existence of a lipid factor that either causes faulty lipid metabolism or directly contributes to the emergence of a biophysical shunt in neuronal membrane ionic flow propagation is proposed. The neuronal membrane contains a remarkable amount of phospholipids, glycolipids and cholesterol. It is assumed that, under certain unfavorable intrinsic states, the plasma membrane's lipid order and composition and, consequently, its cholesterol-to-phospholipid ratio, may change. This, in turn, may significantly modify membrane fluidity, altering the essential physical properties in the affected portions of the membrane and causing a disarray in the adjacent ion channels, leading to the establishment of a biophysical shunt in a loop-like operation, forming the basis for a variety of mental disorders. The present model offers a diet-induced lipid correction for the relief of psychopathological problems.

  20. Cross-tolerance of human placental plasma membranes of smokers to fluidizing effects of alcohol

    SciTech Connect

    Sastry, B.V.R.; Horst, M.A.; Naukam, R.J. )

    1991-03-11

    There is cross-tolerance between ethanol and several centrally acting drugs at the membrane level. In order to evaluate cross-tolerance between maternal smoking during pregnancy and alcohol, the authors have prepared plasma membranes of human term placentas from nonsmokers (NS, n=5) and smokers (S, 24 {plus minus} 8 cigarettes/day, n=5) and studied their microviscosities by steady state fluorescence polarization using trans-1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe. These experiments gave the following results: (a) microviscosity was increased by maternal smoking; (b) alcohol decreased microviscosity of the membranes of smokers; (c) exogenous nicotine did not exert any significant effect on the membranes of smokers and nonsmokers. Therefore, the increase in the rigidity of placental plasma membranes is due to chronic smoking, and these membranes are tolerant to the fluidizing effects of alcohol. Cross-tolerance between smoking and ethanol suggests a common hydrophobic locus of the apparent adaptation at the membrane level.

  1. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  2. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  3. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  4. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  5. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture.

    PubMed

    Shea, T B; Fischer, I; Sapirstein, V

    1986-09-01

    Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane. PMID:3016181

  6. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane

    PubMed Central

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-01

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers. DOI: http://dx.doi.org/10.7554/eLife.12125.001 PMID:26824389

  7. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    PubMed Central

    Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.

    2010-01-01

    Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148

  8. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    SciTech Connect

    Li, Xiaojie; Zhang, Ling; Shao, Yueting; Liang, Zuowen; Shao, Chen; Wang, Bo; Guo, Baofeng; Li, Na; Zhao, Xuejian; Li, Yang; Xu, Deqi

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed

  9. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  10. Isolation of radio-iodinated apical and basal-lateral plasma membranes of toad bladder epithelium.

    PubMed

    Rodriguez, H J; Edelman, I S

    1979-04-01

    The apical and basal-lateral plasma membranes of toad bladder epithelium were radio-iodinated with the glucose-glucose oxidase-lactoperoxidase system. The covalently bound radio iodine was used as a marker during subcellular fractionation and membrane isolation. Homogenization conditions that ensured rupture of more than 80% of the cells without substantial nuclear damage were defined by Normarski optics. The nuclei were separated by differential centrifugation and the apical and basal-lateral components were resolved by differential and sucrose density gradient centrifugation. The apical components yielded two radioactive bands that were identified as glycocalyx and plasma membrane labeled with 125I. The basal-lateral components yielded a hetero-disperse pattern made up of at least 3 radioactive bands, but the bulk of the activity of ouabain-sensitive ATPase comigrated with only one of these bands. The mitochondia, identified by assays for cytochrome oxidase and NADH cytochrome c reductase activities, were separated from the radio-iodine labeled by centrifugation in sucrose density gradients under isokinetic conditions. The labeled glycocalyx and the slowly migrating components of basal-lateral labeling were separated from the radio-iodinated membranes by centrifugation at 100,000 x g x 1 hr after removal of the mitochrondria by the isokinetic method. The labeled membranes were then subjected to ultracentrifugation in sucrose density gradients under isopycnic conditions; the basal-lateral membranes containing ouabain-sensitive ATP-ase were well resolved from the apical membranes by this method. These results provide a relatively rapid method of attaining partial purification of the apical and basal-lateral plasma membranes of toad bladder epithelium. PMID:222911

  11. A novel role of Rab11 in trafficking GPI-anchored trans-sialidase to the plasma membrane of Trypanosoma cruzi.

    PubMed

    Niyogi, Sayantanee; Docampo, Roberto

    2015-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is a unicellular parasite that possesses a contractile vacuole complex (CVC). This organelle is usually present in free-living protists and is mainly involved in osmoregulation. However, in some organisms, like for example Dictyostelium discoideum, other roles include calcium homeostasis and transference of proteins to the plasma membrane. T. cruzi plasma membrane is very rich in glycosylphosphatidylinositol anchored proteins (GPI-AP) and a very important group of GPI-AP is that of the trans-sialidases. These enzymes catalyze the transfer of sialic acid from host glycoconjugates to mucins present in the surface of the parasite and are important for host cell invasion among other functions. We recently reported that a pathway dependent on the Rab GTPase Rab11 is involved in the traffic of trans-sialidases to the plasma membrane through the CVC of the infective stages of the parasite and that preventing this traffic results in considerable reduction in the ability of T. cruzi to infect host cells. We also found that traffic of other GPI-anchored proteins is also through the CVC but uses a Rab11-independent pathway. These represent unconventional pathways of GPI-anchored protein traffic to the plasma membrane.

  12. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Ma, Heun Kan; Dixon, S. Jeffrey; Mittler, Silvia

    2012-07-01

    Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.

  13. Video Views and Reviews: Golgi Export, Targeting, and Plasma Membrane Caveolae

    ERIC Educational Resources Information Center

    Watters, Christopher

    2004-01-01

    In this article, the author reviews videos from "Molecular Biology of the Cell (MBC)" depicting various aspects of plasma membrane (PM) dynamics, including the targeting of newly synthesized components and the organization of those PM invaginations called caveolae. The papers accompanying these videos describe, respectively, the constitutive…

  14. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  15. Independent localization of plasma membrane and chloroplast components during eyespot assembly.

    PubMed

    Mittelmeier, Telsa M; Thompson, Mark D; Öztürk, Esra; Dieckmann, Carol L

    2013-09-01

    Like many algae, Chlamydomonas reinhardtii is phototactic, using two anterior flagella to swim toward light optimal for photosynthesis. The flagella are responsive to signals initiated at the photosensory eyespot, which comprises photoreceptors in the plasma membrane and layers of pigment granules in the chloroplast. Phototaxis depends on placement of the eyespot at a specific asymmetric location relative to the flagella, basal bodies, and bundles of two or four highly acetylated microtubules, termed rootlets, which extend from the basal bodies toward the posterior of the cell. Previous work has shown that the eyespot is disassembled prior to cell division, and new eyespots are assembled in daughter cells adjacent to the nascent four-membered rootlet associated with the daughter basal body (D4), but the chronology of these assembly events has not been determined. Here we use immunofluorescence microscopy to follow assembly and acetylation of the D4 rootlet, localization of individual eyespot components in the plasma membrane or chloroplast envelope, and flagellar emergence during and immediately following cell division. We find that the D4 rootlet is assembled before the initiation of eyespot assembly, which occurs within the same time frame as rootlet acetylation and flagellar outgrowth. Photoreceptors in the plasma membrane are correctly localized in eyespot mutant cells lacking pigment granule layers, and chloroplast components of the eyespot assemble in mutant cells in which photoreceptor localization is retarded. The data suggest that plasma membrane and chloroplast components of the eyespot are independently responsive to a cytoskeletal positioning cue. PMID:23873865

  16. Double Potential Pulse Chronocoulometry for Detection of Plasma Membrane Cholesterol Efflux at Disk Platinum Microelectrodes

    PubMed Central

    West, Richard H.; Lu, Hui; Shaw, Kendrick; Chiel, Hillel J.; Kelley, Thomas J.; Burgess, James D.

    2016-01-01

    A double potential pulse scheme is reported for observation of cholesterol efflux from the plasma membrane of a single neuron cell. Capillary Pt disk microelectrodes having a thin glass insulator allow the 10 μm diameter electrode and cell to be viewed under optical magnification. The electrode, covalently functionalized with cholesterol oxidase, is positioned in contact with the cell surface resulting in enzyme catalyzed cholesterol oxidation and efflux of cholesterol from the plasma membrane at the electrode contact site. Enzymatically generated hydrogen peroxide accumulates at the electrode/cell interface during a 5 s hold-time and is oxidized during application of a potential pulse. A second, replicate potential pulse is applied 0.5 s after the first potential pulse to gauge background charge prior to significant accumulation of hydrogen peroxide. The difference in charge passed between the first and second potential pulse provides a measure of hydrogen peroxide generated by the enzyme and is an indication of the cholesterol efflux. Control experiments for bare Pt microelectrodes in contact with the cell plasma membrane show difference charge signals in the range of about 7–10 pC. Enzyme-modified electrodes in contact with the plasma membrane show signals in the range of 16–26 pC. PMID:27330196

  17. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  18. Asymmetry of plasma membrane lipid order in Madin-Darby Canine Kidney cells.

    PubMed

    Le Grimellec, C; Friedlander, G; Giocondi, M C

    1988-07-01

    Fluorescence anisotropy experiments have been done to estimate, in situ, the lipid order of the plasma membrane of polarized Madin-Darby Canine Kidney cells (MDCK) grown on glass cover slips and labeled by 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), a specific marker of the plasma membrane of living cells. Fluorescence microscopy, back-exchange, and quenching experiments indicated that TMA-DPH labeled the highly ordered (r greater than or equal to 0.32, 37 degrees C) apical domain of the plasma membrane of confluent monolayers. Opening of tight junctions or addition of the probe to cell suspensions resulted in a homogeneous distribution of TMA-DPH over the cell surface and in a marked decrease in anisotropy (0.27 less than or equal to r less than or equal to 0.29) that was due neither to a direct effect of Ca2+ on the probe nor to a change in fluorescence lifetime. Our data indicate that the apical domain, likely the external leaflet, of the plasma membrane of polarized MDCK cells is much more ordered than its basolateral counterpart.

  19. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  20. Plasma chemical modification of track-etched membrane surface layer for improvement of their biomedical properties

    NASA Astrophysics Data System (ADS)

    Kravets, Liubov I.; Ryazantseva, Tatyana V.

    2013-12-01

    The morphological and clinical studies of poly(ethylene terephthalate) track-etched membrane modified by plasma of non-polymerizing gases as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  1. Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell.

    PubMed

    Kim, Sung-Kyoung; Rose, Rebecca; Choksawangkarn, Waeowalee; Graham, Lauren; Hu, Junkai; Fenselau, Catherine; Lee, Sang Bok

    2013-12-01

    A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis.

  2. Evaluation of a new microporous filtration membrane system for therapeutic plasma exchange.

    PubMed

    Kurtz, S R; Carey, P M; McGill, M; Pineda, A A; Zaroulis, C G; Case, M T

    1987-01-01

    A new therapeutic plasma exchange device developed by Sarns Inc./3M was evaluated in plasmapheresis of 20 healthy volunteers and in a multicenter clinical study of therapeutic plasma exchange that included 49 patients. Safety and efficacy of plasma separation from whole blood were assessed for a module that contains Durapore microporous surfactant-free polyvinylidene fluoride membrane (Millipore Corp., Bedford, Mass., USA). The extra-corporeal volume was 80 ml. Citrate and heparin anticoagulants were utilized. Mean plasma separation efficiency was 62% with unhindered passage of plasma proteins through the membrane pores and no hemolysis or activation of complement as measured by total hemolytic complement (CH50) and C3 conversion. Mean decrease in platelet count after procedures was 10%. No severe reactions occurred, and citrate effects (13%) were comparable to values reported with centrifugal instruments. The Sarns Inc./3M Therapore device is a rapid, safe and efficient system for plasma exchange and potentially for source plasma collection. The principal benefits are small extracorporeal volume and cell-free filtrate.

  3. Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters▿

    PubMed Central

    Pérez-Valle, Jorge; Jenkins, Huw; Merchan, Stephanie; Montiel, Vera; Ramos, José; Sharma, Sukesh; Serrano, Ramón; Yenush, Lynne

    2007-01-01

    K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant “halotolerance” protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+-pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves. PMID:17548466

  4. Dynamic Organization of Myristoylated Src in the Live Cell Plasma Membrane.

    PubMed

    Smith, Adam W; Huang, Hector H; Endres, Nicholas F; Rhodes, Christopher; Groves, Jay T

    2016-02-11

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell-cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10-80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Taken together, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane. PMID:26771210

  5. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes.

    PubMed Central

    Pestonjamasp, K; Amieva, M R; Strassel, C P; Nauseef, W M; Furthmayr, H; Luna, E J

    1995-01-01

    Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein. Images PMID:7612961

  6. Simultaneous Measurements of Cytoplasmic K+ Concentration and the Plasma Membrane Electrical Parameters in Single Membrane Samples of Chara corallina

    PubMed Central

    Beilby, Mary J.; Blatt, Michael R.

    1986-01-01

    The electrophysiological properties of cytoplasm-rich fragments (single membrane samples) prepared from internodal cells of Chara corallina were explored in conjunction with K+-sensitive microelectrode and current-voltage (I-V) measurements. This system eliminated the problem of the inaccessible cytoplasmic layer, while preserving many of the electrical characteristics of the intact cells. In 0.1 millimolar external K concentration (Ko+), the resting conductance (membrane conductance Gm, 0.85 ± 0.25 Siemens per square meter (±standard error)) of the single membrane samples, was dominated by the proton pump, as suggested by the response of the near-linear I-V characteristic to changes in external pH. Initial cytoplasmic K+ activities (aK+), judged most reliable, gave values of 117 ± 67 millimolar; stable aK+ values were 77 ± 31 millimolar. Equilibrium potentials for K+ (Nernst equilibrium potential) (EK) calculated, using either of these data sets, were near the mean membrane potential (Vm). On a cell-to-cell basis, however, EK was generally negative of the Vm, despite an electrogenic contribution from the Chara proton pump. When Ko+ was increased to 1.0 millimolar or above, Gm rose (by 8- to 10-fold in 10 millimolar Ko+), the steady state I-V characteristics showed a region of negative slope conductance, and Vm followed EK. These results confirm previous studies which implicated a Ko+-induced and voltage-dependent permeability to K+ at the Chara plasma membrane. They provide an explanation for transitions between apparent Ko+-insensitive and Ko+-sensitive (`K+ electrode') behavior displayed by the membrane potential, as recorded in many algae and higher plant cells. PMID:16665044

  7. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells.

    PubMed

    Bulychev, Alexander A; Kamzolkina, Natalia A

    2006-10-01

    Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.

  8. The Structure of the Yeast Plasma Membrane SNARE Complex Reveals Destabilizing Water Filled Cavities

    SciTech Connect

    Strop, P.; Kaiser, S.E.; Vrljic, M.; Brunger, A.T.

    2009-05-26

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7{angstrom} resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.

  9. Synthesis of Proton-Exchange Membranes by a Plasma Polymerization Technique

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongqing; Meng, Yuedong; Shi, Yicai

    2008-08-01

    An after-glow capacitively coupled discharge technique has been used to fabricate ultra-thin proton-exchange composite membranes in a plasma polymerization reactor, where styrene and acrylic acid are used as starting materials. During the preparation, the energy of the ionized particles extracted from the radio frequency glow discharge region to the plasma polymerization region can be easily controlled by adjusting the bias voltage applied to the screen grids and substrate. Therefore, the degradation of monomers can be effectively avoided, and the contents of the proton exchange groups on the obtained membranes could reach to a higher extent. The synthesized membranes are dense with uniform structure and are demonstrated as good proton conductors.

  10. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  11. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    NASA Astrophysics Data System (ADS)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  12. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    PubMed

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  13. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    PubMed

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic

  14. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  15. Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli.

    PubMed

    Nenninger, Anja; Mastroianni, Giulia; Robson, Alexander; Lenn, Tchern; Xue, Quan; Leake, Mark C; Mullineaux, Conrad W

    2014-06-01

    Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.

  16. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane

    PubMed Central

    Goiko, Maria; de Bruyn, John R.; Heit, Bryan

    2016-01-01

    The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton. PMID:27725698

  17. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  18. Characterization of Differential Protein Tethering at the Plasma Membrane in Response to Epidermal Growth Factor Signaling

    PubMed Central

    Looyenga, Brendan D.; MacKeigan, Jeffrey P.

    2013-01-01

    Physical tethering of membrane proteins to the cortical actin cytoskeleton provides functional organization to the plasma membrane and contributes to diverse cellular processes including cell signaling, vesicular trafficking, endocytosis, and migration. For these processes to occur, membrane protein tethering must be dynamically regulated in response to environmental cues. In this study, we describe a novel biochemical scheme for isolating the complement of plasma membrane proteins that are physically tethered to the actin cytoskeleton. We utilized this method in combination with tandem liquid chromatography/mass spectrometry (LC–MS/MS) to demonstrate that cytoskeletal tethering of membrane proteins is acutely regulated by epidermal growth factor (EGF) in normal human kidney (HK2) cells. Our results indicate that several proteins known to be involved in EGF signaling, as well as other proteins not traditionally associated with this pathway, are tethered to the cytoskeleton in dynamic fashion. Further analysis of one hit from our proteomic survey, the receptor phosphotyrosine phosphatase PTPRS, revealed a correlation between cytoskeletal tethering and endosomal trafficking in response to EGF. This finding parallels previous indications that PTPRS is involved in the desensitization of EGFR and provides a potential mechanism to coordinate localization of these two membrane proteins in the same compartment upon EGFR activation. PMID:22559174

  19. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-01

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices. PMID:26658212

  20. Water permeability of polyethylene terephthalate track membranes modified in plasma of dimethylaniline

    NASA Astrophysics Data System (ADS)

    Kravets, Lyubov; Dmitriev, Serguei; Gilman, Alla; Drachev, Alexander

    2004-09-01

    The surface properties and hydrodynamic characteristics of composite membranes consisting of a porous substrate, on which a polymer layer from a direct current discharge in a mixture of air and vapours of dimethylaniline was deposited, have been investigated. As a substrate, we used poly(ethylene) terephthalate track membrane (PET TM) of the thickness of 10 μ m and the effective pore diameter of 0.215 μ m (pore density is 2\\cdot 10^8 cm-2). The performed researches show that when treating the membranes in plasma, two competing processes are observed: deposition of the polymer layer on a membrane surface, that testifies increase of the mass of sample, and etching of a polymeric matrix which causes growth of effective pore diameter. The last process is stipulated by presence of oxygen in the gas mixture. Decreasing the degree of overweight of the sample at increasing the treatment time leads us to a supposition that a dominating process in this case becomes the process of gas-discharge etching. In all cases, if treating PET TM, a drop of the water contact angle occurs, i.e. hydrophilization of the membrane surface takes place that is connected first of all with a grafting of polymer layer containing polar functional groups. The research in the hydrodynamic characteristics of the initial PET TM and the membranes modified in plasma at neutral and subacid pH value of filtrate leads to a linear dependence of their permeability upon the quantity of applied pressure. It is connected with a viscous character of the flow, that is, when the diameter of the pores of the membrane is much more than the size of the water molecules. This fact shows that the macromolecules of the deposited polymer layer in this case have a compact conformation, which does not hinder the water molecules infiltration. At a lower pH value of the filtrate, the picture cardinally changes. For modified in plasma membranes a diversion from the linear relation is observed. This means that in this case

  1. Glia plasma membrane transporters: Key players in glutamatergic neurotransmission.

    PubMed

    Flores-Méndez, Marco; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory amino acid in the central nervous system, elicits its functions through the activation of specific membrane receptors that are expressed in neurons and glial cells. The re-cycling of this amino acid is carried out mostly through a continuous interplay between neurons and glia cells, given the fact that the removal of glutamate from the synaptic cleft depends mainly on glial glutamate transporters. Therefore, a functional and physical interaction between membrane transporters links glutamate uptake, transformation to glutamine and its release to the extra-synaptic space and its uptake to the pre-synaptic terminal. This sequence of events, best known as the glutamate/glutamine shuttle is central to glutamatergic transmission. In this sense, the uptake process triggers a complex series of biochemical cascades that modify the physiology of glial cells in the immediate, short and long term so as to be capable to take up, transform and release these amino acids in a regulated amount and in an appropriate time frame to sustain glutamatergic neurotransmission. Among the signaling cascades activated in glial cells by glutamate transporters, a sustained Na(+) and Ca(2+) influx, protein posttranslational modifications and gene expression regulation at the transcriptional and translational levels are present. Therefore, it is clear that the pivotal role of glial cells in the context of excitatory transmission has been constantly underestimated. PMID:27083407

  2. Surfactant-Increased Glyphosate Uptake into Plasma Membrane Vesicles Isolated from Common Lambsquarters Leaves.

    PubMed Central

    Riechers, D. E.; Wax, L. M.; Liebl, R. A.; Bush, D. R.

    1994-01-01

    Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake. PMID:12232297

  3. Solubilization and Partial Purification of the Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction

    PubMed Central

    Dupont, Frances M.; Leonard, Robert T.

    1980-01-01

    The K+-stimulated ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mo 17) by solubilization with 30 millimolar octyl-β-d-glucopyranoside followed by precipitation with dilute ammonium sulfate. The specific activity of the enzyme was increased about five times by this procedure. The molecular weight of the detergent-extracted ATPase complex was estimated to be at least 500,000 daltons by chromatography on a Bio-Gel A-5m column. Negative staining electron microscopy indicated that the detergent-extracted material consisted of amorphous particles, while the ammonium sulfate precipitate was composed of uniform vesicles with an average diameter of 100 nanometers. The protein composition of the ammonium sulfate precipitate was significantly different from that of the plasma membrane fraction when compared by sodium dodecyl sulfate gel electrophoresis. The characteristics of the partially purified ATPase resembled those of the plasma membrane associated enzyme. The ATPase required Mg2+, was further stimulated by K+, was almost completely inhibited by 0.1 millimolar diethylstilbestrol, and was not affected by 5.0 micrograms per milliliter oligomycin. Although the detergents sodium cholate, deoxycholate, Triton X-100 and Lubrol WX also solubilized some membrane protein, none solubilized the K+-stimulated ATPase activity. Low concentrations of each detergent, including octyl-β-d-glucopyranoside, activated the ATPase and higher concentrations inactivated the enzyme. These results suggest that the plasma membrane ATPase is a large, integral membrane protein or protein complex that requires lipids to maintain its activity. Images PMID:16661309

  4. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  5. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    PubMed

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  6. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    PubMed

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  7. Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability[W

    PubMed Central

    Schapire, Arnaldo L.; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A.

    2008-01-01

    Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca2+-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca2+-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness. PMID:19088329

  8. Colloidal lanthanum as a marker for impaired plasma membrane permeability in ischemic dog myocardium.

    PubMed Central

    Hoffstein, S.; Gennaro, D. E.; Fox, A. C.; Hirsch, J.; Streuli, F.; Weissmann, G.

    1975-01-01

    Colloidal lanthanum salts have an average particle size of 40 degrees A; consequently, this electron-opaque marker remains extracellular and does not cross the intact plasma membrane. The affinity of lanthanum for calcium-binding sites on mitochondrial membranes makes it possible to demonstrate loss of plasma membrane integrity at the cellular level in ischemic myocardium. Biopsies were obtained from infarcted, marginal and normal areas 3 1/2 hours after ischemia was produced in 9 anesthetized closed-chest dogs by electrically induced thrombosis of the left anterior descending coronary artery. The tissue was immediately fixed in 4% glutaraldehyde and 0.1 M cacodylate buffer containing 1.3% La(NO3)3, pH 7.4, for 2 hours. In normal control tissue prepared this way the lanthanum tracer, as expected, was confirmed to the extracellular spaces, including, basement membranes, gap junctions and portions of the intercalated discs. Specimens taken near the center of frank infarctions all contained intracellular as well as extracellular lanthanum. Intracellular lanthanum could be seen evenly distributed around lipid droplets and in focal deposits around mitochondria. Only when mitochondria were disrupted did lanthanum gain access to internal sites on mitochondrial membranes. Areas marginal to the infarct contained cells in varying stages of degeneration including many that appeared normal by morphologic criteria alone. Intracellular lanthanum was present in many but not all of the marginal cells in which degenerative changes could be seen. Similarly a few of the cells that appeared morphologically normal contained intracellular lanthanum. The entry of lanthanum into some of these marginal cells and its exclusion from adjacent cells demonstrated that ischemic injury affects the permeability properties of the plasma membrane and independently of other intracellular morphologic changes and that lanthanum can be a sensitive indicator of such alteration in membrane permeability

  9. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications.

    PubMed

    Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László

    2014-06-01

    The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  10. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes.

    PubMed

    Fernie-King, B A; Seilly, D J; Willers, C; Würzner, R; Davies, A; Lachmann, P J

    2001-07-01

    Streptococcal inhibitor of complement (SIC) was first described in 1996 as a putative inhibitor of the membrane attack complex of complement (MAC). SIC is a 31 000 MW protein secreted in large quantities by the virulent Streptococcus pyogenes strains M1 and M57, and is encoded by a gene which is extremely variable. In order to study further the interactions of SIC with the MAC, we have made a recombinant form of SIC (rSIC) in Escherichia coli and purified native M1 SIC which was used to raise a polyclonal antibody. SIC prevented reactive lysis of guinea pig erythrocytes by the MAC at a stage prior to C5b67 complexes binding to cell membranes, presumably by blocking the transiently expressed membrane insertion site on C7. The ability of SIC and clusterin (another putative fluid phase complement inhibitor) to inhibit complement lysis was compared, and found to be equally efficient. In parallel, by enzyme-linked immunosorbent assay both SIC and rSIC bound strongly to C5b67 and C5b678 complexes and to a lesser extent C5b-9, but only weakly to individual complement components. The implications of these data for virulence of SIC-positive streptococci are discussed, in light of the fact that Gram-positive organisms are already protected against complement lysis by the presence of their peptidoglycan cell walls. We speculate that MAC inhibition may not be the sole function of SIC.

  11. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  12. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    PubMed

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  13. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane.

    PubMed Central

    Monti, E; Bassi, M T; Papini, N; Riboni, M; Manzoni, M; Venerando, B; Croci, G; Preti, A; Ballabio, A; Tettamanti, G; Borsani, G

    2000-01-01

    Several mammalian sialidases have been described so far, suggesting the existence of numerous polypeptides with different tissue distributions, subcellular localizations and substrate specificities. Among these enzymes, plasma-membrane-associated sialidase(s) have a pivotal role in modulating the ganglioside content of the lipid bilayer, suggesting their involvement in the complex mechanisms governing cell-surface biological functions. Here we describe the identification and expression of a human plasma-membrane-associated sialidase, NEU3, isolated starting from an expressed sequence tag (EST) clone. The cDNA for this sialidase encodes a 428-residue protein containing a putative transmembrane helix, a YRIP (single-letter amino acid codes) motif and three Asp boxes characteristic of sialidases. The polypeptide shows high sequence identity (78%) with the membrane-associated sialidase recently purified and cloned from Bos taurus. Northern blot analysis showed a wide pattern of expression of the gene, in both adult and fetal human tissues. Transient expression in COS7 cells permitted the detection of a sialidase activity with high activity towards ganglioside substrates at a pH optimum of 3.8. Immunofluorescence staining of the transfected COS7 cells demonstrated the protein's localization in the plasma membrane. PMID:10861246

  14. The behaviour of the plasma membrane during plasmolysis: a study by UV microscopy.

    PubMed

    Lang-Pauluzzi, I

    2000-06-01

    A high resolution ultraviolet (UV) bright-field microscope was used to analyse the formation of Hechtian strands and the Hechtian reticulation that remain attached to the cell wall after plasmolysis and deplasmolysis of onion inner epidermal cells. In real time video images, UV microscopy allowed a detailed investigation of the dynamic behaviour of the plasma membrane during the processes of osmotic water loss and uptake. Furthermore, the role of cytoskeletal elements as possible linkers of the plasma membrane to the cell wall was probed by application of cytoskeletal drugs during plasmolysis. Microtubules were depolymerized in oryzalin, and latrunculin B was used to destabilize actin microfilaments. The results showed no visible changes in the formation of the Hechtian reticulation or strands. Plasmolysis forms appeared to be normal, indicating stong membrane-to-wall attachments independent of cytoskeletal elements. During re-expansion of the protoplast in deplasmolysis, the plasma membrane incorporated Hechtian strands and subprotoplasts, fused with the Hechtian reticulation and finally realigned at the cell wall.

  15. Evolutionary appearance of the plasma membrane H (+) -ATPase containing a penultimate threonine in the bryophyte.

    PubMed

    Okumura, Masaki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

    2012-08-01

    The plasma membrane H (+) -ATPase provides the driving force for solute transport via an electrochemical gradient of H (+) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H (+) -ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H (+) -ATPase (pT H (+) -ATPase) and non-pT H (+) -ATPase as in the green algae, and that pT H (+) -ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H (+) -ATPase genes, designated PpHA (Physcomitrella patens H (+) -ATPase). Six isoforms are the pT H (+) -ATPase; a remaining isoform is non-pT H (+) -ATPase. An apparent 95-kD protein was recognized by anti-H (+) -ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H (+) -ATPase. Furthermore, we could not detect the pT H (+) -ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H (+) -ATPase most likely appeared for the first time in bryophyte.

  16. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity. PMID:23851147

  17. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms.

    PubMed

    Brameshuber, Mario; Sevcsik, Eva; Rossboth, Benedikt K; Manner, Christina; Deigner, Hans-Peter; Peksel, Begüm; Péter, Mária; Török, Zsolt; Hermetter, Albin; Schütz, Gerhard J

    2016-01-01

    We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents.

  18. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

    PubMed Central

    Thelin, William R.; Chen, Yun; Gentzsch, Martina; Kreda, Silvia M.; Sallee, Jennifer L.; Scarlett, Cameron O.; Borchers, Christoph H.; Jacobson, Ken; Stutts, M. Jackson; Milgram, Sharon L.

    2007-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation. PMID:17235394

  19. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    PubMed

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases. PMID:27030010

  20. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    PubMed

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  1. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  2. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology. PMID:25544590

  3. The effect of Amaranth oil on monolayers of artificial lipids and hepatocyte plasma membranes with adrenalin-induced stress.

    PubMed

    Yelisyeyeva, O P; Semen, K O; Ostrovska, G V; Kaminskyy, D V; Sirota, T V; Zarkovic, N; Mazur, D; Lutsyk, O D; Rybalchenko, K; Bast, A

    2014-03-15

    In this paper the oil from seeds of Amaranthus cruentus L. (AmO) was shown to be an efficient modulator of the physical chemical properties of artificial lipid and rat hepatocyte plasma membranes. AmO improved the membrane stability, their stress resistance and the adsorption of neurotensin to plasma membranes with the distinct biphasic interactions being observed even after adrenalin stress exposure. The analysis of pro-/antioxidant balance in rat blood revealed a mild prooxidant activity after AmO intake, which was accompanied by accumulation of oxidative destruction products in plasma membranes. This prooxidant action of AmO was corroborated in vitro in an adrenalin autooxidation model. On the other hand, the observed improved resistance to adrenalin stress in AmO supplemented rats was associated with an antioxidant response in blood and plasma membrane studies. The AmO effects can be attributed to the modulation of the metabolic pathways involved into oxygen and free radical homeostasis.

  4. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.

  5. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    SciTech Connect

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunsch, David M.; Rodland, Karin D.

    2003-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  6. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE PAGESBeta

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunschel, David S.; Rodland, Karin D.

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore » digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  7. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  8. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells

    PubMed Central

    Jaiswal, Jyoti K.; Lauritzen, Stine P.; Scheffer, Luana; Sakaguchi, Masakiyo; Bunkenborg, Jakob; Simon, Sanford M.; Kallunki, Tuula; Jäättelä, Marja; Nylandsted, Jesper

    2014-01-01

    Cell migration and invasion require increased plasma membrane dynamics and ability to navigate through dense stroma, thereby exposing plasma membrane to tremendous physical stress. Yet, it is largely unknown how metastatic cancer cells acquire an ability to cope with such stress. Here we show that S100A11, a calcium-binding protein up-regulated in a variety of metastatic cancers, is essential for efficient plasma membrane repair and survival of highly motile cancer cells. Plasma membrane injury-induced entry of calcium into the cell triggers recruitment of S100A11 and Annexin A2 to the site of injury. We show that S100A11 in a complex with Annexin A2 helps reseal the plasma membrane by facilitating polymerization of cortical F-actin and excision of the damaged part of the plasma membrane. These data reveal plasma membrane repair in general and S100A11 and Annexin A2 in particular, as new targets for the therapy of metastatic cancers. PMID:24806074

  9. Studies on rat liver plasma membrane. Altered protein and phospholipid metabolism after injection of D-galactosamine.

    PubMed Central

    Bachmann, W; Harms, E; Hassels, B; Henninger, H; Reuitter, W

    1977-01-01

    1. The metabolism of protein and phospholipid in rat liver plasma membranes isolated by the method of Neville [(1960) J. Biophys. Biochem. Cytol. 8, 413-422] was investigated 3 and 6 h after the injection of D-galactosamine in vivo. During this time, all the biochemical and morphological alterations associated with hepatitis developed. 2. After the injection of D-galactosamine the concentration of sphingomyelin in the plasma membrane decreased to below 60% of the control values. 3. The activity of 5'-nucleotidase (EC 3.1.3.5), which has been purified as a sphingomyelin-protein complex, decreased in the total homogenate as well as in the plasma-membrane fraction of livers of rats treated with galactosamine, to about 60% of the control values. 4. Protein synthesis, as measured by the incorporation of [14C]leucine into plasma membranes, was decreased to 45% of that of the controls. However, only small differences were observed in the amino acid composition of the plasma membrane after D-galactosamine treatment. 5. The protein composition of the plasma membranes was determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The results showed a change from low- to high-molecular-weight proteins after the injection of galactosamine. 6. These results demonstrate different metabolic processes of the plasma membrane altered during the induction of galactosamine hepatitis. Images Fig. 1. PMID:597240

  10. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid.

    PubMed Central

    Saltiel, A R; Cuatrecasas, P

    1986-01-01

    Insulin binding to plasma membrane receptors results in the generation of substances that acutely mimic the actions of the hormone on certain target enzymes. Two such substances, which modulate the activity of the high-affinity cAMP phosphodiesterase (EC 3.1.4.17), have been purified from hepatic plasma membranes. The two have similar properties and activities but can be resolved by ion-exchange chromatography and high-voltage electrophoresis. They exhibit a net negative charge, even at pH 1.9, and an apparent molecular weight of approximately 1400. The generation of these substances from membranes by insulin can be reproduced by addition of a phosphatidylinositol-specific phospholipase C purified from Staphylococcus aureus. This enzyme is known to selectively hydrolyze phosphatidylinositol and release from membranes several proteins that are covalently linked to phosphatidylinositol by a glycan anchor. Both enzyme-modulating substances appear to be generated by the phosphodiesterase cleavage of a phosphatidylinositol-containing glycolipid precursor that has been characterized by thin-layer chromatography. Some of the chemical properties of these substances have been examined. They appear to be related complex carbohydrate-phosphate substances containing glucosamine and inositol. These findings suggest that insulin may activate a selective phospholipase activity that hydrolyzes a membrane phospholipid, releasing a carbohydrate-containing molecule that regulates cAMP phosphodiesterase and perhaps other insulin-sensitive enzymes. PMID:3016721

  11. Plasma zinc status and membrane lipid composition in genetically diabetic mice (db/db)

    SciTech Connect

    Burke, J.P.; Fenton, M.R.

    1986-03-05

    Sex and age matched diabetic C57BL/Ks-db+/db+ mice (db/db) were sacrificed at eight weeks of age. Plasma samples were collected and zinc levels determined. Livers were excised and mitochondrial and microsomal membranes prepared. Aliquots of membrane fractions were subjected to lipid extraction and cholesterol (Cl), phospholipid (PL) and fatty acid analysis (FA) performed. Plasma zinc levels in db/db mice were elevated 25% compared to m/m controls (148.8+/-8.1 ..mu..g/dl vs. 118.9+/-14.9 ..mu..g/dl). Cholesterol and PL levels remained unchanged in both mitochondrial and microsomal membranes. Analysis of PL composition from db/db mitochondria by two dimensional thin layer chromatography revealed no change in the percentage of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) but a 40% decrease in cardiolipin. Slight increases were observed in the percentage of phosphatidylserine and phosphatidylinositol (PS+PI) in microsomes isolated from db/db mice. Fatty acid analysis of microsomal PC and PE showed a decrease of 28% in the 18:1/18:0 ratio as well as a 21% decrease in the ratio of 20:4/18:2 in db/db animals. Analysis of succinate dehydrogenase (mitochondrial) and glucose-6-phosphatase (microsomal) revealed significant decreases in activity in livers of db/db mice. The altered zinc metabolism as well as the changes in membrane lipid composition suggest that this may be a model to study the role of zinc in membrane structure.

  12. Quantitative Analysis of Self-Association and Mobility of Annexin A4 at the Plasma Membrane

    PubMed Central

    Crosby, Kevin C.; Postma, Marten; Hink, Mark A.; Zeelenberg, Christiaan H.C.; Adjobo-Hermans, Merel J.W.; Gadella, Theodorus W.J.

    2013-01-01

    Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca2+ binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca2+ influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. PMID:23663830

  13. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering.

    PubMed

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-09-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+).

  14. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy

    PubMed Central

    Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander

    2015-01-01

    The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245

  15. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering

    PubMed Central

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-01-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+. PMID:26202220

  16. Glucocorticoid interactions with ethanol effects on synaptic plasma membranes: influence on [125I]calmodulin binding.

    PubMed

    Sze, P Y

    1996-02-01

    Ca(++)-dependent binding of calmodulin (CaM) to brain synaptic plasma membranes is known to be inhibited by ethanol and stimulated by glucocorticoids. These opposite neurochemical actions between ethanol and the steroids in vitro are consistent with glucocorticoid antagonism of ethanol-induced sedation reported to occur in vivo. The present study was undertaken to characterize the interactions of corticosterone with ethanol effects on [125I]CaM binding in synaptic plasma membranes. From the shift of concentration-response curves when corticosterone and ethanol were present in combination, the interaction between steroid stimulation and ethanol inhibition occurred in an additive relationship over the range of their effective concentrations. From Scatchard analyses, ethanol-induced decrease in membrane affinity for [125I]CaM was antagonized by steroid-induced increase in the membrane affinity, indicating that the convergent event in their interaction was the alteration of membrane affinity for CaM. Glucocorticoid antagonism of ethanol inhibition of [125I]CaM binding exhibited a high degree of steroid specificity; steroids with glucocorticoid activity including cortisol, dexamethasone and triamcinolone were effective, whereas gonadal steroids and excitatory neuroactive steroid metabolites were ineffective. The demonstration that glucocorticoids antagonized the inhibition of CaM binding by ethanol provides support for the hypothesis that these steroids are among the endogenous factors that modulate neuronal sensitivity to ethanol.

  17. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum plasma membranes. Salt concentrations and temperature affect partitioning behavior and must be precisely standardized. In some cases, it is more fortuitous to combine aqueous two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  18. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  19. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane.

    PubMed

    Kappachery, Sajeesh; Paul, Diby; Yoon, Jeyong; Kweon, Ji Hyang

    2010-08-01

    Reverse osmosis (RO) membrane systems are widely used in water purification plants. Reduction in plant performance due to biofilm formation over the membrane is an inherent problem. As quorum sensing (QS) mechanisms of microorganisms have been reported to be involved in the formation of biofilm, ways are sought for quorum quenching (QQ) and thereby prevention of biofilm formation. In this study using a chemostat culture run for seven days in a CDC reactor it was found that a natural QQ compound, vanillin considerably suppressed bacterial biofilm formation on RO membrane. There was 97% reduction in biofilm surface coverage, when grown in the presence of vanillin. Similarly, the average thickness, total biomass and the total protein content of the biofilm that formed in the presence of vanillin were significantly less than that of the control. However vanillin had no effect on 1-day old pre-formed biofilm.

  20. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  1. The intracellular carboxyl terminal domain of Vangl proteins contains plasma membrane targeting signals

    PubMed Central

    Iliescu, Alexandra; Gros, Philippe

    2014-01-01

    Vangl1 and Vangl2 are integral membrane proteins that play a critical role in establishing planar cell polarity (PCP) in epithelial cells and are required for convergent extension (CE) movements during embryogenesis. Their proper targeting to the plasma membrane (PM) is required for function. We created discrete deletions at the amino and carboxy termini of Vangl1 and monitored the effect of the mutations on PM targeting in Madin–Darby canine kidney cells. Our results show that the Vangl1 amino terminus lacks PM targeting determinants, and these are restricted to the carboxy terminus, including the predicted PDZBM motif at the C-terminus. PMID:24452931

  2. Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Low, M G; Finean, J B

    1978-04-20

    The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on L-leucyl-beta-naphthylamidase, alkaline phosphodeisterase I and Ca2+- or MG2+-ATPase, but substantial proportions of the alkaline phosphatase and 5-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not exluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.

  3. Arabidopsis SNAREs SYP61 and SYP121 Coordinate the Trafficking of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water Permeability[W

    PubMed Central

    Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R.; Russinova, Eugenia; Chaumont, François

    2014-01-01

    Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. PMID:25082856

  4. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation

    SciTech Connect

    Steponkus, P.L.; Dowgert, M.F.; Gordon-Kamm, W.J.

    1983-01-01

    The functional characteristics of the plasma membrane in response to a free-thaw cycle are studied in isolated protoplasts with the plasma membrane still intact. Three different forms of injury have been characterized: intracellular ice formation, hypertonic-induced loss of osmotic responsiveness, and expansion-induced lysis. In this report, the influence of cold acclimation on the incidence of these forms of injury is emphasized. Isolated protoplasts are an excellent arena in which destabilization of the plasma membrane can be directly observed during a freeze-thaw cycle by cryomicroscopy. 65 references, 8 figures.

  5. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  6. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    PubMed

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  7. Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors

    NASA Astrophysics Data System (ADS)

    Kravets, L.; Dmitriev, S.; Lizunov, N.; Satulu, V.; Mitu, B.; Dinescu, G.

    2010-03-01

    The structure and the charge transport properties of poly(ethylene terephthalate) track membrane modified by pyrrole plasma were studied. It was found that polymer deposition on the surface of a track membrane via plasma polymerization of pyrrole results in the creation of composite nanomembranes that, in the case of the formation of a semipermeable layer, possess asymmetric conductivity in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membranes of two layers with different functional groups and also by the pore geometry. Such membranes can be used to create chemical and biochemical sensors.

  8. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-02-01

    The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

  9. A study of the Interaction Between Cetirizine and Plasma Membrane of Eosinophils, Neutrophils, Platelets and Lymphocytes using A fluorescence Technique

    PubMed Central

    Oggiano, N.; Giorgi, P. L.; Rihoux, J-P.

    1994-01-01

    The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 μg/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities. PMID:18472948

  10. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.

    PubMed

    Chung, Jeeyun; Torta, Federico; Masai, Kaori; Lucast, Louise; Czapla, Heather; Tanner, Lukas B; Narayanaswamy, Pradeep; Wenk, Markus R; Nakatsu, Fubito; De Camilli, Pietro

    2015-07-24

    Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.

  11. Active Ca2+ transport in plasma membranes of branchial epithelium of the North-American eel, Anguilla rostrata LeSueur.

    PubMed

    Flik, G; Wendelaar Bonga, S E; Fenwick, J C

    1985-01-01

    A branchial epithelial membrane fraction, more than 20-fold enriched in Na+/K+-ATPase activity when compared with the crude homogenate of the tissue, was obtained from adult freshwater American eels. In a membrane vesicle preparation that consisted of 33% inside-out, 23% right-side-out and 44% leaky vesicles, the accumulation of 45Ca2+ was stimulated by ATP, but not by ADP. Accumulation of 45Ca2+ was prevented when vesicles were pretreated with detergent or the Ca2+ ionophore A23187; Ca2+ efflux was observed when the ionophore was added to actively 45Ca2+-loading vesicles. Oxalate did not affect Ca2+ accumulation in these vesicles. Kinetic analysis of the Ca2+-transport process by an Eadie-Hofstee plot revealed that the process is homogeneous; its kinetic parameters are a K0.5 for Ca2+ of 0.053 microM and a Vmax of 2.25 nmol Ca2+/min.mg protein (at 37 degrees C). The calmodulin dependency of this Ca2+ transporting process was shown by the inhibitory action of calmodulin antagonists and by the stimulatory effect of calmodulin repletion after EGTA treatment of the membranes. We conclude that an ATP-energized Ca2+ pump is present in the plasma membranes of branchial epithelium, that resembles the Ca2+ pumps of e.g. mammalian intestinal or renal plasma membranes, and propose its involvement in branchial Ca2+-uptake from the water.

  12. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane

    PubMed Central

    Senning, Eric N.; Aman, Teresa K.

    2016-01-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane. PMID:26755772

  13. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane.

    PubMed

    Gordon, Sharona E; Senning, Eric N; Aman, Teresa K; Zagotta, William N

    2016-02-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane.

  14. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up.

    PubMed

    Wang, Xinhua; Yuan, Bo; Chen, Yao; Li, Xiufen; Ren, Yueping

    2014-09-01

    The high salinity remains as one of major obstacles of the osmotic membrane bioreactor (OMBR). In this study, a new pathway was explored to prevent the salinity build-up by integrating the micro-filtration (MF) membrane to the OMBR (MF-OMBR). The results indicated that the salinity characterized by conductivity in the MF-OMBR was effectively alleviated and controlled at a lower value of about 5 mS/cm, and the stable flux of forward osmosis (FO) membrane correspondingly increased to approximately 5.5L/(m(2)h). Besides, the addition of MF membrane in the OMBR could increase the total organic carbon (TOC) and ammonium nitrogen (NH3-N) removals due to the activated sludge by improving the microbial activity. The membrane fouling especially the reversible fouling in the MF-OMBR was severer compared to that in the conventional OMBR, which resulted in a lower water flux than the expectation due to the increase of filtration resistance and external concentration polarization.

  15. Prevention of postcardiopulmonary bypass pericardial adhesions by a new resorbable collagen membrane

    PubMed Central

    Bel, Alain; Ricci, Massimo; Piquet, Julie; Bruneval, Patrick; Perier, Marie-Cécile; Gagnieu, Christian; Fabiani, Jean-Noël; Menasché, Philippe

    2012-01-01

    Reduction in mediastinal adhesions is an issue in cardiac surgery. To evaluate a porcine-bioengineered collagen membrane (Cova™ CARD) intended to promote tissue regeneration, 18 sheep underwent a sternotomy and a 30 min period of cardiopulmonary bypass. They were divided into three equal groups: pericardium left open, placement of an e-polytetrafluoroethylene membrane (Preclude®) taken as a non-absorbable substitute comparator and placement of the absorbable Cova™ CARD membrane. Four months thereafter, the study animals underwent repeat sternotomy and were macroscopically assessed for the degree of material resorption and the intensity of adhesions. Explanted hearts were evaluated blindly for the magnitude of the inflammatory response, fibrosis and epicardial re-mesothelialization. The bioengineered membrane was absorbed by 4 months and replaced by a loosely adherent tissue leading to the best adhesion score. There was no inflammatory reaction (except for a minimal one in an animal). Fibrosis was minimal (P = 0.041 vs Preclude®). The highest degree of epicardial re-mesothelialization, albeit limited, was achieved by the bioengineered group in which five of six sheep demonstrated a new lining of mesothelial cells in contrast to two animals in each of the other groups. This collagen membrane might thus represent an attractive pericardial substitute for preventing post-operative adhesions. PMID:22268067

  16. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  17. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    Packard, B.S.; Saxton, M.J.; Bissell, M.J.; Klein, M.P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters (percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)) connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters. 35 references, 3 figures, 1 table.

  18. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  19. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  20. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  1. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes

    PubMed Central

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-01-01

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527

  2. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane

    PubMed Central

    1985-01-01

    We have studied the transport of newly synthesized cholesterol from the endoplasmic reticulum to the plasma membrane in Chinese hamster ovary cells using a cell fractionation assay. We found that transport is dependent on metabolic energy, but that the maintenance of the high differential concentration of cholesterol in the plasma membrane is not an energy-requiring process. We have tested a variety of inhibitors for their effect on cholesterol transport and found that cytochalasin B, colchicine, monensin, cycloheximide, and NH4Cl did not have any effect. The cholesterol transport process shows a sharp temperature dependence; it ceases at 15 degrees C, whereas cholesterol synthesis continues. When synthesis occurs at 15 degrees C, the newly synthesized cholesterol accumulates in the endoplasmic reticulum and in a low density, lipid-rich vesicle fraction. These results suggest that cholesterol is transported via a vesicular system. PMID:4040520

  3. Myelin Basic Protein Induces Neuron-Specific Toxicity by Directly Damaging the Neuronal Plasma Membrane

    PubMed Central

    Zheng, Sixin; Liu, Xiao; Jin, Jinghua; Ren, Yi; Luo, Jianhong

    2014-01-01

    The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage. PMID:25255088

  4. Mass spectrometry-based analysis of rat liver and hepatocellular carcinoma Morris hepatoma 7777 plasma membrane proteome.

    PubMed

    Cao, Lulu; Clifton, James G; Reutter, Werner; Josic, Djuro

    2013-09-01

    The gel-based proteomic analysis of plasma membranes from rat liver and chemically induced, malignant hepatocellular carcinoma Morris hepatoma 7777 was systematically optimized to yield the maximum number of proteins containing transmembrane domains (TMDs). Incorporation of plasma membrane proteins into a polyacrylamide "tube gel" followed by in-gel digestion of "tube gel" pieces significantly improved detection by electrospray ionization-liquid chromatography-tandem mass spectrometry. Removal of less hydrophobic proteins by washing isolated plasma membranes with 0.1 M sodium carbonate enables detection of a higher number of hydrophobic proteins containing TMDs in both tissues. Subsequent treatment of plasma membranes by a proteolytic enzyme (trypsin) causes the loss of some of the proteins that are detected after washing with sodium carbonate, but it enables the detection of other hydrophobic proteins containing TMDs. Introduction of mass spectrometers with higher sensitivity, higher mass resolution and mass accuracy, and a faster scan rate significantly improved detection of membrane proteins, but the improved sample preparation is still useful and enables detection of additional hydrophobic proteins. Proteolytic predigestion of plasma membranes enables detection of additional hydrophobic proteins and better sequence coverage of TMD-containing proteins in plasma membranes from both tissues.

  5. Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: A comparison between endogenous vs exogenous substrate pools

    SciTech Connect

    Navidi, M.; MacQuarrie, R.A.; Sun, G.Y. )

    1990-05-01

    The metabolism of phosphatidylinositols (PI) labeled with (14C)arachidonic acid within plasma membranes or synaptosomes was compared to the metabolism of PI prelabeled with (14C)arachidonic acid and added exogenously to the same membranes. Incubation of membranes containing the endogenously-labeled PI pool in the presence of Ca2+ resulted in the release of labeled arachidonic acid, as well as a small amount of labeled diacylglycerol. Labeled arachidonic acid was effectively reutilized and returned to the membrane phospholipids in the presence of adenosine triphosphate (ATP), CoA, and lysoPI. Although Ca2+ promoted the release of labeled diacylglycerol from prelabeled plasma membranes, this amount was only 17% of the maximal release, i.e., release in the presence of deoxycholate and Ca2+. This latter condition is known to fully activate the PI-phospholipase C, and incubation of prelabeled plasma membranes resulted in a six-fold increase in labeled diacylglycerols. On the other hand, when exogenously labeled PI were incubated with plasma membranes in the presence of Ca2+, the labeled diacylglycerols released were 59% of that compared to the fully activated condition. The phospholipase C action was calcium-dependent, regardless of whether exogenous or endogenous substrates were used in the incubation. In contrast to plasma membranes, intact synaptosomes had limited ability to metabolize exogenous PI even in the presence of Ca2+, although the activity of phospholipase C was similar to that in the plasma membranes when assayed in the presence of deoxycholate and Ca2+. These results suggest that discrete pools of PI are present in plasma membranes, and that the pool associated with the acyltransferase is apparently not readily accessible to hydrolysis by phospholipase C.

  6. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  7. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.

    PubMed

    Gray, Joshua P; Eisen, Timothy; Cline, Gary W; Smith, Peter J S; Heart, Emma

    2011-07-01

    Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.

  8. Characterization of a Partially Purified Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction 1

    PubMed Central

    Dupont, Frances M.; Burke, Linda L.; Spanswick, Roger M.

    1981-01-01

    The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ ≫ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots. PMID:16661634

  9. Origin and development of plasma membrane derived invaginations in Vinca rosea l.

    NASA Technical Reports Server (NTRS)

    Mahlberg, P.; Walkinshaw, C.; Olson, K.

    1971-01-01

    The occurrence, morphology, and possible ontogeny of plasma-membrane-related structures are described which can develop into invaginations or intravacuolar formations. An underlying study of meristematic tissues from the shoot of Vinca rosea supports the interpretation that endocytosis does occur in plant cells and that it is appropriate to refer to these structures as endocytoses. The function of these invaginations or their content remains to be elucidated.

  10. SLC41A2 encodes a plasma-membrane Mg2+ transporter

    PubMed Central

    Sahni, Jaya; Nelson, Bruce; Scharenberg, Andrew M.

    2006-01-01

    The TRPM7 (transient receptor potential melastatin 7) ion channel has been implicated in the uptake of Mg2+ into vertebrate cells, as elimination of TRPM7 expression through gene targeting in DT40 B-lymphocytes renders them unable to grow in the absence of supplemental Mg2+. However, a residual capacity of TRPM7-deficient cells to accumulate Mg2+ and proliferate when provided with supplemental Mg2+ suggests the existence of Mg2+ uptake mechanism(s) other than TRPM7. Evaluation of the expression of several members of the SLC41 (solute carrier family 41) family, which exhibit homology with the MgtE class of prokaryotic putative bivalent-cation transporters, demonstrated that one, SLC41A2 (solute carrier family 41 member 2), is expressed in both wild-type and TRPM7-deficient DT40 cells. Characterization of heterologously expressed SLC41A2 protein indicated that it is a plasma-membrane protein with an N-terminus-outside/C-terminus-inside 11-TM (transmembrane)-span topology, consistent with its functioning as a trans-plasma-membrane transporter. In contrast with a previous report of ion-channel activity associated with SLC41A2 expression in oocytes, investigation of whole cell currents in SLC41A2-expressing DT40 cells revealed no novel currents of any type associated with SLC41A2 expression. However, expression of SLC41A2 in TRPM7-deficient cells under the control of a doxycycline-inducible promoter was able to conditionally enhance their net uptake of 26Mg2+ and conditionally and dose-dependently provide them with the capacity to grow in the absence of supplemental Mg2+, observations strongly supporting a model whereby SLC41A2 directly mediates trans-plasma-membrane Mg2+ transport. Overall, our results suggest that SLC41A2 functions as a plasma-membrane Mg2+ transporter in vertebrate cells. PMID:16984228

  11. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.

    PubMed

    Gray, Joshua P; Eisen, Timothy; Cline, Gary W; Smith, Peter J S; Heart, Emma

    2011-07-01

    Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells. PMID:21505151

  12. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature

    PubMed Central

    2011-01-01

    Background Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. Results We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. Conclusion Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight

  13. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  14. Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase.

    PubMed

    Mason, A Brett; Allen, Kenneth E; Slayman, Carolyn W

    2006-08-18

    Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.

  15. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity.

    PubMed

    Skedina, M A; Katuntsev, V P; Buravkova, L B; Naidina, V P

    1998-01-01

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p<0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  16. Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction*

    PubMed Central

    Inder, Kerry L.; Lau, Chiyan; Loo, Dorothy; Chaudhary, Natasha; Goodall, Andrew; Martin, Sally; Jones, Alun; van der Hoeven, Dharini; Parton, Robert G.; Hill, Michelle M.; Hancock, John F.

    2009-01-01

    The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3. PMID:19661056

  17. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein.

    PubMed

    Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A; Grunwald, David; Sardo, Luca; Burdick, Ryan C; Plisov, Sergey; Liang, Edward; Tai, Sheldon; Pathak, Vinay K; Hu, Wei-Shau

    2016-01-12

    Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA-Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA-Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms.

  18. Mixed enzyme-linked immunosorbent assay (MELISA) for HLA class I antigen: a plasma membrane marker.

    PubMed

    Bjerrum, O W; Borregaard, N

    1990-03-01

    This study introduces a simple, reproducible assay for HLA class I antigen using antibodies against beta 2-microglobulin and the heavy chain on HLA. The sandwich technique was named mixed enzyme-linked immunosorbent assay (MELISA), and was designed for identification of plasma membranes in neutrophil subcellular fractions. The subcellular localization of HLA was identical to that of other plasma membrane markers, [3H]concanavalin A and detergent-independent alkaline phosphatase, and was unchanged by stimulation of cells by weak and strong secretagogues. In addition to the presence as part of the HLA complex in the plasma membrane uncomplexed beta 2-microglobulin is present in the specific granules of neutrophils. However, the release of beta 2-microglobulin from intact neutrophils stimulated with formyl-methionylleucylphenylalanine was much higher than could be explained by exocytosis of specific granules. Subcellular fractionation studies demonstrated that beta 2-microglobulin is localized in fractions characterized by latent alkaline phosphatase and released from this novel secretory compartment in response to stimulation with formyl-methionylleucylphenylalanine. PMID:2181625

  19. Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa.

    PubMed

    Gunaratne, Herath Jayantha; Neill, Anna T; Vacquier, Victor D

    2006-05-01

    Plasma membrane Ca2+ATPases (PMCAs) export Ca2+ from cells in a highly regulated manner, providing fine-tuning to the maintenance of intracellular Ca2+ concentrations. There are few studies of PMCAs in spermatozoa, which is surprising considering the importance of this enzyme in all cell types. Here we describe the primary structure and localization of the PMCA of sea urchin spermatozoa (suPMCA). The suPMCA is 1,154 amino acids and has 56% identity and 76% similarity to all 4 human PMCA isoforms. The suPMCA shares the features of a typical PMCA, including domains for calmodulin binding, ATP binding, ATPase phosphorylation, and 10 putative transmembrane segments with two large cytoplasmic loops. Southern blots show that suPMCA is a single copy gene. Treatment of live sea urchin sperm with the PMCA inhibitor, 5-(-6)-carboxyeosin, results in elevations of intracellular Ca2+ and loss of flagellar motility. Immunoblotting and immunoflorescence show that suPMCA is concentrated in the sperm head plasma membrane. In previous work, we showed that a plasma membrane K+ dependent Na+/Ca2+ exchanger (suNCKX), which also keeps Ca2+ low in these cells, is concentrated in the sperm flagellum. Thus, the sperm head and flagellum localize different gene products, both functioning to keep intracellular Ca2+ low, while the sperm swims in seawater containing 10 mM Ca2+. PMID:16358326

  20. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution.

    PubMed

    Pörn, M I; Ares, M P; Slotte, J P

    1993-08-01

    To clarify the role of possible cholesterol/phosphatidylcholine interactions in cellular cholesterol distribution, we have used a phosphatidylcholine-specific phospholipase C from Bacillus cereus to degrade the cell surface phosphatidylcholine of cultured human fibroblasts. Of cellular phosphatidylcholine, approximately 15% was susceptible to degradation by the phospholipase. In spite of the dramatic redistribution of cellular cholesterol that can be observed after sphingomyelin depletion, the degradation of cell surface phosphatidylcholine did not affect the distribution of cholesterol in fibroblasts. In cholesterol-depleted cells as well as in cholesterol-loaded cells, the size of the cell surface cholesterol pool (susceptible to cholesterol oxidase) remained unchanged after phosphatidylcholine degradation. The rate of cholesterol esterification with [3H]oleic acid and the rate of [3H]cholesterol efflux from fibroblasts to high density lipoproteins also remained unchanged after degradation of plasma membrane phosphatidylcholine. An increase in the level of [3H]cholesterol efflux to high density lipoproteins was observed after degradation of plasma membrane sphingomyelin with exogenous sphingomyelinase, in-contrast to earlier reports, where no such effect was observed. The results suggest that interactions between cholesterol and phosphatidylcholine in the fibroblast plasma membranes are less important than cholesterol/sphingomyelin interactions for the asymmetric distribution of cellular cholesterol.

  1. Arrays of plasma-membrane "rosettes" involved in cellulose microfibril formation of Spirogyra.

    PubMed

    Herth, W

    1983-11-01

    The cell-wall structure and plasma-membrane particle arrangement during cell wall formation of the filamentous chlorophycean alga Spirogyra sp. was investigated with the freeze-fracture technique. The cell wall consists of a thick outer slime layer and a multilayered inner wall with ribbon-like microfibrils. This inner wall shows three differing orientations of microfibrils: random orientation on its outside, followed by axial bundles of parallel microfibrils, and several internal layers of bands of mostly five to six parallel associated microfibrils with transverse to oblique orientation. The extraplasmatic fracture face of the plasma membrane shows microfibril imprints, relatively few particles, and "terminal complexes" arranged in a hexagonal package at the end of the imprint of a microfibril band. The plasmatic fracture face of the plasma membrane is rich in particles. In places, it reveals hexagonal arrays of "rosettes". These rosettes are best demonstrable with the double-replica technique. These findings on rosette arrays of the zygnematacean alga Spirogyra are compared in detail with the published data on the desmidiacean algae Micrasterias and Closterium.

  2. ACA12 Is a Deregulated Isoform of Plasma Membrane Ca2+-ATPase of Arabidopsis thaliana

    PubMed Central

    Limonta, Margherita; Romanowsky, Shawn; Olivari, Claudio; Bonza, Maria Cristina; Luoni, Laura; Rosenberg, Alexa; Harper, Jeffrey F.; De Michelis, Maria Ida

    2014-01-01

    Plant auto-inhibited Ca2+-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca2+-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues - highly conserved in other ACA isoforms - localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation. PMID:24101142

  3. Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake

    PubMed Central

    Rodríguez-Vázquez, Míriam; Mejía-Morales, John E.; Culi, Joaquim

    2015-01-01

    Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP). We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them. PMID:26121667

  4. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel.

  5. Effects of cigarette smoking on sperm plasma membrane integrity and DNA fragmentation.

    PubMed

    Belcheva, Antoaneta; Ivanova-Kicheva, Maria; Tzvetkova, Petia; Marinov, Mihail

    2004-10-01

    Cigarette smoking is a serious health problem of our society. It is known that cigarette smoke is a cell mutagen and carcinogen, and that it may affect adversely male fertility. The possible detrimental effects on sperm cells are of great interest but the data available to support this statement are somewhat elusive. To approach this problem we examined conventional semen parameters, plasma membrane translocation of phosphatidylserine (PS) (annexin V/6-CFDA cell staining) and sperm DNA integrity (comet assay) in a group of healthy man smoking cigarettes on a regular basis. The results of the study were compared with the results of the same tests in healthy non-smoking donors. Significant difference in standard sperm parameters between the two groups was not found. Intensive expression of PS on the sperm plasma membrane surface (assayed by annexin V positive staining) was detected in the smokers group. There is a significant increase of population of apoptotic spermatozoa in ejaculates of smokers. Albeit DNA damages (high frequencies of double- and single- stranded DNA breaks) in spermatozoa of smokers are increased compared with non-smokers, but this difference is not statistically significant. Sperm DNA integrity of healthy smokers remains in the normal range, but a clear negative trend is observed, especially in respect of disturbance of plasma membrane phospholipid asymmetry.

  6. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-01

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. PMID:23933253

  7. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-01

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  8. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    PubMed Central

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  9. A continuum model of docking of synaptic vesicle to plasma membrane

    PubMed Central

    Liu, Tianshu; Singh, Pankaj; Jenkins, James T.; Jagota, Anand; Bykhovskaia, Maria; Hui, Chung-Yuen

    2015-01-01

    Neurotransmitter release from neuronal terminals is governed by synaptic vesicle fusion. Vesicles filled with transmitters are docked at the neuronal membrane by means of the SNARE machinery. After a series of events leading up to the fusion pore formation, neurotransmitters are released into the synaptic cleft. In this paper, we study the mechanics of the docking process. A continuum model is used to determine the deformation of a spherical vesicle and a plasma membrane, under the influence of SNARE-machinery forces and electrostatic repulsion. Our analysis provides information on the variation of in-plane stress in the membranes, which is known to affect fusion. Also, a simple model is proposed to study hemifusion. PMID:25551140

  10. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  11. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane.

    PubMed Central

    Huang, G; Santos-Sacchi, J

    1994-01-01

    The outer hair cell (OHC) from the organ of Corti is believed to be responsible for the mammal's exquisite sense of hearing. A membrane-based motile response of this cell underlies the initial processing of acoustic energy. The voltage-dependent capacitance of the OHC, possibly reflecting charge movement of the motility voltage sensor, was measured in cells during intracellular dialysis of trypsin under whole cell voltage clamp. Within 10 min after dialysis, light and electron microscopic examination revealed that the subplasmalemmal structures, including the cytoskeletal framework and subsurface cisternae, were disrupted and/or detached from adjacent plasma membrane. Dialysis of heat-inactivated trypsin produced no changes in cell structure. Simultaneous measures of linear and nonlinear membrane capacitance revealed minimal changes, indicating that contributions by subsurface structures to the generation of the nonlinear capacitance are unlikely. This study strongly suggests that voltage-dependent charge movement in the OHC reflects properties of the force generator's voltage sensor and that the sensor/motor resides solely within the lateral plasma membrane. Images PMID:7991617

  12. Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells

    NASA Astrophysics Data System (ADS)

    Beier, Hope T.; Tolstykh, Gleb P.; Musick, Joshua D.; Thomas, Robert J.; Ibey, Bennett L.

    2014-12-01

    Objective. Short infrared (IR) laser pulses have been used to stimulate action potentials in neurons both in vivo and in vitro. However, the mechanism(s) underlying this phenomenon has remained elusive. In vitro studies have found that pulsed IR exposure generates a nearly instant change in capacitance in the plasma membrane, characterized by inward rectification, a common feature in pore-forming exposures, such as electrical pulses and acoustic shock waves. Based on this similarity, we hypothesize that the mechanism of IR stimulation is the formation of short-lived nanopores in the plasma membrane. These transient, small-diameter pores allow the influx of extracellular ions that lead to action potential generation, possibly through activation of secondary messenger pathways or depolarization of the cell membrane resulting in activation of voltage-gated ion channels. Approach. A variety of fluorescent markers are used to observe the cell response to IR stimulation to monitor for effects indicative of nanoporation in other modalities. Main results. We observe rapid, transient rises in intracellular Ca2+, influx of YO-PRO-1 and propidium iodide into the cell signifying membrane permeabilization, cellular blebbing and swelling, and activation of the intracellular phosphoinositides lipid signaling pathway. Significance. This conclusion better explains the experimental observations and limitations of IR-induced neurological stimulation and represents a distinct theoretical shift in the understanding of the mechanism of IR-induced stimulation.

  13. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways.

    PubMed

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  14. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    PubMed Central

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way. PMID:27243007

  15. A model of plasma membrane flow and cytosis regulation in growing pollen tubes.

    PubMed

    Chavarría-Krauser, Andrés; Yejie, Du

    2011-09-21

    A model of cytosis regulation in growing pollen tubes is developed and simulations presented. The authors address the question on the minimal assumptions needed to describe the pattern of exocytosis and endocytosis reported recently by experimental biologists. Biological implications of the model are also treated. Concepts of flow and conservation of membrane material are used to pose an equation system, which describes the movement of plasma membrane in the tip of growing pollen tubes. After obtaining the central equations, relations describing the rates of endocytosis and exocytosis are proposed. Two cytosis receptors (for exocytosis and endocytosis), which have different recycling rates and activation times, suffice to describe a stable growing tube. Simulations show a very good spatial separation between endocytosis and exocytosis, in which separation is shown to depend strongly on exocytic vesicle delivery. In accordance to measurements, most vesicles in the clear zone are predicted to be endocytic. Membrane flow is essential to maintain cell polarity, and bi-directional flow seems to be a natural consequence of the proposed mechanism. For the first time, a model addressing plasma membrane flow and cytosis regulation were posed. Therefore, it represents a missing piece in an integrative model of pollen tube growth, in which cell wall mechanics, hydrodynamic fluxes and regulation mechanisms are combined. PMID:21703278

  16. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways

    PubMed Central

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M.; Conner, Alex C.; Conner, Matthew T.; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  17. New insights into the organization of plasma membrane and its role in signal transduction.

    PubMed

    Suzuki, Kenichi G N

    2015-01-01

    Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity.

  18. [Changes in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATPase].

    PubMed

    Danylovych, H V; Danylovych, Iu V; Kolomiiets', O V; Kosterin, S O; Rodik, R V; Cherenok, S O; Kal'chenko, V I; Chunikhin, O Iu; Horchev, V F; Karakhim, S O

    2012-01-01

    The influence of supramolecular macrocyclic compounds--calix[4]arenes C-97, C-99, C-107, which are ouabainomymetic high affinity inhibitors of Na+, K(+)-ATPase, on the polarization level of plasmic and mitochondrial membranes of rat uterine smooth muscle cells was investigated. The influence of these compounds on the myocytes characteristic size was studied. By using a confocal microscopy and specific for mitochondrial MitoTracker Orange CM-H2TMRos dye it was proved that the potential-sensitive fluorescent probe DiOC6(3) interacts with mitochondria. Artificial potential collapse of plasmic membrane in this case was modeled by myocytes preincubation with ouabain (1 mM). Further experiments performed using the method of flow cytometry with DiOC6(3) have shown that the compounds C-97, C-99 and C-107 at concentration 50-100 nM caused depolarization of the plasma membrane (at the level of 30% relative to control values) in conditions of artificial collapse of mitochondrial potential by myocytes preincubation in the presence of 5 mM of sodium azide. Under artificial sarcolemma depolarization by ouabain, calixarenes C-97, C-99 and C-107 at 100 nM concentrations caused a transient increase of mitochondrial membrane potential, that is 40% of the control level and lasted about 5 minutes. Calixarenes C-99 and C-107 caused a significant increase in fluorescence of myocytes in these conditions, which was confirmed by confocal microscopy too. It was proved by photon correlation spectroscopy method that the C-99 and C-107 caused an increase of characteristic size of myocytes.

  19. The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance. II. Effects on plasma membrane structure and function.

    PubMed

    Bakht, Jehan; Bano, Asghari; Dominy, Peter

    2006-01-01

    The frost hardiness of many plants such as chickpea can be increased by exposure to low non-freezing temperatures and/or the application of abscisic acid (ABA), a process known as frost acclimation. Experiments were conducted to study the response over a 14 d period of enriched plasma membrane fractions isolated from chickpea plants exposed to low temperature and sprayed with exogenous ABA. Measurement of the temperatures inducing 50% foliar cell death (LT50), and subsequent statistical analysis suggest that, like many plants, exposure to low temperatures (5/-2 degrees C; day/night) induces a significant level (P <0.05) of frost acclimation in chickpea when compared with control plants (20/7 degrees C; day/night). Spraying plants with exogenous ABA also increased frost tolerance (P <0.05), but was not as effective as low temperature-induced frost acclimation. Both pre-exposure to low temperatures and pre-treatment with ABA increased the levels of fatty acid desaturation in the plasma membrane (measured as the double bond index, DBI). Exposure of chickpea plants to low temperatures increased the DBI by 15% at day 4 and 19% at day 14 when compared with untreated control plants. Application of ABA alone did not increase the DBI by more than 6% at any time; the effects of both treatments applied together was more than additive, inducing a DBI increase of 27% at day 14 when compared with controls. There was a good correlation (P <0.05) between the DBI and LT50, suggesting that the presence of more unsaturated lipid in the plasma membrane may prevent cell lysis at low temperatures. Both pre-exposure to low, non-freezing temperatures and pre-treatment with ABA induced measurable changes in membrane fluidity, but these changes did not correlate with changes in LT50, suggesting that physical properties of the plasma membrane other than fluidity are involved in frost acclimation in chickpea.

  20. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    PubMed

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible. PMID:23413920

  1. Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells

    PubMed Central

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W.; Wiseman, Paul W.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705

  2. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif.

    PubMed

    Geissler, Brett; Ahrens, Sebastian; Satchell, Karla J F

    2012-02-01

    Plasma membrane targeting is essential for the proper function of many bacterial toxins. A conserved fourhelical bundle membrane localization domain (4HBM) was recently identified within three diverse families of toxins: clostridial glucosylating toxins, MARTX toxins and Pasteurella multocida-like toxins. When expressed in tissue culture cells or in yeast, GFP fusions to at least one 4HBM from each toxin family show significant peripheral membrane localization but with differing profiles. Both in vivo expression and in vitro binding studies reveal that the ability of these domains to localize to the plasma membrane and bind negatively charged phospholipids requires a basic-hydrophobic motif formed by the L1 and L3 loops. The different binding capacity of each 4HBM is defined by the hydrophobicity of an exposed residue within the motif. This study establishes that bacterial effectors utilize a normal host cell mechanism to locate the plasma membrane where they can then access their intracellular targets.

  3. Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells

    NASA Astrophysics Data System (ADS)

    Schumacher, Kristopher R.; Popel, Aleksander S.; Anvari, Bahman; Brownell, William E.; Spector, Alexander A.

    2009-10-01

    Tethers are thin membrane tubes that can be formed when relatively small and localized forces are applied to cellular membranes and lipid bilayers. Tether pulling experiments have been used to better understand the fine membrane properties. These include the interaction between the plasma membrane and the underlying cytoskeleton, which is an important factor affecting membrane mechanics. We use a computational method aimed at the interpretation and design of tether pulling experiments in cells with a strong membrane-cytoskeleton attachment. In our model, we take into account the detailed information in the topology of bonds connecting the plasma membrane and the cytoskeleton. We compute the force-dependent piecewise membrane deflection and bending as well as modes of stored energy in three major regions of the system: body of the tether, membrane-cytoskeleton attachment zone, and the transition zone between the two. We apply our method to three cells: cochlear outer hair cells (OHCs), human embryonic kidney (HEK) cells, and Chinese hamster ovary (CHO) cells. OHCs have a special system of pillars connecting the membrane and the cytoskeleton, and HEK and CHO cells have the membrane-cytoskeleton adhesion arrangement via bonds (e.g., PIP2), which is common to many other cells. We also present a validation of our model by using experimental data on CHO and HEK cells. The proposed method can be an effective tool in the analyses of experiments to probe the properties of cellular membranes.

  4. Phospholipid composition of plasma and erythrocyte membranes in animal species by 31P NMR.

    PubMed

    Ferlazzo, Alida Maria; Bruschetta, Giuseppe; Di Pietro, Patrizia; Medica, Pietro; Notti, Anna; Rotondo, Enrico

    2011-12-01

    The aim of this study was to provide basal values of phospholipid (PL) composition in different animal species by 31P NMR analysis using detergents. This fast and accurate method allowed a quantitative analysis of PLs without any previous separation. Plasma and erythrocyte membrane PLs were investigated in mammals (pig, cow, horse). Moreover, for the first time, the composition of plasma PLs in avian (chicken and ostrich) was performed by 31P NMR. Significant qualitative and quantitative interspecies differences in plasma PL levels were found. Phosphatidilcholine (PC) and sphingomyelin (SPH) levels were significantly higher (P < 0.001) in chicken plasma than all the other species tested. In erythrocytes, cow PC and phosphatidylcholine diarachidoyl were significantly lower (P < 0.001) than for pigs and horses, whereas pig PC presented intermediate values among cows and horses. Inorganic phosphate and 2,3-diphosphoglycerate levels were also significantly different between the species under investigation. The [SPH/total PLs] molar ratios in erythrocytes confirmed interspecies differences in phospholipid composition while the PC/SPH molar ratios could be related to a distinct erythrocyte flexibility and aggregability. Diet and nutrition may contribute primarily to the interspecies differences in plasma PL amounts detected. Significant differences between chicken plasma PC and SPH levels and those of the other animal species could be ascribed to a fat metabolism specific to egg production.