Godala, Małgorzata; Materek-Kuśmierkiewicz, Izabela; Moczulski, Dariusz; Rutkowski, Maciej; Szatko, Franciszek; Gaszyńska, Ewelina; Tokarski, Sławomir; Kowalski, Jan
2015-05-01
Patients with cardiovascular diseases, including those with the symptoms of metabolic syndrome (MS), are recommended regular exercise but many studies indicate its role in the production of reactive oxygen species. Vitamin C supplementation may enhance the antioxidant barrier in MS patients. The aim of the study was to assess the impact of regular physical activity (PA)and vitamin C supplementation on plasma vitamin A, C and E levels in patients with MS. The study included 62 patients with MS according to International Diabetes Federation criteria, 32 men and 30 women, aged 38-57 years (mean age 51,24 ± 5,29 years). The patients were divided in two groups: group I (MS+PA) - 31 patients with recommended regular physical activity; group II ( MS+PA+C) - 31 patients with recommended regular physical activity and vitamin C supplementation per os. The control group consisted of 23 healthy individuals without MS, 17 men and 6 women, aged 49-56 years (mean age 53,21 ± 3,6 years), who were not recommended any vitamin supplementation nor physical activity. Plasma vitamin A, C and E levels were estimated in MS patients with spectrophotometry using T60V spectrophotometer (PG Instruments) before and after regular exercise with and without vitamin C supplementation. In the control group plasma levels of antioxidant vitamins were assessed only once. The plasma vitamin A, C and E levels were significantly lower (p<0,05) in MS patients than in the control group. After 6 weeks of regular physical activity a significant fall in plasma levels of antioxidant vitamins was observed in MS patients. In the group of patients with regular physical activity and vitamin C supplementation there was detected a significant rise in the level of all the tested vitamins close to the levels in control group. Regular physical activity enhances the decrease in plasma antioxidant vitamin level in patients with MS. Vitamin C supplementation conducted in parallel with regular physical activity normalize plasma vitamin A, C and E levels in these patients. © 2015 MEDPRESS.
plasma column and observed the interesting phenomenon of plasma ejection. At FUB, Balescu and Prigogine direct a group of sixty theoreticians doing...outstanding work in statistical physics. Balescu is writing another graduate textbook on non-equilibrium statistical mechanics. He is tackling the
Workshop on Models for Plasma Spectroscopy
NASA Astrophysics Data System (ADS)
1993-09-01
A meeting was held at St. Johns College, Oxford from Monday 27th to Thursday 30th of September 1993 to bring together a group of physicists working on computational modelling of plasma spectroscopy. The group came from the UK, France, Israel and the USA. The meeting was organized by myself, Dr. Steven Rose of RAL and Dr. R.W. Lee of LLNL. It was funded by the U.S. European Office of Aerospace Research and Development and by LLNL. The meeting grew out of a wish by a group of core participants to make available to practicing plasma physicists (particularly those engaged in the design and analysis of experiments) sophisticated numerical models of plasma physics. Additional plasma physicists attended the meeting in Oxford by invitation. These were experimentalists and users of plasma physics simulation codes whose input to the meeting was to advise the core group as to what was really needed.
Utilizing Social Media and Blogging to Teach Science Communication
NASA Astrophysics Data System (ADS)
Keesee, A. M.
2012-12-01
The National Science Foundation presented the Science: Becoming the Messenger Workshop at my university in Fall 2011. Following the workshop, I started a blog (http://plasma.physics.wvu.edu/), Facebook page (WVU Plasma Physics), and Twitter feed (@WVUPlasma) to promote the West Virginia University Plasma Physics Research Groups. Faculty, postdocs, and graduate students in plasma physics are assigned the task of writing a blog post on a rotating basis as one of three elements for our monthly Journal Club. Our Facebook page and Twitter feed are used to announce new blog posts and accomplishments by group members. We have found this process to be a good way for students to learn to describe their research to people outside of their field of expertise. Details on establishing and maintaining these resources and specific examples will be presented. Follow me @plasmaphysmom.
Outreach to Underrepresented Groups in Plasma Physics
NASA Astrophysics Data System (ADS)
Dominguez, A.; Zwicker, A.; Ortiz, D.; Greco, S. L.
2017-10-01
Physics, and specifically plasma physics, has a recruitment and retention problem for women and historically underrepresented minorities at all levels of their academic careers. For example, women make up approximately 8% of the APS-DPP membership while making up 13% of APS membership at large. In this presentation, we describe outreach activities we have undertaken targeting retention of these groups after their undergraduate careers. These include: Targeted recruitment visits for undergraduate research internships, as well as plasma physics workshops aimed at undergraduate women in physics, faculty members of minority serving institutions, and underrepresented undergraduates. After the first year of implementation, we have already seen results, including students reached through these programs participating in SULI undergraduate internships at PPPL. This work was support by a Grant from the DOE Office of Workforce Development for Teachers and Scientists (WDTS).
Reduction of collisional-radiative models for transient, atomic plasmas
NASA Astrophysics Data System (ADS)
Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai
2017-10-01
Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).
Childhood Chronic Physical Aggression Associates with Adult Cytokine Levels in Plasma
Provençal, Nadine; Suderman, Matthew J.; Vitaro, Frank; Szyf, Moshe; Tremblay, Richard E.
2013-01-01
Background An increasing number of animal and human studies are indicating that inflammation is associated with behavioral disorders including aggression. This study investigates the association between chronic physical aggression during childhood and plasma cytokine levels in early adulthood. Methodology/Principal Findings Two longitudinal studies were used to select males on a chronic physical aggression trajectory from childhood to adolescence (n = 7) and a control group from the same background (n = 25). Physical aggression was assessed yearly by teachers from childhood to adolescence and plasma levels of 10 inflammatory cytokines were assessed at age 26 and 28 years. Compared to the control group, males on a chronic physical aggression trajectory from childhood to adolescence had consistently lower plasma levels of five cytokines: lower pro-inflammatory interleukins IL-1α (T(28.7) = 3.48, P = 0.002) and IL-6 (T(26.9) = 3.76, P = 0.001), lower anti-inflammatory interleukin IL-4 (T(27.1) = 4.91, P = 0.00004) and IL-10 (T(29.8) = 2.84, P = 0.008) and lower chemokine IL-8 (T(26) = 3.69, P = 0.001). The plasma levels of four cytokines accurately predicted aggressive and control group membership for all subjects. Conclusions/Significance Physical aggression of boys during childhood is a strong predictor of reduced plasma levels of cytokines in early adulthood. The causal and physiological relations underlying this association should be further investigated since animal data suggest that some cytokines such as IL-6 and IL-1β play a causal role in aggression. PMID:23922720
Quiles, José L; Huertas, Jesús R; Ochoa, Julio J; Battino, Maurizio; Mataix, José; Mañas, Mariano
2003-04-01
We investigated whether the intake of virgin olive oil or sunflower oil and performance of physical exercise (at different states) affect plasma levels of triacylglycerols, total cholesterol, and fatty acid profile in rats. The study was carried out with six groups of male rats subjected for 8 wk to a diet based on virgin olive oil (three groups) or sunflower oil (three groups) as dietary fat. One group for each diet acted as sedentary control; the other two groups ran in a treadmill for 8 wk at 65% of the maximum oxygen consumption. One group for each diet was killed 24 h after the last bout of exercise and the other was killed immediately after the exercise performance. Triacylglycerols, total cholesterol, and fatty acid profile were analyzed in plasma. Analysis of variance was used to test differences among groups. Animals fed on virgin olive oil had lower triacylglycerol and cholesterol values. Physical exercise reduced these parameters with both dietary treatments. Fatty acid profile showed higher monounsaturated fatty acid proportion in virgin olive fed oil animals and a higher omega-6 polyunsaturated fatty acid proportion in sunflower oil fed animals. Physical exercise reduced the levels of monounsaturated fatty acids with both diets and increased the proportions of omega-3 polyunsaturated fatty acids. Results from the present study supported the idea that physical exercise and the intake of virgin olive oil are very good ways of reducing plasma triacylglycerols and cholesterol, which is desirable in many pathologic situations. Concerning findings on fatty acid profile, we had results similar to those of other investigators regarding the effect of different sources of dietary fat on plasma. The most interesting results came from the effect of physical exercise, with significant increases in the levels of omega-3 polyunsaturated fatty acids, which may contribute to the antithrombotic state and lower production of proinflammatory prostanoids attributed to physical exercise.
A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tian-Sen; Saganti, Premkumar
During recent years (2004-2015), with DOE support, the PVAMU plasma research group accomplished new instrumentation development, conducted several new plasma experiments, and is currently poised to advance with standing-wave microwave plasma propulsion research. On the instrumentation development, the research group completed: (i) building a new plasma chamber with metal CF flanges, (ii) setting up of a 6kW/2450MHz microwave input system as an additional plasma heating source at our rotamak plasma facility, (iii) installation of one programmatic Kepco ATE 6-100DMG fast DC current supply system used in rotamak plasma shape control experiment, built a new microwave, standing-wave experiment chamber and (iv)more » established a new plasma lab with field reversal configuration capability utilizing 1MHz/200kW RF (radio frequency) wave generator. Some of the new experiments conducted in this period also include: (i) assessment of improved magnetic reconnection at field-reversed configuration (FRC) plasma, (ii) introduction of microwave heating experiments, and (iii) suppression of n = 1 tilt instability by one coil with a smaller current added inside the rotamak’s central pipe. These experiments led to publications in Physical Review Letters, Reviews of Scientific Instruments, Division of Plasma Physics (DPP) of American Physical Society (APS) Reports, Physics of Plasmas Controlled Fusion, and Physics of Plasmas (between 2004 and 2015). With these new improvements and advancements, we also initiated and accomplished design and fabrication of a plasma propulsion system. Currently, we are assembling a plasma propulsion experimental system that includes a 5kW helicon plasma source, a 25 cm diameter plasma heating chamber with 1MHz/200kW RF power rotating magnetic field, and a 60 cm diameter plasma exhaust chamber, and expect to achieve a plasma mass flow of 0.1g/s with 60km/s ejection. We anticipate several propulsion applications in near future as we advance our capabilities. Apart from scientific staff members, several students (more than ten undergraduate students and two graduate students from several engineering and science disciplines) were supported and worked on the equipment and experiments during the award period. We also anticipate that these opportunities with current expansions may result in a graduate program in plasma science and propulsion engineering disciplines. *Corresponding Author – Dr. Saganti, Regents Professor and Professor of Physics – pbsaganti@pvamu.edu« less
Plasma Physics Network Newsletter, No. 3
NASA Astrophysics Data System (ADS)
1991-02-01
This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.
High Energy Density Physics and Exotic Acceleration Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, T.; /General Atomics, San Diego; Colby, E.
2005-09-27
The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And wemore » saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.« less
2017-09-01
performed on pre -collected plasma samples from a study that had a two- group cross-sectional design in which main comparisons were with medically...controls. Approach Metabolomic analysis will be performed on pre -collected plasma samples from a study that had a two- group cross-sectional design in...disturbances, and health. Metabolomic analysis will be performed on pre -collected plasma samples from a study that had a two- group cross-sectional
NASA Astrophysics Data System (ADS)
Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter
2018-06-01
The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
Establishing Physical and Engineering Science Base to Bridge from ITER to Demo
NASA Astrophysics Data System (ADS)
Peng, Y.-K. Martin; Abdou, M.; Gates, D.; Hegna, C.; Hill, D.; Najmabadi, F.; Navratil, G.; Parker, R.
2007-11-01
A Nuclear Component Testing (NCT) Discussion Group emerged recently to clarify how ``a lowered-risk, reduced-cost approach can provide a progressive fusion environment beyond the ITER level to explore, discover, and help establish the remaining, critically needed physical and engineering sciences knowledge base for Demo.'' The group, assuming success of ITER and other contemporary projects, identified critical ``gap-filling'' investigations: plasma startup, tritium self-sufficiency, plasma facing surface performance and maintainability, first wall/blanket/divertor materials defect control and lifetime management, and remote handling. Only standard or spherical tokamak plasma conditions below the advanced regime are assumed to lower the anticipated physics risk to continuous operation (˜2 weeks). Modular designs and remote handling capabilities are included to mitigate the risk of component failure and ease replacement. Aspect ratio should be varied to lower the cost, accounting for the contending physics risks and the near-term R&D. Cost and time-effective staging from H-H, D-D, to D-T will also be considered. *Work supported by USDOE.
Vázquez-Lara, Juana María; Ruiz-Frutos, Carlos; Rodríguez-Díaz, Luciano; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen; Torres-Luque, Gema
2017-09-20
To evaluate the effect of a physical activity programme in the aquatic environment with immersion up to the neck, of six weeks duration, on haemodynamic constants in pregnant women. A six-week physical activity programme in the aquatic environment was carried out with a total of 46 pregnant women, who were distributed into an experimental group (n = 18), which participated in the programme, and a control group (n = 28), which followed routine care. In both groups different haemodynamic measurements were evaluated before and after the program. At the beginning of the programme the mean systolic blood pressure was similar between groups, but diastolic blood pressure was slightly higher in the experimental group. When the measurements at the last session were compared, arterial pressures (systolic, diastolic and mean) were significantly higher in the control group (p <.050). Similarly, the initial plasma volume values did not differ between groups, but after the intervention, the control group women showed a higher mean (p <.010). The fraction of sodium excretion (FENa) increased significantly in the experimental group, after the programme, with a mean three times higher (p <.050). Aldosterone plasma levels did not show significant differences between the groups in the different measurements. A programme of swimming and immersion exercises in pregnant women contributes to hydrosaline balance, preventing an excessive increase in usual plasma volume during pregnancy and in the activity of the renin-aldosterone axis. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazeltine, Richard D.
The mission of the Institute for Fusion Studies has been to serve as a national center for theoretical fusion and plasma physics research. As an independent scientific group of critical size, its objectives were to conduct research on fundamental phenomena important to fusion; to serve as a center for fusion theory exchange activities with other countries; to exchange scientific developments with other academic disciplines; and to train students and postdoctoral fellows in fusion and plasma physics research.
The space shuttle payload planning working groups. Volume 2: Atmospheric and space physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the Atmospheric and Space Physics working group of the space shuttle mission planning activity are presented. The principal objectives defined by the group are: (1) to investigate the detailed mechanisms which control the near-space environment of the earth, (2) to perform plasma physics investigations not feasible in ground-based laboratories, and (3) to conduct investigations which are important in understanding planetary and cometary phenomena. The core instrumentation and laboratory configurations for conducting the investigations are defined.
Damirchi, Arsalan; Farjaminezhad, Manoochehr
2016-01-01
Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342
Hol, Jaap W; Klimek, Markus; van der Heide-Mulder, Marieke; Stronks, Dirk; Vincent, Arnoud J; Klein, Jan; Zijlstra, Freek J; Fekkes, Durk
2009-04-01
In this prospective, observational, 2-armed study, we compared the plasma amino acid profiles of patients undergoing awake craniotomy to those undergoing craniotomy under general anesthesia. Both experimental groups were also compared with a healthy, age-matched and sex-matched reference group not undergoing surgery. It is our intention to investigate whether plasma amino acid levels provide information about physical and emotional stress, as well as pain during awake craniotomy versus craniotomy under general anesthesia. Both experimental groups received preoperative, perioperative, and postoperative dexamethasone. The plasma levels of 20 amino acids were determined preoperative, perioperative, and postoperatively in all groups and were correlated with subjective markers for pain, stress, and anxiety. In both craniotomy groups, preoperative levels of tryptophan and valine were significantly decreased whereas glutamate, alanine, and arginine were significantly increased relative to the reference group. Throughout time, tryptophan levels were significantly lower in the general anesthesia group versus the awake craniotomy group. The general anesthesia group had a significantly higher phenylalanine/tyrosine ratio, which may suggest higher oxidative stress, than the awake group throughout time. Between experimental groups, a significant increase in large neutral amino acids was found postoperatively in awake craniotomy patients, pain was also less and recovery was faster. A significant difference in mean hospitalization time was also found, with awake craniotomy patients leaving after 4.53+/-2.12 days and general anesthesia patients after 6.17+/-1.62 days; P=0.012. This study demonstrates that awake craniotomy is likely to be physically and emotionally less stressful than general anesthesia and that amino acid profiling holds promise for monitoring postoperative pain and recovery.
PLASMA PHYSICS AND STATISTICAL MECHANICS IN BRUSSELS, BELGIUM,
significant research in the theory and experiment of the Tonks-Dattner resonances in a cylindrical plasma column. The second visit was to Professors I ...Prigogine and R. Balescu , of the Faculte des Sciences, Universite Libre de Bruxelles, who together direct a large group of scientists working on all
Grimby-Ekman, A; Ghafouri, B; Sandén, H; Larsson, B; Gerdle, B
2017-05-01
To test, in this pilot study, whether DHEA-S (Dehydroepiandrosterone, sulfated form) plasma levels are lower among persons with chronic neck pain, compared to control persons, and to investigate the DHEA-S response after a physical exercise. Included were 12 persons with chronic neck pain and eight controls without present pain, all 18 and 65 years of age. Exclusion criteria for both groups were articular diseases or tendinosis, fibromyalgia, systemic inflammatory and neuromuscular diseases, pain conditions due to trauma, or severe psychiatric diseases. The participants arm-cycled on an ergometer for 30 minutes. Blood samples were taken before, 60 minutes, and 150 minutes after this standardized physical exercise. The estimated plasma DHEA-S levels at baseline were 2.0 µmol/L (95% confidence interval [CI] 1.00; 4.01) in the pain group and 4.1 µmol/L (95% CI2.0; 8.6) in the control group, adjusted for sex, age, body mass index (BMI), and Shirom-Melamed Burnout Questionnaire (SMBQ), with a ratio of 0.48 ( P = 0.094). In this pilot study, the plasma DHEA-S levels appeared to be lower among the persons with chronic neck pain, compared with the control group. It was indicated that DHEA-S decreased during the physical exercise in the control group, and either increased or was unaffected in the chronic pain group. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milanese, Maria Magdalena; CONICET - 7000 Tandil
2006-12-04
This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less
Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef
2013-11-01
The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. © 2013.
NASA Astrophysics Data System (ADS)
Koskinen, H. E.
2008-12-01
Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.
NASA Astrophysics Data System (ADS)
van Dijk, Jan; Hartgers, Bart; van der Mullen, Joost
2006-10-01
Self-consistent modelling of plasma sources requires a simultaneous treatment of multiple physical phenomena. As a result plasma codes have a high degree of complexity. And with the growing interest in time-dependent modelling of non-equilibrium plasma in three dimensions, codes tend to become increasingly hard to explain-and-maintain. As a result of these trends there has been an increased interest in the software-engineering and implementation aspects of plasma modelling in our group at Eindhoven University of Technology. In this contribution we will present modern object-oriented techniques in C++ to solve an old problem: that of the discretisation of coupled linear(ized) equations involving multiple field variables on ortho-curvilinear meshes. The `LinSys' code has been tailored to the transport equations that occur in transport physics. The implementation has been made both efficient and user-friendly by using modern idiom like expression templates and template meta-programming. Live demonstrations will be given. The code is available to interested parties; please visit www.dischargemodelling.org.
Zinc and copper status of women by physical activity and menstrual status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, A.; Deuster, P.A.; Kyle, S.B.
The zinc and copper status of 33 eumenorrheic (EU) and 12 amenorrheic (AM) female marathon runners and 19 EU and 8 AM nonrunners were determined from 3-day diet records and plasma and erythrocyte (RBC) levels. The study was conducted as a completely randomized 2 x 2 factorial. Mean daily zinc intakes of all groups fell below the recommended dietary allowances. Copper intakes of runners (EU = 1.3 mg; AM = 1.3 mg) were not significantly different. Menstrual status did not affect plasma zinc, RBC zinc or plasma copper levels. Physical activity however, affected RBC zinc and plasma copper levels. Bothmore » these parameters were significantly higher in runners. These findings suggest that exercise influences blood zinc and copper levels.« less
Exercise effects on fitness, lipids, glucose tolerance and insulin levels in young adults.
Israel, R G; Davidson, P C; Albrink, M J; Krall, J M
1981-07-01
The effect of 3 different physical training programs on cardiorespiratory (cr) fitness, fasting plasma lipids, glucose and insulin levels, and scapular skinfold thickness was assessed in 64 healthy college men. Training sessions were held 4 times a week for 5 weeks. The cr fitness improved significantly and skinfold thickness decreased following the aerobic, the pulse workout (interval training), and the anaerobic training compared to the control group. Skinfold thickness, plasma insulin, and triglyceride concentrations were significantly intercorrelated before and after training. The exercise programs had no significant effect on plasma cholesterol, triglycerides, phospholipids, glucose tolerance, or insulin levels. Change in adipose mass was thus dissociated from change in plasma insulin and triglyceride concentrations. It was concluded that in young men plasma triglycerides, the lipid component mostly readily reduced by exercise, were too low to be reduced further by a physical training program.
Lackmann, J-W; Wende, K; Verlackt, C; Golda, J; Volzke, J; Kogelheide, F; Held, J; Bekeschus, S; Bogaerts, A; Schulz-von der Gathen, V; Stapelmann, K
2018-05-16
Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less-abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.
15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics
NASA Astrophysics Data System (ADS)
Soto, Leopoldo
2014-05-01
The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010), together agreed to carry out this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, on occasion of the Bicentennial of Chilean Independence. The ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of the official program within the framework of the Chilean Bicentennial. The event was also a scientific and academic activity of the project ''Center for Research and Applications in Plasma Physics and Pulsed Power, P4'', supported by National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya, in 1980, and followed by the Congresses: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006), and Fukuoka (2008). The purpose of the Congress is to discuss the recent progress and future views in plasma science, including fundamental plasma physics, fusion plasmas, astrophysical plasmas, and plasma applications, and so forth. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by the Workshops: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005), and Caracas (2007). The Latin American Workshop on Plasma Physics is a communication forum of the achievements of the plasma-physics regional community, fostering collaboration between plasma scientists within the region and elsewhere. The program of the ICPP-LAWPP-2010 included the topics: Fundamentals of Plasma Physics, Fusion Plasmas, Plasmas in Astrophysics and Space Physics, Plasma Applications and Technologies, Complex Plasmas, High Energy Density Plasmas, Quantum Plasmas, Laser-Plasma Interaction and among others. A total of 180 delegates from 34 different countries took part in the ICPP-LAWPP-2010. Sixty delegates received economical assistance from the local organized committee, thanks to the support of the International Union for Pure and Applied Physics (IUPAP) and the Chilean Nuclear Energy Commission (CCHEN). The ICPP-LAWPP-2010 Program was elaborated by the following Program Committee: Carlos Alejaldre, ITER Maria Virginia Alves, Brazil Julio Herrera, Mexico Günter Mank, IAEA George Morales, USA Padma Kant Shukla, Germany Guido Van Oost, Belgium Leopoldo Soto, Chile (Chairman) This Program Committee was formed by selected members from the International Advisory Committee of the ICPP and by selected members from the International Advisory Committee of the LAWPP. In particular, Plenary Lectures and Invited Topical Lectures were selected by the Program Committee from a list of nominated presentations by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was elaborated by the Program Committee. The congress included: 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. A major part of the plenary and topical lectures were published in a special issue of the Plasma Physics and Controlled Fusion, IOP Publishing (Plasma Phys. Control Fusion Volume 53, Number 7, July 2011: http://iopscience.iop.org/0741-3335/53/7). The papers were refereed according to the standards of the journal Plasma Physics and Controlled Fusion. An large number of the participants sent their contributions articles to this volume of Journal of Physics: Conference Series, IOP Publishing. The articles received were reviewed by the local organizing committee and by invited peers. The criteria for review focused on the demand for a consistent research and the clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, we would like to express our appreciation to the authors. Previous to the ICPP-LAWPP 2010, an important activity associated to the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from over the world, providing basic training to students and young researchers. The School was attended by 44 participants and 6 lecturers from 11 different countries. All participants received economical assistance from the local organizing committee. The topics covered by the school were: general description of plasmas, space and astrophysical plasmas, plasma diagnostic techniques, high temperature and fusion plasmas, and low temperature and industrial plasmas. The organizers of the ICPP-LAWPP-2010 are grateful to the lectures of the LAWPP Plasma Physics School: Luis Felipe Delgado-Aparicio (USA), Homero Maciel (Brazil), and Marina Stepanova, J Alejandro Valdivia, Victor Muñoz, Felipe Veloso, Leopoldo Soto from Chile. On 27 February, 2010, one of the worst earthquakes in the recorded history of the world struck Chile. Although Santiago was affected little, the region located 200 km South of Santiago was seriously damaged. After this event, the local organizing committee received many messages from members of the plasma physics community around the world expressing their concern. The local organizing committee greatly appreciates the support of the participants from the entire world that decided to come to Chile and attend the Conference. Their solidarity is highly appreciated. During the celebration of the ICPP-LAWPP in Chile the two pioneers of plasma physics in Chile were affected by grave illness. Albeit that, Dr Hernán Chuaqui, pioneer of experimental plasma physics in Chile participated in the meeting. Alas, Dr Luis Gomberoff, pioneer of the theoretical plasma physics in Chile could not attend. Sadly, Professor Gomberoff died in September 2010 and Professor Chuaqui in July 2012. We would like to remember them with admiration. The Chairman of the ICPP-LAWPP-2010 is grateful to the members of the Local Organizing Committee of the conference: Karla Cubillos, José Moreno, Cristian Pavez, Felipe Veloso, Marcelo Zambra, Luis Huerta, and Fabian Reyes and to the members of the Program Committee for their work and commitment. Finally, my personal apology is in order regarding the delay in publishing these proceedings due to an unfortunate sequence of personal and professional circumstances. I would like to thank the Journal of Physics: Conference Series for the fast publication of the proceedings, in particular to Ms Sarah Toms for her excellent work and cooperation. Leopoldo Soto Chairman of the ICPP-LAWPP-2010 Chilean Nuclear Energy Commission, Chile Conference photograph Details of the committees are available in the PDF
Rahmani, Bahareh; Hosseini, Hedayat; Khani, Mohammadreza; Farhoodi, Mehdi; Honarvar, Zohreh; Feizollahi, Ehsan; Shokri, Babak; Shojaee-Aliabadi, Saeedeh
2017-12-01
This study aimed to develop novel bilayer films based on alginate, chitosan and low-density polyethylene (LDPE) containing different concentrations of summer savory extract (SSE). The cold atmospheric plasma system was used to increase the surface energy of LDPE. Initially, water contact angle, surface roughness and the functional group of LDPE before and after plasma treatment were investigated. Then physical, mechanical, optical, antioxidant and microstructure properties of plasma-treated and untreated bilayer films and antioxidant films incorporated with SSE were characterized. Results showed that plasma treatment increased oxygen-containing the polar group, surface roughness and decreased water contact angle of LDPE surface (from 90.47° to 48.73°) and in result enhanced adhesion between polysaccharide coating and LDPE. Tensile strength of both alginate and chitosan coated-LDPE increased from 10.096 to 14.372 and 11.513 to 13.459MPa, respectively after plasma pretreatment. However chitosan-based films had lower water solubility. Although, incorporation of SSE into chitosan and alginate coated-LDPE despite slight adverse effects on the physical and mechanical properties of films, it provided antioxidant activity. Chitosan coated-LDPE containing SSE had potential to use as antioxidant food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Chun-Jung; Webb, Heather E; Beasley, Kathleen N; McAlpine, David A; Tangsilsat, Supatchara E; Acevedo, Edmund O
2014-03-01
Pentraxin 3 (PTX3) has been recently identified as a biomarker of vascular inflammation in predicting cardiovascular events. The purpose of this study was to examine the effect of cardiorespiratory fitness on plasma PTX3 and cortisol responses to stress, utilizing a dual-stress model. Fourteen male subjects were classified into high-fit (HF) and low-fit (LF) groups and completed 2 counterbalanced experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% maximal oxygen uptake for 37 min, while the dual-stress condition (DSC) included 20 min of a mental stress while cycling for 37 min. Plasma PTX3 revealed significant increases over time with a significant elevation at 37 min in both HF and LF groups in response to EAC and DSC. No difference in plasma PTX3 levels was observed between EAC and DSC. In addition, plasma cortisol revealed a significant condition by time interaction with greater levels during DSC at 37 min, whereas cardiorespiratory fitness level did not reveal different plasma cortisol responses in either the EAC or DSC. Aerobic exercise induces plasma PTX3 release, while additional acute mental stress, in a dual-stress condition, does not exacerbate or further modulate the PTX3 response. Furthermore, cardiorespiratory fitness may not affect the stress reactivity of plasma PTX3 to physical and combined physical and psychological stressors. Finally, the exacerbated cortisol responses to combined stress may provide the potential link to biological pathways that explain changes in physiological homeostasis that may be associated with an increase in the risk of cardiovascular disease.
Effect of plasma membrane fluidity on serotonin transport by endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, E.R.; Edwards, D.
1987-11-01
To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluiditymore » in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.« less
NASA Technical Reports Server (NTRS)
Convertino, V. A.
1998-01-01
To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak) was measured in a group of physically fit subjects and compared with VO2peak in a group of relatively unfit subjects before and after 10 days of continuous 6 degrees head-down tilt (HDT). Ten fit subjects (40 +/- 2 year) with mean +/- SE VO2peak = 48.9 +/- 1.7 mL kg-1 min-1 were matched for age, height, and lean body weight with 10 unfit subjects (VO2peak = 37.7 +/- 1.6 mL kg-1 min-1). Before and after HDT, plasma, blood, and red cell volumes and body composition were measured and all subjects underwent a graded supine cycle ergometer test to determine VO2peak period needed. Reduced VO2peak in fit subjects (-16.2%) was greater than that of unfit subjects (-6.1%). Similarly, reductions in plasma (-18.3%) and blood volumes (-16.0%) in fit subjects were larger than those of unfit subjects (blood volume = -5.6%; plasma volume = -6.6%). Reduced plasma volume was associated with greater negative body fluid balance during the initial 24 h of HDT in the fit group (912 +/- 154 mL) compared with unfit subjects (453 +/- 200 mL). The percentage change for VO2peak correlated with percentage change in plasma volume (r = +0.79). Following exposure to simulated microgravity, fit subjects demonstrated larger reductions in VO2peak than unfit subjects which was associated with larger reductions in plasma and blood volume. These data suggest that the magnitude of physical deconditioning induced by exposure to microgravity without intervention of countermeasures was influenced by the initial fitness of the subjects.
Thankachan, Prashanth; Rah, Jee Hyun; Thomas, Tinku; Selvam, Sumithra; Amalrajan, Vani; Srinivasan, Krishnamachari; Steiger, Georg; Kurpad, Anura V
2012-05-01
Fortifying rice with multiple micronutrients could be a promising strategy for combat micronutrient deficiencies in developing countries. We determined the efficacy of extruded rice grains fortified with multiple micronutrients on the prevalence of anemia, micronutrient status, and physical and cognitive performance in 6- to 12-y-old, low-income school children in Bangalore, India. In a randomized, double-blind, controlled trial, 258 children were assigned to 1 of 3 intervention groups to receive rice-based lunch meals fortified with multiple micronutrients with either low-iron (6.25 mg) or high-iron (12.5 mg) concentrations or identical meals with unfortified rice. The meals were provided 6 d/wk for 6 mo. Anthropometric, biochemical, physical performance, and cognitive assessments were taken at baseline and endpoint. At baseline, study groups were comparable, with 61% of the children being anemic. However, only <10% were deficient in iron, vitamin A, and zinc. After 6 mo, plasma vitamin B-12 and homocysteine concentrations (both P < 0.001) as well as physical performance (P < 0.05) significantly improved in the intervention arms. No between-group differences were observed in hemoglobin concentration, anemia, and deficiencies of other micronutrients or cognitive function after 6 mo, but paired analyses revealed a small reduction in anemia prevalence in children in the low-iron group. The fortified rice was efficacious in improving vitamin B-12 status and physical performance in Indian school children.
NASA Astrophysics Data System (ADS)
Reuter, Stephan
2012-10-01
The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.
Special issue: Culham Thesis Prize winners
NASA Astrophysics Data System (ADS)
Ham, C. J.
2015-01-01
The Culham Thesis Prize is awarded annually to the nominee who has displayed an excellence in the execution of the scientific method as witnessed by the award of Doctor of Philosophy in Plasma Science from a UK or Irish university. The thesis content should exhibit significant new work and originality, clearly driven by the nominee, be well explained and demonstrate a good understanding of the subject. The prize is awarded at the Institute of Physics Plasma Physics Group Spring Conference and the prize winner gives an invited talk about their thesis work. The prize is sponsored by Culham Centre for Fusion Energy.
NASA Astrophysics Data System (ADS)
McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.
2012-02-01
We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.
NASA Astrophysics Data System (ADS)
Degrez, Gérard; van der Mullen, Joost
2011-01-01
It is with pleasure and pride that we present the selected contributions from participants of the 11th High-Tech Plasma Processes conference. This conference, which took place in Brussels from June 28 to July 2 2010, is based on a European forum with a history of more than twenty years. The conference series started as a thermal plasma conference and gradually expanded to include other topics and fields as well. HTPP 11 was organized in collaboration with the Belgian Interuniversity Attraction Pole (IAP): Physical chemistry of Plasma-surface Interactions (PSI-ψ). The program was devised by the plasma group of the Technische Universiteit Eindhoven in collaboration with the IAP, the Association Arc Electrique and the International Scientific Committee. The organization was guided by the Steering Committee and supervised by the two founding members, Jacques Amouroux and Pierre Fauchais. HTPP aims to bring together different scientific communities to facilitate contacts between science, technology and industry, providing a platform for the exploration of elementary processes in and by plasmas. This implies that, apart from fundamental topics, considerable attention is paid to new plasma applications; plasma engineering in Europe is one of the main driving forces behind HTPP. The conference supports the dissemination of methods for plasma diagnostics and monitoring and the exchange of models for plasmas sources and plasma applications. A novelty of HTPP 11 was the model market; a special type of poster session where running models were demonstrated and spectators were challenged to assemble their own plasma models using one of the available construction platforms. For the first time in this series of conferences, the proceedings are published in two companion issues: Journal of Physics D: Applied Physics, which presents a selection of papers including invited and keynote papers, and the Journal of Physics: Conference Series. The present volume of the Journal of Physics: Conference Series includes 21 papers devoted to various branches of plasma physics. In line with the objectives of the HTPP conference, you will find papers on plasma sources, diagnostics and theory, covering the fields of thermal and non-thermal (even cold) plasmas, plasma-electrode interactions, surface treatment, synthesis, light generation and transport, and on applications in the fields of environmental technologies, biochemistry, and aeronautical and space sciences. We would like to thank the members of the various committees, the participants who sent their contributions and the referees who did an excellent job giving support to improve the manuscripts. We greatly appreciate the financial support from the conference sponsors: Association Arc Electrique, Belspo (Belgian Science Policy), Fonds National de la Recherche Scientifique, Ocean Optics Inc., Technifutur - Pôle Génie Mécanique & Solvay S.A.. Gérard DegrezChairman of the Local Organizing Committee Joost van der MullenChairman of the Steering Committee
Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V
2016-08-01
The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (p<0.01) followed by young adults and older adults. Female subjects (across all ages) had significantly lower plasma HMB concentrations. A significant positive correlation between HMB concentrations and appendicular lean mass normalized for body weight (%), appendicular lean mass (r=0.37; p<0.001) was observed in the young adults and older adults group. Handgrip strength was positively associated with plasma HMB concentrations in young adults (r=0.58; p<0.01) and the older adults group (r=0.28; p<0.01). The findings of the present study suggest that there is an age- related decline in endogenous HMB concentrations in humans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Frank, Nicholas; Elliott, Sarah B; Brandt, Laura E; Keisler, Duane H
2006-05-01
To compare obese horses with insulin resistance (IR) with nonobese horses and determine whether blood resting glucose, insulin, leptin, and lipid concentrations differed between groups and were correlated with combined glucose-insulin test (CGIT) results. 7 obese adult horses with IR (OB-IR group) and 5 nonobese mares. Physical measurements were taken, and blood samples were collected after horses had acclimated to the hospital for 3 days. Response to insulin was assessed by use of the CGIT, and maintenance of plasma glucose concentrations greater than the preinjection value for > or = 45 minutes was used to define IR. Area under the curve values for glucose (AUC(g)) and insulin (AUC(i)) concentrations were calculated. Morgan, Paso Fino, Quarter Horse, and Tennessee Walking Horse breeds were represented in the OB-IR group. Mean neck circumference and BCS differed significantly between groups and were positively correlated with AUC values. Resting insulin and leptin concentrations were 6 and 14 times as high, respectively, in the OB-IR group, compared with the nonobese group, and were significantly correlated with AUC(g) and AUC(i). Plasma nonesterified fatty acid, very low-density lipoprotein, and high-density lipoprotein-cholesterol (HDL-C) concentrations were significantly higher (86%, 104%, and 29%, respectively) in OB-IR horses, and HDL-C concentrations were positively correlated with AUC values. Measurements of neck circumference and resting insulin and leptin concentrations can be used to screen obese horses for IR. Dyslipidemia is associated with IR in obese horses.
Gastebois, Caroline; Villars, Clément; Drai, Jocelyne; Canet-Soulas, Emmanuelle; Blanc, Stéphane; Bergouignan, Audrey; Lefai, Etienne; Simon, Chantal
2016-12-01
To delineate the direct effect of physical activity on adiponectin metabolism, we investigated the impact of contrasted physical activity changes, independent of body mass changes, on adiponectin plasma concentration and muscle sensitivity in lean and overweight adult males. Eleven physically active lean men (70.6 ± 2.1 kg) were subjected to 1-month detraining; 9 sedentary lean men (73.1 ± 3.3 kg); and 11 sedentary overweight men (97.5 ± 3.0 kg) participated in a 2-month aerobic-exercise training program. Diet was controlled to maintain stable energy balance. Body composition, VO 2peak , circulating adiponectin, adipose and muscle tissue adiponectin, muscle adiponectin receptors, and APPL1 mRNAs were measured before and after the interventions. At baseline, plasma high-molecular-weight adiponectin concentration was lower in both active lean (5.44 ± 0.58 µg/mL) and sedentary overweight (5.30 ± 1.06 µg/mL) than in sedentary lean participants (7.44 ± 1.06 µg/mL; both p < 0.05). Training reduced total and high-molecular-weight adiponectin concentrations by, respectively, -32 and -42 % in sedentary lean, and -26 and -35 % in sedentary overweight, while detraining increased them by +25 and +27 % in active lean participants. Total and high-molecular-weight adiponectin changes were inversely correlated with VO 2peak changes (respectively, R 2 = 0.45, R 2 = 0.59; both p < 0.001) and positively with changes in fasting plasma insulin (both p < 0.05). Muscle and adipose tissue adiponectin mRNA did not differ between groups and with interventions. Muscle AdipoR2 and APPL1 mRNAs were lower in sedentary groups compared with the active group; and were positively associated with VO 2peak and inversely with fasting plasma insulin concentration. Plasma adiponectin concentration is inversely correlated with aerobic capacity. Future investigations will need to confirm the contribution of changes in muscle adiponectin sensitivity.
Almanza-Aguilera, Enrique; Brunius, Carl; Bernal-Lopez, M Rosa; Garcia-Aloy, Mar; Madrid-Gambin, Francisco; Tinahones, Francisco J; Gómez-Huelgas, Ricardo; Landberg, Rikard; Andres-Lacueva, Cristina
2018-06-28
Little is known regarding metabolic benefits of weight loss (WL) on the metabolically healthy obese (MHO) patients. We aimed to examine the impact of a lifestyle weight loss (LWL) treatment on the plasma metabolomic profile in MHO individuals. Plasma samples from 57 MHO women allocated to an intensive LWL treatment group (TG, hypocaloric Mediterranean diet and regular physical activity, n = 30) or to a control group (CG, general recommendations of a healthy diet and physical activity, n = 27) were analyzed using an untargeted 1 H NMR metabolomics approach at baseline, after 3 months (intervention), and 12 months (follow-up). The impact of the LWL intervention on plasma metabolome was statistically significant at 3 months but not at follow-up and included higher levels of formate and phosphocreatine and lower levels of LDL/VLDL (signals) and trimethylamine in the TG. These metabolites were also correlated with WL. Higher myo-inositol, methylguanidine, and 3-hydroxybutyrate, and lower proline, were also found in the TG; higher levels of hippurate and asparagine, and lower levels of 2-hydroxybutyrate and creatine, were associated with WL. The current findings suggest that an intensive LWL treatment, and the consequent WL, leads to an improved plasma metabolic profile in MHO women through its impact on energy, amino acid, lipoprotein, and microbial metabolism.
Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women
NASA Technical Reports Server (NTRS)
Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.
1982-01-01
Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.
Runaway Geneeration In Disruptions Of Plasmas In TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, E. D.; Bell, M. G.; Taylor, G.
2014-03-31
Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lastingmore » runaway plasmas, Parail-Pogutse instabilities were observed.« less
Local versus systemic effect of ovulation-inducing factor in the seminal plasma of alpacas
Ratto, Marcelo H; Huanca, Wilfredo; Singh, Jaswant; Adams, Gregg P
2005-01-01
Background Camelids are induced (reflex) ovulators. We have recently documented the presence of an ovulation-inducing factor (OIF) in the seminal plasma of alpacas and llamas. The objective was to test the hypothesis that OIF exerts its effect via a systemic rather than a local route and that endometrial curettage will enhance the ovulatory response to intrauterine deposition of seminal plasma in alpacas. Methods Female alpacas were assigned randomly to 6 groups (n = 15 to 17 per group) in a 2 × 3 factorial design to test the effect of seminal plasma versus phosphate-buffered saline (PBS) given by intramuscular injection, by intrauterine infusion, or by intrauterine infusion after endometrial curettage. Specifically, alpacas in the respective groups were given 1) 2 ml of alpaca seminal plasma intramuscularly, 2) 2 ml of PBS intramuscularly (negative control group), 3) 2 ml of alpaca seminal plasma by intrauterine infusion, 4) 2 ml of PBS by intrauterine infusion (negative control group), 5) 2 ml of alpaca seminal plasma by intrauterine infusion after endometrial curettage, or 6) 2 ml of PBS by intrauterine infusion after endometrial curettage (negative control group). The alpacas were examined by transrectal ultrasonography to detect ovulation and measure follicular and luteal diameters. Results Intramuscular administration of seminal plasma resulted in a higher ovulation rate than intrauterine administration of seminal plasma (93% versus 41%; P < 0.01), while intrauterine seminal plasma after endometrial curettage was intermediate (67%). None of the saline-treated controls ovulated. The diameter of the CL after treatment-induced ovulation was not affected by the route of administration of seminal plasma. Conclusion We conclude that 1) OIF in seminal plasma effects ovulation via a systemic rather than a local route, 2) disruption of the endometrial mucosa by curettage facilitated the absorption of OIF and increased the ovulatory effect of seminal plasma, and 3) ovulation in alpacas is not associated with a physical stimulation of the genital tract, and 4) the alpaca represents an excellent biological model to evaluate the bioactivity of OIF. PMID:16018817
A Program of Basic Research for High Power Switching and Other High Power Devices
1989-05-23
Physics Topical Group/American Physical Society, Baltimore, Maryland, April 18-21, 1988, Bull. Am. Phys. Soc. 33, 1082 (1988). "New High Power Thyratrons...American Physical Society, Baltimore, Maryland, April 18-21, 1988, Bull. Am. Phys. Soc. 33, 1082 (1988). "A plasma lens candidate with highly stable...April 18-21, 1988, Bull. Am. Phys. Soc. 33. 1082 (1988). "New High Power Thyratrons for High Energy Physics Applications," W. Hartmann, G. Kirkman, M.A
Fusion plasma theory project summaries
NASA Astrophysics Data System (ADS)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.
The Plasma Archipelago: Plasma Physics in the 1960s
NASA Astrophysics Data System (ADS)
Weisel, Gary J.
2017-09-01
With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.
Kato-Kataoka, A; Nishida, K; Takada, M; Suda, K; Kawai, M; Shimizu, K; Kushiro, A; Hoshi, R; Watanabe, O; Igarashi, T; Miyazaki, K; Kuwano, Y; Rokutan, K
2016-01-01
This pilot study investigated the effects of the probiotic Lactobacillus casei strain Shirota (LcS) on psychological, physiological, and physical stress responses in medical students undertaking an authorised nationwide examination for promotion. In a double-blind, placebo-controlled trial, 24 and 23 healthy medical students consumed a fermented milk containing LcS and a placebo milk, respectively, once a day for 8 weeks until the day before the examination. Psychophysical state, salivary cortisol, faecal serotonin, and plasma L-tryptophan were analysed on 5 different sampling days (8 weeks before, 2 weeks before, 1 day before, immediately after, and 2 weeks after the examination). Physical symptoms were also recorded in a diary by subjects during the intervention period for 8 weeks. In association with a significant elevation of anxiety at 1 day before the examination, salivary cortisol and plasma L-tryptophan levels were significantly increased in only the placebo group (P<0.05). Two weeks after the examination, the LcS group had significantly higher faecal serotonin levels (P<0.05) than the placebo group. Moreover, the rate of subjects experiencing common abdominal and cold symptoms and total number of days experiencing these physical symptoms per subject were significantly lower in the LcS group than in the placebo group during the pre-examination period at 5-6 weeks (each P<0.05) and 7-8 weeks (each P<0.01) during the intervention period. Our results suggest that the daily consumption of fermented milk containing LcS may exert beneficial effects preventing the onset of physical symptoms in healthy subjects exposed to stressful situations.
Preliminary characterization of a laser-generated plasma sheet
Keiter, P. A.; Malamud, G.; Trantham, M.; ...
2014-12-10
We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less
How can laboratory plasma experiments contribute to space and &astrophysics?
NASA Astrophysics Data System (ADS)
Yamada, M.
Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)
Mouse model of plasma cell mastitis.
Yu, Jian-jun; Bao, Shan-lin; Yu, Sheng-lin; Zhang, Da-Qing; Loo, Wings T Y; Chow, Louis W C; Su, Li; Cui, Zhen; Chen, Kai; Ma, Li-Qiong; Zhang, Ning; Yu, Hui; Yang, Yun-Zhen; Dong, Yu; Yip, Adrian Y S; Ng, Elizabeth L Y
2012-09-19
Plasma cell mastitis is distinct from the common form of mastitis and clinically resembles breast carcinoma. The lesion occurs in non-lactating young women, and the incidence rate is rising. Surgical resection is the main treatment, but cannot prevent recurrence of the disease. Disfigurement or removal of breast after the operations can cause marked physical and psychological distress. The etiology of plasma cell mastitis is unclear up till now. It is therefore necessary to investigate further the underlying immunological changes of the disease. The lesions of plasma cell mastitis removed from patients through aseptic operation were mixed with normal saline into homogenate tube machine (homogenate tubes were disinfected and sterilized prior to treatment). The mixture was homogenized at medium speed and grinded in ultrasonic cell disruptor. The homogenate obtained was made into oil emulsion with Freund's adjuvant. Thirty female BALB/c mice (6 weeks after sexual maturity) were divided into five groups A-E: group A was blank control; group B was normal saline control; group C was inoculated with 0.02 ml water-in-oil emulsion; group D was inoculated with 0.04 ml water-in-oil emulsion; group E was complete Freund's adjuvant control. Pathology results showed that mouse mammary gland acinar cells remained integral without any abnormal changes observed in control groups A and B. Experimental groups C and D showed dilation of mouse mammary ductal tissue with a large number of epithelial cells and debris in the lumen, and fibrosis around ducts accompanied by large duct cells, neutrophils, lymphocytes, and especially plasma cell infiltration. Pathological changes were observed in 3 (50%) mice and 5 (83.3%) mice in group C and D respectively. In group E, neutrophil infiltration in mammary gland was observed in 5 mice, but neither infiltration of plasma cells nor other abnormal pathological changes were observed. The lesions of patient with plasma cell mastitis could make the female BALB/c mice experience the similar clinical and pathological manifestation. High-dose group can successfully establish a mouse model of plasma cell mastitis.
UCLA IGPP Space Plasma Simulation Group
NASA Technical Reports Server (NTRS)
1998-01-01
During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.
Platelet monoamine oxidase B and plasma β-phenylethylamine in Parkinson's disease
Zhou, G; Miura, Y; Shoji, H; Yamada, S; Matsuishi, T
2001-01-01
OBJECTIVE—To evaluate the correlation between changes in platelet monoamine oxidase type B (MAO-B) activity and plasma β-phenylethylamine (PEA) concentrations in patients with Parkinson's disease and controls. METHODS—Platelet MAO-B activity and plasma PEA were measured with gas chromatography-mass spectrometry (GC-MS) in patients with Parkinson's disease treated with levodopa (12 men and 12 women) or selegiline (three men and three women), and physically healthy subjects as a control group (10 men and 10women). RESULTS—Platelet MAO-B activity was significantly higher in the Parkinson's disease group (mean 542 (SD 318) pmol/107 platelets/30 min) than in the control group (mean 349 (SD 307) pmol/107 platelets/30 min) (p<0.05). By contrast, the plasma PEA concentrations in patients with Parkinson's disease were significantly lower than in the control group (mean 532 (SD 243) pg/ml; 931 (SD 560) pg/ml) (p<0.01). The plasma PEA concentrations in patients with Parkinson's disease treated with selegiline were prominently higher than in patients with no selegiline treatment (p<0.001). There was a significantly negative correlation between platelet MAO-B activity and plasma PEA concentrations in patients (n=24, r=−0.466, p<0.001). CONCLUSIONS—The increase in platelet MAO-B activity and decrease in plasma PEA concentrations in patients with Parkinson's disease may be involved in the pathophysiological processes of the disease, and these changes are reversed by treatment with selegiline. PMID:11160474
Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff
NASA Astrophysics Data System (ADS)
Yaman, Necla; Özdoğan, Esen; Seventekin, Necdet; Ayhan, Hakan
2009-05-01
The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.
The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak
Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei
2014-01-01
The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z 2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099
Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas
NASA Astrophysics Data System (ADS)
Weltmann, Klaus-Dieter
2015-09-01
Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use will be discussed.
Hung, Hsuan-Man; Yeh, Shu-Hui; Chen, Chung-Hey
2016-05-01
Current medical technology permits the early detection of risk factors for coronary artery disease (CAD) in adults, and interventions are available to prevent CAD-related morbidity and mortality. The goal of this study was to determine the effectiveness of a Qigong exercise intervention in improving biomarker levels and mental and physical health outcomes in community-dwelling adults diagnosed with CAD risk factors, in a southern Taiwanese city. Participants were randomly assigned to an experimental (n= 84) group that participated in a 60-min Qigong group session 3 times per week for 3 months or a control (n= 61) group that did not receive the intervention. Self-perceived mental and physical health assessed with the Chinese Health Questionnaire-12, and body fat percentage were measured at baseline and 6, 12, and 16 weeks. Blood samples were collected at baseline and 12 weeks for analysis of lipid profiles, high-sensitivity C-reactive protein (hs-CRP), glycated hemoglobin (HbA1c), and fasting plasma sugar. Linear mixed model analyses revealed that experimental participants had significantly improved perceived mental and physical health and body fat percentage compared to the control group at 6 and 12 weeks but not 16 weeks. The lipid profiles were significantly more improved in the Qigong group than in the control group at 12 weeks. Qigong exercise, however, had no significant effects on hs-CRP, HbA1c, or fasting plasma sugar. Findings suggest that Qigong exercise improves a limited number of CAD risk factors in community-dwelling adults aged 40 years and over. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
1974-01-01
It is shown in this report that comprehensive in-situ study of all aspects of the entire zone disturbance caused by a body in a flowing plasma resulted in a large number if requirements on the shuttle-PPEPL facility. A large amount of necessary in-situ observation can be obtained by adopting appropriate modes of performing the experiments. Requirements are indicated for worthwhile studies, of some aspects of the problems, which can be carried out effectively while imposing relatively few constraints on the early missions. Considerations for the desired growth and improvement of the PPEPL to facilitate more complete studies in later missions are also discussed. For Vol. 2, see N74-28170; for Vol# 3, see N74-28171.
Pure Electron Plasmas near Thermal Equilibrium
1990-11-01
I University of California, San Diego Institute of Pure and Applied Physical Sciences La Jolla, CA 92093 N 0 (V) Final Technical Report N "Pure...Research/code -..... " 1112AI. VC 1/8/91 ’ , .... i ; () -ii- r INTRODUCTION Since 1982 the plasma group at UCSD has been conducting an experimental and...scale. We have also observed an unusual I = 1 instability which the previously published theoretical literature stated unconditionally was stable. The
Saka, Cafer
2018-01-02
The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.
Physics through the 1990s: Plasmas and fluids
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.
Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj
2015-01-01
Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132
Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)
2002-01-01
During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.
2017-10-01
of the study was to assess psychological readjustment post- deployment. Later assessments of the cohort included both physical and emotional health ...with work or other daily activities due to physical health ; (3) Bodily Pain, which evaluates limitations with work or other daily activities due to...P = .001), Bodily Pain (P = .001), and General Health (P = .001) individual subscales. Groups were similar on the Role- Physical individual subscale (P
Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.
2017-12-01
On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614
Sarmiento, Alvaro; Diaz-Castro, Javier; Pulido-Moran, Mario; Moreno-Fernandez, Jorge; Kajarabille, Naroa; Chirosa, Ignacio; Guisado, Isabel M; Javier Chirosa, Luis; Guisado, Rafael; Ochoa, Julio J
2016-11-12
Studies about Coenzyme Q 10 (CoQ 10 ) supplementation on strenuous exercise are scarce, especially those related with oxidative stress associated with physical activity and virtually nonexistent with the reduced form, Ubiquinol. The objective of this study was to determine, for the first time, whether a short-term supplementation with Ubiquinol can prevent oxidative stress associated to strenuous exercise. The participants (n = 100 healthy and well trained, but not on an elite level) were classified in two groups: Ubiquinol (experimental group), and placebo group (control). The protocol consisted of conducting two identical strenuous exercise tests with a rest period between tests of 24 h. Blood and urine samples were collected from the participants before supplementation (basal value) (T1), after supplementation (2 weeks) (T2), after first physical exercise test (T3), after 24 h of rest (T4), and after second physical exercise test (T5).The increase observed in the lactate, isoprostanes, DNA damage, and hydroperoxide levels reveals the severity of the oxidative damage induced by the exercise. There was a reduction in the isoprostanes, 8-OHdG, oxidized LDL, and hydroperoxydes in the supplemented Ubiquinol group, an increase in total antioxidant status, fat soluble antioxidant (both plasma and membrane), and CAT activity. Also, NO in the Ubiquinol-supplemented group was maintained within a narrow range. Oxidative stress induced by strenuous exercise is accumulative and increases transiently in subsequent sessions of physical activity. A short-term supplementation (2 weeks) with Ubiquinol (200 mg/day) before strenuous exercise, decreases oxidative stress and increases plasma NO, fact that could improve endothelial function, energetic substrate supply, and muscle recovery after strenuous exercise. © 2016 BioFactors, 42(6):612-622, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Plasma physics abstracts, 1 January - 31 December 1971
NASA Technical Reports Server (NTRS)
Montgomery, D. C.; Gurnett, D. A.
1971-01-01
Abstracts are presented on various aspects of plasma physics, including theoretical discussions and ionospheric plasmas. The topics considered cover Alfven waves, magnetized plasmas, plasma diffusion, Poynting flux measurements, electric fields, the magnetosphere, auroras, and plasma convection.
Helicon antenna radiation patterns in a high-density hydrogen linear plasma device
NASA Astrophysics Data System (ADS)
Caneses, J. F.; Blackwell, B. D.; Piotrowicz, P.
2017-11-01
Antenna radiation patterns in the vicinity of a helicon antenna are investigated in hydrogen plasmas produced in the MAGPIE linear plasma device. Using a uniform cold-plasma full-wave code, we model the wave physics in MAGPIE and find good agreement with experimental wave measurements. We show for the first time which antenna elements in a helicon device couple most strongly to the plasma and discuss the physical mechanism that determines this effect. Helicon wavefields in the near field of the antenna are best described in terms of the group velocity and ray direction, while far from the antenna, helicon wavefields behave like plane waves and are best described in terms of eigen-modes. In addition, we present recent 2D axis-symmetric full-wave simulations of the 120 kW helicon source in ProtoMPEX [Rapp et al., IEEE Trans. Plasma Sci. 44(12), 3456-3464 (2016); Caughman et al., J. Vac. Sci. Technol. Vac. Surf. Films 35, 03E114 (2017); and Goulding et al., Fusion Sci. Technol. 72(4), 588-594 (2017)] ( n e ˜ 5 × 1019 m-3, B 0 ˜ 70 mT, and f = 13.56 MHz) where the antenna radiation patterns are evident, and we provide an interpretation of the numerical results using the ideas developed in this paper.
NASA Astrophysics Data System (ADS)
Winslow, D. L.; Carter, K. R.; Chatterjee, R.; Huang, H.; Phillips, P. E.; Rowan, W. L.; Kuang, G. L.; Li, J. G.; Luo, J. R.; Wan, B. N.; Wan, Y. X.; Xie, J. K.
1998-11-01
A team from the Fusion Research Center at the University of Texas at Austin visited the HT-7 Tokamak at the Institute of Plasma Physics at the Chinese Academy of Sciences in Hefei, Anhui, China to study the effects of lower hybrid current drive (LHCD) in the HT-7 plasma. HT-7(HT-7 Group, Fusion Energy 1996 Vol. 1, 685 (1997).) is a medium-sized (R = 1.22 m) tokamak with superconducting toroidal field coils and long--pulse capabilities utilizing LHCD to assist ohmic current drive. Core and edge diagnostics supported by a stand-alone data acquisition system were installed for the spring 1998 campaign. The diagnostics included an ECE radiometer which allows determination of both electron temperature profiles and fluctuation levels in the core plasma and an H_α array detector for measurement of turbulence in regions not easily accessible to probes. In addition, a reciprocating Langmuir probe system was developed for use on HT-7 and should be available for the next campaign. The effects of LHCD upon fluctuation levels in the plasma will be discussed.
Zaitseva, Irina P; Skalny, Andrey A; Tinkov, Alexey A; Berezkina, Elena S; Grabeklis, Andrei R; Skalny, Anatoly V
2015-02-01
The primary aim of the current study is to estimate the effect of different physical activity levels on hair trace element content in male and female students. A total of 113 students (59 women and 54 men) of P. G. Demidov Yaroslavl State University (Yaroslavl, Russia) took part in the current investigation. According to the level of the physical activity, all students were divided into three groups: high, medium, and low physical activity. Essential and toxic metal content (μg/g) in hair samples was assessed by inductively coupled plasma mass spectrometry using NexION 300D + NWR213 (Perkin-Elmer, USA). The obtained data show that hair iodine, zinc, arsenic, nickel, and tin levels are not related to physical activity in male and female students. At the same time, increased physical activity is associated with decreased hair copper, vanadium, bismuth, and mercury content in comparison to the low physical activity groups. Students with higher physical activity are also characterized by significantly higher hair cobalt, iron, manganese, selenium, cadmium, lithium, and lead concentrations. Finally, statistical analysis has revealed maximal gender differences in hair trace element content in the high physical activity groups, whereas in the low activity groups, the hair metal concentrations were nearly similar in females and males.
Charging of Space Debris and Their Dynamical Consequences
2016-01-08
field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the
Tepsic, Jasna; Vucic, Vesna; Arsic, Aleksandra; Blazencic-Mladenovic, Vera; Mazic, Sanja; Glibetic, Marija
2009-10-01
The effect of intensive long-term physical activity on phospholipid fatty acid (FA) composition has not been studied thoroughly. We determined plasma and erythrocyte phospholipid FA status of professional basketball and football players. Our results showed differences in plasma FA profile not only between sportsmen and sedentary subjects, but also between two groups of sportsmen. Plasma FA profile in basketball players showed significantly higher proportion of n-6 FA (20:3, 20:4, and 22:4) and total polyunsaturated FA (PUFA) than controls, while football players had higher palmitoleic acid (16:1) than basketball players and controls. Total PUFA and 22:4 were also higher in basketball than in football players. Erythrocyte FA profile showed no differences between football players and controls. However, basketball players had higher proportion of 18:0 than controls, higher saturated FA and lower 18:2 than two other groups, and higher 22:4 than football players. These findings suggest that long-term intensive exercise and type of sport influence FA profile.
Wochyński, Zbigniew; Sobiech, Krzysztof
2017-06-19
This study has aimed at investigating the impact of the Special Aviation Gymnastics Instruments (SAGI) training scheme on the blood serum cortisol, testosterone, insulin, and plasma adrenaline, noradrenaline, and dopamine in comparison with a control group. Fifty-five cadets, aged 20 years old, participated in the study. Cadets were divided into 2 groups: A (N = 41) - the SAGI-trained, and B (N = 14) - the control group. In both groups, blood was the examined material, sampled twice: before the training session (BT) and after the training session (AT), at the beginning (training session I), during (training session II), and after completion of the SAGI training session (training session III). Commercially available kits were used for assaying serum cortisol, testosterone, and insulin as well as plasma adrenaline, noradrenaline, and dopamine. Cadets' physical fitness was assessed by means of Aero-Synthetic Efficiency Tests. In group A, a significant decrease in serum cortisol (training session III) and insulin in three training sessions AT in comparison with the values BT was seen. A statistically significant increase in testosterone and catecholamines was noted in all 3 training sessions AT in comparison with the values BT. In group B, a statistically significant increase in cortisol (training session II), testosterone, and catecholamines was observed in all 3 training sessions AT vs. the values in training session BT. In group B, serum levels of all assayed hormones were higher in training session III than those in group A. In the examined group, the SAGI training produced fewer hormonal changes dependent on the intensity and exercise type and physical efficiency improvement than in the control group. Int J Occup Med Environ Health 2017;30(4):655-664. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Threshold-Switchable Particles (TSP) to Control Internal Hemorrhage
2013-12-01
and morphology and divided into three regimes: a 3-D gel, 2-D mat, and a 1-D thin film. They determined that the critical parameters determining...of critical physical parameters / dimensionless groups (through both simulation and experiment) such as pre-shear/mixing rate, the Weber and Ohnesorge...Capillary Pinch-Off Phase Diagram. This plot was constructed to aid in the identification of important physical parameters in blood plasma pinch-off
Lee, Hyo-Chang; Chung, Chin-Wook
2015-10-20
Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.
Lee, Hyo-Chang; Chung, Chin-Wook
2015-01-01
Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650
The design and development of a space laboratory to conduct magnetospheric and plasma research
NASA Technical Reports Server (NTRS)
Rosen, A.
1974-01-01
A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.
Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav
2017-10-01
The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.
NASA Astrophysics Data System (ADS)
Soto, Leopoldo
2011-07-01
The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010) both agreed to hold this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, considering the celebration of the Bicentennial of Chilean Independence. ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of its official program, within the framework of the Chilean Bicentennial activities. This event was also a scientific and academic activity of the project `Center for Research and Applications in Plasma Physics and Pulsed Power, P4', supported by the National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya in 1980, and was followed by: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006) and Fukuoka (2008). The purpose of the Congress is to discuss recent progress and outlooks in plasma science, covering fundamental plasma physics, fusion plasmas, astrophysical plasmas, plasma applications, etc. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005) and Caracas (2007). The purpose of the Latin American Workshop on Plasma Physics is to provide a forum in which the achievements of the Latin American plasma physics communities can be displayed, as well as to foster collaboration between plasma scientists within the region and elsewhere. The Program of ICPP-LAWPP-2010 included, amongst others, the following topics: fundamentals of plasma physics, fusion plasmas, plasmas in astrophysics and space physics, plasma applications and technologies, complex plasmas, high energy density plasmas, quantum plasmas and laser-plasma interaction. A total of 180 delegates from 34 different countries took part in ICPP-LAWPP-2010, and 60 delegates received financial assistance from the Local Organizing Committee, thanks to the support granted by the International Union for Pure and Applied Physics (IUPAP) and by CCHEN. The ICPP-LAWPP-2010 Program was established by the following Program Committee: • Carlos Alejaldre, ITER • Maria Virginia Alves, Brazil • Julio Herrera, Mexico • Günter Mank, IAEA • George Morales, USA • Padma Kant Shukla, Germany • Guido Van Oost, Belgium • Leopoldo Soto, Chile (Chairman) This Program Committee was formed of selected members from the International Advisory Committee of the ICPP and from the International Advisory Committee of the LAWPP (http://www.icpp-lawpp-2010.cl/page/committees.php). In particular, plenary lectures and invited topical lectures were selected by the Program Committee from a list of nominated lectures presented by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was established by the Program Committee. The Congress included 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. Most of the plenary and topical lectures are published in this special issue of Plasma Physics and Controlled Fusion. The papers were refereed according to the usual standards of the journal. Prior to ICPP-LAWPP 2010, an important activity usually associated with the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from all over the world, providing basic training to students and young researchers. The School was attended by 44 participants and 7 lecturers from 11 different countries. All participants received financial assistance from the Local Organizing Committee. The topics covered by the School were: a general description of plasmas, space and astrophysical plasmas, plasma diagnostic techniques, high temperature and fusion plasmas, and low temperature and industrial plasmas. The organizers of ICPP-LAWPP-2010 are grateful to the lecturers of the LAWPP Plasma Physics School: Luis Felipe Delgado-Aparicio (USA), Homero Maciel (Brazil), and Marina Stepanova, J Alejandro Valdivia, Victor Muñoz, Felipe Veloso and Leopoldo Soto (Chile). On 27 February 2010, Chile suffered a major earthquake, one of the worst in the recorded history of the world up to that time. Although Santiago was little affected, the region located 200 km to the south was seriously damaged. After this event, the Local Organizing Committee received many messages from members of the plasma physics community around the world expressing their concern. The Local Organizing Committee greatly appreciates the support of the participants from all over the world who decided to come to Chile to attend the Conference. Their solidarity is highly appreciated. The Chairman of ICPP-LAWPP-2010 is grateful to the members of the Local Organizing Committee for the conference: Karla Cubillos, José Moreno, Cristian Pavez, Felipe Veloso, Marcelo Zambra, Luis Huerta and Fabian Reyes, and to the members of the Program Committee for their work and commitment. The Guest Editor of this special issue is grateful to the Publishers, in particular to Caroline Wilkinson, for their excellent work and cooperation.
Low-Temperature Plasma Functionalization of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun; Meyyappan, M.
2004-01-01
A low-temperature plasma process has been devised for attaching specified molecular groups to carbon nanotubes in order to impart desired chemical and/or physical properties to the nanotubes for specific applications. Unlike carbon-nanotube- functionalization processes reported heretofore, this process does not involve the use of wet chemicals, does not involve exposure of the nanotubes to high temperatures, and generates very little chemical residue. In addition, this process can be carried out in a relatively simple apparatus and can readily be scaled up to mass production.
Griffin, Simon J; Simmons, Rebecca K; Prevost, A Toby; Williams, Kate M; Hardeman, Wendy; Sutton, Stephen; Brage, Søren; Ekelund, Ulf; Parker, Richard A; Wareham, Nicholas J; Kinmonth, Ann Louise
2014-07-01
The aim of this study was to assess whether or not a theory-based behaviour change intervention delivered by trained and quality-assured lifestyle facilitators can achieve and maintain improvements in physical activity, dietary change, medication adherence and smoking cessation in people with recently diagnosed type 2 diabetes. An explanatory randomised controlled trial was conducted in 34 general practices in Eastern England (Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen Detected Diabetes in Primary Care-Plus [ADDITION-Plus]). In all, 478 patients meeting eligibility criteria (age 40 to 69 years with recently diagnosed screen or clinically detected diabetes) were individually randomised to receive either intensive treatment (n = 239) or intensive treatment plus a theory-based behaviour change intervention led by a facilitator external to the general practice team (n = 239). Randomisation was central and independent using a partial minimisation procedure to balance stratifiers between treatment arms. Facilitators taught patients skills to facilitate change in and maintenance of key health behaviours, including goal setting, self-monitoring and building habits. Primary outcomes included physical activity energy expenditure (individually calibrated heart rate monitoring and movement sensing), change in objectively measured fruit and vegetable intake (plasma vitamin C), medication adherence (plasma drug levels) and smoking status (plasma cotinine levels) at 1 year. Measurements, data entry and laboratory analysis were conducted with staff unaware of participants' study group allocation. Of 475 participants still alive, 444 (93%; intervention group 95%, comparison group 92%) attended 1-year follow-up. There were no significant differences between groups in physical activity (difference: +1.50 kJ kg(-1) day(-1); 95% CI -1.74, 4.74), plasma vitamin C (difference: -3.84 μmol/l; 95% CI -8.07, 0.38), smoking (OR 1.37; 95% CI 0.77, 2.43) and plasma drug levels (difference in metformin levels: -119.5 μmol/l; 95% CI -335.0, 95.9). Cardiovascular risk factors and self-reported behaviour improved in both groups with no significant differences between groups. For patients with recently diagnosed type 2 diabetes receiving intensive treatment in UK primary care, a facilitator-led individually tailored behaviour change intervention did not improve objectively measured health behaviours or cardiovascular risk factors over 1 year. ISRCTN99175498 FUNDING: The trial is supported by the Medical Research Council, the Wellcome Trust, National Health Service R&D support funding (including the Primary Care Research and Diabetes Research Networks) and National Institute of Health Research under its Programme Grants for Applied Research scheme. The Primary Care Unit is supported by NIHR Research funds. Bio-Rad provided equipment for HbA1c testing during the screening phase.
Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.
Kemp, A J; Divol, L
2012-11-09
We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.
In vivo imaging in the rabbit as a model for the study of ovulation-inducing factors.
Cervantes, M P; Palomino, J M; Adams, G P
2015-01-01
The study of factors responsible for eliciting ovulation in rabbits has been hampered by the lack of a suitable method of monitoring the ovaries in vivo. Ovarian imaging by ultrasound biomicroscopy was used in two experiments designed to determine the effects of seminal plasma on the ovulatory response in rabbits. In Experiment 1, female rabbits were group-housed and treated intramuscularly with saline, gonadotropin releasing hormone (GnRH), or seminal plasma of llamas or rabbits (n = 4 to 6 per group). Rabbits were euthanized eight days later to evaluate the ovarian response by ultrasound biomicroscopy ex situ. No differences among groups were detected in the proportion of rabbits that ovulated or in the number and size of corpora lutea. The high incidence of ovulation in the negative control group was unexpected, and confounded determination of an ovulation-inducing effect of seminal plasma. In Experiment 2, female rabbits were caged individually, and treated as in Experiment 1 (n = 5 to 7 per group). The ovarian response was evaluated in vivo by transcutaneous ultrasound biomicroscopy. Ovulation and formation of corpora lutea were detected only in rabbits given GnRH. A preovulatory surge in plasma luteinizing hormone concentration and a post-ovulatory rise in plasma progesterone concentration were detected only in rabbits treated with GnRH. Surgical translocation of the ovaries to a subcutaneous position enabled longitudinal assessment of the ovulatory response by ultrasound biomicroscopy. Results clearly documented the effect of physical/social interaction on ovulation in rabbits, and did not support the hypothesis that seminal plasma elicits ovulation in rabbits. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F
2015-10-01
The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity. Copyright © 2015 Elsevier Inc. All rights reserved.
Platelet-rich plasma: does it help reduce tunnel widening after ACL reconstruction?
Vadalà, Antonio; Iorio, Raffaele; De Carli, Angelo; Ferretti, Matteo; Paravani, Daniele; Caperna, Ludovico; Iorio, Carlo; Gatti, Andrea; Ferretti, Andrea
2013-04-01
The purpose of this study was to evaluate the efficacy of platelet-rich plasma (PRP) in reducing femoral and tibial tunnel enlargement in patients operated on for anterior cruciate ligament reconstruction with hamstrings. Forty male patients, in which both femoral and tibial 9-mm tunnels were performed because of the graft size, were enrolled in this prospective study. They were randomly assigned to group A (20 patients, PRP group) and group B (20 patients, control group). All patients were followed up at a median of 14.7 months (range 10-16 months), with a physical examination, the Tegner, Lysholm and objective IKDC scoring scales, and with the KT-1000 arthrometer. Moreover, they underwent a CT evaluation in order to assess the amount of tunnel enlargement. Femoral tunnel diameter increased from 9.0 ± 0.1 mm to 9.8 ± 0.3 mm in group A (p = 0.032) and from 9.0 ± 0.1 mm to 9.4 ± 0.5 mm in group B (p = 0.043). Tibial tunnel diameter increased from 9.0 ± 0.2 mm to 10.9 ± 0.2 mm in group A (p = 0.029) and from 9.1 ± 0.1 mm to 10.1 ± 0.4 mm in group B (p = 0.028). Physical examination as well as the evaluation scales used showed no differences between the two groups. The use of PRP does not seem to be effective in preventing tunnel enlargement.
Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-12-01
To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO 2max )] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO 2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese.
Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-01-01
To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO2max)] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese. PMID:29472742
Plasma Physics Applied (New Book)
NASA Astrophysics Data System (ADS)
Grabbe, Crockett
2007-03-01
0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.
Platelet-Rich Plasma Treatment With Physical Therapy in Chronic Partial Supraspinatus Tears.
Ilhanli, Ilker; Guder, Necip; Gul, Murat
2015-09-01
Despite the insufficient evidence, due to potential contribution to the improvement, platelet-rich plasma (PRP) is emerging as a promising method. The aim of this study was to assess the effectiveness of PRP injection in partial supraspinatus tears by comparing with physical therapy (PT). Seventy patients with chronic partial supraspinatus tears in magnetic resonance imaging were randomized into two groups; PRP (n = 35) and PT (n = 35). Before the treatment, at the end of the treatment and at the 12th month after the end of the treatment, range of motion (ROM), visual analog scale (VAS) for pain, Disabilities of Arm, Shoulder and Hand questionnaire (DASH), Neer's, Hawkins' and drop arm tests and Beck Depression Inventory were investigated. Statistical analysis was made for 62 subjects (PRP group, n = 30; PT group, n = 32). There were no differences between the groups according to demographic data. At the 12th month after the end of the treatment, significant improvement in ROM was detected in both groups, pain was reduced significantly in both groups and improvement of the DASH score was observed in both groups. At all the evaluation steps, increases in ROM degrees were significantly higher in the PT group than the PRP group. For VAS in activity and in rest, after the treatment, improvement was higher in the PT group than the PRP group. However, improvement of the DASH score of the PRP group was significantly better than the PT group. When we compared with PT, PRP seemed to be a well-tolerated application which showed promising results in patients with chronic partial supraspinatus tears.
Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Jäger, Ales; Polívka, Leoš; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka
2016-03-01
Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully explored. Here, we report on the molecular mechanisms of non-thermal plasma-induced bacteria inactivation in both Gram-positive and Gram-negative strains. We demonstrate that depending on the exposure time plasma induces either direct physical destruction of bacteria or triggers programmed cell death (PCD) that exhibits characteristic features of apoptosis. The interplay between physical disruption and PCD is on the one hand driven by physical plasma parameters, and on the other hand by biological and physical properties of bacteria. The explored possibilities of the tuneable bacteria deactivation provide a basis for the development of advanced plasma-based therapies. To a great extent, our study opens new possibilities for controlled non-thermal plasma interactions with living systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasma B-type natriuretic peptide concentration in beta-thalassaemia patients.
Aessopos, Athanasios; Farmakis, Dimitrios; Polonifi, Aikaterini; Tsironi, Maria; Fragodimitri, Christina; Hatziliami, Antonia; Karagiorga, Markisia; Diamanti-Kandarakis, Evanthia
2007-05-01
Plasma B-type natriuretic peptide (BNP) concentration has significant diagnostic accuracy and prognostic value in various forms of heart disease. Whether BNP is also useful in the evaluation and management of thalassaemia heart disease remains to be determined. Eighty three thalassaemia major patients; 8 with acutely decompensated heart failure (New York Heart Association [NYHA] class III or IV, group A), 25 with NYHA class II symptoms and impaired systolic left ventricular function (ejection fraction<55% or fractional shortening<30%, group B) and 50 with normal systolic function (group C), as well as 50 healthy controls, were studied. Assessment included history, physical examination, Doppler echocardiography and plasma BNP determination. Mean BNP levels were 431+/-219 pg/mL (range, 283-890 pg/mL) in group A, 158+/-31 pg/mL in group B, 176+/-54 pg/mL in group C and 43+/-24 pg/mL in controls. BNP levels were significantly higher in group A (p<0.001), but did not differ between groups B and C. Moreover, BNP was not correlated with left ventricular end-diastolic diameter, left ventricular mass, right ventricular diameter index, Doppler diastolic indexes (except in group C), the mean 2-year serum ferritin concentration or the peak serum ferritin concentration in any of the three patient groups. A potential deficiency of BNP-related neurohormonal mechanisms may impair its clinical usefulness in thalassaemia major.
The development of a high-capacity instrument module heat transport system, appendixes
NASA Technical Reports Server (NTRS)
1981-01-01
Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.
Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira
2014-01-01
Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.
Gleeson, Michael; Bishop, Nicolette C; Struszczak, Lauren
2016-08-01
To assess evidence of health and immune benefit by consumption of a Lactobacillus casei Shirota probiotic in highly physically active people. Single-centre, population-based, randomized, double-blind, placebo-controlled trial. Daily ingestion of probiotic (PRO) or placebo (PLA) for 20 weeks for n = 243 (126 PRO, 117 PLA) university athletes and games players. Subjects completed validated questionnaires on upper respiratory tract infection symptoms (URS) on a daily basis and on physical activity status at weekly intervals during the intervention period. Blood samples were collected before and after 20 weeks of the intervention for determination of Epstein Barr virus (EBV) and cytomegalovirus (CMV) serostatus and antibody levels. URS episode incidence was unexpectedly low (mean 0.6 per individual) and was not significantly different on PRO compared with PLA. URS episode duration and severity were also not influenced by PRO. A significant time × group interaction effect was observed for plasma CMV antibody titres in CMV seropositive participants (p < 0.01) with antibody titre falling in the PRO group but remaining unchanged in the PLA group over time. A similar effect was found for plasma EBV antibody titres in EBV seropositive participants (p < 0.01) with antibody titre falling in the PRO group but increasing in the PLA group over time. In summary, regular ingestion of PRO did not reduce URS episode incidence which might be attributable to the low URS incidence in this study. Regular ingestion of PRO reduced plasma CMV and EBV antibody titres, an effect that can be interpreted as a benefit to overall immune status.
NASA Technical Reports Server (NTRS)
Roberts, W. T.; Kropp, J.; Taylor, W. W. L.
1986-01-01
This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.
Malaguti, Marco; Baldini, Marta; Angeloni, Cristina; Biagi, Pierluigi; Hrelia, Silvana
2008-06-01
The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocyte-membrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocyte-membrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation.A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice.
A perspective on the contributions of Ronald C. Davidson to plasma physics
NASA Astrophysics Data System (ADS)
Wurtele, Jonathan S.
2016-10-01
Starting in the 1960s and continuing for half a century, Ronald C. Davidson made fundamental theoretical contributions to a wide range of areas of pure and applied plasma physics. Davidson was one of the founders of nonneutral plasma physics and a pioneer in developing and applying kinetic theory and nonlinear stability theorems to collective interaction processes and nonlinear dynamics of nonneutral plasmas and intense charged particle beams. His textbooks on nonneutral plasmas are the classic references for the field and educated generations of graduate students. Davidson was a strong advocate for applying the ideas of plasma theory to develop techniques that benefit other branches of science. For example, one of the major derivative fields enabled by nonneutral plasmas is the study of antimatter plasmas and the synthesis of antihydrogen. This talk will review a few highlights of Ronald Davidson's impact on plasma physics and related fields of science.
Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi
2010-03-01
Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.
Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.
Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew
2015-12-10
While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.
NASA Astrophysics Data System (ADS)
Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis
2017-12-01
The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.
Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis
2018-05-01
The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O 2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.
NASA Astrophysics Data System (ADS)
Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis
2018-05-01
The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.
NASA Astrophysics Data System (ADS)
Somov, B. V.
If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics
Inflammatory Profile of Awake Function-Controlled Craniotomy and Craniotomy under General Anesthesia
Klimek, Markus; Hol, Jaap W.; Wens, Stephan; Heijmans-Antonissen, Claudia; Niehof, Sjoerd; Vincent, Arnaud J.; Klein, Jan; Zijlstra, Freek J.
2009-01-01
Background. Surgical stress triggers an inflammatory response and releases mediators into human plasma such as interleukins (ILs). Awake craniotomy and craniotomy performed under general anesthesia may be associated with different levels of stress. Our aim was to investigate whether those procedures cause different inflammatory responses. Methods. Twenty patients undergoing craniotomy under general anesthesia and 20 patients undergoing awake function-controlled craniotomy were included in this prospective, observational, two-armed study. Circulating levels of IL-6, IL-8, and IL-10 were determined pre-, peri-, and postoperatively in both patient groups. VAS scores for pain, anxiety, and stress were taken at four moments pre- and postoperatively to evaluate physical pain and mental duress. Results. Plasma IL-6 level significantly increased with time similarly in both groups. No significant plasma IL-8 and IL-10 change was observed in both experimental groups. The VAS pain score was significantly lower in the awake group compared to the anesthesia group at 12 hours postoperative. Postoperative anxiety and stress declined similarly in both groups. Conclusion. This study suggests that awake function-controlled craniotomy does not cause a significantly different inflammatory response than craniotomy performed under general anesthesia. It is also likely that function-controlled craniotomy does not cause a greater emotional challenge than tumor resection under general anesthesia. PMID:19536349
Morel, Agnieszka; Bijak, Michał; Niwald, Marta; Miller, Elżbieta; Saluk, Joanna
2017-11-01
The objective of the present study was to evaluate oxidative/nitrative stress in the plasma of 50 patients suffering from the secondary progressive course of multiple sclerosis (MS), and to verify its correlation with physical and mental disability as assessed by the Expanded Disability Status Scale (EDSS), and the Beck Depression Inventory (BDI). Oxidative and nitrative damage to proteins was determined by the level of carbonyl groups and 3-nitrotyrosine using ELISA test. Based on the reaction with Ellman's reagent, we estimated the concentration of oxidized thiol groups. Additionally, we measured the level of lipid peroxidation. In plasma drawn from MS patients, we observed a significantly higher level of 3-NT (92%; P < 0.0003), carbonyl groups (29%; P < 0.0001) and thiobarbituric acid reactive substances (73%; P < 0.0001), as well as a lower concentration of thiol groups (33%; P < 0.0001), in comparison to healthy subjects. We noted positive correlations between the level of carbonyl groups or 3-NT and both diagnostic parameters, EDSS and BDI. Negative correlations were observed between concentration of -SH groups and EDSS and BDI. Our results indicate that impaired red-ox balance can significantly promote neurodegeneration in secondary progressive MS.
Malaguarnera, Mariano; Cammalleri, Lisa; Gargante, Maria Pia; Vacante, Marco; Colonna, Valentina; Motta, Massimo
2007-12-01
Centenarians are characterized by weakness, decreasing mental health, impaired mobility, and poor endurance. L-Carnitine is an important contributor to cellular energy metabolism. This study evaluated the efficacy of L-carnitine on physical and mental fatigue and on cognitive functions of centenarians. This was a placebo-controlled, randomized, double-blind, 2-phase study. Sixty-six centenarians with onset of fatigue after even slight physical activity were recruited to the study. The 2 groups received either 2 g levocarnitine once daily (n = 32) or placebo (n = 34). Efficacy measures included changes in total fat mass, total muscle mass, serum triacylglycerol, total cholesterol, HDL cholesterol, LDL cholesterol, Mini-Mental State Examination (MMSE), Activities of Daily Living, and a 6-min walking corridor test. At the end of the study period, the levocarnitine-treated centenarians, compared with the placebo group, showed significant improvements in the following markers: total fat mass (-1.80 compared with 0.6 kg; P < 0.01), total muscle mass (3.80 compared with 0.8 kg; P < 0.01), plasma concentrations of total carnitine (12.60 compared with -1.70 mumol; P < 0.05), plasma long-chain acylcarnitine (1.50 compared with -0.1 micromol; P < 0.001), and plasma short-chain acylcarnitine (6.0 compared with -1.50 micromol; P < 0.001). Significant differences were also found in physical fatigue (-4.10 compared with -1.10; P < 0.01), mental fatigue (-2.70 compared with 0.30; P < 0.001), fatigue severity (-23.60 compared with 1.90; P < 0.001), and MMSE (4.1 compared with 0.6; P < 0.001). Our study indicates that oral administration of levocarnitine produces a reduction of total fat mass, increases total muscular mass, and facilitates an increased capacity for physical and cognitive activity by reducing fatigue and improving cognitive functions.
[Characteristic of sample banks isolated from EDTA-blood by sedimentation method].
Chen, Zhi-bin; Lin, Qin; Ma, Chang-hua; Liu, Kai-ning; Meng, Huan-xin
2014-02-18
To assess the characteristics of establishing the different sample banks of plasma, leukocytes and DNA by sedimentation method of isolating from ethylene diamine tetraacetic acid(EDTA)-blood and to clarify the sedimentation method of leukocyte isolation and plasma volume by comparative data and recommended procedures for applicability. In the study, 29 EDTA-bloods were obtained, the total amounts of leukocytes and the percentage of neutrophile granulocytes, and lymphocytes in the EDTA-blood detected as a control group and then assigned equally into 4 EP tubes with 1 mL EDTA-blood per tube as 4 test groups, then the 4 tubes were placed with the EDTA-blood at room temperature and the plasma layers were isolated at 0.5, 1, 2 and 3 h, receptively. The total amount of leukocytes and the percentage of neutrophile granulocytes, and lymphocytes were detected by automated hematology analyzer at the clinical laboratory. The volume of the plasma was also measured at the same time. The plasma volume at 0.5 h [(241.72 ± 101.52)μL] was substantially lower than those at 1 h[(317.24 ± 97.50)μL], at 2 h[(371.03 ± 91.66)μL], and at 3 h [(408.97 ± 97.43)μL] , P < 0.05. The plasma volume at 1 h was substantially lower than those at 2 h and 3 h (P < 0.05). The total amount of leukocytes in the plasma layer at 0.5 h (2.50 × 10(6) ± 1.48 × 10(6)) group was substantially higher than the amount of 2 or 3 h groups respectively (1.47 × 10(6) ± 7.19 × 105,1.21 × 10(6) ± 7.41 × 105), P < 0.05. Significant difference was not found between 0.5 h group and 1 h group (2.29 × 10(6)± 1.17 × 10(6)), P > 0.05. The total amount of leukocytes in the plasma layer in 1 h group was substantially higher than that in 2 h and 3 h groups (P < 0.05). There was no significant difference between 3 h group and 2 h group (P > 0.05). The total amount of leukocytes in the plasma layer of the 4 test groups was substantially lower than that in the control group (P < 0.05). The percentage of neutrophile granulocytes (54.14% ± 11.65%) in the plasma layer in 0.5 h group was substantially higher than those in 1 h, 2 h and 3 h groups (46.66% ± 12.70%,39.17% ± 12.33%,43.25% ± 14.54%), P < 0.05, respectively, which was the substantially lower than that in the control group (60.53% ± 8.46%), P < 0.05. The average value of the percentage of neutrophile granulocytes in the plasma layer in 1 h group was substantially higher than that in 2 h group (P < 0.05). There was no significant different between 3 h group and both 1 h, 2 h groups (P > 0.05). The mean percentage of lymphocytes in the plasma layer in 0.5 h group (35.09% ± 10.84%) was substantially lower than those in the plasma layer in 1 h, 2 h and 3 h groups, respectively ( 41.48% ± 12.20%, 47.96% ± 12.27%, 45.50% ± 13.71%), which was significant higher than that in the control group(30.98% ± 7.33%), P < 0.05. The average value of the percentage of lymphocytes in the plasma layer in 1 h group was substantially higher than those in the control group and 0.5 h group, but was substantially lower than those in 2 h and 3 h groups (P < 0.05). The average value of percentage of lymphocytes in the plasma layer in 2 h group was substantially higher than those in the control group, 0.5 h and 1 h groups (P < 0.05). There was no significant difference between 2 h and 3 h groups (P > 0.05). The best period of time in obtaining leukocytes is 0.5-1 h sedimentation of EDTA-blood. Both the plasma layer and leukocytes can be separated and obtained at the same time from the same sample by the sedimentation method of EDTA-blood. The sedimentation of EDTA-blood has the least interference of both chemical and physical factors, as well as a ready operation, which can establish the plasma, leukocytes and DNA sample banks for various aspects of research.
Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.
Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung
2016-09-01
In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.
NASA Astrophysics Data System (ADS)
Wagner, F.
2003-12-01
The Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics (2003) has been awarded to Vladimir Evgenievitch Fortov `for his seminal contributions in the area of non-ideal plasmas and strongly coupled Coulomb systems, and for his pioneering work on the generation and investigation of plasmas under extreme conditions'. Vladimir Evgenievitch Fortov was born on 23 January 1946 in Noginsk, Russia. He studied physics at the Moscow Institute of Physics and Technology (PhD in 1976). In 1978 he was made a Professor and in 1991 he was awarded the Chair of the Moscow Institute of Physics and Technology. In the same year he became a Member of the Russian Academy of Sciences and was its vice-chairman from 1996 to 2001. From 1996 to 1998, Professor Fortov went into politics where he was just as successful, becoming Deputy Prime Minister of the Government of the Russian Federation and Minister of Science and Technology of the Russian Federation. Professor Fortov has made outstanding experimental and theoretical contributions to low temperature plasma physics. His pioneering work investigating non-ideal plasmas produced by intense shock waves initiated a new research field---the physical properties of highly compressed plasmas with strong inter-particle interactions. Under the leadership of Professor Fortov, experimental methods for generating and diagnosing these plasmas under extreme conditions were developed. To generate intense shock waves, a broad spectrum of drivers was used---chemical explosives, hypervelocity impact, lasers, relativistic electrons, heavy-ion and soft x-ray beams. Measurements of the equation of state, transport and optical properties of strongly coupled plasmas were carried out, including the interesting region lying between condensed matter and rarefied plasmas where specific plasma phase transitions and insulator--metal transitions were expected and explored. In another area of strongly coupled plasmas, Professor Fortov led theoretical and experimental studies on `dusty plasmas', carried out over a wide range of plasma parameters, using a broad spectrum of experimental techniques and devices. These studies embraced thermal combustion, glow and rf discharges and plasmas induced by cosmic ultraviolet and nuclear radiation. Under many of these conditions, ordered structures of dust in plasma liquids and plasma crystals were observed for the first time. Investigations of dusty plasmas induced by solar radiation and dust structures in DC glow discharges were first carried out on the Mir space station under micro-gravity conditions. The Russian--German experiment on dusty plasma crystals in space was successfully started on the International Space Station (ISS) in March 2001. This experiment was the first physics experiment on board the ISS. On the basis of his experimental results, Professor Fortov developed a general method of constructing semi-empirical equations of state of highly compressed materials. He put forward theoretical models of thermodynamical, transport and optical properties of strongly non-ideal plasmas. On the basis of these models Professor Fortov developed two-dimensional and three-dimensional computer codes for computer simulations of the processes in advanced energetic, space, nuclear and aviation systems based on high energy density plasmas. Professor Fortov has not only contributed to plasma theory but also to more applied topics. His laboratory participated in international space projects like the VEGA project (plasma dust impact phenomena), as well as the Halley Comet exploration, and studied plasma and shock wave phenomena stimulated by the impact of the Shoemaker-Levy 9 comet with Jupiter. Professor Fortov is an internationally well known scientist. He collaborates actively with many plasma laboratories and institutions. He has received many national and international awards, including several USSR and Russian State Awards, the A P Karpinskii-Toepfer Scientific Award for Physics and Chemistry (1997), the P Bridgman Award for High Pressure Plasma Investigations and Achievements in High Pressure Physics and Chemistry (1999), the A Einstein Medal of UNESCO (2000) and the Max Planck Award for Physics (2002). It is therefore with great pleasure and honour that the Plasma Physics Division of the European Physical Society has awarded the Hannes Alfvén prize this year to Professor Vladimir Evgenievitch Fortov. This article first appeared on the Europhyisics News website.
NASA Astrophysics Data System (ADS)
Skiff, Fred; Davidson, Ronald C.
2013-05-01
Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvén wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2016-11-29
quantum calculations with corrections for low temperature NIST Cutoff • Starts with LANL and assumes higher excited states are ionized • Cutoff... NIST Grouping • Boltzmann or Uniform grouping • Saves 20-30% over Electron Splitting • Case by case basis 11Distribution A – Approved for public release...Temperature: 0.035 eV • Atomic Density: 1020 1/m3 • Ionization fraction: 10-13 • Electron Temperature: 10 & 100 eV • t = [0,106] seconds Groupings • NIST
The 2017 Plasma Roadmap: Low temperature plasma science and technology
USDA-ARS?s Scientific Manuscript database
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...
Physics division. Progress report, January 1, 1995--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, M.; Bacon, D.S.; Aine, C.J.
1997-10-01
This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong -Kyu
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
Kitahara, Tadashi; Okamoto, Hidehiko; Fukushima, Munehisa; Sakagami, Masaharu; Ito, Taeko; Yamashita, Akinori; Ota, Ichiro; Yamanaka, Toshiaki
2016-01-01
Meniere's disease, a common inner ear condition, has an incidence of 15-50 per 100,000. Because mental/physical stress and subsequent increase in the stress hormone vasopressin supposedly trigger Meniere's disease, we set a pilot study to seek new therapeutic interventions, namely management of vasopressin secretion, to treat this disease. We enrolled 297 definite Meniere's patients from 2010 to 2012 in a randomized-controlled and open-label trial, assigning Group-I (control) traditional oral medication, Group-II abundant water intake, Group-III tympanic ventilation tubes and Group-IV sleeping in darkness. Two hundred sixty-three patients completed the planned 2-year-follow-up, which included assessment of vertigo, hearing, plasma vasopressin concentrations and changes in stress/psychological factors. At 2 years, vertigo was completely controlled in 54.3% of patients in Group-I, 81.4% in Group-II, 84.1% in Group-III, and 80.0% in Group-IV (statistically I < II = III = IV). Hearing was improved in 7.1% of patients in Group-I, 35.7% in Group-II, 34.9% in Group-III, and 31.7% in Group-IV (statistically I < II = III = IV). Plasma vasopressin concentrations decreased more in Groups-II, -III, and -IV than in Groups-I (statistically I < II = III = IV), although patients' stress/psychological factors had not changed. Physicians have focused on stress management for Meniere's disease. However, avoidance of stress is unrealistic for patients who live in demanding social environments. Our findings in this pilot study suggest that interventions to decrease vasopressin secretion by abundant water intake, tympanic ventilation tubes and sleeping in darkness is feasible in treating Meniere's disease, even though these therapies did not alter reported mental/physical stress levels. ClinicalTrials.gov NCT01099046.
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
NASA Astrophysics Data System (ADS)
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Hao; Li, Z.; Levin, D.
2011-05-20
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Opticalmore » and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar results, the dominant species in the reactor, produced by the DSMC-HPEM coupled simulation will be shown in comparison with the original HPEM results. The effects of the DSMC calculations for ion/neutral species on HPEM plasma simulation will be further analyzed.« less
Platelet-Rich Plasma Treatment With Physical Therapy in Chronic Partial Supraspinatus Tears
Ilhanli, Ilker; Guder, Necip; Gul, Murat
2015-01-01
Background: Despite the insufficient evidence, due to potential contribution to the improvement, platelet-rich plasma (PRP) is emerging as a promising method. Objectives: The aim of this study was to assess the effectiveness of PRP injection in partial supraspinatus tears by comparing with physical therapy (PT). Patients and Methods: Seventy patients with chronic partial supraspinatus tears in magnetic resonance imaging were randomized into two groups; PRP (n = 35) and PT (n = 35). Before the treatment, at the end of the treatment and at the 12th month after the end of the treatment, range of motion (ROM), visual analog scale (VAS) for pain, Disabilities of Arm, Shoulder and Hand questionnaire (DASH), Neer’s, Hawkins’ and drop arm tests and Beck Depression Inventory were investigated. Results: Statistical analysis was made for 62 subjects (PRP group, n = 30; PT group, n = 32). There were no differences between the groups according to demographic data. At the 12th month after the end of the treatment, significant improvement in ROM was detected in both groups, pain was reduced significantly in both groups and improvement of the DASH score was observed in both groups. At all the evaluation steps, increases in ROM degrees were significantly higher in the PT group than the PRP group. For VAS in activity and in rest, after the treatment, improvement was higher in the PT group than the PRP group. However, improvement of the DASH score of the PRP group was significantly better than the PT group. Conclusions: When we compared with PT, PRP seemed to be a well-tolerated application which showed promising results in patients with chronic partial supraspinatus tears. PMID:26473076
Grape extract improves antioxidant status and physical performance in elite male athletes
Lafay, Sophie; Jan, Caroline; Nardon, Karine; Lemaire, Benoit; Ibarra, Alvin; Roller, Marc; Houvenaeghel, Marc; Juhel, Christine; Cara, Louis
2009-01-01
Excessive physical exercise overproduces reactive oxygen species. Even if elite sportsmen increase their antioxidant status by regular physical training, during the competition period, this improvement is not sufficient to limit free radical production which could be detrimental to the body. The aim of this randomized, double-blind, placebo controlled, and crossover study on 20 elite sportsmen (handball = 10, basketball = 5, sprint = 4, and volleyball = 1) during the competition period was to determine if the consumption of a grape extract (GE; Vitis vinifera L.) was able to improve the parameters related to (i) anti-oxidative status and oxidative stress and (ii) physical performance. Specific biomarkers of antioxidant capacity, oxidative stress, skeletal cell muscle damage, and other general biomarkers were determined in plasma and urine before (D0) and after one month (D30) of placebo or GE supplementation (400mg·d-1). Effort tests were conducted using the Optojump® system, which allows determining the total physical performance (EnRJ45), explosive power (RJ110), and fatigue (RJL5). The plasma ORAC value was not modified in the placebo group; however, GE increased the ORAC value compared to the placebo at D30 (14 966+/-335 vs 14 242+/-339 dµmol Teq·L-1; p < 0.05). The plasma FRAP value was significantly reduced in the placebo group, but not in the GE group. Therefore, GE limited the reduction of FRAP compared to the placebo at D30 (1 053.7+/-31.5 vs 993.7+/-26.7 µmol Teq·L-1; p < 0.05). Urinary isoprostane values were increased in the placebo group, but were not modified in the GE group. Consequently, GE limited the production of isoprostanes compared to the placebo at D30 (1.24+/-0.12 vs 1.26+/-0.13 ng·mg-1 creatinine; p < 0.05). GE administration, compared to the placebo at D30, reduced the plasmatic creatine phosphokinase concentration (CPK, 695.7+/-177.0 vs 480.0+/-81.1 IU·L-1, p = 0.1) and increased hemoglobin levels (Hb, 14.5+/-0.2 vs 14.8+/-0.2 vs g·dL-1, p < 0.05), suggesting that GE administration might protect cell damage during exercise. The high variability between sport disciplines did not permit to observe the differences in the effort test. Analyzing each individual group, handball players increased their physical performance by 24% (p < 0.05) and explosive power by 6.4% (p = 0.1) after GE supplementation compared to the placebo. Further analyses showed that CPK and Hb were the only biomarkers correlated with the increase in performance. In conclusion, GE ameliorates the oxidative stress/antioxidant status balance in elite athletes in the competition period, and enhances performance in one category of sportsmen (handball). Our results suggest that the enhancement in performance might be caused by the protective action of GE during physical exercise. These findings encourage conducting further studies to confirm the efficacy and mechanisms of action of GE on elite and occasional athletes. Key points Grape extract consumption improves the oxidative stress/antioxidant status balance in sportsmen. Grape extract consumption enhances physical performance in one category of sportsmen (Handball). The performance enhancement might be caused by the protective action of grape extract during physical exercise. PMID:24150013
Special Issue on the 20th Workshop on MHD Stability Control
Park, Jong -Kyu
2016-11-08
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
Predictive design and interpretation of colliding pulse injected laser wakefield experiments
NASA Astrophysics Data System (ADS)
Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.
2010-11-01
The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.
Pukajło, Katarzyna; Łaczmański, Łukasz; Kolackov, Katarzyna; Kuliczkowska-Płaksej, Justyna; Bolanowski, Marek; Milewicz, Andrzej; Daroszewski, Jacek
2015-01-01
Irisin (Ir), a recently identified adipo-myokine, cleaved and secreted from the protein FNDC5 in response to physical activity, has been postulated to induce the differentiation of a subset of white adipocytes into brown fat and to mediate the beneficial effects on metabolic homeostasis. Metabolic syndrome (MS), a cluster of factors leading to impaired energy homeostasis, affects a significant proportion of subjects suffering from polycystic ovary syndrome (PCOS). The aim of our study was to investigate the relationship between Ir plasma concentrations and metabolic disturbances. The study group consisted of 179 PCOS patients and a population of 122 healthy controls (both groups aged 25-35 years). A subset of 90 subjects with MS was isolated. A positive association between Ir plasma level and MS in the whole group and in controls was found. In subjects with high adipose body content (>40%), Ir was higher than in lean persons (<30%). Our results showed a significant positive association between Ir concentration and android type of adipose tissue in the whole study group and in the control group. Understanding the role of Ir in increased energy expenditure may lead to the development of new therapeutics for obesity and obesity-related diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl
The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves.more » It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.« less
Plasma Physics of the Subauroral Space Weather
2016-03-20
AFRL-RV-PS- AFRL-RV-PS- TR-2016-0068 TR-2016-0068 PLASMA PHYSICS OF THE SUBAURORAL SPACE WEATHER Evgeny V. Mishin, et al. 20 March 2016 Final...Oct 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Plasma Physics of the Subauroral Space Weather 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...5 4.3. Physics -based hybrid model with finite Larmor radius effects
Color confinement from fluctuating topology
Kharzeev, Dmitri E.
2016-10-19
QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.
Acute kidney injury mediated by oxidative stress in Egyptian horses with exertional rhabdomyolysis.
el-Ashker, Maged R
2011-06-01
The present study was carried out to evaluate the role of oxidative stress in the pathophysiologic process of acute renal failure associated with exertional rhabdomyolysis (ER) in Egyptian horses. ER was tentatively diagnosed in 31 Baladi horses based on case history, physical examination findings and confirmed by elevation of plasma creatine kinase (CK) and urine myoglobin concentrations. According to severity of the condition, the diseased horses were categorized into two main groups; the first group included 18 horses with minimal clinical signs and plasma CK <60 000 IU/L; whereas, the second group included 13 horses with overt clinical signs and plasma CK >100 000 IU/L). It was found that plasma creatol (CTL) was positively correlated (p < 0.01) with plasma malondialdehyde (MDA) (r = 0.775), nitric oxide (NO) (r = 0.768), methyguanididne (MG) (r = 0.995), CK (r = 0.768), urine glucose (r = 0.778), urine protein (r = 0.767), renal failure index (RFI) (r = 0.814) and urine sodium (r = 0.799) and negatively correlated (p < 0.01) with total antioxidant capacity (TAC) (r = -0.795), superoxide dismutase (SOD) (r = -0.815), glutathione peroxidase (GSH-Px) (r = -0.675), Vitamin C (r = -0.830), urine creatinine (r = -0.800), urine/plasma creatinine ratio (r = -0.827) and urine/plasma urea ratio (r = -0.807). The correlation between these biochemical variables might suggest a possible role of oxidative stress in renal injury associated with severe rhabdomyolysis in horses. It is suggested that exaggeration of oxidative stress associated with increased muscle membrane leakage plays a key role in acute kidney injury in Baladi horses with severe rhabdomyolysis.
Preface to advances in numerical simulation of plasmas
NASA Astrophysics Data System (ADS)
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Plasma Jet Simulations Using a Generalized Ohm's Law
NASA Technical Reports Server (NTRS)
Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.
2012-01-01
Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
Hildebrand, Bianca; Kääb, Stefan; Hoster, Eva; Klier, Ina; Martens, Eimo; Hanley, Alan; Hanssen, Henner; Halle, Martin; Nickel, Thomas
2016-01-01
Introduction Physical activity is beneficial for individual health, but endurance sport is associated with the development of arrhythmias like atrial fibrillation. The underlying mechanisms leading to this increased risk are still not fully understood. MicroRNAs are important mediators of proarrhythmogenic remodeling and have potential value as biomarkers in cardiovascular diseases. Therefore, the objective of our study was to determine the value of circulating microRNAs as potential biomarkers for atrial remodeling in marathon runners (miRathon study). Methods 30 marathon runners were recruited into our study and were divided into two age-matched groups depending on the training status: elite (ER, ≥55 km/week, n = 15) and non-elite runners (NER, ≤40 km/week, n = 15). All runners participated in a 10 week training program before the marathon. MiRNA plasma levels were measured at 4 time points: at baseline (V1), after a 10 week training period (V2), immediately after the marathon (V3) and 24h later (V4). Additionally, we obtained clinical data including serum chemistry and echocardiography at each time point. Results MiRNA plasma levels were similar in both groups over time with more pronounced changes in ER. After the marathon miR-30a plasma levels increased significantly in both groups. MiR-1 and miR-133a plasma levels also increased but showed significant changes in ER only. 24h after the marathon plasma levels returned to baseline. MiR-26a decreased significantly after the marathon in elite runners only and miR-29b showed a non-significant decrease over time in both groups. In ER miRNA plasma levels showed a significant correlation with LA diameter, in NER miRNA plasma levels did not correlate with echocardiographic parameters. Conclusion MiRNAs were differentially expressed in the plasma of marathon runners with more pronounced changes in ER. Plasma levels in ER correlate with left atrial diameter suggesting that circulating miRNAs could potentially serve as biomarkers of atrial remodeling in athletes. PMID:26859843
PREFACE: First International Workshop and Summer School on Plasma Physics
NASA Astrophysics Data System (ADS)
Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir
2006-07-01
The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially.
Li, Hong-Xia; Zheng, Xiao-Chun; Chen, Si-Yao; Liao, Ying; Han, Zhen-Hui; Huang, Pan; Sun, Chu-Fan; Liu, Jia; Song, Jing-Yuan; Tang, Chao-Shu; Du, Jun-Bao; Chen, Yong-Hong; Jin, Hong-Fang
2018-02-20
The pathogenesis of postural tachycardia syndrome (POTS) remains unclear. This study aimed to explore the changes and significance of sulfur dioxide (SO 2 ) in patients with POTS. The study included 31 children with POTS and 27 healthy children from Peking University First Hospital between December 2013 and October 2015. A detailed medical history, physical examination results, and demographic characteristics were collected. Hemodynamics was recorded and the plasma SO 2 was determined. The plasma SO 2 was significantly higher in POTS children compared to healthy children (64.0 ± 20.8 μmol/L vs. 27.2 ± 9.6 μmol/L, respectively, P < 0.05). The symptom scores in POTS were positively correlated with plasma SO 2 levels (r = 0.398, P < 0.05). In all the study participants, the maximum heart rate (HR) was positively correlated with plasma levels of SO 2 (r = 0.679, P < 0.01). The change in systolic blood pressure from the supine to upright (ΔSBP) in POTS group was smaller than that in the control group (P < 0.05). The ΔSBP was negatively correlated with baseline plasma SO 2 levels in all participants (r = -0.28, P < 0.05). In the control group, ΔSBP was positively correlated with the plasma levels of SO 2 (r = 0.487, P < 0.01). The change in HR from the supine to upright in POTS was obvious compared to that of the control group. The area under curve was 0.967 (95% confidence interval: 0.928-1.000), and the cutoff value of plasma SO 2 level >38.17 μmol/L yielded a sensitivity of 90.3% and a specificity of 92.6% for predicting the diagnosis of POTS. Increased endogenous SO 2 levels might be involved in the pathogenesis of POTS.
Laboratory space physics: Investigating the physics of space plasmas in the laboratory
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2018-05-01
Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.
NASA Astrophysics Data System (ADS)
Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.
2013-03-01
Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.
Incoherent Scatter Plasma Lines: Observations and Applications
NASA Astrophysics Data System (ADS)
Akbari, Hassanali; Bhatt, Asti; La Hoz, Cesar; Semeter, Joshua L.
2017-10-01
Space plasmas are host to the electrostatic Langmuir waves and a rich range of processes associated with them. Many of such processes that are of interest in micro-scale plasma physics and magnetosphere-ionosphere physics are open to investigation via incoherent scatter plasma lines—i.e., a pair of resonant peaks in the incoherent scatter radar (ISR) spectrum, symmetrically displaced from the radar transmitting frequency by about the plasma frequency, as the signature of Langmuir waves in the ISR spectrum. There now exists a large body of literature devoted to the investigation of a number of topics in ionospheric physics via plasma line theory and observation. It is the goal of this work to provide a comprehensive review of this literature, from the early theoretical works on oscillations in magnetized plasma to the recent advances in plasma line measurements and applications. This review includes detailed theoretical discussions on the intensity and frequency displacement of plasma lines. It reviews the experimental observations of plasma lines enhanced by various sources of energy and discusses the implications of the observations in the context of ionospheric physics. The review also covers the practical aspects of plasma line measurements, from measurement techniques to the applications of plasma lines in estimating the bulk parameters of the ionosphere.
Variability in HOMA-IR, lipoprotein profile and selected hormones in young active men.
Keska, Anna; Lutoslawska, Grazyna; Czajkowska, Anna; Tkaczyk, Joanna; Mazurek, Krzysztof
2013-01-01
Resistance to insulin actions is contributing to many metabolic disturbances. Such factors as age, sex, nutrition, body fat, and physical activity determine body insulin resistance. Present study attempted to asses insulin resistance and its metabolic effects with respect to energy intake in young, lean, and active men. A total of 87 men aged 18-23 participated in the study. Plasma levels of glucose, insulin, lipoproteins, cortisol, and TSH were determined. Insulin resistance was expressed as Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and calculated using homeostatic model. The median value of HOMA-IR (1.344) was used to divide subjects into two groups. Men did not differ in anthropometric parameters, daily physical activity, and plasma TSH and cortisol levels. However, in men with higher HOMA-IR significantly lower daily energy intake was observed concomitantly with higher TG, TC, and HDL-C concentrations in plasma versus their counterparts with lower HOMA-IR. Exclusively in subjects with higher HOMA-IR significant and positive correlation was noted between HOMA-IR and TC and LDL-C. We concluded that despite a normal body weight and physical activity, a subset of young men displayed unfavorable changes in insulin sensitivity and lipid profile, probably due to insufficient energy intake.
Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.
Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K
2016-01-01
Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.
Pai, Lee-Wen; Chang, Pi-Ying; Chen, Wei; Hwu, Yueh-Juen; Lai, Chia-Hsiang
The objective of this systematic review is to synthesise the best available evidence on the effectiveness of physical leisure time activities on glycaemic control in adult patients with diabetes type 2.The specific review question is:What is the effectiveness of physical leisure time activities on glycaemic control in patients with diabetes type 2? Type 2 diabetes results from the body's ineffective use of insulin. Diabetes is a group of diseases marked by high levels of blood glucose resulting from defects in insulin production, insulin action, or both.Type 2 diabetes was previously called non-insulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes. According to 2011 National Diabetes Fact Sheet, diabetes affected 25.8 million people of all ages of United States population during 2005-2008, include 18.8 million diagnosed people and seven million undiagnosed people. Among United States residents ages 65 years and older, 10.9 million, or 26.9 percent, had diabetes in 2010. Recent World Health Organization (WHO) calculations indicate diabetes kills more than one million people annually, almost 80% of which occur in low- and middle-income countries. Almost half of diabetes deaths occur in people aged under 70 years; 55% of diabetes deaths are in women. WHO projects that diabetes deaths will double between 2005 and 2030.Type 2 diabetes is associated with older age, obesity, family history of diabetes, history of gestational diabetes, impaired glucose metabolism, physical inactivity, and race. It is a common outcome of uncontrolled blood sugar and over time leads to serious complications including hypertension, blindness, kidney damage, lower-limb amputations, heart disease, and stroke. Good glycaemic control is a major goal in the treatment of type 2 diabetes mellitus to prevent and delay those severe long-term complications. Physical activity is considered to be a substantial part of the treatment of type 2 diabetes mellitus, as well as diet and medication. Physical activity is a common physiological stressor that causes perturbation to glucose homeostasis and energy needs.Several studies have reported the effects of physical activity on improving insulin sensitivity, cardio-respiratory fitness, glycaemic control, and psychosocial well-being. The American Diabetes Association suggests that people with type 2 diabetes spend at least 150 minutes a week on moderate-intensity physical activity (50-70% of maximum heart rate), or at least 90 minutes a week on vigorous physical activity (>70% of maximum heart rate). Recent studies also indicate that moderate-intensity aerobic physical activity could help type 2 diabetes patients to maintain ideal glycaemic control. Boule et al found physical activity training could reduce haemoglobin A1c (HbA1c) (control group vs. exercise group: 8.31% vs. 7.65%) by 0.66%. This is close to the effect of intense glucose-lowering pharmacological treatment found in the United Kingdom Prospective Diabetes Study. A 1% absolute decrease in the HbA1c value is associated with a 15% to 20% decrease in major cardiovascular events and a 37% reduction in microvascular complications.According to Zhao, Ford, Chaoyang's report (2011), only 25-42% of older adults with diabetes mellitus met recommendations for total physical activity based on the 2007 American Diabetes Association and 2008 Department of Health and Human Services guidelines. Various barriers to regular physical activity had been described, such as health problems, lack of time or energy, no exercise partner, lack of family support, and motivation and working time. An active lifestyle does not require complex exercise programmes. Instead, regular daily physical activity is believed to enable individuals to reduce the risk of chronic diseases and may enhance their quality of life. Recently, it has been thought that, instead of structured physical activity, lifestyle physical activity is a better alternative for diabetes patients. Moderate or vigorous lifestyle or leisure time physical activities included jogging, walking, gardening, tai chi chuan, and qigong (an ancient Chinese breathing exercise that combines aerobics, isometric and isotonic movements and meditation). According to data from recent studies, moderate physical leisure time activities for at least 60 minutes every week can effectively improve glycaemic control in patients with diabetes type 2.Those measure indicators of glycaemic control including glycated hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), and postprandial plasma glucose (PPG) were used to assess glycaemic control in diabetic patients. HbA1c value reflects the mean plasma glucose concentration over two to three months. Fasting plasma glucose (FPG) and postprandial plasma glucose (PPG) reflect short-term plasma glucose change. Glycated haemoglobin is a form ofhaemoglobin that is measured primarily to identify the averageplasmaglucoseconcentration over prolonged periods of time. The fasting plasma glucose test measures fasting blood sugar levels and the postprandial plasma glucose test is often used to test the effectiveness of the body's carbohydrate metabolism and the ability to produce insulin. In 2010, Psaltopoulou et al gathered current information from meta-analyses on dietary and lifestyle practices concerning reduction of risk to develop type 2 diabetes. In 2009, Thomas et al completed a systematic review in which fourteen randomised controlled trials involving a total of 377 participants comparing exercise against no exercise in type 2 diabetes were identified. Trials ranged from eight weeks to twelve months duration. Compared with the control, the exercise intervention significantly improved glycaemic control as indicated by a decrease in glycated haemoglobin levels of 0.6%. This systematic review will differ from these two previously published reviews in that it aims to explore the effectiveness of different kinds of moderate or vigorous physical leisure time activities in improving glycaemic control in patients with diabetes type 2. A search of MEDLINE, DARE database, CINAHL, the Cochrane Library of Systematic Reviews and Joanna Briggs Institute Library of Systematic Reviews found no existing reviews or review underway on this topic.
Metabolic muscle damage and oxidative stress markers in an America's Cup yachting crew.
Barrios, Carlos; Hadala, Michal; Almansa, Inmaculada; Bosch-Morell, Francisco; Palanca, José M; Romero, Francisco J
2011-07-01
Activities of enzymes involved in muscle damage [creatine kinase (CK) and aspartate aminotransferase (AST)] and levels of malondialdehyde (MDA) as a marker of oxidative stress were monitored in the plasma of 27 members of an America's Cup yachting crew. The preventive benefits of allopurinol on muscle damage were also tested. In racing period A, the crew was divided into two groups according to their tasks on board. Blood samples from all 27 sailors were obtained before the start of a 5-day fleet race, after the last race, and after the ten match races. In period B, crew members were divided at random into two groups. One group (13 participants) received 300 mg/day of allopurinol 3 h before racing. The other ten members received placebo. Blood samples were collected just before and after the second round of the Louis Vuitton Cup. All participants showed increased CK and AST activities after the racing period A. The increase in CK activity was highest in sailors involved in strenuous physical work. At the end of period A, plasma MDA levels were higher in all participants as compared with non-participant athletes. In period B, a significant decrease in CK activity, but not in AST, appeared among participants receiving allopurinol. Plasma MDA decreased in sailors treated with allopurinol, but this reduction did not reach statistical significance. America's Cup is a sailing sport with high physical demands, as shown by the increase in muscle-damage markers. Treatment with allopurinol appeared to decrease the levels of muscle damage markers.
2016-10-05
describes physics of a nanosecond surface dielectric barrier discharge (SDBD) at ambient gas temperature and high pressures (1-6 bar) in air. Details about...the ignition by a nanosecond discharge. Chapter 7 presents the high pressure high temperature reactor built recently at Laboratory for Plasma Physics ...livelink.ebs.afrl.af.mil/livelink/llisapi.dll Laboratory for Physics of Plasma, Ecole Polytechnique Plasma Assisted Ignition and Combustion at Low Initial Gas
PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010
NASA Astrophysics Data System (ADS)
2014-06-01
Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially. E. Benova
PlasmaPy: beginning a community developed Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration
2016-10-01
In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.
Development of TPF-1 plasma focus for education
NASA Astrophysics Data System (ADS)
Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.
2017-09-01
The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.
Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation
2012-03-28
with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT...code) 29-12-2008 Final Technical Report From 29-12-2008 To 16-95-2011 (STTR PHASE II) DEVELOPMENT OF A RENORMALIZATION GROUP APPROACH TO MULTI-SCALE
Influence of the 6-month physical activity programs on renal function in obese boys.
Lousa, Irina; Nascimento, Henrique; Rocha, Susana; Catarino, Cristina; Reis, Flávio; Rêgo, Carla; Santos-Silva, Alice; Seabra, André; Ribeiro, Sandra; Belo, Luís
2018-05-01
BackgroundWe intended to evaluate the effects of physical activity (PA) programs on renal function in obese boys.MethodsThirty-nine boys participated in one of the following three groups: soccer (SG, n=13), traditional PA (AG, n=13), and sedentary control (CG, n=13). SG and AG were involved in 6-month PA programs, involving three sessions/week for 60-90 min. Anthropometric measurements, body composition, creatinine and cystatin C plasmatic levels, and estimated glomerular filtration rate (eGFR) were evaluated.ResultsAt baseline (n=39), age and lean mass index (LMI) were positively correlated with creatinine levels. After 6 months, both intervention groups decreased the BMI z-score and waist circumference, while the CG increased the body fat percentage (BFP). LMI increased in all the groups. SG presented a small increment in plasma creatinine and a decrease in the eGFR values, using the Schwartz formula. Concerning the cystatin C levels and eGFR values using Filler (cystatin C-based) or Combined Zappitelli (creatinine/cystatin C-based) formulas, no significant changes were observed in any group.ConclusionThe combined Zappitelli formula showed no significant impact of PA on eGFR in obese boys. Although plasma creatinine is significantly influenced by lean body mass, cystatin C is likely to be a more accurate marker of renal function in this population.
Fuentes, Eduardo N; Kling, Peter; Einarsdottir, Ingibjörg Eir; Alvarez, Marco; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur
2012-05-15
In fish, recent studies have indicated an anorexigenic role of leptin and thus its possible involvement in regulation of energy balance and growth. In the present study, the effects of fasting and refeeding periods on plasma leptin levels were studied in the fine flounder, a flatfish with remarkably slow growth. To further assess the endocrine status of the fish during periods of catabolism and anabolism, plasma growth hormone (GH) levels were also analyzed. Under normal feeding condition, plasma leptin and GH levels remained stable and relatively high in comparison with other teleost species. For the three separate groups of fish, fasted for 2, 3, and 4 weeks, respectively, plasma leptin levels increase gradually, becoming significantly elevated after 3 weeks, and reaching highest levels after 4-week fasting. Plasma GH levels were significantly elevated after 2-week fasting. At the onset of refeeding, following a single meal, leptin levels decline rapidly to lower than initial levels within 2 h, irrespective of the length of fasting. Plasma GH also decline, the decrease being significant after 4, 24 and 2 h for the 2, 3 and 4-week fasted groups, respectively. This study shows that plasma leptin levels in the fine flounder are strongly linked to nutritional status and suggests that leptin secretion is regulated by fast-acting mechanisms. Elevated leptin levels in fasted fish may contribute to a passive survival strategy of species which experience natural food shortage periods by lowering appetite and limiting physical foraging activity. Copyright © 2012 Elsevier Inc. All rights reserved.
ALPhA Laboratory Immersion in Plasma Physics
NASA Astrophysics Data System (ADS)
Dominguez, A.; Zwicker, A.; Williams, J. D.
2016-10-01
According to the FESAC, as recently as 2014 there were a total of just 14 universities offering strong curricula in MFE sciences. Similarly, it was reported that 8 and 19 universities offer strong HEDPL and Discovery Plasma programs respectively. At the undergraduate level, there is also a lack of plasma physics in the curricula. This, regardless of its rich insights into the core subfields of physics, i.e., classical mechanics, electrodynamics, statistical mechanics and quantum phenomena. The coauthors have been leading a plasma physics workshop for the last 3 years directed at undergraduate physics professors and lecturers. The workshop is centered around a versatile and relatively inexpensive (< 10 k) plasma discharge experiment which lets students explore Panchen's Law, spectroscopy and Langmuir probes. The workshop is part of the Advanced Laboratory Physics Association (ALPhA) Laboratory Immersions, and its objective is for the participants to become familiar with the experiments and incorporate them into their home institution's curricula as junior labs, senior labs or independent student projects.
Engaging high school students as plasma science outreach ambassadors
NASA Astrophysics Data System (ADS)
Wendt, Amy; Boffard, John
2017-10-01
Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.
Plasma Accelerators Race to 10 GeV and Beyond
NASA Astrophysics Data System (ADS)
Katsouleas, Tom
2005-10-01
This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and acceleration of intense proton beams from laser-irradiated foils.
Exploration of spherical torus physics in the NSTX device
NASA Astrophysics Data System (ADS)
Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team
2000-03-01
The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.
2016-08-25
AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a. CONTRACT NUMBER 5b. GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose
Plasma behaviour in the neighbourhood of the hot-spot during an active experiment
NASA Astrophysics Data System (ADS)
Sallago, Patricia
In order to study the physical quantities that characterize a plasma, several active experiments have been done by many researcher groups around the world. These experimental papers, describing their measurements and the observed phenomena under a variety of geomagnetical conditions, bring some clues about the plasma behaviour in the neighbourhood of the hot-spot during and soon after the turn-off of ionospheric heating devices. A review of these works was faced in the frame of the application of IAR (Argentinian Radioas-tronomy Institute), La Plata, Argentine, as a site of installation for the AMISR (Advanced Modular Incoherent Scatter Radar), in a contest of research projets called by NSF (National Scientific Foundation). The present contribution gives a possible theoretical explanation, based on the generation and propagation of Alfven waves, of the plasma behaviour in the neighbourhood of the hot-spot during an active experiment and, as a consequence, for some experimental results.
Integration of process diagnostics and three dimensional simulations in thermal spraying
NASA Astrophysics Data System (ADS)
Zhang, Wei
Thermal spraying is a group of processes in which the metallic or ceramic materials are deposited in a molten or semi-molten state on a prepared substrate. In atmospheric plasma spray process, a thermal plasma jet is used to heat up and accelerate loading particles. The process is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated variables involved, and stochastic variability at different stages. This dissertation is aimed at understanding the in-flight particle state and plasma plume characteristics in atmospheric plasma spray process through the integration of process diagnostics and three-dimensional simulation. Effects of injection angle and carrier gas flow rate on in-flight particle characteristics are studied experimentally and interpreted through numerical simulation. Plasma jet perturbation by particle injection angle, carrier gas, and particle loading are also identified. Maximum particle average temperature and velocity at any given spray distance is systematically quantified. Optimum plasma plume position for particle injection which was observed in experiments was verified numerically along with description of physical mechanisms. Correlation of spray distance with in-flight particle behavior for various kinds of materials is revealed. A new strategy for visualization and representation of particle diagnostic results for thermal spray processes has been presented. Specifically, 1 st order process maps (process-particle interactions) have been addressed by converting the Temperature-Velocity of particles obtained via diagnostics into non-dimensional group parameters [Melting Index-Reynolds number]. This approach provides an improved description of the thermal and kinetic energy of particles and allows for cross-comparison of diagnostic data within a given process for different materials, comparison of a single material across different thermal spray processes, and detailed assessment of the melting behavior through recourse to analysis of the distributions. An additional group parameter, Oxidation Index, has been applied to relatively track the oxidation extent of metallic particles under different operating conditions. The new mapping strategies have also been proposed in circumstances where only ensemble particle diagnostics are available. Through the integration of process diagnostics and numerical simulation, key issues concerning in-flight particle status as well as the controlling physical mechanisms have been analyzed. A scientific and intellectual strategy for universal description of particle characteristics has been successfully developed.
Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie
2018-02-02
Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.
QUARTERLY PROGRESS REPORT NO. 83,
Topics included are: microwave spectroscopy; radio astronomy; solid-state microwave electronics; optical and infrared spectroscopy; physical electronics and surface physics; physical acoustics; plasma physics; gaseous electronics; plasmas and controlled nuclear fusion ; energy conversion research; statistical communication theory; linguistics; cognitive information processing; communications biophysics; neurophysiology; computation research.
PREFACE: Third International Workshop & Summer School on Plasma Physics 2008
NASA Astrophysics Data System (ADS)
Benova, E.; Dias, F. M.; Lebedev, Yu
2010-01-01
The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia, the Austrian Science and Research Liason Offices and the Bulgarian Nuclear Society. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially. E Benova, F M Dias and Yu Lebedev
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David
2016-10-01
Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.
Azadpour, Noushin; Tartibian, Bakhtyar; Koşar, Şükran Nazan
2017-03-01
The purpose of this study is to determine the effect of 10 weeks of moderate-intensity aerobic exercise training (MIET) on blood pressure (BP), angiotensin-converting enzyme (ACE) and β2-adrenergic receptor (ADRB2) gene expression in leukocytes, plasma angiotensin II (Ang II), and flow-mediated dilation (FMD) in obese postmenopausal women (PMW) with prehypertension. Twenty-four obese prehypertensive PMW (aged 50-70 y; body mass index ≥30 kg/m) randomly assigned to control (n = 12) and exercise (n = 12) groups. Exercise group performed MIET (25-40 min/d, 3 d/wk at 50%-70% of heart rate reserve) for 10 weeks. Control group maintained their normal daily physical activity level. Body composition, VO2max, BP, ACE and ADRB2 gene expression, plasma Ang II, and FMD were measured before and after the training program. After MIET, systolic and diastolic BPs decreased by 4.6% and 2.4%, respectively (P < 0.001). Plasma Ang II level decreased by 45.7%, whereas FMD increased by 86% in the exercise group (P < 0.001). Exercise training resulted in a threefold increase in ADRB2 and a fourfold decrease in ACE gene expressions (P < 0.05). Training-induced changes in BP inversely associated with the changes in FMD and ADRB2 (r values range -0.55 to -0.78), and positively associated with Ang II and ACE (r values range 0.68-0.86) (P < 0.001). Ten weeks of MIET modulates ACE and ADRB2 gene expression, decreases Ang II plasma levels, and improves endothelial function in obese PMW, and these alterations are associated with reduction in BP.
[Diagnostic values of plasma CD64 and sTREM-1 for pediatric pneumonia].
Zhong, Mei-Feng; Zhao, Jian-Mei
2016-07-01
To determine the diagnostic values of plasma CD64 and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in children with pneumonia. Sixty children with pneumonia between August 2014 and October 2015 were classified into bacterial pneumonia group (25 cases), viral pneumonia group (17 cases), and Mycoplasma pneumonia group (18 cases) according to their clinical manifestations, pathogen cultures, and X-ray findings. Another 30 healthy children who underwent physical examination during the same period were selected as the control group. The concentrations of CD64 and sTREM-1 in blood samples were determined using ELISA. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic sensitivity and specificity of plasma CD64 and/or sTREM-1 for bacterial pneumonia. The expression of CD64 and sTREM-1 in the bacterial pneumonia group was significantly higher than that in the viral pneumonia, Mycoplasma pneumonia, and control groups (P<0.05). The areas under the ROC curves of CD64, sTREM-1, and a combination of the two markers for diagnosing bacterial pneumonia were 0.878, 0.805, and 0.956, respectively. The sensitivity and specificity of CD64 for diagnosing bacterial pneumonia were 81.30% and 92.32%, respectively, when the cut-off value was 641 pg/mL. The sensitivity and specificity of sTREM-1 for diagnosing bacterial pneumonia were 78.65% and 84.67%, respectively, when the cut-off value was 1 479 pg/mL. The sensitivity and specificity of a combination of the two markers for diagnosing bacterial pneumonia were 93.15% and 91.54%, respectively. Plasma CD64 and sTREM-1 can be used as markers for diagnosing pediatric bacterial pneumonia, and a combination of the two markers results in better diagnosis.
Soon, Heng Kiang; Saad, Hazizi Abu; Taib, Mohd Nasir Mohd; Rahman, Hejar Abd; Mun, Chan Yoke
2013-03-01
A twelve-week controlled intervention trial was carried out to evaluate the effects of combined physical activity and dietary intervention on obesity and metabolic risk factors among employees of Universiti Putra Malaysia. Participants consisted of adults aged 25-55 years with no reported chronic diseases but with abdominal obesity. They were assigned to either a combined physical activity and dietary intervention group or a control group. The final sample consisted of 56 participants, with an equal number of 28 for each study group. No significant group effect was observed for any variable except for hip circumference (HC) and fasting plasma glucose (FPG). There was a significant increase in HC (p=0.007) and reduction in FPG (p=0.02) in the intervention group compared to the control group. In the intervention group, HC (p=0.002), triglycerides (TG) (p=0.0001), total cholesterol (TC) (p=0.0001), LDL cholesterol (LDLC) (p=0.0001) and FPG (p=0.005) were significantly reduced, while waist circumference (WC) (p=0.025) and the waist-to-hip ratio (WHR) (p=0.027) were significantly reduced in the control group. No significant change in steps/day or calorie intake'was observed in either group. Taken together, these data indicate that the combined physical activity and dietary intervention was not effective at improving diet or physical activity level. However, the intervention was effective in improving FPG among participants with abdominal obesity. The significant increase in HC in the interventions group warrants further study. These findings will be useful to further improve group-based intervention for the prevention and management of obesity.
[Physical activity, dietary habits and plasma lipoproteins in young men and women].
Malara, Marzena; Lutosławska, Grazyna
2010-01-01
There are studies suggesting that in young women strenuous physical activity and inadequate daily energy intake cause unfavorable changes in lipoprotein profile. However until know data concerning this issue are contradictory, possibly due to small number of participants. This study aimed at evaluation of lipoprotein profile in young men and women with different weekly physical activity together with their dietary habits. A total of 202 subjects volunteered to participate of the study--54 female and 56 male students of physical education and 46 female and 49 male students representing other specialization. Daily energy and macronutrient intakes were assessed using FOOD 2 computer program. Plasma TG, TC and HDL-C were assayed colorimetically using Randox commercial kits (Great Britain). It has been demonstrated that high physical activity adversely affects lipoprotein profile in young women characterized by higher TC and LDL-C in comparison with women with low physical activity and with men with high physical activity. The effect of high physical activity on plasma lipoproteins is equivocal. Active men are characterized by higher HDL, but also by higher frequency of unfavorable plasma TC and similar frequency of unfavorable plasma LDL-C C as compared with their less active counterparts. The mean daily energy intake in highly active men and women covered 82% and 72.2% recommended intake, respectively. It seems feasible that in both sexes high physical activity and inadequate energy intake brings about unfavorable changes in plasma lipoproteins.
III International Conference on Laser and Plasma Researches and Technologies
NASA Astrophysics Data System (ADS)
2017-12-01
A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.
Town Meeting on Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
2015-11-01
We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.
Plasma Physics Network Newsletter, no. 5
NASA Astrophysics Data System (ADS)
1992-08-01
The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.
Gajek, Jacek; Zyśko, Dorota
2002-12-01
Sympathetic nervous system may play an important role in development and maintenance of hypertension. Its activity can be assessed by plasma levels of catecholamines, neuropeptide Y (NPY) and adrenergic receptor density. Hypertensive subjects may be more prone to reveal overactivity of sympathetic nervous system, for instance as a result of physical stress. The aim of the study was to determine the activity of sympathetic nervous system in young patients with newly recognized, untreated mild hypertension. The study was carried out in 22 patients (age 38.5 +/- 10.3 years) and 20 normotensive volunteers (age 38.5 +/- 8.6 years) as a control group, matched for sex. Density of alpha 2- and beta-adrenergic receptors using 3H-yohimbine and 125I-cyanopindolol respectively, total catecholamines and plasma renin activity using radioenzymatic assay, neuropeptide Y and aldosterone using radioimmunoassay were assessed in the blood taken in the supine position and after moderate bicycle ergometer exercise. Plasma concentration of NPY at rest did not differ between the groups, but increased significantly after exercise and was greater in hypertensive patients (p < 0.05). The density of alpha 2- and beta-adrenergic receptors at rest and after exercise in hypertensive subjects was unchanged when comparing to healthy individuals. The plasma concentrations of endogenous catecholamines, plasma renin activity and aldosterone level increase during exercise in both studied groups (p < 0.05). Aldosterone level was higher in hypertensive patients at rest (p < 0.05). There was a negative correlation between baseline aldosterone and NPY levels in hypertensive patients (r = -0.44, p < 0.05). Moderate exercise in hypertensive subjects causes the hyperactivity of sympathetic nervous system expressed as increase of NPY plasma level.
Report on the solar physics-plasma physics workshop
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.
1976-01-01
The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi
The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.
NASA Astrophysics Data System (ADS)
Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun
2017-08-01
For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.
EDITORIAL: Gas plasmas in biology and medicine
NASA Astrophysics Data System (ADS)
Stoffels, Eva
2006-08-01
It is my great pleasure to introduce this special cluster devoted to recent developments in biomedical plasma technology. It is an even greater pleasure to behold the enormous progress which has been made in this area over the last five years. Research on biomedical plasma applications proceeds hand in hand with the development of new material processing technologies, based on atmospheric plasma sources. In the beginning, major research effort was invested in the development and control of new plasma sources—in this laborious process, novel devices were constructed and characterized, and also new plasma physical phenomena were discovered. Self-constriction of micro-plasmas, pattern formation, filamentation of glow discharges and various mode transitions are just a few examples. It is a real challenge for theorists to gain an understanding of these complex phenomena. Later, the devices had to be thoroughly tested and automated, and various safety issues had to be addressed. At present, many atmospheric plasma sources are ready to use, but not all fundamental and technical problems have been resolved by far. There is still plenty of room for improvement, as in any dynamic area of research. The recent trends are clear: the application area of plasmas expands into processing of unconventional materials such as biological scaffolds, and eventually living human, animal and plant tissues. The gentle, precise and versatile character of cold plasmas simply invites this new application. Firstly, non-living surfaces have been plasma-treated to attain desired effects in biomedical research; tissue engineering will soon fully profit from this powerful technique. Furthermore, studies on cultured plant and animal cells have provided many findings, which are both fundamentally interesting and potentially applicable in health care, veterinary medicine and agriculture. The most important and hitherto unique property of plasma treatment is that it can evade accidental cell death and its attendant complications, such as inflammation and scarring. Another substantial research direction makes use of the bactericidal properties of the plasma. The number of findings on plasma inactivation of bacteria and spores is growing; plasma sterilization has already achieved some commercial success. In future, bacteriostatic properties of cold plasmas will even facilitate non-contact disinfection of human tissues. At this moment, one cannot explicitly list all the medical procedures in which cold plasmas will be involved. My personal intuition predicts widespread use of plasma treatment in dentistry and dermatology, but surely more applications will emerge in the course of this multi-disciplinary research. In fact, some plasma techniques, such as coagulation and coblation, are already used in clinical practice—this is another image of plasma science, which is so far unfamiliar to plasma physicists. Therefore, this particular topic forms a perfect platform for contacts between physicists and medical experts. Our colleagues from the medical scientific community will continue giving us feedback, suggestions or even orders. Biomedical plasmas should not become an isolated research area—we must grow together with medical research, listen to criticism, and eventually serve the physicians. Only then will this new field grow, flourish and bear fruit. All the above-mentioned topics meet in this issue of Journal of Physics D: Applied Physics, comprising the most significant examples of modern biomedical plasma research. Browsing through the contributions, the reader can trace back the progress in this field: from fundamental physical (numerical) studies, through phenomenology and physics of new discharges, studies on plasma-surface modification, bacterial inactivation tests, fundamental cell biological investigations, to final in vivo applications. One may ask why this selection has found its place in a purely physical journal—many contributions are concerned with (micro)-biology rather than physics. To me, the answer is clear: it is important to maintain the visibility of this fascinating and growing cross-disciplinary field within the (plasma) physical community. This is not the `physics we are used to', but one we will eventually get used to and accept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasheninnikov, Sergei; Smirnov, Roman; Guterl, Jerome
The choice of material for the plasma facing components (PFC), in particular, for divertor targets, is one of the main issues for future tokamak reactors. There are two major requirements for the PFC’s material: acceptable level of tritium retention and durability in a harsh environment of fusion grade plasma. Based on these criteria, some years ago it was decided that tungsten is an acceptable material for divertor targets in ITER. However, further experimental studies reveal that the irradiation of tungsten even with low energetic (well below sputtering threshold!) He containing plasma causes significant modification of surface morphology, formation of themore » layer of He nano-bubbles (in the temperature range T<1000 K), “fuzz” (for 1000 K2000 K) (e.g. see Fig. 1). Recall that He, being an ash of D-T fusion reactions, is an inherent impurity in fusion plasma. The goals of the UCSD Applied Plasma Theory Group was: i) investigate the mechanisms of the formation of He nano-bubble layer and fuzz growth under He irradiation, as well as the physics of transport of hydrogen species in tungsten lattice, and ii) develop physics understanding of the models suitable for the incorporation into the Xolotl-PSI code based on the reaction-diffusion approach, which is the flagship of the whole SciDAC project [8], which can guide both numerical simulations and experimental studies. Here we just highlight our major accomplishments.« less
Moderate physical exercise induces the oxidation of human blood protein thiols.
Inayama, Takayo; Oka, Jun; Kashiba, Misato; Saito, Makoto; Higuchi, Mitsuru; Umegaki, Keizo; Yamamoto, Yorihiro; Matsuda, Mitsuo
2002-03-15
Exercise is known to induce the oxidation of blood low-molecular-weight (LMW) thiols such as reduced glutathione (GSH). We previously reported that full-marathon running induced a decrease in human plasma levels of protein-bound sulfhydryl groups (p-SHs). Moderate exercise, a 30-min running at the intensity of the individual ventilatory threshold, performed by untrained healthy females caused a significant decrease in erythrocyte levels of p-SHs (mostly hemoglobin cysteine residues) and LMW thiols, but their levels returned to each baseline by 2 h. No significant change in plasma LMW thiols was observed. However, plasma levels of p-SHs significantly decreased after running and remained unchanged after 24 h. These results suggest that moderate exercise causes the oxidation of blood thiols, especially protein-bound thiols.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Stenflo, L.
2005-01-01
The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there were more than seventy poster papers in three sessions. The latter provided opportunities for younger physicists to display the results of their recent work and to obtain comments from the other participants. During the period 11 16 July 2004 at the Abdus Salam ICTP, we focused on nonlinear effects that are common in plasmas, fluids, nonlinear optics, and condensed matter physics. In addition, we concentrated on collective processes in space and dusty plasmas, as well as in astrophysics and intense laser-plasma interactions. Also presented were modern topics of nonlinear neutrino-plasma interactions, nonlinear quantum electrodynamics, quark-gluon plasmas, and high-energy astrophysics. This reflects that plasma physics is a truly cross-disciplinary and very fascinating science with many potential applications. The workshop was attended by several distinguished invited speakers. Most of the contributions from the second week of our Trieste workshop appear in this Topical Issue of Physica Scripta, which will be distributed to all the participants. The organizers are grateful to Professor Katepalli Raju Sreenivasan, the director of the Abdus Salam ICTP, for his generous support and warm hospitality in Trieste. The Editors appreciate their colleagues and co-organizers for their constant and wholehearted support in our endeavours of publishing this Topical Issue of Physica Scripta. We highly value the excellent work of Mrs Ave Lusenti and Dr. Brian Stewart at the Abdus Salam ICTP. Thanks are also due to the European Commission for supporting our activity through the Research Training Networks entitled "Complex Plasmas" and "Turbulent Boundary Layers". Finally, we would like to express our gratitude to the Abdus Salam ICTP for providing financial support to our workshop in Trieste. Besides, the workshop directors thank the speakers and the attendees for their contributions which resulted in the success of our Trieste workshop 2004. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the Abdus Salam ICTP.
NASA Astrophysics Data System (ADS)
The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.
Modeling of nonequilibrium space plasma flows
NASA Technical Reports Server (NTRS)
Gombosi, Tamas
1995-01-01
Godunov-type numerical solution of the 20 moment plasma transport equations. One of the centerpieces of our proposal was the development of a higher order Godunov-type numerical scheme to solve the gyration dominated 20 moment transport equations. In the first step we explored some fundamental analytic properties of the 20 moment transport equations for a low b plasma, including the eigenvectors and eigenvalues of propagating disturbances. The eigenvalues correspond to wave speeds, while the eigenvectors characterize the transported physical quantities. In this paper we also explored the physically meaningful parameter range of the normalized heat flow components. In the second step a new Godunov scheme type numerical method was developed to solve the coupled set of 20 moment transport equations for a quasineutral single-ion plasma. The numerical method and the first results were presented at several national and international meetings and a paper describing the method has been published in the Journal of Computational Physics. To our knowledge this is the first numerical method which is capable of producing stable time-dependent solutions to the full 20 (or 16) moment set of transport equations, including the full heat flow equation. Previous attempts resulted in unstable (oscillating) solutions of the heat flow equations. Our group invested over two man-years into the development and implementation of the new method. The present model solves the 20 moment transport equations for an ion species and thermal electrons in 8 domain extending from a collision dominated to a collisionless region (200 km to 12,000 km). This model has been applied to study O+ acceleration due to Joule heating in the lower ionosphere.
Morimoto, Keiko; Morikawa, Mayuko; Kimura, Hiroko; Ishii, Nobuko; Takamata, Akira; Hara, Yasuko; Uji, Masami; Yoshida, Ken-Ichi
2008-01-02
Mental stress is thought to underlie cardiovascular events, but there is information on oxidative stress induced by mental stress in association with cardiovascular responses in women. Using a sensitive assay for plasma 4-hydroxy-2-nonenal (HNE), as a marker for oxidative stress, we addressed the relation between pressor responses and oxidative stress induced by mental or physical stress in premenopausal and postmenopausal women. Healthy subjects (7 postmenopausal and 8 premenopausal women, in early and late follicular phases) were subjected to mental and physical stress evoked by a Color Word Test (CWT) and isometric handgrip, respectively. The CWT induced a rapid elevation of diastolic blood pressure (DBP), at a higher level in the postmenopausal than in the premenopausal women (p<0.01), and this higher DBP was sustained during the CWT and recovery (p<0.01). The CWT induced a significant elevation in plasma noradrenaline in premenopausal women in the early follicular phase and in postmenopausal women (p<0.05). Plasma nitric oxide metabolites were higher in postmenopausal than in the premenopausal women in the late follicular phase (p<0.05), but did not change during exposure to the two types of stress in either group. Plasma HNE was increased during recovery from the CWT, but not the handgrip, in postmenopausal women (2.4 times, p<0.05). There was a significant difference in the time course of the CWT-induced HNE response between the postmenopausal and premenopausal women (p<0.05). These findings suggest that mental, but not physical, stress causes sustained diastolic blood pressure elevation in postmenopausal women, accompanied by heightened oxidative stress.
Strongly-Interacting Fermi Gases in Reduced Dimensions
2009-05-29
effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark -gluon plasmas (elliptic flow), and most...strong interactions: Superconductors, neutron stars and quark -gluon plasmas on a desktop," Seminar on Modern Optics and Spectroscopy, M. I. T...interface of quark -gluon plasma physics and cold-atom physics," (Trento, Italy, March 19-23, 2007). Talk given by Andrey Turlapov. 17) J. E. Thomas
Plasma physics of extreme astrophysical environments.
Uzdensky, Dmitri A; Rightley, Shane
2014-03-01
Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.
NASA Technical Reports Server (NTRS)
Wright, K. H., Jr.; Stone, N. H.; Samir, U.
1983-01-01
In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.
Fox, P R; Oyama, M A; Hezzell, M J; Rush, J E; Nguyenba, T P; DeFrancesco, T C; Lehmkuhl, L B; Kellihan, H B; Bulmer, B; Gordon, S G; Cunningham, S M; MacGregor, J; Stepien, R L; Lefbom, B; Adin, D; Lamb, K
2015-01-01
Cardiac biomarkers provide objective data that augments clinical assessment of heart disease (HD). Determine the utility of plasma N-terminal pro-brain natriuretic peptide concentration [NT-proBNP] measured by a 2nd generation canine ELISA assay to discriminate cardiac from noncardiac respiratory distress and evaluate HD severity. Client-owned dogs (n = 291). Multicenter, cross-sectional, prospective investigation. Medical history, physical examination, echocardiography, and thoracic radiography classified 113 asymptomatic dogs (group 1, n = 39 without HD; group 2, n = 74 with HD), and 178 with respiratory distress (group 3, n = 104 respiratory disease, either with or without concurrent HD; group 4, n = 74 with congestive heart failure [CHF]). HD severity was graded using International Small Animal Cardiac Health Council (ISACHC) and ACVIM Consensus (ACVIM-HD) schemes without knowledge of [NT-proBNP] results. Receiver-operating characteristic curve analysis assessed the capacity of [NT-proBNP] to discriminate between dogs with cardiac and noncardiac respiratory distress. Multivariate general linear models containing key clinical variables tested associations between [NT-proBNP] and HD severity. Plasma [NT-proBNP] (median; IQR) was higher in CHF dogs (5,110; 2,769-8,466 pmol/L) compared to those with noncardiac respiratory distress (1,287; 672-2,704 pmol/L; P < .0001). A cut-off >2,447 pmol/L discriminated CHF from noncardiac respiratory distress (81.1% sensitivity; 73.1% specificity; area under curve, 0.84). A multivariate model comprising left atrial to aortic ratio, heart rate, left ventricular diameter, end-systole, and ACVIM-HD scheme most accurately associated average plasma [NT-proBNP] with HD severity. Plasma [NT-proBNP] was useful for discriminating CHF from noncardiac respiratory distress. Average plasma [NT-BNP] increased significantly as a function of HD severity using the ACVIM-HD classification scheme. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
Beaumont, TX (4/16). “Studying Strongly Coupled Systems with Ultracold Plasmas," Department of Physics and Astronomy Colloquium, University of South...Alabama, Mobile, AL (11/15). “Collective Modes and Correlations in Strongly Coupled Ultracold Plasmas," Department of Physics and Astronomy
Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.
Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo
2014-04-01
Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.
Physical Processes in the MAGO/MFT Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garanin, Sergey F; Reinovsky, Robert E.
2015-03-23
The Monograph is devoted to theoretical discussion of the physical effects, which are most significant for the alternative approach to the problem of controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book includes the description of the approach, its difference from the major CTF systems—magnetic confinement and inertial confinement systems. General physical methods of the processes simulation in this approach are considered, including plasma transport phenomena and radiation, and the theory of transverse collisionless shock waves, the surface discharges theory, important for such kind of research. Different flows and magneto-hydrodynamic plasma instabilities occurring in the frames of this approach aremore » also considered. In virtue of the general physical essence of the considered phenomena the presented results are applicable to a wide range of plasma physics and hydrodynamics processes. The book is intended for the plasma physics and hydrodynamics specialists, post-graduate students, and senior students-physicists.« less
1999 LDRD Laboratory Directed Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rita Spencer; Kyle Wheeler
This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory Directed Research and Development FY 1998 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Vigil; Kyle Wheeler
This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory directed research and development: FY 1997 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1998-05-01
This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
ERIC Educational Resources Information Center
Najarian, Maya L.; Chinni, Rosemarie C.
2013-01-01
This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…
Photon Physics and Plasma Research, Photonics Applications and Web Engineering, Wilga, May 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].
Physical Properties of Blood Are Altered in Young and Lean Women with Polycystic Ovary Syndrome.
Simmonds, Michael J; Milne, Nikki; Ong, Kee; Brotherton, Emily; McNamee, Antony P; Horobin, Jarod; Sabapathy, Surendran
2016-01-01
Classic features of polycystic ovary syndrome (PCOS) include derangement of metabolic and cardiovascular health, and vascular dysfunction is commonly reported. These comorbidities indicate impaired blood flow; however, other than limited reports of increased plasma viscosity, surprisingly little is known regarding the physical properties of blood in PCOS. We aimed to investigate whether haemorheology was impaired in women with PCOS. We thus measured a comprehensive haemorheological profile, in a case-control design, of lean women with PCOS and age-matched healthy controls. A clinical examination determined similar cardiovascular risk for the two groups. Whole blood and plasma viscosity was measured using a cone-plate viscometer. The magnitude and rate of red blood cell (RBC) aggregation was determined using a light-transmission aggregometer, and the degree of RBC deformability was measured via laser-diffraction ektacytometry. Plasma viscosity was significantly increased in women with PCOS. Blood viscosity was also increased for PCOS at lower-to-moderate shear rates in both native and standardised haematocrit samples. The magnitude of RBC aggregation-a primary determinant of low-shear blood viscosity-was significantly increased in PCOS at native and 0.4 L·L-1 haematocrit. No difference was detected between PCOS and CON groups for RBC deformability measurements. A novel measure indicating the effectiveness of oxygen transport by RBC (i.e., the haematocrit-to-viscosity ratio; HVR) was decreased at all shear rates in women with PCOS. In a group of young and lean women with PCOS with an unremarkable cardiovascular risk profile based on clinical data, significant haemorheological impairment was observed. The degree of haemorheological derangement observed in the present study reflects that of overt chronic disease, and provides an avenue for future therapeutic intervention in PCOS.
Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo
NASA Astrophysics Data System (ADS)
Rankin, Joanna M.
2017-01-01
With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.
Vitger, A D; Stallknecht, B M; Miles, J E; Hansen, S L; Vegge, A; Bjørnvad, C R
2017-04-01
The influence of physical activity on metabolic health in overweight dogs is unknown. This study was conducted to evaluate biomarkers of immunometabolic health in relation to changes in physical activity and adiposity. Client-owned overweight dogs participated in a 12-wk intervention based on caloric restriction combined with a training program (fitness and diet [FD] group, n = 8), or caloric restriction alone (diet-only [DO] group, n = 8). Physical activity was monitored by accelerometry. All dogs were fed the same diet and achieved similar weight loss. Fasting blood samples were collected before and after 6- and 12-wk intervention. Insulin resistance was evaluated from plasma insulin and C-peptide as well as homeostasis model assessment. Inflammation and dyslipidemia were evaluated from circulating leptin, adiponectin, C-reactive protein (CRP), monocyte chemoattractant factor-1 (MCP-1), interleukin-8 (IL-8), and cholesterol. Accelerometer counts in both groups were high compared with previous reports of physical activity in overweight dogs. No difference in blood parameters was evident between groups, evaluated by linear mixed-effects model (P > 0.05). Within the groups, the following changes were significant by t-test (P < 0.05): leptin decreased in both groups. Within the FD group, IL-8, MCP-1, and CRP decreased at 6 wk and IL-8 and cholesterol at 12 wk. Within the DO group, C-peptide and HOMA decreased at 6 wk and C-peptide at 12 wk. We conclude that, for both groups, weight loss resulted in minor indications of improved immunometabolic health, whereas this level of physical activity did not add further benefits. Copyright © 2016 Elsevier Inc. All rights reserved.
Physical Foundations of Plasma Microwave Sources Based on Anomalous Doppler Effect
2007-09-17
International Science and Technology Center ( ISTC ), Moscow. ISTC Project A-1512p Physical Foundations of Plasma Microwave Sources Based on Anomalous...07 – 31-Aug-07 5a. CONTRACT NUMBER ISTC Registration No: A-1512p 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Physical foundations of plasma microwave... ISTC 05-7008 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES
PlasmaPy: initial development of a Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas; Leonard, Andrew J.; Stańczak, Dominik; Haggerty, Colby C.; Parashar, Tulasi N.; Huang, Yu-Min; PlasmaPy Community
2017-10-01
We report on initial development of PlasmaPy: an open source community-driven Python package for plasma physics. PlasmaPy seeks to provide core functionality that is needed for the formation of a fully open source Python ecosystem for plasma physics. PlasmaPy prioritizes code readability, consistency, and maintainability while using best practices for scientific computing such as version control, continuous integration testing, embedding documentation in code, and code review. We discuss our current and planned capabilities, including features presently under development. The development roadmap includes features such as fluid and particle simulation capabilities, a Grad-Shafranov solver, a dispersion relation solver, atomic data retrieval methods, and tools to analyze simulations and experiments. We describe several ways to contribute to PlasmaPy. PlasmaPy has a code of conduct and is being developed under a BSD license, with a version 0.1 release planned for 2018. The success of PlasmaPy depends on active community involvement, so anyone interested in contributing to this project should contact the authors. This work was partially supported by the U.S. Department of Energy.
Cross-Scale: a multi-spacecraft mission to study cross-scale coupling in space plasmas
NASA Astrophysics Data System (ADS)
Fujimoto, M.; Schwartz, S.; Horbury, T.; Louarn, P.; Baumjohann, W.
Collisionless astrophysical plasmas exhibit complexity on many scales if we are to understand their properties and effects we must measure this complexity We can identify a small number of processes and phenomena one of which is dominant in almost every space plasma region of interest shocks reconnection turbulence and boundaries These processes act to transfer energy between locations scales and modes However this transfer is characterised by variability and 3D structures on at least three scales electron kinetic ion kinetic and fluid It is the interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects However current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time We must measure the three scales simultaneously completely to understand the energy transfer processes ESA fs Cosmic Vision 2015-2025 exercise revealed a broad consensus for a mission to study these issues commonly known as M3 In parallel Japanese scientists have been studying a similar mission concept SCOPE We have taken ideas from both of these mission proposals and produced a concept called Cross-Scale Cross-Scale would comprise three nested groups each consisting of four spacecraft with similar instrumentation Each group would have a different spacecraft separation at approximately the electron and ion gyroradii and a larger MHD scale We would therefore be able to measure variations on all three important physical scales
PREFACE: 31st European Physical Society Conference on Plasma Physics
NASA Astrophysics Data System (ADS)
Dendy, Richard
2004-12-01
This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee chaired by Henry Hutchinson (RAL, Chilton), and to the Plasma Physics and Controlled Fusion journal team (Institute of Physics Publishing, Bristol), for their work on this conference. At the 2004 European Physical Society Conference on Plasma Physics, plenary invited speakers whose talks spanned the entire field were followed, each day, by multiple parallel sessions which also included invited talks. Invited speakers in both these categories were asked to contribute papers to this special issue (the contributed papers at this conference, and at all recent conferences in this series, are archived at http://epsppd.epfl.ch). The Programme Committee is very grateful to the many invited speakers who have responded positively to this request. Invited papers appear here in their order of presentation during the week beginning 28 June 2004; this ordering provides an echo of the character of the conference, as it was experienced by those who took part. Programme Committee 2004 Professor Richard Dendy UKAEA Culham Division, UK Chairman and guest editor Dr Jean-Luc Dorier Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland (Co-ordinator of dusty plasmas and guest editor) Professor Jürgen Meyer-ter-Vehn Max-Planck-Institut für Quantenoptik, Garching, Germany (Co-ordinator of laser-plasma interaction and beam plasma physics and guest editor) Dr Peter Norreys Rutherford Appleton Laboratory, Chilton, UK (Scientific Secretary and guest editor) Dr Emilia R Solano CIEMAT Laboratorio Nacional de Fusión, Madrid, Spain ( Co-ordinator of magnetic confinement fusion and guest editor) Dr Shalom Eliezer Soreq Nuclear Research Centre, Israel Dr Wim Goedheer FOM-Instituut voor Plasmafysica, Rijnhuizen, Netherlands Professor Henry Hutchinson Rutherford Appleton Laboratory, Chilton, UK Professor John Kirk Max-Planck-Institut für Kernphysik, Heidelberg, Germany Dr Raymond Koch Ecole Royale Militaire/Koninklijke Militaire School, Brussels, Belgium Professor Gerrit Kroesen Technische Universiteit Eindhoven, Netherlands Dr Martin Lampe Naval Research Laboratory, Washington DC, USA Dr Jo Lister Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland Dr Paola Mantica Istituto di Fisica del Plasma, Milan, Italy Professor Tito Mendonca Instituto Superior Tecnico, Lisbon, Portugal Dr Patrick Mora École Polytechnique, Palaiseau, France Professor Lennart Stenflo Umeå Universitet, Sweden Professor Paul Thomas CEA Cadarache, Saint-Paul-lez-Durance, France Professor Friedrich Wagner Max-Planck-Institut fr Plasmaphysik, Garching, Germany Professor Hannspeter Winter Technische Universität Wien, Austria
PREFACE: Second International Workshop & Summer School on Plasma Physics 2006
NASA Astrophysics Data System (ADS)
Benova, Evgeniya; Atanassov, Vladimir
2007-04-01
The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially.
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Vladimir V.
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics,more » magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated plasma will be studied to estimate its contribution to the Doppler broadening of x-ray lines. Development of “necks” and “hot spots” will be studied with high-resolution UV diagnostics, an x-ray streak camera, and x-ray spectroscopy. Laser initiation of hot spots in Z pinches will be tested. A Faraday rotation diagnostic at 266 nm will be applied to 1-10 MG magnetic fields. For magnetic fields B>20 MG, suggested in micropinches, Cotton-Mouton and cutoff diagnostics will be applied. A picosecond optical Kerr shutter will be tested to increase a sensitivity of UV methods for application at multi-MA Z pinches. The proposal is based on the experimental capability of NTF. The Zebra generator produces 1-1.7 MA Z-pinches with electron plasma density of 10 20-10 21cm -3, electron temperature of 0.5-1 keV, and magnetic fields >10 MG. The Leopard laser was upgraded to energy of 90-J at 0.8 ns. This regime will be used for laser initiation of hot spots. A further upgrade to energy of 250-J is suggested for laser-Z-pinch interaction. A picosecond regime will be used for optical gating. A 10-TW Tomcat laser at NTF is available for the high energy UV laser probing of the Z-pinch. Two graduate students will develop new optical and x-ray diagnostics, carry out experiments, and process experimental data. Other students will be involved in the design and fabrication of loads, supporting regular optical and x-ray diagnostics, and data processing. The new plasma diagnostics may be applied to HEDP experiments at NTF and other multi-MA generators. The feasibility of the research plan is based on the experience of the scientific team in Z-pinch plasma physics, laser physics, development of new plasma diagnostics, and the experimental capability of NTF. The experimental group of Dr. V. V. Ivanov (UNR) collaborates with a group for Z pinch MHD modeling of Dr. J. P. Chittenden (Imperial College, London), and theoretical group of Dr. D. D. Ryutov (LLNL). The suggested research ideas are supported by preliminary experiments.« less
Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Bellan, Paul M.
2008-07-01
Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.
Alizadeh, Hamid; Daryanoosh, Farhad; Moatari, Maryam; Hoseinzadeh, Khadijeh
2015-01-01
Herein, we studied the effects of two different exercise protocols on IL-17 and CRP plasma levels along with the anti-inflammatory effects of fish oil. The purpose of the present study was to investigate the effect of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) consumption along with two different types of physical activities on IL-17 and CRP plasma levels in trained male mice. A total of 130 adult male mice of Syrian race with the age of 2 months and the weight of 35±1 grams were selected. At the beginning, 10 mice were killed in order to determine the amounts of pre-test variables. The rest of the mice were randomly divided into 6 groups including control group (n=20), supplement (n=20), aerobic exercise (n=20), anaerobic exercise (n=20), supplementaerobic exercise (n=20), and supplement-anaerobic exercise (n=20). Blood samples were withdrawn from the tail under intraperitoneal ketamine and xylasine anaesthesia. The anaerobic training program included 8 weeks of running on treadmill, 3 sessions per week; the aerobic training program included 8 weeks of running on treadmill, 5 sessions per week. At the end of the training program, the blood sample from each group was taken in order to measure the CRP and IL-17 levels. The analysis of variance (ANOVA) was used to determine the differences among the groups. The results showed that there was a significant difference in IL-17 and CRP plasma levels between the groups after 8 weeks (P<0.05). Following the two different training programs, both IL-17 and CRP plasma levels increased, although these observed increases were not same for two measured variables. The results might also show that the effect of the supplement depends on the type of training.
Alizadeh, Hamid; Daryanoosh, Farhad; Moatari, Maryam; Hoseinzadeh, Khadijeh
2015-01-01
Background: Herein, we studied the effects of two different exercise protocols on IL-17 and CRP plasma levels along with the anti-inflammatory effects of fish oil. The purpose of the present study was to investigate the effect of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) consumption along with two different types of physical activities on IL-17 and CRP plasma levels in trained male mice. Methods: A total of 130 adult male mice of Syrian race with the age of 2 months and the weight of 35±1 grams were selected. At the beginning, 10 mice were killed in order to determine the amounts of pre-test variables. The rest of the mice were randomly divided into 6 groups including control group (n=20), supplement (n=20), aerobic exercise (n=20), anaerobic exercise (n=20), supplementaerobic exercise (n=20), and supplement-anaerobic exercise (n=20). Blood samples were withdrawn from the tail under intraperitoneal ketamine and xylasine anaesthesia. The anaerobic training program included 8 weeks of running on treadmill, 3 sessions per week; the aerobic training program included 8 weeks of running on treadmill, 5 sessions per week. At the end of the training program, the blood sample from each group was taken in order to measure the CRP and IL-17 levels. The analysis of variance (ANOVA) was used to determine the differences among the groups. Results: The results showed that there was a significant difference in IL-17 and CRP plasma levels between the groups after 8 weeks (P<0.05). Conclusion: Following the two different training programs, both IL-17 and CRP plasma levels increased, although these observed increases were not same for two measured variables. The results might also show that the effect of the supplement depends on the type of training. PMID:26793627
Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.
Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha
2016-11-01
Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD < 20 ng/mL. Physical performance testing included measurements of muscle strength (maximal isometric contraction), jumping ability (vertical jump, standing broad jump, triple hop test), linear sprint (10 m and 20 m), and agility (9 × 4-m shuttle run). Plasma 25-OHD concentrations were positively correlated with muscle strength (r = 0.539; p < 0.001), vertical jump (r = 0.528; p < 0.001), and standing broad jump (r = 0.492; p < 0.001) but inversely correlated with sprint performance (r = -0.539; p < 0.001). In multivariate analysis models, plasma 25-OHD concentrations were associated with each physical performance parameter independently of age, maturity status, body mass index, fat mass, and protein and calcium intakes. In conclusion, a low plasma 25-OHD level was associated with decreased muscle strength, agility, and jumping and sprinting abilities in physically active children. Vitamin D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
Parisi, A; Tranchita, E; Duranti, G; Ciminelli, E; Quaranta, F; Ceci, R; Cerulli, C; Borrione, P; Sabatini, S
2010-03-01
Rhodiola Rosea, is an adaptogen plant which has been reported to promote fatty acids utilisation, to ameliorate antioxidant function, and to improve body resistance to physical strenuous efforts. The purpose of the present study was to investigate the effects on physical performance as well as on the redox status of a chronic Rhodiola Rosea supplementation in a group of competitive athletes during endurance exercise. Following a chronic supplementation with Rhodiola Rosea for 4 weeks, 14 trained male athletes underwent a cardio-pulmonary exhaustion test and blood samples to evaluate their antioxidant status and other biochemical parameters. These data were compared with those coming from the same athletes after an intake of placebo. The evaluation of physical performance parameters showed that HR Max, Borg Scale level, VO(2) max and duration of the test were essentially unaffected by Rhodiola Rosea assumption. On the contrary, Rhodiola Rosea intake reduced, in a statistically significative manner, plasma free fatty acids levels. No effect on blood glucose was found. Blood antioxidant status and inflammatory parameters resulted unaffected by Rhodiola Rosea supplementation. Blood lactate and plasma creatine kinase levels were found significantly lower (P<0.05) in Rhodiola Rosea treated subjects when compared to the placebo treated group. Chronic Rhodiola Rosea supplementation is able to reduce both lactate levels and parameters of skeletal muscle damage after an exhaustive exercise session. Moreover this supplementation seems to ameliorate fatty acid consumption. Taken together those observation confirm that Rhodiola Rosea may increase the adaptogen ability to physical exercise.
The thermal X-ray flare plasma. [on sun
NASA Technical Reports Server (NTRS)
Moore, R.; Mckenzie, D. L.; Svestka, Z.; Widing, K. G.; Dere, K. P.; Antiochos, S. K.; Dodson-Prince, H. W.; Hiei, E.; Krall, K. R.; Krieger, A. S.
1980-01-01
Following a review of current observational and theoretical knowledge of the approximately 10 to the 7th K plasma emitting the thermal soft X-ray bursts accompanying every H alpha solar flare, the fundamental physical problem of the plasma, namely the formation and evolution of the observed X-ray arches, is examined. Extensive Skylab observations of the thermal X-ray plasmas in two large flares, a large subflare and several compact subflares are analyzed to determine plasma physical properties, deduce the dominant physical processes governing the plasma and compare large and small flare characteristics. Results indicate the density of the thermal X-ray plasma to be higher than previously thought (from 10 to the 10th to 10 to the 12th/cu cm for large to small flares), cooling to occur radiatively as much as conductively, heating to continue into the decay phase of large flares, and the mass of the thermal X-ray plasma to be supplied primarily through chromospheric evaporation. Implications of the results for the basic flare mechanism are indicated.
Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai; Fox, William; Bhattacharjee, Amitava
This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study thesemore » processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.« less
NASA Astrophysics Data System (ADS)
Hakim, Ammar; Shi, Eric; Juno, James; Bernard, Tess; Hammett, Greg
2017-10-01
For weakly collisional (or collisionless) plasmas, kinetic effects are required to capture the physics of micro-turbulence. We have implemented solvers for kinetic and gyrokinetic equations in the computational plasma physics framework, Gkeyll. We use a version of discontinuous Galerkin scheme that conserves energy exactly. Plasma sheaths are modeled with novel boundary conditions. Positivity of distribution functions is maintained via a reconstruction method, allowing robust simulations that continue to conserve energy even with positivity limiters. We have performed a large number of benchmarks, verifying the accuracy and robustness of our code. We demonstrate the application of our algorithm to two classes of problems (a) Vlasov-Maxwell simulations of turbulence in a magnetized plasma, applicable to space plasmas; (b) Gyrokinetic simulations of turbulence in open-field-line geometries, applicable to laboratory plasmas. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.
Fusion programs in applied plasma physics
NASA Astrophysics Data System (ADS)
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.
America COMPETES Act and the FY2010 Budget
2009-06-15
Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development...Spallation Neutron Source Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this...Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing
Loria-Kohen, Viviana; Fernández-Fernández, Ceila; Bermejo, Laura M; Morencos, Esther; Romero-Moraleda, Blanca; Gómez-Candela, Carmen
2013-08-01
Inflammation markers (IM) have been associated with the development of chronic diseases. This study compares the effects on IM of three exercise programs combined with a hypocaloric diet. 119 overweight participants (73 women, 46 men) aged 18-50 years were randomised into four treatment groups: strength training (S; n = 30), endurance training (E; n = 30), combined S + E (SE; n = 30), and a diet and physical activity recommendations group (D; n = 29). Energy intake, anthropometric variables (AV), training variables (VO2peak, strength index, dynamometric strength index [DSI]) and plasma IM were recorded at baseline and after 22 weeks of treatment. 84 participants completed the study. At 22 weeks, all groups showed a significantly reduced energy intake (P < 0.001) and improved AV (P < 0.001). VO2peak significantly increased in all groups (P < 0.01). DSI increased in the exercise groups only (P < 0.05). Plasma leptin fell significantly (P < 0.001) in the S and E groups, but not significantly in the SE group (P = 0.029) (no significant differences between these groups). Tumour necrosis factor-α (TNF-α), and C-reactive protein (CRP) concentrations decreased in all groups when examined together, but not when examined separately. No significant differences were seen in interleukin-6 (IL-6). Combining strength or endurance training with a hypocaloric diet improved AV and reduced plasma leptin concentrations. No differences were seen between groups in terms of TNF-α, IL-6 or CRP reduction. This trial was registered at clinical trials.gov as NCT01116856. http://clinicaltrials.gov/. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Modification of glass fibers to improve reinforcement: a plasma polymerization technique.
Cökeliler, Dilek; Erkut, Selim; Zemek, Josef; Biederman, Hynek; Mutlu, Mehmet
2007-03-01
This study evaluates the effect of plasma treated E-glass fiber to improve the mechanical properties of acrylic resin denture base material, polymethylmethacrlyate (PMMA). Plasma surface treatment of fibers is used as reinforcement in composite materials to modify the chemical and physical properties of their surfaces with tailored fiber-matrix bonding strength. Three different types of monomer 2-hydroxyethyl methacrylate (HEMA), triethyleneglycoldimethylether (TEGDME) and ethylenediamine (EDA) were used in the plasma polymerization modification of glass fibers. A radiofrequency generator was used to sustain plasma in a glass vacuum chamber. Glass fibers were modified at the same glow-discharge power of 25 W and exposure time of 30 min for each monomer. Fibers were incorporated into the acrylic with 1% (w/w) loading except control group. Specimens were prepared using a standard mold of 3 cmx0.5 cmx0.8 cm in dimension with eight specimens in each group. Samples were subjected to a flexural strength test set up at a crosshead speed of 5mm/min. Scanning electron microscopy (SEM) was used to examine the microstructure and X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface. Data were analyzed by means of ANOVA and Duncan's tests. Test results revealed that fiber reinforcement had a significant effect on the flexural strength of the specimens (p<0.05). Among the fiber reinforced groups, plasma treatment with EDA monomer resulted in the most significant increase in flexural strength values (p<0.05). XPS results have shown an increasing number of nitrogenous compounds in EDA treated fibers. The chemical structure of the surface, especially with the increase in nitrogenous compounds could give an idea for the amine film deposition and SEM figures showed an increase in surface roughness. The results showed that plasma treatment with EDA monomer was an effective alternative method of increasing the flexural strength of PMMA based denture base polymers through fiber reinforcement.
Cross-tail current - Resonant orbits
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen
1993-01-01
A technique to generate self-consistent 1D current sheets is described. Groups of monoenergetic protons were followed in a modified Harris magnetic field. This sample current sheet is characterized by resonant quasi-adiabatic orbits. The magnetic moment of a quasi-adiabatic ion which is injected from outside a current sheet changes substantially during the orbit but returns to almost its initial value by the time the ion leaves. Several ion and electron groups were combined to produce a plasma sheet in which the charged particles carry the currents needed to generate the magnetic field in which the orbits were traced. An electric field also is required to maintain charge neutrality. Three distinct orbit types, one involving untrapped ions and two composed of trapped ions, were identified. Limitations associated with the use of a 1D model also were investigated; it can provide a good physical picture of an important component of the cross-tail current, but cannot adequately describe any region of the magnetotail in which the principal current sheet is separated from the plasma sheet boundary layer by a nearly isotropic outer position of the central plasma sheet.
Botticelli, G; Bacchi Modena, A; Bresciani, D; Villa, P; Aguzzoli, L; Florio, P; Nappi, R E; Petraglia, F; Genazzani, A R
1992-12-01
The effect of an acute physical stress on hormone secretions before and after a 10-day naltrexone treatment in untrained healthy and amenorrheic women was investigated. Plasma levels of pituitary (LH, FSH, prolactin, GH, ACTH, beta-endorphin) and adrenal (cortisol, androstenedione, testosterone) hormones were measured at rest and in response to 60 min of physical exercise. The test was done both before and after a 10-day naltrexone (50 mg/day) treatment. Graded levels of treadmill exercise (50, 70 and 90% of maximal oxygen uptake (VO2) every 20 min) was used as physical stressor. While mean +/- SE plasma LH levels in control women were higher than in amenorrheic patients and increased following the naltrexone treatment (p < 0.01), no significant differences of basal plasma hormonal levels were observed between amenorrheic and eumenorrheic women, both before and after naltrexone treatment. Physical exercise at 90% VO2 induced a significant increase in plasma GH, ACTH, beta-endorphin, cortisol, androstenedione and testosterone levels in controls before naltrexone treatment (p < 0.01). The mean increase in plasma androstenedione and testosterone levels in control women was significantly higher after naltrexone treatment (p < 0.01). In amenorrheic patients before naltrexone, physical exercise induced an increase in plasma prolactin and GH levels, but not in plasma ACTH, beta-endorphin, cortisol, testosterone and androstenedione. After naltrexone treatment, the exercise induced a significant plasma ACTH, beta-endorphin and cortisol levels, while the increase of plasma prolactin levels was significantly higher than before treatment (p < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Plasma Dynamics of the Arc-Driven Rail Gun
1980-09-01
Authors’ unpublished calculations. 11. A.B. Cambel , Plasma Physics and Magnetofluidmechanics (McGraw-Hill New York, 1963), Chap. 8. ’ 16 k T P = (1 +cO...Energy, and Forces (Wiley, New York, 1960), Chap. 9. 10. Authors’ unpublished calculations. 11. A.B. Cambel , Plasma Physics and Magnetofluidmechanics
NASA Astrophysics Data System (ADS)
Ongena, Jef; Mailloux, Joelle; Mayoral, Marie-Line
2009-04-01
This special cluster of papers summarizes the work accomplished during the last three years in the framework of the Task Force Heating at JET, whose mission it is to study the optimisation of heating systems for plasma heating and current drive, launching and deposition questions and the physics of plasma rotation. Good progress and new physics insights have been obtained with the three heating systems available at JET: lower hybrid (LH), ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI). Topics covered in the present issue are the use of edge gas puffing to improve the coupling of LH waves at large distances between the plasma separatrix and the LH launcher. Closely linked with this topic are detailed studies of the changes in LH coupling due to modifications in the scrape-off layer during gas puffing and simultaneous application of ICRH. We revisit the fundamental ICRH heating of D plasmas, include new physics results made possible by recently installed new diagnostic capabilities on JET and point out caveats for ITER when NBI is simultaneously applied. Other topics are the study of the anomalous behaviour of fast ions from NBI, and a study of toroidal rotation induced by ICRH, both again with possible implications for ITER. In finalizing this cluster of articles, thanks are due to all colleagues involved in preparing and executing the JET programme under EFDA in recent years. We want to thank the EFDA leadership for the special privilege of appointing us as Leaders or Deputies of Task Force Heating, a wonderful and hardworking group of colleagues. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the Operations team of JET and the colleagues of the Close Support Unit (CSU). Thanks are also due to the Editors, Editorial Board and referees of Plasma Physics and Controlled Fusion together with the publishing staff of IOP Publishing who have supported and contributed substantially to this initiative.
Development of a High Resolution X-ray Spectrometer on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.
2017-10-01
A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of <20 ps. A third cylindrical crystal focuses the entire He α to He β spectrum onto an image plate for a time-integrated spectrum to correlate the two streaked signals. The instrument was absolutely calibrated by the x-ray group at the Princeton Plasma Physics Laboratory using a micro-focus x-ray source. Detailed calibration procedures, including source and spectrum alignment, energy calibration, crystal performance evaluation, and measurement of the resolving power and the integrated reflectivity will be presented. Initial NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
Micro- to macroscale perspectives on space plasmas
NASA Technical Reports Server (NTRS)
Eastman, Timothy E.
1993-01-01
The Earth's magnetosphere is the most accessible of natural collisionless plasma environments; an astrophysical plasma 'laboratory'. Magnetospheric physics has been in an exploration phase since its origin 35 years ago but new coordinated, multipoint observations, theory, modeling, and simulations are moving this highly interdisciplinary field of plasma science into a new phase of synthesis and understanding. Plasma systems are ones in which binary collisions are relatively negligible and collective behavior beyond the microscale emerges. Most readily accessible natural plasma systems are collisional and nearest-neighbor classical interactions compete with longer-range plasma effects. Except for stars, most space plasmas are collisionless, however, and the effects of electrodynamic coupling dominate. Basic physical processes in such collisionless plasmas occur at micro-, meso-, and macroscales that are not merely reducible to each other in certain crucial ways as illustrated for the global coupling of the Earth's magnetosphere and for the nonlinear dynamics of charged particle motion in the magnetotail. Such global coupling and coherence makes the geospace environment, the domain of solar-terrestrial science, the most highly coupled of all physical geospheres.
[Bag plasmapheresis in patients with stage IIb peripheral arterial occlusive disease].
Kiesewetter, H; Blume, J; Jung, F; Gerhards, M; Spitzer, S; Leipnitz, G; Wenzel, E
1988-04-01
The clinical effect of bag-plasmapheresis was investigated in 60 patients with peripheral arterial occlusive disease stage II according to Fontaine. The initial number of patients was subdivided in three groups of 20 individuals using a randomised double-blind placebo-controlled design. Each patient gave 300 ml of blood twice a week for a 6 week duration. Blood plasma was separated in two groups and replaced with Hydroxyethyl-starch (200/0.5 10%) in group 1 and with Laevulose 5% in group 2. Patients in group 3 received their whole blood without any processing. All patients had to undergo a physical training of 45 minutes three times a week. The group who received Hydroxyethylstarch presented a 20% increase in walking distance whereas the increase in the Laevulose group was 5% and approximately 1% in the group receiving whole blood. The increase in walking distance in the Hydroxyethylstarch-group was significant on the 0.1%-level and significantly better than the improvement in walking distance of the other groups. Additionally in this group plasma viscosity showed a 3% decrease, erythrocyte aggregation was reduced by 10%. Results in the Laevulose group were only half as good as in the Hydroxyethylstarch group while parameters remained unchanged in the whole-blood-group. Bag plasmapheresis with Hydroxyethylstarch as substitute leads to an improvement in the walking capacity and blood fluidity thus offering a promising therapy for peripheral vascular occlusive disease.
NASA Astrophysics Data System (ADS)
Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo
2018-02-01
Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.
Thomson, Rebecca L.; Coates, Alison M.; Howe, Peter R. C.; Bryan, Janet; Matsumoto, Megumi; Buckley, Jonathan D.
2014-01-01
Cross-sectional studies have reported positive relationships between serum lutein concentrations and higher physical activity levels. The purpose of the study was to determine whether increasing plasma lutein levels increases physical activity. Forty-four older adults (BMI, 25.3 ± 2.6 kg/m2; age, 68.8 ± 6.4 year) not meeting Australian physical activity guidelines (150 min/week of moderate to vigorous activity) were randomized to consume capsules containing 21 mg of lutein or placebo with 250 mL of full-cream milk per day for 4 weeks and encouraged to increase physical activity. Physical activity was assessed by self-report, pedometry and accelerometry (daily activity counts and sedentary time). Exercise self-efficacy was assessed by questionnaire. Thirty-nine participants competed the study (Lutein = 19, Placebo = 20). Lutein increased plasma lutein concentrations compared with placebo (p < 0.001). Absolute and percentage changes in plasma lutein were inversely associated with absolute (r = −0.36, p = 0.03) and percentage changes (r = −0.39, p = 0.02) in sedentary time. Percentage change in plasma lutein was positively associated with the percentage change in average daily activity counts (r = 0.36, p = 0.03). Exercise self-efficacy did not change (p = 0.16). Lutein increased plasma lutein, which was associated with increased physical activity and reduced sedentary time in older adults. Larger trials should evaluate whether Lutein can provide health benefits over the longer term. PMID:24594505
Research briefing on contemporary problems in plasma science
NASA Technical Reports Server (NTRS)
1991-01-01
An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.
Is group A thawed plasma suitable as the first option for emergency release transfusion? (CME).
Chhibber, Vishesh; Greene, Mindy; Vauthrin, Michelle; Bailey, Jeff; Weinstein, Robert
2014-07-01
Group AB plasma, which lacks anti-A and anti-B isohemagglutinins, is issued for emergency transfusion when a patient's ABO group is unknown, but the relative scarcity of group AB blood donors limits its availability. We sought to establish a thawed plasma inventory to improve the rapid availability of plasma in the emergency release setting but were concerned about potential wastage of group AB plasma. Recognizing that plasma-incompatible apheresis platelets are routinely transfused and only rarely result in hemolytic reactions if the donor is blood group O, and considering that group A plasma would be compatible with approximately 85% of our patient population, we instituted an emergency release policy whereby thawed group A plasma is issued to all patients of unknown blood group or if compatible plasma is not available. ABO-compatible plasma is then issued, if needed, once the patient's blood group is determined. We prospectively assessed the outcomes of all patients who received incompatible plasma under our policy. During the first 5 years under this policy, 385 emergency release requests for plasma were received by our blood bank. Among them, 23 group B or AB patients met criteria for receiving a median of 2 units of incompatible group A plasma. No hemolytic transfusion reactions or other adverse events related to transfusion were seen in any of these 23 patients. We propose that group A plasma may be an acceptable alternative to AB plasma as the first option in the emergency release setting. © 2014 AABB.
Performance Modeling of Experimental Laser Lightcrafts
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)
2001-01-01
A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas
NASA Technical Reports Server (NTRS)
Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin
2004-01-01
The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.
Bounce frequency fishbone analysis
NASA Astrophysics Data System (ADS)
White, Roscoe; Fredrickson, Eric; Chen, Liu
2002-11-01
Large amplitude bursting modes are observed on NSTX, which are identified as bounce frequency fishbone modes(PDX Group, Princeton Plasma Physics Lab, Phys Rev. Lett) 50, 891 (1983)^,(L. Chen, R. B. White, and M. N. Rosenbluth Phys Rev. Lett) 52, 1122 (1984). The identification is carried out using numerical equilibria obtained from TRANSP( R. V. Budny, M. G. Bell A. C. Janos et al), Nucl Fusion 35, 1497 (1995) and the numerical guiding center code ORBIT( R.B. White, Phys. Fluids B 2)(4), 845 (1990). These modes are important for high energy particle distributions which have large average bounce angle, such as the nearly tangentially injected beam ions in NSTX and isotropic alpha particle distributions. They are particularly important in high q low shear advanced plasma scenarios. Different ignited plasma scenarios are investigated with these modes in view.
Complex Plasma Physics and Rising Above the Gathering Storm
NASA Astrophysics Data System (ADS)
Hyde, Truell
2008-11-01
Research in complex plasma is prevalent across a variety of regimes ranging from the majority of plasma processing environments to many astrophysical settings. Dust particles suspended within such plasmas acquire a charge from collisions with electrons and ions in the plasma. Depending upon the ratio of their interparticle potential energy to their average kinetic energy, once charged these particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. The field of complex plasmas thus offers research opportunities across a wide range of academic disciplines including physics, chemistry, biology, mathematics, electrical engineering and nanoscience. The field of complex plasmas also offers unique educational research opportunities for combating many of the issues raised in Rising Above the Gathering Storm, recently published by the National Academies Press. CASPER's Educational Outreach programs, supported by the National Science Foundation, the Department of Education and the Department of Labor takes advantage of these opportunities through a variety of avenues including a REU / RET program, a High School Scholars Program, integrated curriculum development and the CASPER Physics Circus. Together, these programs impact thousands of students and parents while providing K-12 teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science concepts into the classroom. Both research results and educational outreach concepts from the above will be discussed.
Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-02-01
Chemerin is an adipose tissue-derived adipokine thought to decrease insulin sensitivity and increase cardiometabolic risk. This study aimed to assess the association of chemerin with cardiometabolic risk and physical performance and examine its response to high-intensity interval training (HIIT). Eighteen young men have been applied a HIIT program during 8 weeks. Plasma chemerin together with several cardiometabolic factors and physical performance indices were determined before and after the training program. Plasma chemerin and insulin were assessed using immunoenzymatic methods. The homeostasis model assessment (HOMA-IR) index was calculated as an estimate of insulin resistance. Basal plasma chemerin was positively correlated with body mass index (r=0.782, p<0.001), body fat (r=0.767, p<0.001), total (r=0.686, p=0.002) and LDL (r=0.587, p=0.010) cholesterol, triglycerides (r=0.775, p<0.001), HOMA-IR (r=0.673, p=0.002) and C-reactive protein (r=0.765, p<0.001). With regards to physical performance, chemerin was negatively correlated with maximal oxygen uptake (r=-0.572, p=0.013) and squat jump (r=-0.627, p=0.005), but positively related to 10-m sprint (r=0.716, p=0.001) and 30-m sprint (r=0.667, p=0.002) times. HIIT program resulted in significant improvements in body composition, plasma lipids and insulin sensitivity. However, no significant change was detected for plasma chemerin in response to HIIT (134±50.7 ng/mL vs. 137±51.9 ng/mL, p=0.750). Basal plasma chemerin is associated with cardiometabolic health and physical performance in young men. Following HIIT, cardiometabolic health and physical performance had improved, but no significant change had occurred for plasma chemerin.
NASA Astrophysics Data System (ADS)
Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.
2007-06-01
This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader range of topics with the common thread of non- equilibrium phenomena playing a major part in the basic physics and also in the technological applications. The universal symbol of non-equilibrium phenomena is Maxwell's demon and it was selected, as designed by Professor Rastko Ćirić (of Belgrade's University for Fine Arts), to be the symbol of the conference. In plasma physics, the field is usually divided between equilibrium and non-equilibrium plasmas. The advantage of studying plasmas in thermal equilibrium is that they may be described by universal laws, such as Saha and Boltzmann equations. The only problem is that, apart from the very early stages in the development of the universe, such plasmas do not exist, although there are plasmas that come very close and at least satisfy the thermal laws locally. Non-equilibrium plasmas have laws unique to each situation and studies of their idiosyncrasies continue to provide a lot of food for thought for scientists, possibilities for applications and job opportunities. Or as Tolstoy wrote, `Happy families are all alike; every unhappy family is unhappy in its own way?'. So, while making analogy of the non-equilibrium with the lack of happiness may sound discouraging, the scientists who try to observe these phenomena (like psychologists in the case of families) have plenty to study and are, therefore, likely to be happy. At the same time non-equilibrium phenomena in plasmas and in the atmosphere are extremely important. A fact we should be aware of every time we use an integrated circuit manufactured after the late 1970s or whenever weather changes, wind blows and pollution is carried in from some distant locations. This volume starts with a paper by D Batani (Milano, Italy) on shock waves, an example of plasmas that may be locally thermal but display very strong gradients, M Pinheiro (Lisboa, Portugal) contributed an article on anomalous diffusion in magnetized plasmas, a problem that has been addressed in the literature from many different standpoints. A special case of non-equilibrium is that of non-neutral plasmas, i.e. plasmas devoid of ions, as described in the lecture and paper by J Marler (Appleton, USA). Physics of swarms (the low space charge limit of ionized gases) is similar to the previous study in the fact that we may have only one group of charged particles electrons (or ions). But the difference is that the latter has a much higher pressure and therefore number of collisions. In the lecture on one aspect of the application of swarm data (transport coefficients) to determine the electron scattering cross sections R White (Townsville, Australia) addresses a long standing controversy in the vibrational excitation of H2 of an unacceptable discrepancy between swarm results and binary collision experiments and theories, (a problem that has been of particular importance to the host Laboratory). The lecture of N Dyatko (Troitsk, Russian Federation) tackles one of the most interesting recent problems in the transport theory of ionized gases, that of the negative absolute conductivity and attempts to translate it to solid state physics where the stakes are much higher. The swarm studies were always based on excellent experimental data and the leading experimental group today is that of J de Urquijo (Cuernavaca, Mexico) who presents a review of a wide range of transport data that his group obtained in fluorinated gases. The gas breakdown in dc and high frequency fields was addressed by M Radmilović-Rađenović (Belgrade, Serbia) by applying a detailed secondary electron production model in Particle in Cell (PIC) code and comparing the results to a broad range of experimental data. The hybrid (fluid-Monte Carlo) model has been applied in the study by Z Donko and K Kutasi (Budapest, Hungary) of low pressure obstructed glow discharges to decribe the effect of fast neutrals on gas discharges. A study of kinetics of negative ions of hydrogen in glow discharges with positive column and in hollow cathode dicharges is presented by R Djulgerova (Sofia, Boulgaria). Modelling and experimental results for surface plasmas with an aim to study the kinetics of dissociation are given by V Guerra (Lisboa, Portugal). L Campbell (Adelaide, Australia) describes modelling of a similar kinetics, albeit for a significantly larger ionized gas in his study of electron induced processes in the upper atmosphere. Atmospheric pressure discharges is also the topic of the work of T Gans (Belfast, Northern Ireland andBochum, Germany) but his experiments with atmospheric plasma jet are carried out at sea level and therefore the pressures are significantly higher than those for usual non-equilibrium plasmas. Higher still are the densities in plasmas generated in liquids (for medical purposes) as described in the paper of W Graham (Belfast, Northern Ireland). Another very applied aspect of non-equilibrium plasma is highlighted in a comprehensive review given by S Radovanov (Gloucester, USA) of the basic physics of the non-equilibrium plasma source for implantation of boron (for doping in the manufacture of integrated circuits) . A topical review of diagnostics of dusty particles in rf plasmas is given by I Stefanović, J Winter and colleagues (Bochum, Germany) and includes implications for plasma processing, nanotechnologies and all the way to astrophysics. Transport of particles of similar sizes in the atmosphere and its influence on the pollution of the human environment is presented in the paper by M Tasić (Belgrade, Serbia). Finally a paper that connects both aspects of the workshop, plasma physics and environment, is the review of M Radetić (Belgrade, Serbia) which covers application of low pressure non-equilibrium plasmas in treatment of textiles, not only to reduce the cost and environmental impact of the technology but also to produce filters to purify waters used in the process and in general. The broad range of topics indicates that modern plasma physics is driven not only by the need to further understand the fundamental principles but with an eye towards applications. Consequently in addition to furthering the cause of physics, we strive to improve increasingly complex technologies or develop new technologies. The non-equilibrium nature of plasmas that are the subject of our studies allows us to control properties that are critical and to design optimum conditions for these varied applications. We hope that this volume will serve as a useful source of information for experienced researchers, as a textbook for postgraduate students and as a reminder, for all who attended the workshop, of the wonderful time (http://www.euj07.phy.bg.ac.yu/index.php?page=p04) we had on top of the mountain Kopaonik, even though we were subjected to freezing temperatures in the middle of summer. Organization of this workshop was supported by INCO EU FP6 026328 project (Reinforcing Experimental Center for Non-equilibrium studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research), by the Ministry of Science and Environment of Serbia (project 141025) and also, to a great extend, by the individual funding of the participants some of whom traveled from remote continents in order to participate. Z Lj Petrović, G Malović, M Tasić and Ž Nikitović Editors
Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Stinnett, H. O.; Davis, G. L.; Kollias, J.; Bernauer, E. M.
1977-01-01
Experiments were conducted on twelve women aged 23-34 yr - a bed rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects - to determine the effect of bed rest on shifts in plasma volume, electrolytes, and erythrocyte volume during +Gz acceleration on a centrifuge. The BR group underwent the +Gz acceleration during a two-week ambulatory control period, after 15 days of a 17-day BR period, and on the third day of ambulatory recovery. The AMB group underwent the same experimental procedures, but continued their normal daily routine during the BR period without additional prescribed physical exercise. Major conclusions are that (1) the higher the mean control tolerance, the greater the tolerance decline after BR; (2) relative confinement and reduced activity contribute as much to reduction in tolerance as does the horizontal body position during BR; (3) BR deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and (4) about one-half the loss in tolerance after BR can be attributed to plasma volume and electrolyte shifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K.; Okuda, S.; Nishioka, S.
2013-09-14
Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less
Structure and structure-preserving algorithms for plasma physics
NASA Astrophysics Data System (ADS)
Morrison, P. J.
2016-10-01
Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.
Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-07-01
The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander Pigarov
2012-06-05
This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings andmore » non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.« less
Modulation of receptor-mediated gonadotropin action in rat testes by dietary fat.
Sebokova, E; Garg, M L; Clandinin, M T
1988-06-01
The effect of feeding diets enriched with 18:2 omega 6, 18:3 omega 3, or saturated fatty acids on lipid composition and receptor-mediated action of luteinizing hormone/human chorionic gonadotropin (LH/hCG) in rat testicular plasma membranes was investigated. Linoleic and alpha-linolenic acid treatments reduced total phospholipid and cholesterol content of the testicular plasma membrane and altered membrane phospholipid composition. Change in phospholipid and cholesterol content after feeding the polyunsaturated fats decreased cholesterol to phospholipid ratios and binding capacity of the LH/hCG receptor in the testicular plasma membrane. LH-stimulated adenylate cyclase activity was decreased in animals fed the linolenic acid-rich diet. NaF-stimulated adenylate cyclase activity was decreased in animals fed diets high in either polyunsaturated fatty acid. Decreased plasma membrane LH/hCG receptor content was associated with decreased testosterone production in Leydig cells in response to LH in the linolenic acid-fed group. It is suggested that change in cholesterol-to-phospholipid ratios alters the physical properties of testicular plasma membranes in a manner that influences accessibility of LH/hCG receptors in testicular tissue.
NASA Astrophysics Data System (ADS)
Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.
2017-12-01
The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.
Establishment and Assessment of Plasma Disruption and Warning Databases from EAST
NASA Astrophysics Data System (ADS)
Wang, Bo; Robert, Granetz; Xiao, Bingjia; Li, Jiangang; Yang, Fei; Li, Junjun; Chen, Dalong
2016-12-01
Disruption database and disruption warning database of the EAST tokamak had been established by a disruption research group. The disruption database, based on Structured Query Language (SQL), comprises 41 disruption parameters, which include current quench characteristics, EFIT equilibrium characteristics, kinetic parameters, halo currents, and vertical motion. Presently most disruption databases are based on plasma experiments of non-superconducting tokamak devices. The purposes of the EAST database are to find disruption characteristics and disruption statistics to the fully superconducting tokamak EAST, to elucidate the physics underlying tokamak disruptions, to explore the influence of disruption on superconducting magnets and to extrapolate toward future burning plasma devices. In order to quantitatively assess the usefulness of various plasma parameters for predicting disruptions, a similar SQL database to Alcator C-Mod for EAST has been created by compiling values for a number of proposed disruption-relevant parameters sampled from all plasma discharges in the 2015 campaign. The detailed statistic results and analysis of two databases on the EAST tokamak are presented. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2014GB103000)
Konstantinova, Svetlana V; Tell, Grethe S; Vollset, Stein Emil; Nygård, Ottar; Bleie, Øyvind; Ueland, Per Magne
2008-05-01
Choline is involved in the synthesis of phospholipids, including blood lipids, and is the immediate precursor of betaine, which serves as a methyl group donor in a reaction converting homocysteine to methionine. Several cardiovascular risk factors are associated with plasma homocysteine, whereas little is known about their relationship to choline and betaine. We examined the relation of plasma choline and betaine to smoking, physical activity, BMI, percent body fat, waist circumference, blood pressure, serum lipids, and glucose in a population-based study of 7074 men and women aged 47-49 and 71-74 y. Overall plasma concentrations (means +/- SD) were 9.9 +/- 2.3 micromol/L for choline and 39.5 +/- 12.5 micromol/L for betaine. Choline and betaine were lower in women than in men and in younger subjects compared with older (P < 0.0001). Multivariate analyses showed that choline was positively associated with serum triglycerides, glucose, BMI, percent body fat, waist circumference (P < 0.0001 for all), and physical activity (P < 0.05) and inversely related to HDL cholesterol (P < 0.05) and smoking (P < 0.0001). Betaine was inversely associated with serum non-HDL cholesterol, triglycerides, BMI, percent body fat, waist circumference, systolic and diastolic blood pressure (P < 0.0001 for all), and smoking (P < 0.05) and positively associated with HDL cholesterol (P < 0.01) and physical activity (P < 0.0001). Thus, an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations. Choline and betaine were associated in opposite directions with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline dehydrogenase pathway.
Moraes, Roger de; Van Bavel, Diogo; Moraes, Beatriz Serpa de; Tibiriçá, Eduardo
2014-12-15
Dietary creatine supplementation (CrS) is a practice commonly adopted by physically active individuals. However, the effects of CrS on systemic microvascular reactivity and density have never been reported. Additionally, CrS is able to influence blood levels of homocysteine, resulting in presumed effects on vascular endothelial function. Thus, we investigated the effects of CrS on the systemic microcirculation and on homocysteine levels in healthy young individuals. This open-label study was performed on a group of 40 healthy male, moderately physically active subjects aged 27.7 ± 13.4 years who received one week of CrS at a dose of 20 g/day of commercially available micronized creatine monohydrate. Laser speckle contrast imaging was used in the evaluation of cutaneous microvascular reactivity, and intra-vital video microscopy was used to evaluate skin capillary density and reactivity, before and after CrS. CrS did not alter plasma levels of homocysteine, although CrS increased creatinine (p = 0.0001) and decreased uric acid (p = 0.0004) plasma levels. Significant changes in total cholesterol (p = 0.0486) and LDL-cholesterol (p = 0.0027) were also observed along with a reduction in plasma levels of T3 (p = 0.0074) and an increase in T4 levels (p = 0.0003). Skin functional capillary density (p = 0.0496) and capillary recruitment during post-occlusive reactive hyperemia (p = 0.0043) increased after CrS. Increases in cutaneous microvascular vasodilation induced by post-occlusive reactive hyperemia (p = 0.0078) were also observed. Oral supplementation with creatine in healthy, moderately physically active young adults improves systemic endothelial-dependent microvascular reactivity and increases skin capillary density and recruitment. These effects are not concurrent with changes in plasma homocysteine levels.
Functional and rheological properties of cold plasma treated rice starch.
Thirumdas, Rohit; Trimukhe, A; Deshmukh, R R; Annapure, U S
2017-02-10
The present work deals with aimed to study the effect of cold plasma treatment on the functional and rheological properties of rice starch using two different power levels (40 and 60W). The changes in amylose content, turbidity, pH, water and fat absorption due to plasma treatment were evaluated. Where decrease in the turbidity and pH after the treatment was observed. Gel hydration properties and syneresis study revealed that there is an increase in leaching of amylose molecules after the treatment. Rapid Visco Analyzer examination showed an increase in pasting and final viscosities. From G' and G″ moduli determination we observed that there is decrease in retrogradation tendency of starch gels. XRD did not show any change in A-type pattern but decrease in the relative crystallinity was observed due to depolymerization caused by active plasma species. FTIR shows some of the additional functional groups after treatment. SEM showed formation of fissures on the surface of starch granules due to etching caused by the plasma species. Thus, plasma treatment can be one of the methods for physical modification of starch. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cannabis use is associated with increased CCL11 plasma levels in young healthy volunteers.
Fernandez-Egea, Emilio; Scoriels, Linda; Theegala, Swathi; Giro, Maria; Ozanne, Susan E; Burling, Keith; Jones, Peter B
2013-10-01
Cannabis is a widely used recreational drug. Its effect on human health and psychosis remains controversial. In this study, we aimed to explore the possibility that cannabis use influenced CCL11 plasma levels. Increased CCL11 chemokine has been reported in schizophrenia and cannabis is a known trigger of schizophrenia. Additionally, plasma levels of the chemokine CCL11 have recently been shown to increase with age and with cognitive deficits and hippocampal neurogenesis. For this study, a total of 87 healthy volunteers (68% men, age range 18-35 years) completed the Cannabis Experience Questionnaire that included information on sociodemographic and morphometric data and provided a blood sample for CCL11 measurement. 'Current users' of cannabis (n=18) had significantly higher CCL11 plasma levels compared to 'past users' (n=33) and 'never users' (n=36) [F(3,84)=3.649; p=0.030]. The latter two groups had similar CCL11 levels. Higher CCL11 plasma levels could not be attributed to gender, age, body mass index, physical activity or use of other legal/illegal drugs. These results suggest that cannabis use increases CCL11 plasma levels and the effects are reversible when cannabis use ceases. © 2013.
NASA Astrophysics Data System (ADS)
Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.
2015-12-01
Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be presented.
PREFACE: 13th High-Tech Plasma Processes Conference (HTPP-2014)
NASA Astrophysics Data System (ADS)
2014-11-01
The High-Tech Plasma Processes - 13th European Plasma Conference (HTPP-2014) was held in Toulouse (France) on 22-27 June 2014. The conference series started in 1990 as a thermal plasma conference and has gradually expanded to include other related topics. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is an international conference organised in Europe every two years with topics encompassing the whole field of plasma processing science. The aim of the conference is to bring different scientific communities together, to facilitate contacts between science, technology and industry and to provide a platform for the exploration of both the fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have acheived a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 142 people from 17 countries attended the conference with the total number of contributions being 155, consisting of 8 plenary and 8 invited talks plus 51 oral and 88 poster contributions. We have received numerous papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed (60 referees with at least two reviewing each paper) and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 52 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We have grouped the papers into the following 5 topics: - Arc-Materials Interaction and Metallurgy - Plasma Torches and Spraying - Synthesis of Powders and Nanomaterials - Deposition and Surface Treatment - Non-Equilibrium Plasmas We deeply thank the authors for their enthusiastic and high-grade contributions and we are convinced that this volume of Journal of Physics: Conference Series will be interesting for our community. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-2014. The Editors of the HTPP-2014 Proceedings Dr Alain Gleizes, chairman of HTPP-2014 Prof. Jochen Schein, head of the ISC Prof. Philippe Teulet Toulouse, 14th October 2014
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Ping; Mu, Jujie; Yu, Qi; Lu, Chun
2011-05-01
The improved interfacial adhesion of PBO fiber-reinforced bismaleimide composite by oxygen plasma processing was investigated in this paper. After treatment, the maximum value of interlaminar shear strength was 57.5 MPa, with an increase of 28.9%. The oxygen concentration of the fiber surface increased, as did the surface roughness, resulting in improvement of the surface wettability. The cleavage and rearrangement of surface bonds created new functional groups O dbnd C sbnd O, N sbnd C dbnd O and N sbnd O, thereby activating the fiber surface. And long-time treatment increased the reaction degree of surface groups while destroyed the newly-created physical structures. The enhancement of adhesion relied primarily on the strengthening of chemical bonding and mechanical interlocking between the fiber and the matrix. The composite rupture planes indicated that the fracture failure shifted from the interface to the matrix or the fiber.
Role of pulmonary diseases and physical condition in the regulation of vasoactive hormones.
Hietanen, E; Marniemi, J; Liippo, K; Seppänen, A; Hartiala, J; Viinamäki, O
1988-12-01
Lungs have many non-respiratory metabolic functions, of which some take place in the capillary endothelium, while others are in parenchymal lung tissue. We have studied the role of the lungs in the metabolism of vasoactive and some other hormones by comparing patients who have undergone lung resection to those having various obstructive or fibrotic lung diseases. We have also compared these groups with persons in good physical health. The data suggested that lung resection patients had low angiotensin II levels in plasma but the response of angiotensin II to exercise was normal. Also adrenalin concentration was low in the lung resection group while dopamine did not show any significant difference between the groups. When hormone levels were correlated to the exercise data, renin levels were especially related to physical condition. Serum post-exercise renin values were inversely related to the uneven distribution of lung perfusion, possibly thus reflecting the diminished pulmonary vascularization. A negative association was found between angiotensin II and diffusion capacity. Thus, the angiotensin II levels may preferably be controlled by the non-circulatory functions of the lungs.
Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2018-06-01
The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.
Jahani-Moghadam, M; Mahjoubi, E; Hossein Yazdi, M; Cardoso, F C; Drackley, J K
2015-06-01
Inclusion of forage and its physical form in starter may affect rumen development, average daily gain (ADG), and dry matter intake (DMI) of dairy calves. To evaluate the effects of forage and its physical form (chopped vs. pelleted) on growth of calves under a high milk feeding regimen, 32 Holstein calves (38.8±1.1kg) were assigned at birth to 1 of 3 treatments in a completely randomized block design. Dietary treatments (% of dry matter) were (1) 100% semi-texturized starter (CON); (2) 90% semi-texturized starter + 10% chopped alfalfa hay (mean particle size=5.4mm) as a total mixed ration (TMR; CH); and (3) 90% semi-texturized starter + 10% pelleted alfalfa (mean=5.8mm) hay as a TMR (PH). Data were subjected to mixed model analysis with contrasts used to evaluate effect of forage inclusion. Calves were weaned at 76 d of age and the experiment finished 2 wk after weaning. Individual milk and solid feed consumption were recorded daily. Solid feed consumption and ADG increased as age increased (effect of week), but neither forage inclusion nor physical form of forage affected these variables pre- or postweaning. Plasma urea N was affected by treatments such that the CON group had a lower concentration than forage-fed groups. Forage inclusion, but not physical form, resulted in increased total protein in plasma. Although days with elevated rectal temperature, fecal score, and general appearance were not affected by dietary treatments, calves fed alfalfa hay during the first month of life had fewer days with respiratory issues, regardless of physical form of hay. We concluded that provision of forage does have some beneficial effects in calves fed large amounts of milk replacer, but pelleted alfalfa hay did not result in any improvement in calf performance or health. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lincoln, James
2018-01-01
The plasma globe or plasma ball is an underutilized resource for teaching the physics of electricity. It also offers a convenient source of electric field that can be used for demonstrations and experiments. Unlike the Van de Graaff generator, the plasma globe does not shock you and is essentially silent. Other authors have written up some of these activities, but the full potential of the plasma globe is generally not taken advantage of by most teachers. I hope that this article can bring more awareness to how this ubiquitous piece of novelty lighting can be an essential physics teaching apparatus.
Iamopas, Orawan; Ratanachu-ek, Suntaree; Chomtho, Sirinuch
2014-06-01
Obese children tend to consume less dietary folate, which is an important cofactor in remethylation of homocysteine to methionine. The deficiency of folate can lead to hyperhomocysteinemia. To determine whether folic acid supplementation could reduce plasma homocysteine in obese children. Obese children, aged 9-15 years with body mass index > median plus 2 SD according to WHO reference, were randomly assigned to 2 groups: receiving either 5 mg folic acid or placebo for 2 months. Fasting homocysteine, creatinine, folate, vitamin B12, insulin, glucose and lipid profiles were taken at baseline and the end of the study. Dietary vitamin B12, folate intake and physical activity were assessed using validated questionnaires. Fifty obese children (31 boys and 19 girls) took part in the study. Their mean age was 10.9 ± 1.6 years and mean BMI Z-score was 3.41 ± 0.69. After the intervention, plasma homocysteine decreased by 15.75% and 6.99% in the folic acid and placebo group, respectively (mean difference 8.76%; 95% CI: 0.26%, 17.25%, p = 0.044). This divergence was more pronounced in boys and it remained significant after adjusting for baseline homocysteine and other confounders. Subgroup analysis showed a larger magnitude of plasma homocysteine reduction in the low folate group (mean difference 12.24%; 95% CI: 1.39%, 23.09%). The homocysteine lowering effect of folic acid supplementation was found in obese children, especially in boys and those with low serum folate. Further long-term interventional studies are needed to determine the effects of the lowered plasma homocysteine on the cardiovascular outcomes of obese children. This trial was registered on clinicaltrials.gov (NCT01766310).
Physics of the inner heliosphere 1-10R sub O plasma diagnostics and models
NASA Technical Reports Server (NTRS)
Withbroe, G. L.
1984-01-01
The physics of solar wind flow in the acceleration region and impulsive phenomena in the solar corona is studied. The study of magnetohydrodynamic wave propagation in the corona and the solutions for steady state and time dependent solar wind equations gives insights concerning the physics of the solar wind acceleration region, plasma heating and plasma acceleration processes and the formation of shocks. Also studied is the development of techniques for placing constraints on the mechanisms responsible for coronal heating.
NASA Technical Reports Server (NTRS)
Beckley, L. E.
1977-01-01
Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.
Physics Criteria for a Subscale Plasma Liner Experiment
Hsu, Scott C.; Thio, Yong C. Francis
2018-02-02
Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). Here, in this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Lastly, based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasmamore » liner experiment now under development.« less
Physics Criteria for a Subscale Plasma Liner Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Scott C.; Thio, Yong C. Francis
Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). Here, in this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Lastly, based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasmamore » liner experiment now under development.« less
The America COMPETES Act and the FY2009 Budget
2008-10-17
Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced...Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.20 The DOE Summer Institutes authorization in the act is $20 million in FY2009...corresponds to pre-existing High Energy Physics Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.
1996-01-01
Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development of turbulence and the formation of coherent structures, particle and heat transport, plasma based charged particle acceleration by intense electrostatic waves that are created by powerful short laser beams, etc. Specifically, the review talks presented the general picture of the subject matter at hand and the underlying physics, whereas the remaining topical talks and the posters described the present state-of-the-art in the field. Instead of presenting the technical details, the speakers kept a good balance in injecting both the physics and the mathematical techniques to their audience. It was noted that despite the diversity of the physical problems, the mathematical equations governing particular phenomena and their solutions remain somewhat similar. Most contributions from the Trieste meeting appear in the form of a collection of articles in this Topical Issue of Physica Scripta, which will be distributed to all the delegates. We are grateful to the ICTP director Professor M A Virasoro and the deputy director Professor L Bertocchi for their generous support and warm hospitality at the ICTP. Thanks are also due to Professor G Denardo of the ICTP and Professor M H A Hassan of the Third World Academy of Sciences (TWAS, ICTP) for their constant and wholehearted support in our endeavours. We would like to express our gratitude to the ICTP and the Commission of the European Union (through the HCM networks on Dusty Plasmas and Nonlinear Phenomena in the Microphysics of Collisionless Plasmas) for providing partial financial support to our activities at Trieste. Finally, our cordial thanks are extended to the speakers and the attendees for their contributions which resulted in the success of this workshop. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the ICTP. The excellent work of MS Ave Lusenti is gratefully acknowledged.
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
MTF Driven by Plasma Liner Dynamically Formed by the Merging of Plasma Jets: An Overview
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
One approach for standoff delivery of the momentum flux for compressing the target in MTF consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid (Figure 1). A 3-year experiment (PLX-1) to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets is described. An overview showing how this 3-year project (PLX-1) fits into the program plan at the national and international level for realizing MTF for energy and propulsion is discussed. Assuming that there will be a parallel program in demonstrating and establishing the underlying physics principles of MTF using whatever liner is appropriate (e.g. a solid liner) with a goal of demonstrating breakeven by 2010, the current research effort at NASA MSFC attempts to complement such a program by addressing the issues of practical embodiment of MTF for propulsion. Successful conclusion of PLX-1 will be followed by a Physics Feasibility Experiment (PLX-2) for the Plasma Liner Driven MTF.
PREFACE: 1982 International Conference on Plasma Physics
NASA Astrophysics Data System (ADS)
Wilhelmsson, Hans
1982-01-01
Invited Papers: The Physics of Hot Plasmas During the last decade a dramatic evolution of plasma physics has occurred. Not only have gigantic fusion plasma machines been planned, and are now being built, and elaborate spaceships and antenna systems been constructed to explore remote parts of the cosmos; new observations have revealed fascinating structures in space, ranging from pulsar plasmas under extreme conditions in very strong magnetic fields to large-scale magnetic field and electric current systems in cosmic plasmas. X-rays from very distant sources as well as radio-waves from the plasma in the magnetosphere and in the Aurora have recently been studied with new observational techniques. Ingenious laboratory experiments are continuously being carried out to exploit new fundamental processes in plasmas. These are of great interest for the basic understanding of plasmas and also have immediate consequences for applications, like plasma heating and diagnostics. The theoretical description of new plasma phenomena, and of the plasma state in general poses challenging problems, particularly in situations where high concentration of energy is located in the plasmas. Nonlinear wave analysis and turbulence theory have accordingly been extensively developed to describe in particular the collective plasma phenomena. New concepts have been envisaged like plasma solitons, which may be thought of as excitations of local concentrations of longitudinal plasma waves which turn out to be particularly stable. More and more sophisticated structures of nonlinear nature are being revealed by means of high capacity computer facilities. Simulation experiments allow for studies of chaotic behaviour of plasma particles. Related fields of activity form new trends in the development of plasma theory. The programme of the 1982 International Conference on Plasma Physics, which was held in Göteborg, Sweden, stressed the role of the Physics of Hot Plasmas. Studies of such plasmas are essential, not only for fusion energy development, but also for astro- and space research. Plasmas in different situations often have important features in common. Results obtained under various conditions, in the laboratory or in space, should therefore be compared and interrelated. The Göteborg conference emphasized more than the previous one, which was held in Nagoya, Japan, the astro- and space aspects, but there were still more contributions from the fusion and laboratory research. The fundamental plasma theory part was, however, the most extensive one in the programme. At the conference there were seventy invited talks, including six comprehensive talks addressed to all participants. The remaining sixtyfour invited talks were topical talks. Besides, we had received about 450 contributed papers. About 300 of them were given as posters, and most of the remaining ones were presented as orals. The set of one page abstracts of these contributed papers as well as the titles of the invited talks were collected in two volumes, which were sent to all participants a month before the conference. Another set, the four page papers, which had been carefully prepared by the authors for photoreproduction to one page papers, were published in a volume of proceedings of some 460 pages available at the conference. When trying to classify the contributions, it turned out that they fell naturally into four main categories, namely: General Theory Space and Astro Plasmas Fusion Laboratory Plasmas For practical reasons we had to divide the Abstracts into two Volumes, the first one including categories (1) and (2), and the second one the two remaining categories (3) and (4). In publishing the invited talks from the conference we had to handle a great number of extensive papers. It turned out to be natural to have also the invited papers published in two parts, as two separate numbers of Physica Scripta, the first one devoted to (1) General Theory, and (2) Space and Astro Plasmas, whereas the second one to (3) Fusion and (4) Laboratory Plasmas. The 1982 International Conference on Plasma Physics was organized by Chalmers University of Technology. It gathered about 500 participants from 40 countries. Large delegations came from the USA, France, West Germany, Japan, the USSR, and India, the number of participants from these countries ranging from 100 to 20. Sweden had about 50 participating scientists. There were a total of about 20 from the other Scandinavian countries. The principal sponsor of the conference was IUPAP, the International Union of Pure and Applied Physics. The conference also had a number of co-sponsors like IAU, the International Astronomical Union, URSI, the International Union of Radio Science, EPS, the European Physical Society, and EURATOM-FUSION. The conference was supported by Swedish Industry and Swedish Research Boards. The previous ICPP, held in Nagoya two years ago, was the first attempt to combine two types of conferences: the Plasma Theory Conference, first held in Kiev in the Soviet Union in 1971, and the Waves and Instabilities Congress, held for the first time in Innsbruck, Austria in 1973. As a consequence of the success of the Nagoya conference it was decided by the International Organizing Committee of the ICPP that the 1982 conference should also be of the combined type. The 1982 ICPP in Göteborg was thus a Joint Conference of the Fifth Kiev International Conference in Plasma Theory and the Fifth International Congress on Waves and Instabilities in Plasmas. During the conference in Göteborg the International Organizing Committee had a meeting and it was decided that also the next International Conference on Plasma Physics will be of the combined type. It will be held in Lausanne, Switzerland in 1984. The International Organizing Committee on the 1982 International Conference on Plasma Physics comprised about 40 plasma physics scientists from all over the world, who represented various sections of plasma physics. I would like to thank the active members of the IOC for an efficient and friendly co-operation in deciding about the program of invited speakers and for discussions on the general structure of the conference. Our most cordial thanks are extended to the invited speakers for coming to the conference to deliver such excellent talks and to provide us in good time for printing with so beautifully prepared manuscripts. Symposium on Plasma Theory: Preface Several satellite meetings were arranged following the 1982 International Conference on Plasma Physics in Göteborg. Among them a Symposium on Plasma Theory was held at Aspenäsgården outside Göteborg during three days, June 16-18, 1982. The purpose of the symposium was to discuss problems of current interest in plasma theory with applications to space and astrophysical plasmas as well as to fusion plasmas. A total of fifteen talks were given during the three days, and some very lively discussions arose, notably in the area of plasma turbulence. There were around 30 invited scientists present, about one third from the United States, one third from the Soviet Union, and the rest from England, Japan, and various other countries. This volume of Physica Scripta (2B, 506-595) includes some of the talks which were given at Aspenäsgården. Several of the authors of contributed papers to the 1982 International Conference on Plasma Physics were encouraged to write extended versions of their contributions, and these are also included in this number, as are furthermore some papers, which were prepared during prolonged stays of visiting scientists at our institute in connection with the 1982 ICPP. It is expected that the collection of papers thus assembled will give a general picture of the activities accompanying the main conference and that it will elucidate some trends in the development of plasma theory.
NASA Technical Reports Server (NTRS)
Smorawinski, Jerzy; Adrian, Jacek; Kaciuba-Uscilko, Hanna; Nazar, Krystyna; Greenleaf, John E.; Dalton, P. Bonnie (Technical Monitor)
2002-01-01
The aims of this study were: (1) to examine the effect of three days of bed rest (BR) on basal plasma epinephrine [E] and norepinephrine [NE] and the catecholamine responses to various physiological stimuli, and (2) to find out whether previous physical activity modifies effects of BR. In the first series, 29 young men (11 sedentary students, 8 endurance and 10 strength trained athletes) were submitted to oral glucose tolerance test in supine position and to active orthostatic test before and after 3 days of BR. Plasma [E] and [NE] were measured after overnight fast (basal condition), at 60, 120 and 180 min after glucose ingestion (70 a), and at the 8th min of unsupported standing. In the second series, other 22 subjects (12 sedentary students, 10 endurance and 10 strength trained athletes) were submitted to 2 min cold pressor test (CPT) and exercise. Plasma E and NE were determined in the supine position after overnight fast and at 60th and 120th s of hand cooling. Then, after breakfast followed by 2-3 hour sitting, the subjects performed cycle ergometer exercise with workload increasing until volitional exhaustion. Plasma [E] and [NE] were determined at the end of each load. Plasma catecholamines were determined made radioenzymatically. After BR, basal plasma [NE] was decreased in endurance and strength athletes (p<0.01) but not in sedentary subjects. In neither group BR affected the basal [E]. Responses of both catecholamines to glucose load were diminished after BR in all three groups (p<0.05) but the effect was most pronounced in the endurance athletes. All subjects tolerated well 8-min standing although their heart rate response was increased after BR. Plasma catecholamine responses standing were not significantly affected by BR in either group but the plasma [NE] and [E] during standing were lowered after BR in endurance athletes (p<0.01). BR did not affect blood pressure and catecholamine responses to CPT. The pre- and post-exercise plasma catecholamines were similar before and after BR although the subjects achieved lower maximal loads after BR. In endurance athletes the threshold for plasma NA rise occurred at lower work intensity after than before BR (p<0.05).
NASA Astrophysics Data System (ADS)
Mendonça, Tito; Hidalgo, Carlos
2010-12-01
Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of participants, and finally basic and astrophysical plasmas (BAP). New strategies are required to achieve a more balanced participation of these four areas of knowledge in future meetings, but the large number of participants and the overall high quality of the invited talks were particularly relevant this year. In the preparation of the Conference Programme we tried to present an updated view of plasma physics and to integrate suggestions coming from the scientific community, in particular through the use of the EPS PPD Open Forum. As mentioned, two evening sessions took place during the Conference. This year, the traditional evening on ITER was replaced by a session dedicated to inertial fusion, organized by D Batani, where the main installations and experiments on laser fusion around the world were presented and critically discussed. The other session, dedicated to plasma physics education, was organized by N Lopes-Cardoso, and discussed the specific educational issues of plasma physics and fusion, and presented the training programmes existing in Europe. As a concluding remark, we would like to thank our colleagues of the Programme Committee and, in particular, the coordinators of the subcommittees, Clarisse Bourdelle and Arthur Peters for MCF, Javier Honrubia for BPIF, Christoph Hollenstein for LTP, and Uli Stroth for BAP, for their generous help, suggestions and support. Due to the large number of participants, the smooth and efficient local organization, and the high overall quality of the plenary and invited presentations, the 37th EPS Conference on Plasma Physics can be considered an undeniable success. I hope you will find, in this special issue of Plasma Physics and Controlled Fusion, an interesting and useful account of this event. Outstanding scientists honoured at the 37th European Physical Society Conference on Plasma Physics During the Conference the EPS Plasma Physics Division rewarded researchers who have achieved outstanding scientific or technological results. In this way the EPS PPD seeks to reinforce excellence in science. The Plasma Physics Hannes Alfvén Prize 2010 The Hannes Alfvén Prize is awarded to Allen Boozer (Professor, Columbia University) and Jürgen Nührenberg (Professor, Max-Planck-Institut für Plasmaphysik and Greifswald University) for the formulation and practical application of criteria allowing stellarators to have good fast-particle and neoclassical energy confinement. Photo of Boozer and Nuhrenberg Jürgen Nührenberg (left) and Allen Boozer. The tokamak and the stellarator are two major candidate concepts for magnetically confining fusion plasmas. They were both conceived in the early 1950s, but the tokamak developed more rapidly because of its intrinsically favourable confinement properties. Indeed, the stellarator seemed fundamentally unable to confine energy and collisionless alpha-particle orbits well enough for a fusion reactor. In the 1980s, however, Allen Boozer and Jürgen Nührenberg developed methods for tailoring stellarator magnetic fields so as to guarantee confinement comparable to that in tokamaks. Allen Boozer introduced a set of magnetic coordinates, now named after him, in which the description of three-dimensionally shaped magnetic fields is particularly simple. He went on to show that if the magnetic field strength |B| is symmetric in these coordinates (so-called quasisymmetry) then the guiding-centre orbits and the neoclassical confinement properties are equivalent to those in a tokamak. In pioneering calculations a few years later, Jürgen Nührenberg showed that such magnetic fields can indeed be realized in practice, as can other configurations which have equally good confinement without being quasisymmetric. There is an unexpected vastness of configurational possibilities for toroidal plasma confinement, where the limit is likely to be set by turbulence rather than neoclassical losses. In addition, quasisymmetry should facilitate the development of strongly sheared rotation with direct impact in the control of turbulent transport. Moreover, Jügen Nührenberg showed that a number of other properties of the magnetic field can also be optimized simultaneously, allowing high equilibrium and stability limits to be achieved and thus opening up a route to an inherently steady-state fusion reactor. The ideas of Allen Boozer and Jürgen Nührenberg have revolutionized stellarator research. They have already partially been confirmed on the W7-AS and HSX stellarators, and provide the basis for the world's largest stellarator under construction, Wendelstein 7-X. The award of the 2010 Hannes Alfvén Prize to these two leading scientists underlines the development of understanding and transfer of knowledge in plasma physics. Invited papers by Allen Boozer and Jürgen Nührenberg are published as articles 124002 and 124003 in this special issue of Plasma Physics and Controlled Fusion. The Plasma Physics Innovation Prize 2010 The 2010 Plasma Physics Innovation Prize of the European Physical Society is awarded to Uwe Czarnetzki (Professor, Ruhr-Universität Bochum) for his outstanding contributions in the discovery of the electrical asymmetry effect, its scientific characterization and for its development up to the level of successful industrial application. photo of Uwe Czarnetzki Uwe Czarnetzki. The energy of ions impacting surfaces during plasma processing is crucial in determining both the properties of materials being deposited by plasmas and for the control of the etching of thin films. The independent control of the ion energy and the plasma density has been the object of intense industrial research. Current technologies for modifying the ion energy rely on the geometry of the plasma processing chamber or on applying low and high frequency RF power that is not phase locked. These techniques are either not applicable to some situations or have only been partially successful. The electrical asymmetry effect allows the ion energy and plasma density to be decoupled. If the RF power applied to a plasma chamber is comprised of a phase locked fundamental and its second harmonic, the ion energy is a linear function of the phase angle between the two. This simple but previously overlooked technique has proved to be an enabling technology for future materials and plasma applications. The method has been patented and is currently used, for example, by leading manufacturers of large area solar cells and has resulted in unsurpassed quality and homogeneity of the devices. In addition to the elctrical asymmetry effect, Uwe Czarnetzki is internationally renowned for his many important contributions in the areas of laser-based plasma diagnostics and gas discharge physics. For all of these outstanding contributions to low temperature plasmas, the European Physical Society bestows its 2010 Plasma Physics Innovation Prize on Uwe Czarnetzki. The PhD Research Award 2010 The Plasma Physics Division 2010 PhD Research Award has been judged by a committee comprising Juergen Meyer-ter-Vehn, Emmanuel Marode and Michel Chatelier who examined all the candidatures in a process managed by Dimitri Batani. The EPS PhD prize is a key element of the EPS PPD activities to recognize exceptional quality of the work carried out by young physicists. photo of PhD Award winners The 2010 PhD Research Award winners. From left to right: Emeric Falize, Guilhem Dif-Pradalier, Bérénice Loupias, Peter Manz and Xavier Davoine. The jury nominated four award winners from a pool of impressively high quality candidates. The 2010 citations in alphabetical order are: Xavier Davoine for his research on an intense ultra short X source obtained by acceleration of a class of electrons in the wakefield of a laser pulse, improving the numerical procedure to model the electron dynamics. Guilhem Dif-Pradalier for a fundamental discussion of the formalism needed to describe turbulence and transport in magnetized plasmas, including a collision operator in the Gysela gyrokinetic code that could modify the characteristics of the turbulence. Emeric Falize and Bérénice Loupias for their investigation of similarities between laser-induced plasmas and astrophysical systems and for the description of a set of diagnostics for laser plasmas aimed at demonstrating the possible astrophysics character of plasma jets in laser-induced plasma formation. Peter Manz for his comprehensive analysis of turbulence in magnetized plasmas, exploring the interplay between flows, electric fields and fluctuations. Itoh Project Prize in Plasma Turbulence 2010 Professor Sanae Itoh from Kyushu University continued to sponsor the Itoh Project Prize in Plasma Turbulence. The 2010 prize was awarded to G Birkenmeier (Stuttgart University). IOP Poster Prize winners in Dublin, 2010. The Institute of Physics (IOP) has once again provided encouragement for young physiscs with the IOP Poster Prize. Caroline Wilkinson presented the awards this year to three candidates: Mattia Albergante (EPFL, Lausanne), Clelia Pagano (Trinity College Dublin) and Marija Vranic (Instituto Superior Tecnico, Lisbon). Proceedings of 37th EPS Conference on Plasma Physics As previously mentioned, this special issue contains the invited papers of the 37th Conference, held in 2010. The complete proceedings are available online at http://ocs.ciemat.es/EPS2010PAP/html/ This site is also accessible from the conference website at http://www.eps2010.com/ (under `Contributions'). The Local Organizing Committee has also prepared a CD with a copy of the proceedings, identical to the online proceedings. This CD is stored at the offices of the European Physical Society as a backup, and as a master copy to make additional copies in case anyone should require one.
First Plasma Results from the Levitated Dipole Experiment
NASA Astrophysics Data System (ADS)
Garnier, Darren T.
2005-04-01
On August 13, 2004, the first plasma physics experiments were conducted using the Levitated Dipole Experiment(LDX)http://www.psfc.mit.edu/ldx/. LDX was built at MIT's Plasma Science and Fusion Center as a joint research project of Columbia University and MIT. LDX is a first-of-its-kind experiment incorporating three superconducting magnets and exploring the physics of high-temperature plasma confined by dipole magnetic fields, similar to planetary magnetospheres. It will test recent theories that suggest that stable, high-β plasma can be confined without good curvature or magnetic shear, instead using plasma compressibility to provide stability. (Plasma β is the ratio of plasma pressure to magnetic pressure.) In initial experiments, 750 kA of current was induced in the dipole coil which was physically supported in the center of the 5 m diameter vacuum chamber. Deuterium plasma discharges, lasting from 4 to 10 seconds, were formed with multi-frequency ECRH microwave heating of up to 6.2 kW. Each plasma contained a large fraction of energetic and relativistic electrons that created a significant pressure that caused outward expansion of the magnetic field. Reconstruction of the magnetic equilibrium from external magnetic diagnostics indicate local peak plasma β 7 %. Along with an overview of the LDX device, results from numerous diagnostics operating during this initial supported campaign measuring the basic plasma parameters will be presented. In addition, observations of instabilities leading to rapid plasma loss and the effects of changing plasma compressibility will be explored.
NASA Astrophysics Data System (ADS)
Sadowski, Marek J.
2014-05-01
The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ, Otwock, Poland—Chairman Dimitri Batani, Universite Bordeaux, France Sergio Ciattaglia, ITER, Cadarache, France Michael Dudeck, UPMC, Paris, France Igor E Garkusha, NSC KIPT, Kharkov, Ukraine Zbigniew Kłos, CBK PAN, Warsaw Giorgio Maddaluno, ENEA Frascati, Italy Andrea Murari, EFDA JET, Culham, UK Józef Musielok, University of Opole, Poland Svetlana Ratynskaia, RIT, Stockholm, Sweden Karel Rohlena, IP CAS, Prague, Czech Republic Valentin Smirnov, Rosatom, Moscow, Russia Francisco Tabares, CIEMAT, Madrid, Spain Lorenzo Torrisi, University of Messina, Messina, Italy Jerzy Wołowski, IFPiLM, Warsaw, Poland Urszula Woźnicka, IFJ PAN, Cracow, Poland Local Organizing Committee Jerzy Wołowski—Chairman Paweł Gąsior—Secretary Zofia Kalinowska Ewa Kowalska-Strzęciwilk Monika Kubkowska Anita Pokorska Ryszard Panfil Joanna Dziak-Beme Conference website: http://plasma2013.ipplm.pl/
NASA Astrophysics Data System (ADS)
Eliasson, B.; Stenflo, L.; Bingham, R.; Mendonça, J. T.; Mamun, A. A.; Shaikh, D.
2010-08-01
It is our great pleasure to dedicate this special issue of Journal of Plasma Physics to our dear friend and colleague Professor Padma Kant Shukla on the occasion of his 60th birthday on 7th July 2010. Padma is one of the most prominent and productive scientists in plasma physics and in neighboring fields, and has published more than 1300 papers in scientific journals. It has for some time been the aim of his friends to honor him on this occasion, and earlier this year we sent out invitations to distinguished scientists who have collaborated with Padma over the years. The response has been overwhelming, and we collected 43 manuscripts, covering a diverse range of topics in plasma physics, which are now published in this issue. We believe that these papers reflect some of the impact of Padma's research in plasma physics.
Russell Hulse, the First Binary Pulsar, and Science Education
physics research. In 1977, Hulse changed fields from astrophysics to plasma physics and joined the Plasma discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math
On the physics of the pressure and temperature gradients in the edge of tokamak plasmas
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2018-04-01
An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.
The effects of diet and physical activity on plasma homovanillic acid in normal human subjects.
Kendler, K S; Mohs, R C; Davis, K L
1983-03-01
This study examines the effect of diet and moderate physical activity on plasma levels of the dopamine metabolite homovanillic acid (HVA) in healthy young males. At weekly intervals, subjects were fed four isocaloric meals: polycose (pure carbohydrate), sustecal, low monoamine, and high monoamine. Moderate physical activity consisted of 30 minutes of exercise on a bicycle ergometer. The effect of diet on plasma HVA (pHVA) was highly significant. Compared to the polycose meal, the high monoamine meal significantly increased pHVA. Moderate physical activity also significantly increased pHVA. Future clinical studies using pHVA in man as an index of brain dopamine function should control for the effects of both diet and physical activity.
Oxidative stress and antioxidants in athletes undertaking regular exercise training.
Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L
2005-04-01
Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.
Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus “Classic” Decontamination
Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L.; Križaj, Igor
2017-01-01
Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods. PMID:28452957
Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L; Križaj, Igor
2017-04-28
Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods.
Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter
2015-11-01
light, Applied Physics Letters, (12 2014): 223501. doi: A. Bataller, B. Kappus , C. Camara, S. Putterman. Collision Time Measurements in a...Plasma Extremes Seen through Gas Bubble, Physics, (07 2014): 0. doi: 10.1103/Physics.7.72 A. Bataller, G.?R. Plateau, B. Kappus , S. Putterman
America COMPETES Act and the FY2010 Budget
2009-06-29
Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early
Physics objectives of PI3 spherical tokamak program
NASA Astrophysics Data System (ADS)
Howard, Stephen; Laberge, Michel; Reynolds, Meritt; O'Shea, Peter; Ivanov, Russ; Young, William; Carle, Patrick; Froese, Aaron; Epp, Kelly
2017-10-01
Achieving net energy gain with a Magnetized Target Fusion (MTF) system requires the initial plasma state to satisfy a set of performance goals, such as particle inventory (1021 ions), sufficient magnetic flux (0.3 Wb) to confine the plasma without MHD instability, and initial energy confinement time several times longer than the compression time. General Fusion (GF) is now constructing Plasma Injector 3 (PI3) to explore the physics of reactor-scale plasmas. Energy considerations lead us to design around an initial state of Rvessel = 1 m. PI3 will use fast coaxial helicity injection via a Marshall gun to create a spherical tokamak plasma, with no additional heating. MTF requires solenoid-free startup with no vertical field coils, and will rely on flux conservation by a metal wall. PI3 is 5x larger than SPECTOR so is expected to yield magnetic lifetime increase of 25x, while peak temperature of PI3 is expected to be similar (400-500 eV) Physics investigations will study MHD activity and the resistive and convective evolution of current, temperature and density profiles. We seek to understand the confinement physics, radiative loss, thermal and particle transport, recycling and edge physics of PI3.
Advancing the understanding of plasma transport in mid-size stellarators
NASA Astrophysics Data System (ADS)
Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams
2017-01-01
The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.
Jung, Yoon Suk; Park, Jung Ho; Park, Dong Il; Sohn, Chong Il; Lee, Jae Myun; Kim, Tae Il
2018-06-01
Several studies have reported relationships among physical activity, healthy metabolic status, and increased natural killer (NK) cell activity. However, large-scale data thereon are lacking. Thus, the present study aimed to assess NK cell activity according to physical activity and metabolic status. A cross-sectional study was performed on 12014 asymptomatic examinees. Using a patented stimulatory cytokine, NK cell activity was quantitated by the amount of interferon-γ secreted into the plasma by NK cells. Physical activity levels were assessed using the validated Korean version of the International Physical Activity Questionnaire Short Form. The physically inactive group showed lower NK cell activity than the minimally active group (median, 1461 vs. 1592 pg/mL, p<0.001) and health-enhancing physically active group (median, 1461 vs. 1712 pg/mL, p=0.001). Compared to women with a body mass index (BMI) of 18.5-27.5 kg/m², those with a BMI <18.5 kg/m² had significantly lower NK cell activity (1356 vs. 1024 g/mL, p<0.001), and those with a BMI ≥27.5 kg/m² tended to have lower NK cell activity (1356 vs. 1119 g/mL, p=0.070). Subjects with high hemoglobin A1c levels and low high-density lipoprotein cholesterol levels, as well as men with high blood pressure and women with high triglyceride levels, exhibited lower NK cell activity. Moreover, physical inactivity and metabolic abnormalities were independently associated with low NK cell activity, even after adjusting for confounders. Physical inactivity and metabolic abnormalities are associated with reduced NK cell activity. Immune systems may become altered depending on physical activity and metabolic status. © Copyright: Yonsei University College of Medicine 2018.
Particle in cell simulation of instabilities in space and astrophysical plasmas
NASA Astrophysics Data System (ADS)
Tonge, John William
Several plasma instabilities relevant to space physics are investigated using the parallel PIC plasma simulation code P3arsec. This thesis addresses electrostatic micro-instabilities relevant to ion ring distributions, proceeds to electromagnetic micro-instabilities pertinent to streaming plasmas, and then to the stability of a plasma held in the field of a current rod. The physical relevance of each of these instabilities is discussed, a phenomenological description is given, and analytic and simulation results are presented and compared. Instability of a magnetized plasma with a portion of the ions in a velocity ring distribution around the magnetic field is investigated using simulation and analytic theory. The physics of this distribution is relevant to solar flares, x-ray emission by comets, and pulsars. Physical parameters, including the mass ratio, are near those of a solar flare in the simulation. The simulation and analytic results show agreement in the linear regime. In the nonlinear stage the simulation shows highly accelerated electrons in agreement with the observed spectrum of x-rays emitted by solar flares. A mildly relativistic streaming electron positron plasma with no ambient magnetic field is known to be unstable to electrostatic (two-stream/beam instability) and purely electromagnetic (Weibel) modes. This instability is relevant to highly energetic interstellar phenomena, including pulsars, supernova remnants, and the early universe. It is also important for experiments in which relativistic beams penetrate a background plasma, as in fast ignitor scenarios. Cold analytic theory is presented and compared to simulations. There is good agreement in the regime where cold theory applies. The simulation and theory shows that to properly characterize the instability, directions parallel and perpendicular to propagation of the beams must be considered. A residual magnetic field is observed which may be of astro-physical significance. The stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while the current rod is much easier to analyze theoretically and realize in simulations. The stability properties of a plasma confined in a dipole field are important for understanding a variety of space phenomena and the Levitated Dipole eXperiment (LDX). Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles ∝ r-10/3. The simulations also show that the density profile will be stationary as long as density ∝ r -2 even though the temperature profile may not be stable.
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2014-05-01
Relying on coil positions relative to the plasma, the "Comment on `Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake' " [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the "proximity condition," used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors.
Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method
NASA Astrophysics Data System (ADS)
Bakunin, O. G.
2018-01-01
The quasilinear method of describing weak plasma turbulence is one of the most important elements of current plasma physics research. Today, this method is not only a tool for solving individual problems but a full-fledged theory of general physical interest. The author's objective is to show how the early ideas of describing the wave-particle interactions in a plasma have evolved as a result of the rapid expansion of the research interests of turbulence and turbulent transport theorists.
Partially Ionized Plasmas in Astrophysics
NASA Astrophysics Data System (ADS)
Ballester, José Luis; Alexeev, Igor; Collados, Manuel; Downes, Turlough; Pfaff, Robert F.; Gilbert, Holly; Khodachenko, Maxim; Khomenko, Elena; Shaikhislamov, Ildar F.; Soler, Roberto; Vázquez-Semadeni, Enrique; Zaqarashvili, Teimuraz
2018-03-01
Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress.
Simulating plasma production from hypervelocity impacts
NASA Astrophysics Data System (ADS)
Fletcher, Alex; Close, Sigrid; Mathias, Donovan
2015-09-01
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.
Simulating plasma production from hypervelocity impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid; Mathias, Donovan
2015-09-15
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-producedmore » plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.« less
EDITORIAL: The 28th International Conference on Phenomena in Ionized Gases
NASA Astrophysics Data System (ADS)
Simek, Milan; Sunka, Pavel
2008-05-01
The 28th International Conference on Phenomena in Ionized Gases (ICPIG) was held in Prague, the capital of the Czech Republic, on 15--20 July 2007, under the sponsorship of the International Union of Pure and Applied Physics (IUPAP). The ICPIG, a traditional international conference with a remarkably long history, is held every two years and covers the fundamental physical aspects of ionized gases. It emphasizes interdisciplinary research and fosters exchange between the different communities. The 28th ICPIG was organized by the Institute of Plasma Physics, Academy Sciences of the Czech Republic with the participation of the Faculty of Electrical Engineering, Czech Technical University, and the Faculty of Mathematics and Physics of Charles University, all in Prague. The conference was attended by 619 scientists from 50 countries (537 participants from outside the host country) and, compared with preceding meetings, ICPIG in Prague came with several changes. The pocket program and CD proceedings have been replaced by the book of abstracts, pocket program and CD containing full-length contributions. The International Scientific Committee also decided to update substantially the list of ICPIG topics. These topics have been grouped into four major sections: A. Fundamentals; B. Modelling, Simulation and Diagnostics; C. Plasma Sources and Discharge Regimes; D. Applications, with each major section structured into several sub-topics. Last but not least, on the occasion of ICPIG 2007, the IUPAP Early Career Award in Plasma Physics was bestowed for the first time. Complete 28th ICPIG conference records include the von Engel Prize Lecture, 10 general and 26 topical invited lectures, 18 workshop lectures and the contributed papers (http://icpig2007.ipp.cas.cz/). All 718 submitted full-length contributed papers were reviewed and 608 contributions were accepted for poster presentation. It is worth noting that 98 of the total of 608 poster contributions belong to the topic 'Non-equilibrium Plasmas and Micro-plasmas at High Pressures', reflecting new trends in the field. Important parts of the conference were two workshops focused on specific themes. The workshop 'Pulsed electrical discharges in water: fundamentals and applications', organized by Professor Pavel Sunka, reviewed the scientific challenges related to fundamentals of pulsed discharges initiated in slightly conductive liquid water solutions. The workshop 'Physics and applications of pulsed high-current capillary discharges', organized by Dr Karel Kolácek, addressed scientific challenges and technological applications of high-current capillary discharges pinching into a nearly uni-dimensional dense plasma column composed of a quasi-neutral mixture of very hot electrons and multiply charged ions. All ICPIG speakers were invited to prepare peer-reviewed articles based on their conference lectures for the journal Plasma Sources Sciences and Technology (PSST) in the form of either reviews or original works. A selection of invited papers is published in this special issue. We would like to thank all authors for their effort in preparing interesting articles for the readers of PSST. We would like to thank once more all members of the International Scientific Committee chaired by Professor Jerzy Mizeraczyk as well as the members of the Local Organizing Committee and the National Advisory Board for their considerable contributions to the success of the conference. We are particularly grateful to the Editorial Board of Plasma Sources Science and Technology for the opportunity to bring the 28th ICPIG to a wider audience.
Pascale, Melanie; Murray, Nikki; Bachmann, Max; Barton, Garry; Clark, Allan; Howe, Amanda; Greaves, Colin; Sampson, Mike
2017-01-06
This 7 year NIHR programme [2011-2018] tests the primary hypothesis that the NDPS diet and physical activity intervention will reduce the risk of transition to type 2 diabetes (T2DM) in groups at high risk of Type 2 diabetes. The NDPS programme recognizes the need to reduce intervention costs through group delivery and the use of lay mentors with T2DM, the realities of normal primary care, and the complexity of the current glycaemic categorisation of T2DM risk. NDPS identifies people at highest risk of T2DM on the databases of 135 general practices in the East of England for further screening with ab fasting plasma glucose and glycosylated haemoglobin [HbA1c]. Those with an elevated fasting plasma glucose [impaired fasting glucose or IFG] with or without an elevated HbA1c [non -diabetic hyperglycaemia; NDH] are randomised into three treatment arms: a control arm receiving no trial intervention, an arm receiving an intensive bespoke group-based diet and physical activity intervention, and an arm receiving the same intervention with enhanced support from people with T2DM trained as diabetes prevention mentors [DPM]. The primary end point is cumulative transition rates to T2DM between the two intervention groups, and between each intervention group and the control group at 46 months. Participants with screen detected T2DM are randomized into an equivalent prospective controlled trial with the same intervention and control arms with glycaemic control [HbA1c] at 46 months as the primary end point. Participants with NDH and a normal fasting plasma glucose are randomised into an equivalent prospective controlled intervention trial with follow up for 40 months. The intervention comprises six education sessions for the first 12 weeks and then up to 15 maintenance sessions until intervention end, all delivered in groups, with additional support from a DPM in one treatment arm. The NDPS programme reports in 2018 and will provide trial outcome data for a group delivered diabetes prevention intervention, supported by lay mentors with T2DM, with intervention in multiple at risk glycaemic categories, and that takes into account the realities of normal clinical practice. ISRCTN34805606 (Retrospectively registered 16.3.16).
A survey of dusty plasma physics
NASA Astrophysics Data System (ADS)
Shukla, P. K.
2001-05-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in several laboratory experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty-first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multidisciplinary areas of science.
ICPP: Introduction to Dusty Plasma Physics
NASA Astrophysics Data System (ADS)
Kant Shukla, Padma
2000-10-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in microgravity experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multi-disciplinary areas of science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan, Vladislav Alexander
Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Plasma Liner Research for MTF at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.;
2002-01-01
The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.
Chin, Koo Hui; Sathyasurya, Daniel Robert; Abu Saad, Hazizi; Jan Mohamed, Hamid Jan B
2013-01-01
The Malaysian Health and morbidity Survey (2006) reported the highest prevalence of type 2 diabetes mellitus (T2DM) among the Indian population compared to the Malay and Chinese populations. Many studies have supported the important role of adiponectin in insulin-sensitizing, which is associated with T2DM. These studies have raised a research question whether the variation in prevalence is related to the adiponectin concentrations or the lifestyle factors. The purpose of this study is to determine whether the adiponectin concentrations differ between the Malay, Chinese and the Indian populations with T2DM. It is to investigate the association of adiponectin concentrations with ethnicity, dietary intake and physical activity too. In this cross-sectional study, a total of 210 T2DM patients with mean (SD) age of 56.73 (10.23) years were recruited from Penang, Malaysia. Data on demographic background, medical history, anthropometry (weight, height, visceral fat, percentage of body fat and waist circumference), dietary intake (3 days 24 hours diet recall) and physical activity (International Physical Activity Questionnaire) were obtained accordingly. Plasma adiponectin and routine laboratory tests (fasting blood sugar, HbA1c, total cholesterol, LDL, HDL and triglyceride) were performed according to standard procedure. After adjustment for physical activity and dietary intakes, the Indian population had significantly lower adiponectin concentrations (P = 0.003) when compared with the Malay and the Chinese populations, The Indian population also had significantly higher value of HbA1c (P = 0.017) and significantly lower HDL (P = 0.013). Plasma adiponectin concentrations was significantly associated with ethnicity (P = 0.011), dietary carbohydrate (P = 0.003) and physical activity total MET score (P = 0.026), after medical history, age, sex, total cholesterol and visceral fat adjusted. However, dietary carbohydrate and physical activity did not show significantly difference among the various ethnic groups. In conclusion, lower concentration of adiponectin in the Indian population when compared with the Malay and the Chinese populations is not associated with lifestyle factors. The possibility of adiponectin gene polymorphism should be discussed further.
Chin, Koo Hui; Sathyasurya, Daniel Robert; Abu Saad, Hazizi; Jan Mohamed, Hamid Jan B
2013-01-01
Background The Malaysian Health and morbidity Survey (2006) reported the highest prevalence of type 2 diabetes mellitus (T2DM) among the Indian population compared to the Malay and Chinese populations. Many studies have supported the important role of adiponectin in insulin-sensitizing, which is associated with T2DM. These studies have raised a research question whether the variation in prevalence is related to the adiponectin concentrations or the lifestyle factors. Objectives The purpose of this study is to determine whether the adiponectin concentrations differ between the Malay, Chinese and the Indian populations with T2DM. It is to investigate the association of adiponectin concentrations with ethnicity, dietary intake and physical activity too. Materials and Methods In this cross-sectional study, a total of 210 T2DM patients with mean (SD) age of 56.73 (10.23) years were recruited from Penang, Malaysia. Data on demographic background, medical history, anthropometry (weight, height, visceral fat, percentage of body fat and waist circumference), dietary intake (3 days 24 hours diet recall) and physical activity (International Physical Activity Questionnaire) were obtained accordingly. Plasma adiponectin and routine laboratory tests (fasting blood sugar, HbA1c, total cholesterol, LDL, HDL and triglyceride) were performed according to standard procedure. Results After adjustment for physical activity and dietary intakes, the Indian population had significantly lower adiponectin concentrations (P = 0.003) when compared with the Malay and the Chinese populations, The Indian population also had significantly higher value of HbA1c (P = 0.017) and significantly lower HDL (P = 0.013). Plasma adiponectin concentrations was significantly associated with ethnicity (P = 0.011), dietary carbohydrate (P = 0.003) and physical activity total MET score (P = 0.026), after medical history, age, sex, total cholesterol and visceral fat adjusted. However, dietary carbohydrate and physical activity did not show significantly difference among the various ethnic groups. Conclusions In conclusion, lower concentration of adiponectin in the Indian population when compared with the Malay and the Chinese populations is not associated with lifestyle factors. The possibility of adiponectin gene polymorphism should be discussed further. PMID:24348588
NASA Astrophysics Data System (ADS)
Laroussi, M.; Lu, X.; Keidar, M.
2017-07-01
Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.
Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package
NASA Astrophysics Data System (ADS)
Blandón, J. S.; Grisales, J. P.; Riascos, H.
2017-06-01
Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.
Effects of prolonged physical exercise and fasting upon plasma testosterone level in rats.
Guezennec, C Y; Ferre, P; Serrurier, B; Merino, D; Pesquies, P C
1982-01-01
Prolonged physical exercise and fasting in male rats were studied to determine the effect of these two treatments on plasma testosterone level. Blood and tissue samples were drawn after 1 h, 3 h, 5 h, and 7 h treadmill running, and after 24 h, 48 h, and 72 h of fasting. Both treatments resulted in a significant fall in plasma testosterone, plasma luteinizing hormone (LH), plasma Insulin (IRI) and in liver and muscle glycogen stores. In the course of these two treatments the injection of a supra maximal dose of Human Chorionic Gonadotropin (HCG) produced a rise in plasma testosterone similar to that in control rats. This indicates that the decrease of plasma LH may be responsible for the decrease in plasma testosterone, which is time-related with the decrease in glycogen stores. The possible metabolic role of the decrease in plasma testosterone is discussed.
Plasma Medicine: Current Achievements and Future Prospects
NASA Astrophysics Data System (ADS)
Laroussi, Mounir
2012-10-01
Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.
BOOK REVIEW: Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Cargill, P. J.
2007-02-01
The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, `The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For the undergraduate level, I would find it easier to construct an introductory course from Boyd and Sanderson.
Li, Mei-Yi; Zhang, Yan-Bo; Zuo, Huan; Liu, Li-Li; Niu, Jing-Zhong
2012-02-25
The present study was to investigate the effect of Salvia miltiorrhiza Bunge. f. alba (SMA) pharmacological pretreatment on apoptosis of cultured hippocampal neurons from neonate rats under oxygen-glucose deprivation (OGD). Cultured hippocampal neurons were randomly divided into five groups (n = 6): normal plasma group, low dose SMA plasma (2.5%) group, middle dose SMA plasma (5%) group, high dose SMA plasma (10%) group and control group. The hippocampal neurons were cultured and treated with plasma from adult Wistar rats intragastrically administered with saline or aqueous extract of SMA. The apoptosis of neurons was induced by glucose-free Earle's solution containing 1 mmol/L Na2S2O4 and labeled by MTT and Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in control group, whereas the number of apoptotic cells was greatly increased in normal plasma group and low dose SMA plasma group. Both middle and high dose SMA plasma could protect cultured hippocampal neurons from apoptosis induced by OGD (P < 0.05). The protective effect of high dose SMA plasma was stronger than that of middle one (P < 0.05). Compared to control, normal plasma and low dose SMA plasma groups, middle and high dose SMA plasma groups both showed significantly higher levels of Bcl-2 (P < 0.05 or 0.01), whereas expressions of Bax was opposite. There were no significant differences of Bcl-2 and Bax expressions between middle and high dose SMA plasma groups. Number of Bcl-2- and Bax-positive cells had similar tendency. Bcl-2/Bax (number of positive cells) ratio was higher in high dose SMA plasma group than those of all the other groups (P < 0.05 or 0.01). These results suggest that pharmacological pretreatment of blood plasma containing middle and high dose SMA could raise viability and inhibit apoptosis of OGD-injured hippocampal neurons by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax.
Effect of gas mixing on physical properties of warm collisional helicon plasmas
NASA Astrophysics Data System (ADS)
Kabir, M.; Niknam, A. R.
2017-10-01
The effect of inert gas mixing on the physical properties of a helicon plasma source with a Nagoya type III antenna is analytically investigated by taking into account the thermal and collisional effects. The dielectric permittivity tensor of this mixed gas plasma is obtained by using the Bhatnagar-Gross- Krook kinetic theory. Considering the dielectric tensor of mixed gas plasma and solving the electromagnetic field equations, the profiles of electromagnetic fields and plasma resistance are plotted and discussed. The results show that the plasma resistance peaks decrease with increasing Xe fraction in Ar-Xe plasma, and increase with the He fraction in Ar-He plasma. It is also shown that by increasing the xenon filling fraction, the electromagnetic field amplitudes are lowered, and by increasing the helium filling fraction, they are increased.
Innovative diagnostics for ITER physics addressed in JET
NASA Astrophysics Data System (ADS)
Murari, A.; Edlington, T.; Alfier, A.; Alonso, A.; Andrew, Y.; Arnoux, G.; Beurskens, M.; Coad, P.; Crombe, C.; Gauthier, E.; Giroud, C.; Hidalgo, C.; Hong, S.; Kempenaars, M.; Kiptily, V.; Loarer, T.; Meigs, A.; Pasqualotto, R.; Tala, T.; Contributors, JET-EFDA
2008-12-01
In recent years, JET diagnostic capability has been significantly improved to widen the range of physical phenomena that can be studied and thus contribute to the understanding of some ITER relevant issues. The most significant results reported in this paper refer to the plasma wall interactions, the interplay between core and edge physics and fast particles. A synergy between new infrared cameras, visible cameras and spectroscopy diagnostics has allowed investigating a series of new aspects of the plasma wall interactions. The power loads on the plasma facing components of JET main chambers have been assessed at steady state and during transient events like ELMs and disruptions. Evidence of filaments in the edge region of the plasma has been collected with a new fast visible camera and high resolution Thomson scattering. The physics of detached plasmas and some new aspects of dust formation have also been devoted particular attention. The influence of the edge plasma on the core has been investigated with upgraded active spectroscopy, providing new information on momentum transport and the effects of impurity injection on ELMs and ITBs and their interdependence. Given the fact that JET is the only machine with a plasma volume big enough to confine the alphas, a coherent programme of diagnostic developments for the energetic particles has been undertaken. With upgraded γ-ray spectroscopy and a new scintillator probe, it is now possible to study both the redistribution and the losses of the fast particles in various plasma conditions.
Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma.
Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian
2016-01-01
In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.
Coelho, F M; Pereira, D S; Lustosa, L P; Silva, J P; Dias, J M D; Dias, R C D; Queiroz, B Z; Teixeira, A L; Teixeira, M M; Pereira, L S M
2012-01-01
Biomarkers are important factors in the identification of the frail elderly (higher risk of developing disease) and in assessing the impact of PTI. On the other hand, BDNF has been related to neuroprotection in a series of central nervous system diseases in older age. The levels of BDNF in groups of elderly women classified according to Fried phenotype (non-frail and pre-frail) were compared. We assessed the impact of a PTI on BDNF levels. A convenience sample of 48 elderly women was randomly selected. The PTI group was composed by 20 elderly women selected from this group. Plasma neurotrophic factors, such as BDNF, glial-derived neutrophic factor (GDNF), and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA). Timed-up-and-go (TUG) test, hand-grip and work/body weight were evaluated before and after the intervention. Plasma concentrations of BDNF were significantly higher in non-frail in comparison to pre-frail elderly women. After the PTI, higher levels of BDNF were found in elderly women (before 351±68 pg/ml and after 593±79 pg/ml; p<0.001). Both groups had an increase in BDNF levels after the PTI. The low levels of BDNF in pre-frail elderly women suggest that this neurotrophic factor may be a key pathophysiological mediator in the syndrome of frailty. The fact that PTI increased BDNF levels in both groups suggests that it may be possible to modify this phenotype. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Solar Physics - Plasma Physics Workshop
NASA Technical Reports Server (NTRS)
Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.
1974-01-01
A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.
Hubácek, J A; Pistulková, H; Skodová, Z; Lánská, V; Poledne, R
2004-01-01
High plasma lipids are one of the risk factor of atherosclerosis. Both environmental (diet, physic activity) and genetic factors have been implicated in the development of hyperlipidaemia. Apolipoprotein (apo) CI plays an important role in plasma cholesterol and triglycerides transport by VLDL particles. The aim of the study was to establish the role of the insertion/deletion polymorphism in apoCI gene in the determination of plasma lipids in children. Using PCR and restriction analysis (HpaI) we have measured I/D polymorphism in APOCI gene in two groups of children selected from opposite ends of the cholesterol distribution curve of 2000 children. Eighty-two children in high-(HCG) and eighty-six children in low-(LCG) cholesterolemic groups participated on the study. No significant difference was found in the frequencies of the APOCI genotypes or alleles between HCG vs. LCG. Association between LDL cholesterol and genotypes within the LCG was found--the D/D homozygotes have higher lipid level compared to the others (p < 0.05). In LCG opposite, but insignificant (p = 0.09) trend was observed. The widespread I/D polymorphism in the gene for APOCI determines the plasma lipid levels in childhood and it could become another important genetic marker that plays a role in the genetic determination of cholesterolemia.
Theoretical Problems in High Resolution Solar Physics, 2
NASA Technical Reports Server (NTRS)
Athay, G. (Editor); Spicer, D. S. (Editor)
1987-01-01
The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
Apar-T: code, validation, and physical interpretation of particle-in-cell results
NASA Astrophysics Data System (ADS)
Melzani, Mickaël; Winisdoerffer, Christophe; Walder, Rolf; Folini, Doris; Favre, Jean M.; Krastanov, Stefan; Messmer, Peter
2013-10-01
We present the parallel particle-in-cell (PIC) code Apar-T and, more importantly, address the fundamental question of the relations between the PIC model, the Vlasov-Maxwell theory, and real plasmas. First, we present four validation tests: spectra from simulations of thermal plasmas, linear growth rates of the relativistic tearing instability and of the filamentation instability, and nonlinear filamentation merging phase. For the filamentation instability we show that the effective growth rates measured on the total energy can differ by more than 50% from the linear cold predictions and from the fastest modes of the simulation. We link these discrepancies to the superparticle number per cell and to the level of field fluctuations. Second, we detail a new method for initial loading of Maxwell-Jüttner particle distributions with relativistic bulk velocity and relativistic temperature, and explain why the traditional method with individual particle boosting fails. The formulation of the relativistic Harris equilibrium is generalized to arbitrary temperature and mass ratios. Both are required for the tearing instability setup. Third, we turn to the key point of this paper and scrutinize the question of what description of (weakly coupled) physical plasmas is obtained by PIC models. These models rely on two building blocks: coarse-graining, i.e., grouping of the order of p ~ 1010 real particles into a single computer superparticle, and field storage on a grid with its subsequent finite superparticle size. We introduce the notion of coarse-graining dependent quantities, i.e., quantities depending on p. They derive from the PIC plasma parameter ΛPIC, which we show to behave as ΛPIC ∝ 1/p. We explore two important implications. One is that PIC collision- and fluctuation-induced thermalization times are expected to scale with the number of superparticles per grid cell, and thus to be a factor p ~ 1010 smaller than in real plasmas, a fact that we confirm with simulations. The other is that the level of electric field fluctuations scales as 1/ΛPIC ∝ p. We provide a corresponding exact expression, taking into account the finite superparticle size. We confirm both expectations with simulations. Fourth, we compare the Vlasov-Maxwell theory, often used for code benchmarking, to the PIC model. The former describes a phase-space fluid with Λ = + ∞ and no correlations, while the PIC plasma features a small Λ and a high level of correlations when compared to a real plasma. These differences have to be kept in mind when interpreting and validating PIC results against the Vlasov-Maxwell theory and when modeling real physical plasmas.
Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats
Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi
2014-01-01
Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795
Lee, Ik Jae; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho
2011-01-01
Purpose The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Materials and Methods Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Results Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Conclusion Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration. PMID:21509160
Lee, Ik Jae; Seong, Jinsil; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho
2011-03-01
The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration.
ICPP: Charge and Density Coupling in Nonideal Plasmas
NASA Astrophysics Data System (ADS)
Fortov, V. E.
2000-10-01
Plasmas with Strong Coulomb Interaction (SCI) are found in astrophysics, planetary physics, inertial confinement fusion, advanced energetics and elsewhere[1]. SCI plasmas can be achieved in: I Dusty plasmas, II Shock-compressed plasmas. I. SCI in low-density dusty (colloidal) plasmas arises from the high charge of micron-size macroparticles[2]. Experiments use glow and inductive RF discharges, combustion flames of gas and solid propellant, ultraviolet light beams, and radioactive decay fluxes. Liquid- and solid-like structures are seen, and phase diagrams and transitions investigated by experiment and simulation. Zero-g experiments on space station Mir and in aircraft clarified the gravity effect on plasma crystal formation. II. Plasma SCI can arise in shock compression of solid and porous metals, noble gases, hydrogen, sulphur, and iodine at megabar pressures [3,4], using high explosive drive. Phase diagram regions were examined, where thermal and pressure ionization exist. Multiple-shock-compressed hydrogen can show metal-like conductivity from pressure ionization. The ``metal-to-dielectric" transition in shock-compressed lithium at 0.5 Mbar was detected and analyzed. Thermodynamics, equation of state, plasma composition, electrical and radiative properties show SCI suppression of discrete electron spectra and strong lowering of ionization potentials, evoking the ``confined-atom" model[5] for SCI and other models[6]. [1] V.E.Fortov, I.T.Yakubov, Physics of Nonideal Plasmas, Hemisphere, N.Y.-London (1989). [2] V.E.Fortov, A.P.Nefedov, O.F.Petrov, Soviet Physics-Uspekhy, 167(1997)1215. [3] V.Gryaznov, I.Iosilevsky, V.Fortov, Contrib. Plasma Physics, 39(1999)89. [4] V.Ya.Temovoi, A.S. Filimonov, V.E.Fortov et al. Proc. XXXVI EHPRG Meeting, Catania, Italy (1998). [5] V.K.Gryaznov, M.V.Zhernokletov et al. Zh. Exp. Teor. Fiz. (Soviet JETP) 78(1980) 573. [6] V.Ebeling, A.Foerster, V.Fortov et al. Thermodynamical Properties of Hot Dense Plasmas, Teubner Verlaggeselschaft , Berlin-Stuttgart, 1991.
Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks
NASA Astrophysics Data System (ADS)
Vahala, George; Vahala, Linda; Bonoli, Paul T.
1992-12-01
Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].
Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization
Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.
2014-01-01
Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326
Tomei, G; Tomao, E; Ciarrocca, M; Rosati, M V; Caciari, T; Gamberale, D; Palermo, P; De Sio, S; Tria, M; Panfili, A; Tomei, F
2009-07-01
The aim of this study is to evaluate whether occupational exposure to urban stressors could cause alterations in the follicle-stimulating hormone (FSH) levels in traffic policemen compared to a control group. After excluding the subjects with main confounding factors, traffic policemen and male controls were matched by age, working life, body mass index (BMI), drinking habit, cigarette smoking history, and daily consumption of Italian coffee, 166 traffic policemen and 166 controls were included into the study. FSH levels were significantly higher in traffic policemen compared to male controls (P < 0.05). The distribution of FSH values in traffic policemen and controls was significant (P < 0.05). Our results suggest that occupational exposure to low doses of chemical and psychosocial stressors may alter plasma levels of FSH in traffic policemen more than in the control group. If the results obtained are confirmed by further research, the plasma levels of FSH may be used as early biological markers, valuable for the group, used in occupational set even before the appearance of disorders of male fertility.
Novotna, Katarina; Bacakova, Marketa; Kasalkova, Nikola Slepickova; Slepicka, Petr; Lisa, Vera; Svorcik, Vaclav; Bacakova, Lucie
2013-01-01
Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar+ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50–300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium. PMID:28809234
Corbett, Duane B; Fennell, Curtis; Peroutky, Kylene; Kingsley, J Derek; Glickman, Ellen L
2018-01-29
To determine the effectiveness of a low-cost 12-week worksite physical activity intervention targeting a goal of 10,000 steps per day on reducing anthropometric indices, blood pressure indices, and plasma biomarkers of cardiovascular disease (CVD) risk among the employees of a major university. Fifty university employees (n = 43 female, n = 7 male; mean age = 48 ± 10 years) participated in the 12-week physical activity intervention (60 min, 3 day/week). Each session included both aerobic (cardiorespiratory endurance) and muscle-strengthening (resistance) physical activity using existing university facilities and equipment. Anthropometric indices, blood pressure indices, and plasma biomarkers of CVD risk assessed included those for obesity (body mass index), hypertension (systolic blood pressure, SBP; diastolic blood pressure, DBP), dyslipidemia (high-density lipoprotein, HDL; low-density lipoprotein, LDL; total serum cholesterol), and prediabetes (impaired fasting glucose, IFG). Steps per day were assessed using a wrist-worn activity monitor. Participants were given the goal of 10,000 steps per day and categorized as either compliers (≥ 10,000 steps per day on average) or non-compliers (< 10,000 steps per day on average) based on their ability to achieve this goal. Overall, 34% of participants at baseline were already at an elevated risk of CVD due to age. On average, 28% of participants adhered to the goal of 10,000 steps per day. After 12-weeks, participants in both groups (compliers and non-compliers) had lower BMI scores (p < 0.001), lower HDL scores (p < 0.034), and higher IFG scores (p < 0.001). The non-compliers had a greater reduction of BMI scores than the compliers (p = 0.003). Participants at risk for CVD had greater reductions than those not at risk for several risk factors, including SBP (p = 0.020), DBP (p = 0.028), IFG (p = 0.002), LDL (p = 0.006), and total serum cholesterol (p = 0.009). While the physical activity intervention showed mixed results overall with both favorable changes in anthropometric indices yet unfavorable changes in plasma biomarkers, it was particularly beneficial in regards to both blood pressure indices and plasma biomarkers among those already at risk of CVD. Trial registration ClinicalTrials.gov NCT03385447; retrospectively registered.
Guest investigator program study: Physics of equatorial plasma bubbles
NASA Technical Reports Server (NTRS)
Tsunoda, Roland T.
1994-01-01
Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge-shaped plasma bubbles. The second topic was pursued because the inability to predict the day-to-day occurrence of plasma bubbles indicated inadequate knowledge of the physics of plasma bubbles. An understanding of bubble formation requires an understanding of the roles of the various terms in the linearized growth rate of the collisional Rayleigh-Taylor instability. In our study, we examined electric-field perturbations found in SM-D EFI data and found that the seeding is more likely to be produced in the E region rather than the F region. The results of this investigation are presented in the Appendix of this report and will be submitted for publication in the Journal of Geophysical Research.
Lee, Sindre; Norheim, Frode; Langleite, Torgrim M; Noreng, Hans J; Storås, Trygve H; Afman, Lydia A; Frost, Gary; Bell, Jimmy D; Thomas, E Louise; Kolnes, Kristoffer J; Tangen, Daniel S; Stadheim, Hans K; Gilfillan, Gregor D; Gulseth, Hanne L; Birkeland, Kåre I; Jensen, Jørgen; Drevon, Christian A; Holen, Torgeir
2016-11-01
Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
NASA Astrophysics Data System (ADS)
Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia
2018-03-01
Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.
Physical properties of erupting plasma associated with coronal mass ejections
NASA Astrophysics Data System (ADS)
Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.
2013-12-01
We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.
Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan
2016-01-01
Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909
Sethi, Kriti; Palani, Saravanan; Cortés, Juan C G; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I; Ribas, Juan Carlos; Balasubramanian, Mohan
2016-10-01
Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, K.H.; Wong, O.; Thomas, D.
1982-02-01
A cross-sectional study of 120 male workers was conducted to determine the prevalence of increased polychlorinated biphenyl (PCB) absorption as well as the presence of potentially related clinical and metabolic abnormalities. Three exposure categories (''exposed'', ''nominally exposed'', ''nonexposed'') were defined. Complete work histories, clinical histories, physical examinations and laboratory tests, including plasma PCB determinations were obtained. In addition, fat PCB levels were determined in randomly selected subjects in each exposed group. Evidence of dermatotoxicity was observed and elevated PCB levels were noted more frequently in the exposed group (p < .00001), correlating well with age and duration of employment. Thesemore » correlations were stronger for fat (p < .001) than for plasma (p < .01) PCB levels. In the exposed group, significant correlations were found between plasma PCB and serum triglyceride (p < .00001) and serum glutamic oxaloacetic transaminase (SGOT) levels (p < .01). These correlations remained significant after controlling for either age or length of employment. No significant correlations were found between PCB levels and levels of cholesterol, high-density lipoprotein cholesterol or levels studied on liver function tests other than SGOT. Further analyses relating frequency of reported direct contact with PCB levels suggested a dermal route of exposure. An analysis by union affiliation demonstrated that those in crafts involving greater direct exposure had correspondingly higher elevations of PCB levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, K.H.; Wong, O.; Thomas, D.
1982-02-01
A cross-sectional study of 120 male workers was conducted to determine the prevalence of increased polychlorinated biphenyl (PCB) absorption as well as the presence of potentially related clinical and metabolic abnormalities. Three exposure categories (''exposed'', ''nominally exposed'', ''nonexposed'') were defined. Complete work histories, clinical histories, physical examinations and laboratory tests, including plasma PCB determinations were obtained. In addition, fat PCB levels were determined in randomly selected subjects in each exposed group. Evidence of dermatotoxicity was observed and elevated PCB levels were noted more frequently in the exposed group (p less than .0001), correlating well with age and duration of employment.more » These correlations were stronger for fat (p less than .001) than for plasma (p less than .01) PCB levels. In the exposed group, significant correlations were found between plasma PCB and serum triglyceride (p less than .0001) and serum glutamic oxaloacetic transaminase (SGOT) levels (p less than .01). These correlations remained significant after controlling for either age or length of employment. No significant correlations were found between PCB levels and levels of cholesterol, high-density lipoprotein cholesterol or levels studied on liver function tests other than SGOT. Further analyses relating frequency of reported direct contact with PCB levels suggested a dermal route of exposure. An analysis by union affiliation demonstrated that those in crafts involving greater direct exposure had correspondingly higher elevations of PCB levels.« less
Skarpanska-Stejnborn, Anna; Pilaczynska-Szczesniak, Lucia; Basta, Piotr; Deskur-Smielcka, Ewa; Horoszkiewicz-Hassan, Magorzata
2008-06-01
High-intensity physical exercise decreases intracellular antioxidant potential. An enhanced antioxidant defense system is desirable in people subjected to exhaustive exercise. The aim of this study was to investigate the influence of supplementation with artichoke-leaf extract on parameters describing balance between oxidants and antioxidants in competitive rowers. This double-blinded study was carried out in 22 members of the Polish rowing team who were randomly assigned to a supplemented group (n = 12), receiving 1 gelatin capsule containing 400 mg of artichoke-leaf extract 3 times a day for 5 wk, or a placebo group (n = 10). At the beginning and end of the study participants performed a 2,000-m maximal test on a rowing ergometer. Before each exercise test, 1 min after the test completion, and after a 24-hr restitution period blood samples were taken from antecubital vein. The following redox parameters were assessed in red blood cells: superoxide dismutase activity, glutathione peroxidase activity, glutathione reductase activity, reduced glutathione levels, and thiobarbituric-acid-reactive-substances concentrations. Creatine kinase activity and total antioxidant capacity (TAC) were measured in plasma samples, lactate levels were determined in capillary blood samples, and serum lipid profiles were assessed. During restitution, plasma TAC was significantly higher (p < .05) in the supplemented group than in the placebo group. Serum total cholesterol levels at the end of the study were significantly (p < .05) lower in the supplemented group than in the placebo group. In conclusion, consuming artichoke-leaf extract, a natural vegetable preparation of high antioxidant potential, resulted in higher plasma TAC than placebo but did not limit oxidative damage to erythrocytes in competitive rowers subjected to strenuous training.
Electron current extraction from a permanent magnet waveguide plasma cathode.
Weatherford, B R; Foster, J E; Kamhawi, H
2011-09-01
An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed. © 2011 American Institute of Physics
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.
2018-04-20
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...
2018-04-20
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...
2018-06-01
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Plasma physics goes beyond fusion
NASA Astrophysics Data System (ADS)
Franklin, Raoul
2008-11-01
I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.
BOOK REVIEW: Controlled Fusion and Plasma Physics
NASA Astrophysics Data System (ADS)
Engelmann, F.
2007-07-01
This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of references, mostly to articles covering original research, allows the interested reader to go deeper into the various subjects. There are a few quite relevant areas which are essentially not covered in the book (plasma diagnostics; fuelling). The discussion of particle and power exhaust is limited to tokamaks and is somewhat scarce. Other points which I did not find fully satisfactory are: the index is too selective and does not really allow easy access to any specific subject. Cross references between different sections treating related topics are not always given. There are quite a lot of typographical errors which as far as cross references are concerned may be disturbing. A list of the symbols used would be a helpful supplement, especially since some of them appear with different meanings. There are apparent imperfections in the structure of certain chapters. While the English is sometimes unusual, this generally does not affect the readability. Overall, the book can be warmly recommended to all interested in familiarizing themselves with the physics of magnetic fusion.
PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)
NASA Astrophysics Data System (ADS)
Bilbao, Luis; Minotti, Fernando; Kelly, Hector
2012-06-01
These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta, Venezuela Leopoldo Soto, Chile Michael Tendler, Sweden Carlos Varandas, Portugal Henry Riascos, Colombia Ivan Vargas-Blanco, Costa Rica Local Organizing Committee Luis Bilbao (Chairman) Fernando Minotti (Vice-Chairman) Luis Bernal, UNMDP Alejandro Clausse, PLADEMA-CNEA Graciela Gnavi, INFIP, CONICET-UBA Fausto Gratton, INFIP, CONICET-UBA Diana Grondona, INFIP, CONICET-UBA Héctor Kelly, INFIP, CONICET-UBA Adriana Márquez, INFIP, CONICET-UBA María Milanese, UNCPBA César Moreno, INFIP, CONICET-UBA Sponsors Instituto de Física del Plasma (INFIP) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Comisión Nacional de Energía Atómica (CNEA) Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) Centro Latino-Americano de Física (CLAF) Universidad Nacional de Mar del Plata (UNMP) Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN) Academia Nacional de Ciencias de Buenos Aires (ANCBA) Conference poster
EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics
NASA Astrophysics Data System (ADS)
2006-04-01
Plasma, the fourth state of matter, is actually the first state of Nature. The great fireball, the Sun, entirely decides the existence of our tiny planet immersed in the ocean of cosmic plasma. Mankind has also learnt how to produce and use plasma under terrestrial conditions, though it is not at all easy to domesticate this unstable ionized medium. Plasma finds countless applications that improve the quality of our daily life. Some of them, such as fluorescent light tubes, are so obvious to us that we do not give any thought to the processes underlying colourful neon signs. Another vast field is the production of materials with tailored-to-demand properties: mechanical, chemical, optical, electrical, magnetic, etc. Thin layers formed on solid surfaces by various plasma--material interactions play important roles in present-day computer technology, communication, space research, machinery and even many decorative items. However, the most demanding challenge in using plasma is to harness on Earth the processes that power stars. The endeavour is to confine and stabilize hot plasmas and to achieve the ultimate goal: to benefit from the might of thermonuclear reactions for environmentally benign energy production. The goal is clear, as the demand for energy is unquestionable. But the challenges are also enormous. Two basic plasma confinement schemes have been explored: inertial (using ultra-strong laser pulses or ion beams), and magnetic confinement (using strong magnetic fields). Hot plasma must be maintained in a vacuum vessel. The temperature gradients between the plasma and the surrounding wall are probably the greatest in the Universe. The history of fusion research began in the 1940s. Since then we have observed significant progress in fusion science and technology. We have come to the point when it has been decided to construct a reactor-class device. ITER International Thermonuclear Experimental Reactor will be built by seven co-operating parties: the EU, Japan, Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia, Singapore, Slovakia, Sweden, Turkey, Ukraine and the United Kingdom. Thirteen invited speakers overviewed the history of fusion research (from early machines to the reactor concept) and state-of-the-art aspects of production and diagnosis of plasmas confined by intense laser and ion beams and magnetic fields. Radiative processes in dense magnetized plasma have also been presented. A series of tutorials emphasized issues related to plasma--material interactions, experience with various plasma facing materials, material testing and fusion technology. Global energy research and the fusion research programme were addressed in detail during a special evening lecture. There were twenty-eight oral contributions presented by students who covered a broad range of subjects related to theory, modelling, experiments and development and application of plasma diagnostic methods. Many of those tutorials and contributed papers are now published in this volume. We do hope that this collection of papers will be useful not only to students but also to professionals in plasma science. The meeting was interesting and fruitful. It was also very pleasant, because not all the time was spent in the lecture room. Kudowa Zdrój is a charming all-year resort and spa situated in the south-west of Poland, just on the border with the Czech Republic. The location, in a dell surrounded by the beautiful old Sudeten Mountains, provides countess attractions for tourists. The erosion of rocks resulted in the creation of fantastic shapes worth visiting and admiring. The region has a very interesting history and many objects of splendid architecture: castles, fortresses and chapels including the Skull Chapel in Kudowa Zdrój. And the earth is rich in minerals such as coal, silver, gold, uranium (all nearly fully exploited) and a variety of gemstones. During every School there have been excursions to interesting sites. In the past it included mining of gold in Zloty R\\'{o}g and black coal in Nowa Ruda. This time we had an unforgettable experience producing paper sheets ourselves in an old but still operational paper mill in the green enchanting spa of Duszniki Zdrój. A short intensive course in pottery handcraft was also offered to us in the Skansen. Hiking in the rocky labyrinth of Szczeliniec (please try to pronounce this name describing a magnificent cliffed hill with creviced rocks) was also a great adventure. This was followed by a ride on the serpentine Road of a Hundred Turns. And there was another event strongly supported by the local authorities. Two special tutorials on energy research and fusion for young scholars and the general public attracted nearly 200 people. The School was financially supported by the International Centre for Dense Magnetised Plasmas at IPPLM, European Commission, International Atomic Energy Agency, Vienna (Austria), the Abdus Salam International Centre for Theoretical Physics, Trieste (Italy) and the US Department of Energy. We would like to thank cordially our sponsors. Their financial support made it possible for a number of students and teachers to come to Kudowa Zdrój. We are very grateful to Dr Adam Ziembinski, the director of the spa in Kudowa, and his staff for the immense hospitality during our stay. We wish to thank Mr Czeslaw Krecichwost, the mayor of Kudowa Zdrój, for his strong support and interest in the School and help in organizing the lectures for scholars and residents of the region. And our most cordial thanks and gratitude go to Mr Ryszard Panfil for his great kindness, inexhaustible energy and organizational efficiency that helped all of us to enjoy the meeting. We thank all the participants for their contributions and we thank the reviewers of all submitted papers. Thank you for your hard work and co-operation. We are looking forward to the next school and all hope to meet again in Kudowa. Marek Rubel, Royal Institute of Technology, Sweden Irena Ivanova-Stanik, Institute of Plasma Physics and Laser Microfusion, Poland Ryszard Miklaszewski, Institute of Plasma Physics and Laser Microfusion, Poland Marek Scholz, Institute of Plasma Physics and Laser Microfusion, Poland
NASA Astrophysics Data System (ADS)
Bilek, M. M. M.; Newton-McGee, K.; McKenzie, D. R.; McCulloch, D. G.
2006-01-01
Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment.
BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications
NASA Astrophysics Data System (ADS)
Browning, P. K.
2005-07-01
A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question whether the rather heavy emphasis on waves is optimal. Newcomers to plasma physics could be left with the impression that plasma physics is mainly a collection of dispersion relations. On the other hand, there is almost no mention of two fluid theory, surely an important subject. Topics relevant to fusion edge plasmas, a subject of growing research interest, are not mentioned at all (for example, sheath theory; also partially ionised plasmas, which are also of course very relevant in space applications). And I am surprised that the discussion of MHD stability does not even mention the kink instability, which is of primary importance both in fusion and solar plasmas. The book is clearly set out and easy to read. Diagrams are clear and helpful. Derivations are properly explained, without leaving too many missing steps. From the point of view of a textbook, it is useful that not too much mathematical knowledge is assumed; for example, when it is needed, the theory of Laplace transforms is explained. A nice feature—very important for a text book—is the presence of end-of-chapter problems. These will be very useful for both students and teachers! It is also good that each chapter has a comprehensive list of references, which might be used to direct more advanced students to the up-to-date scientific literature, as well as suggestions for further reading. Although the primary emphasis is on standard, `classical' plasma physics, a good attempt is made to present more recent aspects of the subject. For example, after presenting the standard theory of particle orbits—which usefully includes a discussion of Hamiltonian theory as well as guiding centre theory—there is an introduction to the topic of chaotic orbits. Such material is important from an educational point of view, so that from the very beginning students are made aware that plasma physics is a living subject. Overall, this is a very useful addition to the literature. I would recommend it for adoption as a course text for those teaching courses in plasma physics. It would also be a useful book for reference or self study for those working in the field, particularly new postgraduate students.
Public Data Set: Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup
Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609)
2016-05-31
This data set contains openly-documented, machine readable digital research data corresponding to figures published in E.T. Hinson et al., 'Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup,' Physics of Plasmas 23, 052515 (2016).
Sliwowski, Z; Lorens, K; Konturek, S J; Bielanski, W; Zoładź, J A
2001-03-01
Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that strenuous physical exercise; 1) fails to affect plasma leptin level but when performed after meal but not after blood withdrawal it results in an increase and fall in plasma leptin, and 2) the release of gut hormones (gastrin, CCK and PP) and stress hormones (norepinephrine, cortisol, GH) increase immediately after exercise independently of feeding or blood donation and 3) following blood donation the strenuous exercise resulted in a marked reduction in the plasma leptin, cortisol and GH concentrations, possibly due to the impairment in the autonomic nervous control of these hormones.
Zhu, Zongjian; Jiang, Weiqin; Zacher, Jarrod H; Neil, Elizabeth S; McGinley, John N; Thompson, Henry J
2012-03-01
Limiting energy availability via diet or physical activity has health benefits; however, it is not known whether these interventions have similar effects on the development of cancer. Two questions were addressed as follows: (i) Does limiting energy availability by increasing physical activity have the same effect on mammary carcinogenesis as limiting caloric intake? and (ii) Are host systemic factors, implicated as risk biomarkers for breast cancer, similarly affected by these interventions? Female Sprague Dawley rats were injected with 50-mg 1-methyl-1-nitrosourea per kg body weight at 21 days of age and randomized to one of five groups (30 rats per group) as follows: (i) sham running wheel control; (ii) restricted fed to 85% of the sham control; (iii and iv) voluntary running in a motorized activity wheel (37 m/min) to a maximum of 3,500 m/d or 1,750 m/d; and (v) sedentary ad libitum fed control with no access to a running wheel. The three energetics interventions inhibited the carcinogenic response, reducing cancer incidence (P = 0.01), cancer multiplicity (P < 0.001), and cancer burden (P < 0.001) whereas prolonging cancer latency (P = 0.004) although differences among energetics interventions were not significant. Of the plasma biomarkers associated with the development of cancer, the energetics interventions reduced bioavailable insulin-like growth factor-1 (IGF-1), insulin, interleukin-6, serum amyloid protein, TNF-α, and leptin and increased IGF-binding protein 3 (IGFBP-3) and adiponectin. Plasma-fasting glucose, C-reactive protein, estradiol, and progesterone were unaffected. The plasma biomarkers of greatest value in predicting the carcinogenic response were adiponectin > IGF-1/IGFBP-3 > IGFBP-3 > leptin > IGF-1.
Turbulence in laboratory and natural plasmas: Connecting the dots
NASA Astrophysics Data System (ADS)
Jenko, Frank
2015-11-01
It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.
Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics
NASA Astrophysics Data System (ADS)
Lee, Hyo-Chang
2018-03-01
Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied fields to find novel control knob and optimizing processing conditions.
2016-06-05
have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical
Gogna, Paritosh; Gaba, Sahil; Mukhopadhyay, Reetadyuti; Gupta, Rakesh; Rohilla, Rajesh; Yadav, Lakhpat
2016-08-01
Plantar Fasciitis makes up about 15% of patients requiring professional care due to foot symptoms. The treatment methods are numerous with none proving to be clearly superior to others. We aimed to compare two common treatment methods in search of the best treatment. All consecutive sportspersons presenting to our OPD with clinical diagnosis of plantar fasciitis underwent treatment consisting of stretching exercises, activity modification, and NSAID's for 6 months. First 40 patients who did not respond to the treatment were divided randomly into two groups of 20 patients each, Group A (Platelet rich plasma - PRP) and Group B (low dose radiation - LDR). At the time of final follow-up (6 months) the mean improvement in the pain score (Visual-Analogue-Scale), American Orthopaedic Foot and Ankle Score (AOFAS) and Plantar fascia thickness on ultrasound were compared. Significant improvement in all 3 parameters was noted at the time of final follow up within both groups. When compared to each other, the difference in outcome of both these Groups on the given 3 parameters came out to be insignificant (p>0.05). PRP is as good as LDR in patients with chronic recalcitrant plantar fasciitis not responding to physical therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computations in Plasma Physics.
ERIC Educational Resources Information Center
Cohen, Bruce I.; Killeen, John
1983-01-01
Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…
NASA Astrophysics Data System (ADS)
Sarff, J. S.; MST Team
2011-10-01
MST progress in advancing the RFP for (1) fusion plasma confinement with minimal external magnetization, (2) toroidal confinement physics, and (3) basic plasma physics is summarized. New tools and diagnostics are accessing physics barely studied in the RFP. Several diagnostic advances are important for ITER/burning plasma. A 1 MW neutral beam injector operates routinely for fast ion, heating, and transport investigations. Energetic ions are also created spontaneously by tearing mode reconnection, reminiscent of astrophysical plasmas. Classical confinement of impurity ions is measured in reduced-tearing plasmas. Fast ion slowing-down is also classical. Alfven-eigenmode-like activity occurs with NBI, but apparently not TAE. Stellarator-like helical structure appears in the core of high current plasmas, with improved confinement characteristics. FIR interferometry, Thomson scattering, and HIBP diagnostics are beginning to explore microturbulence scales, an opportunity to exploit the RFP's high beta and strong magnetic shear parameter space. A programmable power supply for the toroidal field flexibly explores scenarios from advanced inductive profile control to low current tokamak operation. A 1 MW 5.5 GHz source for electron Bernstein wave injection is nearly complete to investigate heating and current drive in over-dense plasmas. Supported by DOE and NSF.
New Outreach Initiatives at the Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John
2015-11-01
In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.
Mishra, Gautam; Easton, Christopher D.; McArthur, Sally L.
2009-01-01
Physical and photolithographic techniques are commonly used to create chemical patterns for a range of technologies including cell culture studies, bioarrays and other biomedical applications. In this paper, we describe the fabrication of chemical micropatterns from commonly used plasma polymers. Atomic force microcopy (AFM) imaging, Time-of-Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) imaging and multivariate analysis have been employed to visualize the chemical boundaries created by these patterning techniques and assess the spatial and chemical resolution of the patterns. ToF-SSIMS analysis demonstrated that well defined chemical and spatial boundaries were obtained from photolithographic patterning, while the resolution of physical patterning via a transmission electron microscopy (TEM) grid varied depending on the properties of the plasma system including the substrate material. In general, physical masking allowed diffusion of the plasma species below the mask and bleeding of the surface chemistries. Multivariate analysis techniques including Principal Component Analysis (PCA) and Region of Interest (ROI) assessment were used to investigate the ToF-SSIMS images of a range of different plasma polymer patterns. In the most challenging case, where two strongly reacting polymers, allylamine and acrylic acid were deposited, PCA confirmed the fabrication of micropatterns with defined spatial resolution. ROI analysis allowed for the identification of an interface between the two plasma polymers for patterns fabricated using the photolithographic technique which has been previously overlooked. This study clearly demonstrated the versatility of photolithographic patterning for the production of multichemistry plasma polymer arrays and highlighted the need for complimentary characterization and analytical techniques during the fabrication plasma polymer micropatterns. PMID:19950941
Plasma physics and the 2013-2022 decadal survey in solar and space physics
NASA Astrophysics Data System (ADS)
Baker, Daniel N.
2016-11-01
The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.
NASA Astrophysics Data System (ADS)
Mishra, Rohini
Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.
SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less
2012-01-01
Background The present study protocol describes the trial design of a primary care intervention cohort study, which examines whether an extended, multi-professional physical activity referral (PAR) intervention is more effective in enhancing and maintaining self-reported physical activity than physical activity prescription in usual care. The study targets patients with newly diagnosed hypertension and/or type 2 diabetes. Secondary outcomes include: need of pharmacological therapy; blood pressure/plasma glucose; physical fitness and anthropometric variables; mental health; health related quality of life; and cost-effectiveness. Methods/Design The study is designed as a long-term intervention. Three primary care centres are involved in the study, each constituting one of three treatment groups: 1) Intervention group (IG): multi-professional team intervention with PAR, 2) Control group A (CA): physical activity prescription in usual care and 3) Control group B: treatment as usual (retrospective data collection). The intervention is based on self-determination theory and follows the principles of motivational interviewing. The primary outcome, physical activity, is measured with the International Physical Activity Questionnaire (IPAQ) and expressed as metabolic equivalent of task (MET)-minutes per week. Physical fitness is estimated with the 6-minute walk test in IG only. Variables such as health behaviours; health-related quality of life; motivation to change; mental health; demographics and socioeconomic characteristics are assessed with an electronic study questionnaire that submits all data to a patient database, which automatically provides feed-back to the health-care providers on the patients’ health status. Cost-effectiveness of the intervention is evaluated continuously and the intermediate outcomes of the intervention are extrapolated by economic modelling. Discussions By helping patients to overcome practical, social and cultural obstacles and increase their internal motivation for physical activity we aim to improve their physical health in a long-term perspective. The targeted patients belong to a patient category that is supposed to benefit from increased physical activity in terms of improved physiological values, mental status and quality of life, decreased risk of complications and maybe a decreased need of medication. PMID:22726659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less
Plasma Fibrinogen in Patients With Bell Palsy.
Zhao, Hua; Zhang, Xin; Tang, Yinda; Li, Shiting
2016-10-01
To determine the plasma fibrinogen level in patients with Bell palsy and explore the significances of it in Bell palsy. One hundred five consecutive patients with facial paralysis were divided into 3 groups: group I (Bell palsy), group II (temporal bone fractures), and group III (facial nerve schwannoma). In addition, 22 volunteers were defined as control group. Two milliliters fasting venous blood from elbow was collected, and was evaluated by CA-7000 Full-Automatic Coagulation Analyzer. The plasma fibrinogen concentration was significantly higher in the group of patients with Bell palsy (HB IV-VI) than that in the control group (P <0.05). There was no significant difference between group II and control group (P >0.05); similarly, there was also no marked difference between group III and control group (P >0.05). In group I, the plasma fibrinogen levels became higher with the HB grading increase. The plasma fibrinogen level of HB-VI was highest. Plasma fibrinogen has an important clinical meaning in Bell palsy, which should be used as routine examination items. Defibrinogen in treatment for patients with high plasma fibrinogen content also should be suggested.
Self-consistent discharge growing model of helicon plasma
NASA Astrophysics Data System (ADS)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao
2015-11-01
Helicon plasma is a high-density and low-temperature plasma generated by the electromagnetic (Helicon) wave excited in the plasma. It is thought to be useful for various applications including electric thrusters. Physics of helicon plasma production involves such fundamental processes as the wave propagation (dispersion relation), collisional and non-collisional wave damping, plasma heating, ionization/recombination of neutral particles, and modification of the dispersion relation by newly ionized plasma. There remain a number of unsolved physical issues such as, how the Helicon and the TG modes influence the plasma density, electron temperature and their spatial profiles. While the Helicon mode is absorbed in the bulk plasma, the TG mode is mostly absorbed near the edge of the plasma. The local power deposition in the helicon plasma is mostly balanced by collisional loss. This local power balance can give rise to the inhomogeneous electron temperature profile that leads to time evolution of density profile and dispersion relation. In our study, we construct a self-consistent model of the discharge evolution that includes the wave excitation, electron heat transfer, and diffusion of charged particles.
Plasma Processes for Semiconductor Fabrication
NASA Astrophysics Data System (ADS)
Hitchon, W. N. G.
1999-01-01
Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.
NASA Astrophysics Data System (ADS)
Schulz-von der Gathen, Volker
2015-09-01
Over the last decade a huge variety of atmospheric pressure plasma jets has been developed and applied for plasma medicine. The efficiency of these non-equilibrium plasmas for biological application is based on the generated amounts of reactive species and radiation. The gas temperatures stay within a range tolerable for temperature-sensitive tissues. The variety of different discharge geometries complicates a direct comparison. In addition, in plasma-medicine the combination of plasma with reactive components, ambient air, as well as biologic tissue - typically also incorporating fluids - results in a complex system. Thus, real progress in plasma-medicine requires a profound knowledge of species, their fluxes and processes hitting biological tissues. That will allow in particular the necessary tailoring of the discharge to fit the conditions. The complexity of the problem can only be overcome by a common effort of many groups and requires a comparison of their results. A reference device based on the already well-investigated micro-scaled atmospheric pressure plasma jet is presented. It is developed in the frame of the European COST initiative MP1101 to establish a publicly available, stable and reproducible source, where required plasma conditions can be investigated. Here we present the design and the ideas behind. The presentation discusses the requirements for the reference source and operation conditions. Biological references are also defined by the initiative. A specific part of the talk will be attributed to the reproducibility of results from various samples of the device. Funding by the DFG within the Package Project PAK816 ``Plasma Cell Interaction in Dermatology'' and the Research Unit FOR 1123 ``Physics of microplasmas'' is gratefully acknowledged.
Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model
2014-06-30
applying it to study laser - 20 Physics-Based Multi-Fluid Plasma Algorithm Shumlak Figure 6: Blended finite element method applied to the species...separation problem in capsule implosions. Number densities and electric field are shown after the laser drive has compressed the multi-fluid plasma and...6 after the laser drive has started the compression. A separation clearly develops. The solution is found using an explicit advance (CFL=1) for the
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
Global Geospace Science/Polar Plasma Laboratory: POLAR
NASA Technical Reports Server (NTRS)
1996-01-01
The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.
A methodology for the rigorous verification of plasma simulation codes
NASA Astrophysics Data System (ADS)
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.
Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T
2016-02-01
In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.
Dusty (complex) plasmas: recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, Sergey
The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizard, Alain J
Final Technical Report for U.S. Department of Energy Grant No. DE-FG02-09ER55005 Nonlinear FLR Effects in Reduced Fluid Models Alain J. Brizard, Saint Michael's College The above-mentioned DoE grant was used to support research activities by the PI during a sabbatical leave from Saint Michael's College in 2009. The major focus of the work was the role played by guiding-center and gyrocenter (linear and nonlinear) polarization and magnetization effects in understanding transport processes in turbulent magnetized plasmas. The theoretical tools used for this work include Lie-transform perturbation methods and Lagrangian (variational) methods developed by the PI in previous work. The presentmore » final technical report lists (I) the peer-reviewed publications that were written based on work funded by the Grant; (II) invited and contributed conference presentations during the period funded by the Grant; and (III) seminars presented during the period funded by the Grant. I. Peer-reviewed Publications A.J. Brizard and N. Tronko, 2011, Exact momentum conservation for the gyrokinetic Vlasov- Poisson equations, Physics of Plasmas 18 , 082307:1-14 [http://dx.doi.org/10.1063/1.3625554 ]. J. Decker, Y. Peysson, A.J. Brizard, and F.-X. Duthoit, 2010, Orbit-averaged guiding-center Fokker-Planck operator for numerical applications, Physics of Plasmas 17, 112513:1-12 [http://dx.doi.org/10.1063/1.3519514]. A.J. Brizard, 2010, Noether derivation of exact conservation laws for dissipationless reduced fluid models, Physics of Plasmas 17, 112503:1-8 [http://dx.doi.org/10.1063/1.3515303]. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, 2010, Perturbation analysis of trapped particle dynamics in axisymmetric dipole geometry, Physics of Plasmas 17, 102903:1-9 [http://dx.doi.org/10.1063/1.3486554]. A.J. Brizard, 2010, Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations, Physics of Plasmas 17, 042303:1-11 [http://dx.doi.org/10.1063/1.3374428]. A.J. Brizard, J. Decker, Y. Peysson, and F.-X. Duthoit, 2009, Orbit-averaged guiding-center Fokker-Planck operator, Physics of Plasmas 16, 102304:1-9[http://dx.doi.org/10.1063/1.3249627]. A.J. Brizard, 2009, Variational Principles for Reduced Plasma Physics, Journal of Physics: Conference Series 169, 012003 [http://dx.doi.org/10.1088/1742-6596/169/1/012003]. II. Invited and Contributed Conference Presentations A.J. Brizard and N. Tronko, Momentum conservation law for the gyrokinetic Vlasov-Poisson equations, 53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City (Utah), November 14-18, 2011. A.J. Brizard, P.J. Morrison, C. Chandre, and E. Tassi, On the road to the Hamiltonian formulation of gyrokinetic theory, 52nd Annual Meeting of the APS Division of Plasma Physics, Chicago (Illinois), November 8-12, 2010. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, Lie-transform perturbation analysis of trapped-particle dynamics in axisymmetric dipole geometry, 2010 International Sherwood Fusion Theory Conference, Seattle (Washington), April 19-21, 2010. N. Tronko and A.J. Brizard, Gyrokinetic momentum conservation law, 2010 International Sherwood Fusion Theory Conference, Seattle (Washington), April 19-21, 2010. C. Chandre and A.J. Brizard, Hamiltonian formulation of reduced Vlasov-Maxwell equations, 50th Annual Meeting of the APS Division of Plasma Physics, Dallas (Texas), November 17-21, 2008. A.J. Brizard, Nonlinear FLR effects in reduced fluid models, Invited Presentation at 11th Easter Plasma Meeting, Torino (Italy), April 15-17, 2009. III. Seminars Reduced Fokker-Planck operators for advanced plasma simulations, seminar given at CEA Cadarache (France), May 25, 2009. Ray phase-space methods in linear mode conversion, seminar given at CPT Luminy (France), April 1, 2009. Old and new methods in gyrokinetic theory, seminar given at CEA Cadarache (France), March 20, 2009. Hamiltonian theory of adiabatic motion of relativistic charged particles, seminar given at CPT Luminy (France), March 11, 2009. Noether method for fluids and plasmas, seminar given at CEA Cadarache (France), February 5, 2009. Nonlinear FLR effects in reduced fluid models, invited speaker at the Journee de la Dynamique Non Lineaire, Centre de Physique Theorique, CNRS Luminy (Marseille, France), June 3, 2008.« less
The Lunar dusty plasmas -levitation and transport.
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Rothkaehl, Hanna
Lunar dust can exhibit unusual behavior -due to electron photoemission via solar-UV radiation the lunar surface represents a complex plasma -"dusty plasma". The dust grains and lunar surface are electrostatically charged by the Moon's interaction with the local plasma environ-ment and the photoemission of electrons due to solar UV and X-rays. This effect causes the like-charged surface and dust particles to repel each other, and creates a near-surface electric field. Lunar dust must be treated as a dusty plasma. Using analytic (kinetic (Vlasov) and magnetohydrodynamic theory ) and numerical modeling we show physical processes related to levitation and transport dusty plasma on the Moon. These dust grains could affect the lunar environment for radio wave and plasma diagnostics and interfere with exploration activities. References: 1. Wilson T.L. (1992), in Analysis of Interplanetary Dust, M. Zolensky et al. AIP Conf.Proc. 310, 33-44 (AIP, NY), 2.Wilson T.L."LUNAR DUST AND DUSTY PLASMA PHYSICS".40th Lunar and Planetary Science Conference (2009), 3. Grün E., et al.(1993),Nature 363, 144. 4. Morfill G. and Grün E.(1979), Planet. Space Sci.. 27, 1269, 1283, 5. Manka R. and Michel F. (1971), Proc. 2nd Lun. Sci. Conf. 2, 1717 (MIT Press, Cambridge). 6. Manka R. et al.(1973), Lun. Sci.-III, 504. 7. Barbara Atamaniuk "Kinetic Description of Localized Plasma Structure in Dusty Plasmas". Czechoslovak Journal of Physics Vol.54 C 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.
This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)
Kapusta, Joanna; Kapusta, Anna; Pawlicki, Lucjan; Irzmański, Robert
2016-06-01
Diseases of the cardiovascular system is one of the most common causes of death among people over 65 years. Due to its course and incidence are a major cause of disability and impaired quality of life for seniors, as well as a serious economic problem in health care. Important role in the prevention of cardiovascular disease plays making systematic physical activity, which is a component of any rehabilitation program. Regular physical training by doing cardio-and vasoprotective has a beneficial effect on cardiovascular status and physical performance in patients with diagnosed coronary heart disease, regardless of age. The aim of this study was to evaluate the effect of controlled exercise on selected biochemical parameters and functional myocardial infarction. A group of 89 patients were divided into 3 subgroups. In group I (n = 30) was performed 2 weeks cardiac rehabilitation program, in group II (n = 30) 4 weekly. Streamline the program consisted of a series of interval training performed using a bicycle ergometer and general exercise. The remaining group (gr. III, n = 29) participated in individually selected training program. In all subjects before and after the training cycle underwent thoracic impedance plethysmography, also determined the level of plasma natriuretic peptide NT-proBNP and echocardiography and exercise test. After training, in groups, which carried out a controlled physical training, improvement was observed: exercise capacity of patients respectively in group I (p = 0.0003), group II (p = 0.0001) and group III (p = 0.032), stroke volume SV, cardiac output CO and global myocardial contractility, there was also reduction in the concentration of natriuretic peptide NT-proBNP. Furthermore, the correlation between the results shown pletyzmography parameters and NT-proBNP, SV, CO and EF. Regular physical training as part of the cardiac rehabilitation has a beneficial effect on biochemical parameters and functional myocardial infarction in patients with ACS. Size of the observed changes conditioned by the nature and duration of the training. © 2016 MEDPRESS.
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
Plasma pharmacy - physical plasma in pharmaceutical applications.
von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U
2013-07-01
During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.
Phase transitions, interparticle correlations, and elementary processes in dense plasmas
NASA Astrophysics Data System (ADS)
Ichimaru, Setsuo
2017-12-01
Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.
The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.
Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis
2010-07-01
The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.
Meyerhofer, D. D.; Mauel, M. E.
2016-05-18
The 57th annual meeting of the APS Division of Plasma Physics (DPP) was held November 16–20, 2015 in Savannah, Georgia. The meeting brings together researchers (undergraduate students through retirees) from all areas of plasma physics. 1887 abstracts were included in the program, approximately 200 more than the previous year. The presentations included five invited review talks, 97 invited talks, three invited postdeadline talks, and four tutorials. Furthermore, there were approximately 1780 contributed presentations, with about 40% oral and 60% poster. Three mini-conferences were held concurrently.
IN MEMORIUM: Second International Workshop & Summer School on Plasma Physics 2006
NASA Astrophysics Data System (ADS)
2007-04-01
Zdravko Neichev, a PhD student at University of Sofia and a member of the Local Organising Committee of the International Workshop and Summer School on Plasma Physics, died September 22, 2006 at the age of 27 in a tragic car accident. He was close to finishing his PhD thesis working thoroughly in the field of Plasma Physics. Being also an excellent programmer he produced a number of perfect programs for numerical modelling of the coaxial discharge properties. He was a smart, friendly person, always ready to help. His colleagues and friends will never forget his radiant smile. Zdravko Neichev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyerhofer, D. D.; Mauel, M. E.
The 57th annual meeting of the APS Division of Plasma Physics (DPP) was held November 16–20, 2015 in Savannah, Georgia. The meeting brings together researchers (undergraduate students through retirees) from all areas of plasma physics. 1887 abstracts were included in the program, approximately 200 more than the previous year. The presentations included five invited review talks, 97 invited talks, three invited postdeadline talks, and four tutorials. Furthermore, there were approximately 1780 contributed presentations, with about 40% oral and 60% poster. Three mini-conferences were held concurrently.
NASA Astrophysics Data System (ADS)
Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams
2001-03-01
ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.
Building an infrastructure at PICKSC for the educational use of kinetic software tools
NASA Astrophysics Data System (ADS)
Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; Amorim, L. D.; An, W.; Dalichaouch, T. N.; Davidson, A.; Joglekar, A.; Li, F.; May, J.; Touati, M.; Xu, X. L.; Yu, P.
2016-10-01
One aim of the Particle-In-Cell and Kinetic Simulation Center (PICKSC) at UCLA is to coordinate a community development of educational software for undergraduate and graduate courses in plasma physics and computer science. The rich array of physical behaviors exhibited by plasmas can be difficult to grasp by students. If they are given the ability to quickly and easily explore plasma physics through kinetic simulations, and to make illustrative visualizations of plasma waves, particle motion in electromagnetic fields, instabilities, or other phenomena, then they can be equipped with first-hand experiences that inform and contextualize conventional texts and lectures. We are developing an infrastructure for any interested persons to take our kinetic codes, run them without any prerequisite knowledge, and explore desired scenarios. Furthermore, we are actively interested in any ideas or input from other plasma physicists. This poster aims to illustrate what we have developed and gather a community of interested users and developers. Supported by NSF under Grant ACI-1339893.
NASA Astrophysics Data System (ADS)
Ogungbemi, Kayode; Han, Xianming; Blosser, Micheal; Misra, Prabhakar; LASER Spectroscopy Group Collaboration
2014-03-01
Optogalvanic transitions have been recorded and fitted for 1s5 - 2p7\\ (621.7 nm), 1s5 - 2p8 (633.4 nm) and 1s5 - 2p9 (640.2 nm) transitions of neon in a Fe-Ne hollow cathode plasma discharge as a function of current (2-19 mA) and time evolution (0-50 microsec). The optogalvanic waveforms have been fitted to a Monte carlo mathematical model. The variation in the excited population of neon is governed by the rate of collision of the atoms involving the common metastable state (1s5) for the three transitions investigated. The concomitant changes in amplitudes and intensities of the optogalvanic signal waveforms associated with these transitions have been studied rigorously and the fitted parameters obtained using the Monte Carlo algorithm to help better understand the physics of the hollow cathode discharge. Thanks to Laser Spectroscopy group in Physics and Astronomy Dept. Howard University Washington DC.
Influence of weight status on physical and mental health in Moroccan perimenopausal women
Oudghiri, Dia Eddine; Ruiz-Cabello, Pilar; Camiletti-Moirón, Daniel; Fernández, María Del Mar; Aranda, Pilar; Aparicio, Virginia Ariadna
2016-01-01
Introduction There is a lack of information about fitness and other health indicators in women from countries such as Morocco. This study aims to explore the association of weight status with physical and mental health in Moroccan perimenopausal women. Methods 151 women (45-65 years) from the North of Morocco were analyzed by standardized field-based fitness tests to assess cardiorespiratory fitness, muscular strength, flexibility, agility and balance. Quality of life was assessed by means of the Short-Form-36 Health Survey. Resting heart rate, blood pressure and plasma fasting glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides were also measured. Results Blood pressure (P=0.001), plasma triglycerides (P=0.041) and the prevalence of metabolic syndrome (P<0.001) increased as weight status increased. Levels of cardiorespiratory fitness, upper-body flexibility (both, P<0.001), static balance (P<0.05) and dynamic balance (P<0.01) decreased as weight status increased. Pairwise comparisons showed differences mainly between normal-weight and overweight vs. obese groups. No differences between groups were observed on quality of life. Conclusion Cardiovascular and lipid profile and fitness, important indicators of cardiovascular disease risk, worsened as weight status increased, whereas quality of life appears to be independent of weight status. Exercise and nutritional programs focus on weight management may be advisable in this under studied population. PMID:27303571
Extreme plasma states in laser-governed vacuum breakdown.
Efimenko, Evgeny S; Bashinov, Aleksei V; Bastrakov, Sergei I; Gonoskov, Arkady A; Muraviev, Alexander A; Meyerov, Iosif B; Kim, Arkady V; Sergeev, Alexander M
2018-02-05
Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3 , which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
UV excimer laser and low temperature plasma treatments of polyamide materials
NASA Astrophysics Data System (ADS)
Yip, Yiu Wan Joanne
Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH) functional groups, which increased water absorption. However, after tetrafluoromethane plasma treatment it was found that the -CF, -CF2 and -CF3 groups were introduced to the polyamide surface and this enhanced the hydrophobicity of the fabric. Suggested explanations are given of the mechanisms that produce the structure of the polyamide after the processes of laser irradiation (both high- and low-fluence) and plasma treatment. The fundamental approach used in modelling was considered the temperature profile of the material during the treatment. The development of high-fluence induced structures was caused by elevated temperatures in the subsurface volume and preexisting stress caused by fiber extrusion. The structure formation under LF laser irradiation was determined by thermal effect accompanied by the optical phenomenon of interference. Ripple structures formed by plasma were closely related to physical or chemical etching. Possible applications of plasma and laser technologies in the textile and clothing industries are considered. Oxygen plasma seems to be the best candidate to improve the wettability of the fabric, while tetrafluoromethane plasma can be applied to produce a water repellent surface. Surface treatments including CF4 plasma, high-fluence and low-fluence laser treatments produce a deeper color in disperse dyed fabrics using the same amount of dyestuff as chemicals like leveling agents and dyestuff can be reduced during the textile manufacturing process. UV laser and low temperature plasma modification processes are promising techniques for polymer/fabric surface modification and have industrial potential as they are environmentally friendly dry processes which do not involve any solvents.
ERIC Educational Resources Information Center
Roth, Laura M.; O'Fallon, Nancy M.
This booklet presents information about career opportunities for women in physics. Included are summaries of research areas in physics (optical physics, solid-state physics, materials science, nuclear physics, high-energy physics, astrophysics, cryogenics, plasma physics, biophysics, atmospheric physics) and differences between theory and…
NASA Astrophysics Data System (ADS)
von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.
2013-09-01
Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.
Toward the automated analysis of plasma physics problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynick, H.E.
1989-04-01
A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications inmore » form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs.« less
Space plasma physics at the Applied Physics Laboratory over the past half-century
NASA Technical Reports Server (NTRS)
Potemra, Thomas A.
1992-01-01
An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.
Tardocchi, M; Nocente, M; Proverbio, I; Kiptily, V G; Blanchard, P; Conroy, S; Fontanesi, M; Grosso, G; Kneupner, K; Lerche, E; Murari, A; Cippo, E Perelli; Pietropaolo, A; Syme, B; Van Eester, D; Gorini, G
2011-11-11
The spectral broadening of characteristic γ-ray emission peaks from the reaction (12)C((3)He,pγ)(14)N was measured in D((3)He) plasmas of the JET tokamak with ion cyclotron resonance heating tuned to the fundamental harmonic of (3)He. Intensities and detailed spectral shapes of γ-ray emission peaks were successfully reproduced using a physics model combining the kinetics of the reacting ions with a detailed description of the nuclear reaction differential cross sections for populating the L1-L8 (14)N excitation levels yielding the observed γ-ray emission. The results provide a paradigm, which leverages knowledge from areas of physics outside traditional plasma physics, for the development of nuclear radiation based methods for understanding and controlling fusion burning plasmas.
Is glutamine deficiency the link between inflammation, malnutrition, and fatigue in cancer patients?
Schlemmer, Marcus; Suchner, Ulrich; Schäpers, Barbara; Duerr, Eva-Maria; Alteheld, Birgit; Zwingers, Thomas; Stehle, Peter; Zimmer, Heinz-Gerd
2015-12-01
Evaluation of potential associations between plasma glutamine levels and the incidence of cancer related fatigue, physical performance, poor nutritional status, and inflammation in patients with solid tumors. Mono-center cross-sectional study recruiting 100 (34 women) consecutive patients (September 2009-March 2011; ≥18 y) with solid tumors and causal tumor therapy. Fasting venous blood was harvested for routine clinical chemistry, amino acid (HPLC) and inflammation marker analyses. Clinical assessments included global, physical, affective and cognitive fatigue (questionnaire) and Karnofsky performance status. Nutritional status was evaluated using bioelectrical impedance analysis, the Prognostic Inflammatory and Nutritional Index and plasma protein levels. Regression analyses were performed to correlate continuous variables with plasma glutamine (95% confidence intervals). Nutritional status was impaired in 19% of the patients. Average plasma glutamine concentration (574.0 ± 189.6 μmol/L) was within normal range but decreased with impaired physical function. Plasma glutamine was linked to the ratio extracellular to body cell mass (p < 0.044), CRP (p < 0.001), physical (p = 0.014), affective (p = 0.041), and global fatigue (p = 0.030). Markers of inflammation increased with low physical performance. The data support our working hypothesis that in cancer patients systemic inflammation maintains a catabolic situation leading to malnutrition symptoms and glutamine deprivation, the latter being associated with cancer related fatigue. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.
It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.
Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy.
Fu, Yangting; Hou, Zongyu; Wang, Zhe
2016-02-08
Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave "compressing" effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.
ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses
NASA Astrophysics Data System (ADS)
Meyer-Ter-Vehn, Juergen
2000-10-01
Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).
Laboratory-directed research and development: FY 1996 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1997-05-01
This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less
Book Review: Physics of the Space Environment
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
1998-01-01
Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.
Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.
Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi
2014-09-01
Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.
Trend analysis of plasma insulin level around parturition in relation to parity in Saanen goats.
Magistrelli, D; Rosi, F
2014-06-01
The present study investigated the effect of parity on plasma insulin level around parturition in Saanen goats. On d -14, -7, 0, 3, 7, 10, and 14 from parturition, plasma glucose, NEFA, free AA, cortisol, and insulin concentrations were analyzed in 10 primiparous and 10 multiparous goats. At parturition, BW of primiparous goats was about 75% of that of multiparous ones (P < 0.001) and then their milk production was lower than that of multiparous ones (P < 0.001). At parturition, glucose increased (P < 0.01) in both primiparous and multiparous goats and then decreased (P < 0.01) on d 3 of lactation, remaining higher (P < 0.01) in primiparous than multiparous goats until the end of the study period. In both groups, free AA decreased (P < 0.01) at parturition, returning to prepartum levels (P < 0.01) on d 3 of lactation without difference between groups. Only in multiparous goats, plasma NEFA increased at parturition (P < 0.01), returning to prepartum levels on d 14 (P < 0.01). Changes in glucose and AA could have been caused by cortisol, which increased (P < 0.01) at parturition in both primiparous and multiparous goats, returning to prepartum levels (P < 0.01) on d 7 of lactation, without difference between the parity groups. In multiparous goats, insulin decreased soon after parturition (P < 0.05), remaining at low levels until the end of the study period, whereas in primiparous goats, insulin did not vary until d 14 of lactation, when it decreased (P < 0.05) also in this group. Therefore, between d 3 and 14 of lactation, insulin was higher in primiparous than multiparous goats (P < 0.05). Only in primiparous goats, at kidding, insulin was negatively correlated to BW (P < 0.01), and after parturition it was negatively correlated with milk yield (P < 0.05) and plasma NEFA (P < 0.05). We hypothesize that higher insulin levels in primiparous Saanen goats, which are still immature at their first breeding season, acted to limit both the mobilization of bodily reserves and the capture of nutrients by the lactating mammary gland, thus providing nutrients for their own physical and physiological development.
Lizzi, Elisangela Aparecida da Silva; Gonçalves, Thiago Correa Porto; Rodrigues, Jhennyfer Aline Lima; Tavares, Simone Sakagute; Lacchini, Riccardo; Pinheiro, Lucas Cezar; Ferreira, Graziele Cristina; Jacomini, André Mourão; Bueno Júnior, Carlos Roberto
2017-01-01
The purpose of this study was to verify the influence of the genotype or haplotype (interaction) of the NOS3 polymorphisms [-786T>C, 894G>T (Glu298Asp), and intron 4b/a] on the response to multicomponent training (various capacities and motor skills) on blood pressure (BP), nitrite concentration, redox status, and physical fitness in older adult women. The sample consisted of 52 participants, who underwent body mass index and BP assessments. Physical fitness was evaluated by six-minute walk, elbow flexion, and sit and stand up tests. Plasma/blood samples were used to evaluate redox status, nitrite concentration, and genotyping. Associations were observed between isolated polymorphisms and the response of decreased systolic and diastolic BP and increased nitrite concentration and antioxidant activity. In the haplotype analysis, the group composed of ancestral alleles (H1) was the only one to present improvement in all variables studied (decrease in systolic and diastolic BP, improvement in nitrite concentration, redox status, and physical fitness), while the group composed of variant alleles (H8) only demonstrated improvement in some variables of redox status and physical fitness. These findings suggest that NOS3 polymorphisms and physical training are important interacting variables to consider in evaluating redox status, nitric oxide availability and production, and BP control. PMID:29104725
NASA Astrophysics Data System (ADS)
Ortiz-Arias, Deedee; Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon
2017-10-01
The Princeton Plasma Physics Laboratory (PPPL) uses a host of outreach initiatives to inform the general population: the Young Women's Conference, Science Bowl, Science Undergraduate Laboratory Internship, My Brother's Keeper, a variety of workshops for university faculty and undergraduate students, public and scheduled lab tours, school and community interactive plasma science demonstrations. In addition to informing and educating the public about the laboratory's important work in the areas of Plasma and Fusion, these outreach initiatives, are also used as an opportunity to identify/educate/recruit the next generation of the STEM workforce. These programs provide the laboratory with the ability to: engage the next generation at different paths along their development (K-12, undergraduate, graduate, professional), at different levels of scientific content (science demonstrations, remote experiments, lectures, tours), in some instances, targeting underrepresented groups in STEM (women and minorities), and train additional STEM educators to take learned content into their own classrooms.
Luteinizing hormone (LH) levels in male workers exposed to urban stressors.
Tomao, Enrico; Tomei, Gianfranco; Rosati, Maria Valeria; Caciari, Tiziana; Danese, Daniele; Gamberale, Daniele; Vacca, Daniele; Palermo, Paola; Anzelmo, Vincenza; Tomei, Francesco
2009-08-01
The aim of the study is to evaluate if occupational exposure to urban stressors could cause alterations in luteinizing hormone (LH) plasma levels in male traffic policemen vs. administrative staff of Municipal Police.After excluding the subjects with the main confounding factors, male traffic police and administrative staff of Municipal Police were matched by age, working life, body mass index (BMI), alcohol drinking habit, cigarette smoking habit and habitual consumption of Italian coffee.In 166 male traffic police mean LH values were significantly higher compared to 166 male administrative employees. The distribution of LH values in traffic police and in administrative employees was statistically significant.Our results suggest that recent exposure to urban stressors (chemical, physical and psycho-social) can alter the plasma concentration of LH. In agreement with our previous research, levels of plasma LH may be used as early biological markers, valuable for the group, used in occupational set before the appearance of the disease.
On the damping of right hand circularly polarized waves in spin quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Z.; Hussain, A., E-mail: ah-gcu@yahoo.com; Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320
2014-12-15
General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effectsmore » can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.« less
Ibarretxe, D; Girona, J; Plana, N; Cabré, A; Heras, M; Ferré, R; Merino, J; Vallvé, J C; Masana, L
2015-09-01
Circulating FABP4 is strongly associated with metabolic and cardiovascular risk (CVR) and has been proposed as a new risk biomarker. Several FABP4 gene polymorphisms have been associated with protein expression in vitro and metabolic and vascular alterations in vivo. The aim of this study is to evaluate the impact of FABP4 polymorphisms on FABP4 plasma levels and subclinical arteriosclerosis in patients with obesity, metabolic syndrome (MS) or type 2 diabetes (T2DM). We studied 440 individuals with obesity, MS, T2DM or other cardiovascular risk conditions who attended the vascular medicine and metabolism unit of our hospital. Anamnesis, physical examination and anthropometry data were recorded. Standard biochemical parameters were determined. Plasma FABP4 concentrations were measured. Carotid intima-media thickness (cIMT) was assessed using ultrasonography. The following FABP4 gene single-nucleotide polymorphisms (SNPs) were analyzed: rs3834363, rs16909233, rs1054135, rs77878271, rs10808846 and rs8192688. None of the studied gene allele variants were hyper-represented in patients grouped according the presence of metabolic alterations nor were they associated with the FABP4 concentration. The FABP4 gene variants did not determine cIMT differences between the groups. In a multivariate analysis, gender and BMI, but not gene variants, significantly determined plasma FABP4 concentrations. In clinical settings, the circulating FABP4 levels are determined by the acquired metabolic derangements and not genetic variation. Copyright © 2015 Elsevier B.V. All rights reserved.
Suzuki, Hidenobu; Gen, Keishi
2012-03-01
Blonanserin is a second-generation antipsychotic that was developed in Japan. We investigated the relationships between plasma concentration, the plasma anti-5-HT(2A) activity/anti-D₂ activity (S/D) ratio and extrapyramidal symptoms (EPS) in blonanserin dosing. The subjects were 29 outpatients with schizophrenia. We assessed EPS using the Drug-Induced Extrapyramidal Symptoms Scale (DIEPSS). The plasma concentrations were measured by high performance liquid chromatography, and the plasma anti-D₂ and anti-5-HT(2A) activities were measured by [³H]-spiperone and [³H]-ketanserin radioreceptor assays. The results revealed that there were significant correlations between both the plasma concentration and the DIEPSS total score (P<0.05). A negative correlative tendency was found between the S/D ratio and the DIEPSS total score. Furthermore, the plasma concentrations were divided into a low plasma concentration group and a high plasma concentration group, and the S/D ratios were divided into a low S/D ratio group and a high S/D ratio group. We then compared each group based on the DIEPSS total scores. The score in the high plasma concentration-low S/D ratio group was significantly higher than in the high plasma concentration-high S/D ratio, low plasma concentration-high S/D ratio and low plasma concentration-low S/D ratio groups (P<0.05 for all). These findings indicate that the incidence of EPS during treatment with blonanserin is mainly determined by plasma concentration, but the incidence of EPS may be inhibited when anti-5HT(2A) activity is predominant over anti-D₂ activity. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.
The metabolite beta-aminoisobutyric acid and physical inactivity among hemodialysis patients.
Molfino, Alessio; Amabile, Maria Ida; Ammann, Thomas; Farcomeni, Alessio; Lionetto, Luana; Simmaco, Maurizio; Lai, Silvia; Laviano, Alessandro; Rossi Fanelli, Filippo; Chiappini, Maria Grazia; Muscaritoli, Maurizio
2017-02-01
Physical inactivity is frequent in patients on hemodialysis (HD), and represents a reliable predictor of morbidity and mortality. Beta-aminoisobutyric acid (BAIBA) is a contraction-induced myokine, the plasma levels of which increase with exercise and are inversely associated with metabolic risk factors. The aim of this study was to ascertain whether physical inactivity and clinical parameters relate to plasma BAIBA levels in this patient population. Adult patients on HD were included, and the presence of physical inactivity was assessed. BAIBA levels were measured in these patients and in healthy individuals. We assessed barriers to physical activity, including 23 items regarding psychophysical and financial barriers. Body composition was assessed by bioimpedance and muscle strength by handgrip dynamometer. Nonparametric tests and logistic regression analyses were performed. Forty-nine patients on HD were studied; 49% were physically active and 51% were inactive. Of the patients, 43 reported barriers to physical activity and 61% of inactive patients reported three or more barriers. BAIBA levels were lower in patients on HD with respect to controls (P < 0.001). Stratifying HD patients as active and inactive, both groups showed significantly lower BAIBA levels versus controls (P = 0.0005, P < 0.001, respectively). Nondiabetic patients on HD showed increased BAIBA levels compared with diabetic patients (P < 0.001). Patients on HD endorsing the two most frequent barriers showed lower BAIBA levels than those not reporting these barriers (P = 0.006). Active patients showed higher intracellular water (%) (P = 0.008), and active and inactive patients showed significant correlation between total body muscle mass and handgrip strength (P = 0.04, P = 0.005, respectively). Physical inactivity is highly prevalent among patients on HD and BAIBA correlates with barriers to physical activity reported by inactive patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density
NASA Astrophysics Data System (ADS)
Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.
2016-12-01
Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.
A Physics Exploratory Experiment on Plasma Liner Formation
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter
2002-01-01
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.
ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package
NASA Astrophysics Data System (ADS)
Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.
2018-03-01
All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.
Yokoyama, Hisayo; Okazaki, Kazunobu; Imai, Daiki; Yamashina, Yoshihiro; Takeda, Ryosuke; Naghavi, Nooshin; Ota, Akemi; Hirasawa, Yoshikazu; Miyagawa, Toshiaki
2015-05-28
Physical activity reduces the incidence and progression of cognitive impairment. Cognitive-motor dual-task training, which requires dividing attention between cognitive tasks and exercise, may improve various cognitive domains; therefore, we examined the effect of dual-task training on the executive functions and on plasma amyloid β peptide (Aβ) 42/40 ratio, a potent biomarker of Alzheimer's disease, in healthy elderly people. Twenty-seven sedentary elderly people participated in a 12-week randomized, controlled trial. The subjects assigned to the dual-task training (DT) group underwent a specific cognitive-motor dual-task training, and then the clinical outcomes, including cognitive functions by the Modified Mini-Mental State (3MS) examination and the Trail-Making Test (TMT), and the plasma Aβ 42/40 ratio following the intervention were compared with those of the control single-task training (ST) group by unpaired t-test. Among 27 participants, 25 completed the study. The total scores in the 3MS examination as well as the muscular strength of quadriceps were equally improved in both groups after the training. The specific cognitive domains, "registration & recall", "attention", "verbal fluency & understanding", and "visuospatial skills" were significantly improved only in the DT group. Higher scores in "attention", "verbal fluency & understanding", and "similarities" were found in the DT group than in the ST group at post-intervention. The absolute changes in the total (8.5 ± 1.6 vs 2.4 ± 0.9, p = 0.004, 95 % confidence interval (CI) 0.75-3.39) and in the scores of "attention" (1.9 ± 0.5 vs -0.2 ± 0.4, p = 0.004, 95 % CI 2.25-9.98) were greater in the DT group than in the ST group. We found no changes in the TMT results in either group. Plasma Aβ 42/40 ratio decreased in both groups following the training (ST group: 0.63 ± 0.13 to 0.16 ± 0.03, p = 0.001; DT group: 0.60 ± 0.12 to 0.25 ± 0.06, p = 0.044), although the pre- and post-intervention values were not different between the groups for either measure. Cognitive-motor dual-task training was more beneficial than single-task training alone in improving broader domains of cognitive functions of elderly persons, and the improvement was not directly due to modulating Aβ metabolism.
Simulation Study of Structure and Properties of Plasma Liners for the PLX- α Project
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team
2017-10-01
Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier code in support of the Plasma Liner Experiment-ALPHA (PLX- α) project. Physics models include radiation, physical diffusion, plasma-EOS models, and an anisotropic diffusion model that mimics deviations from fully collisional hydrodynamics in outer layers of plasma jets. Detailed structure and non-uniformity of plasma liners of due to primary and secondary shock waves have been studies as well as averaged quantities of ram pressure and Mach number. Synthetic data from simulations have been compared with available experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Numerical studies of the sensitivity of liner properties to experimental errors in the initial masses of jets and the synchronization of plasma gun valves have also been performed. Supported by the ARPA-E ALPHA program.
NASA Astrophysics Data System (ADS)
Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.
A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.
Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases
NASA Astrophysics Data System (ADS)
Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.
2018-01-01
We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.
Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan
2014-11-01
Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.
Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan
2014-01-01
Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure. PMID:25489427
Wang, Shih-Yi; Huang, Wen-Ching; Liu, Chieh-Chung; Wang, Ming-Fu; Ho, Chin-Shan; Huang, Wen-Pei; Hou, Chia-Chung; Chuang, Hsiao-Li; Huang, Chi-Chang
2012-10-09
Pumpkin (Cucurbita moschata) is a popular and nutritious vegetable consumed worldwide. The overall purpose of this study was to evaluate the effects of C. moschata fruit extract (CME) on anti-fatigue and ergogenic functions following physiological challenges. Male ICR mice from four groups designated vehicle, CME-50, CME-100 and CME-250, respectively (n = 8 per group in each test) were orally administered CME for 14 days at 0, 50, 100 and 250 mg/kg/day. The anti-fatigue activity and exercise performance were evaluated using exhaustive swimming time, forelimb grip strength, as well as levels of plasma lactate, ammonia, glucose, and creatine kinase after an acute swimming exercise. The resting muscular and hepatic glycogen was also analyzed after 14-day supplementation with CME. Trend analysis revealed that CME treatments increased grip strength. CME dose-dependently increased 5% body weight loaded swimming time, blood glucose, and muscular and hepatic glycogen levels. CME dose-dependently decreased plasma lactate and ammonia levels and creatine kinase activity after a 15-min swimming test. The mechanism was relevant to the increase in energy storage (as glycogen) and release (as blood glucose), and the decrease of plasma levels of lactate, ammonia, and creatine kinase. Therefore, CME may be potential for the pharmacological effect of anti-fatigue.
Tuakli-Wosornu, Yetsa A; Terry, Alon; Boachie-Adjei, Kwadwo; Harrison, Julian R; Gribbin, Caitlin K; LaSalle, Elizabeth E; Nguyen, Joseph T; Solomon, Jennifer L; Lutz, Gregory E
2016-01-01
To determine whether single injections of autologous platelet-rich plasma (PRP) into symptomatic degenerative intervertebral disks will improve participant-reported pain and function. Prospective, double-blind, randomized controlled study. Outpatient physiatric spine practice. Adults with chronic (≥6 months), moderate-to-severe lumbar diskogenic pain that was unresponsive to conservative treatment. Participants were randomized to receive intradiskal PRP or contrast agent after provocative diskography. Data on pain, physical function, and participant satisfaction were collected at 1 week, 4 weeks, 8 weeks, 6 months, and 1 year. Participants in the control group who did not improve at 8 weeks were offered the option to receive PRP and subsequently followed. Functional Rating Index (FRI), Numeric Rating Scale (NRS) for pain, the pain and physical function domains of the 36-item Short Form Health Survey, and the modified North American Spine Society (NASS) Outcome Questionnaire were used. Forty-seven participants (29 in the treatment group, 18 in the control group) were analyzed by an independent observer with a 92% follow-up rate. Over 8 weeks of follow-up, there were statistically significant improvements in participants who received intradiskal PRP with regards to pain (NRS Best Pain) (P = .02), function (FRI) (P = .03), and patient satisfaction (NASS Outcome Questionnaire) (P = .01) compared with controls. No adverse events of disk space infection, neurologic injury, or progressive herniation were reported following the injection of PRP. Participants who received intradiskal PRP showed significant improvements in FRI, NRS Best Pain, and NASS patient satisfaction scores over 8 weeks compared with controls. Those who received PRP maintained significant improvements in FRI scores through at least 1 year of follow-up. Although these results are promising, further studies are needed to define the subset of participants most likely to respond to biologic intradiskal treatment and the ideal cellular characteristics of the intradiskal PRP injectate. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Structured lipid emulsion as nutritional therapy for the elderly patients with severe sepsis.
Chen, Jin; Yan, Jing; Cai, Guo-Long; Xu, Qiang-Hong; Gong, Shi-Jin; Dai, Hai-Wen; Yu, Yi-Hua; Li, Li
2013-06-01
The nutritional support is one of the important therapeutic strategies for the elderly patients with severe sepsis, but there is controversial in choosing a parenteral nutrition formulation. This study was designed to compare the therapeutic effects of structured lipid emulsion, physically mixed medium, and long-chain fat emulsion in the treatment of severe sepsis in elderly patients. A total number of 64 elder patients with severe sepsis were enrolled in the study. After a week of enteral nutritional support, the patients were randomly divided into research (structured lipid emulsion as parenteral alimentation) and control groups (physically mixed medium and long-chain fat emulsion as parenteral alimentation). The alterations of plasma albumin, lipid metabolism, and blood glucose level were recorded after parenteral alimentation and were compared between the two groups. The plasma levels of albumin, prealbumin, cholesterol, and triglyceride were decreased in all the patients after one week of enteral nutritional support treatment (t = 7.78, P = 0.000; t = 10.21, P = 0.000; t = 7.99, P = 0.000; and t = 10.99, P = 0.000). Further parenteral alimentation with different lipid emulsions had significant effects on the serum prealbumin and albumin (t = 3.316, P = 0.002; t = 3.200, P = 0.002), whilst had no effects on the blood glucose and triglyceride level (t = 7.78, P = 0.000; t = 4.228, P = 0.000). In addition, the two groups had a significantly different Apache II score, ventilator time, and hospital stay time (t = -2.213, P = 0.031; t = 2.317, P = 0.024; t = 2.514, P = 0.015). The structured lipid emulsion was safe as parenteral nutrition for elderly patients with severe sepsis. It was demonstrated to be superior to the physically mixed medium and long-chain fat emulsion with respect to the protein synthesis and prognosis.
NASA Astrophysics Data System (ADS)
Dobrynin, Danil
2013-09-01
Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.
Plasma medicine: an introductory review
NASA Astrophysics Data System (ADS)
Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.
2009-11-01
This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.
Plasma-grafting polymerization on carbon fibers and its effect on their composite properties
NASA Astrophysics Data System (ADS)
Zhang, Huanxia; Li, Wei
2015-11-01
Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.
NASA Astrophysics Data System (ADS)
Hatayama, A.; Nishioka, S.; Nishida, K.; Mattei, S.; Lettry, J.; Miyamoto, K.; Shibata, T.; Onai, M.; Abe, S.; Fujita, S.; Yamada, S.; Fukano, A.
2018-06-01
The present status of kinetic modeling of particle dynamics in hydrogen negative ion (H‑) source plasmas and their comparisons with experiments are reviewed and discussed with some new results. The main focus is placed on the following topics, which are important for the research and development of H‑ sources for intense and high-quality H‑ ion beams: (i) effects of non-equilibrium features of electron energy distribution function on volume and surface H‑ production, (ii) the origin of the spatial non-uniformity in giant multi-cusp arc-discharge H‑ sources, (iii) capacitive to inductive (E to H) mode transition in radio frequency-inductively coupled plasma H‑ sources and (iv) extraction physics of H‑ ions and beam optics, especially the present understanding of the meniscus formation in strongly electronegative plasmas (so-called ion–ion plasmas) and its effect on beam optics. For these topics, mainly Japanese modeling activities, and their domestic and international collaborations with experimental studies, are introduced with some examples showing how models have been improved and to what extent the modeling studies can presently contribute to improving the source performance. Close collaboration between experimental and modeling activities is indispensable for the validation/improvement of the modeling and its contribution to the source design/development.
Plasma-surface interaction in the context of ITER.
Kleyn, A W; Lopes Cardozo, N J; Samm, U
2006-04-21
The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.
EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space
NASA Astrophysics Data System (ADS)
Koepke, Mark
2008-07-01
The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.
Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena
NASA Astrophysics Data System (ADS)
Ryutov, Livermore, Ca 94550, Usa, D. D.
2017-10-01
The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.
Raman Sidescattering in Laser-Produced Plasmas.
1984-12-27
MENYUK AND N. M. EL-SIRAGY Labomtyjb Plasma and Fusion Energy Studies -~ University of Maryland College Park, MD 20 742 LnW. M. MANHEIMER2 Plasma...NOTATION *Laboratory for Plasma and Fusion Energy Studies, Univ. of Maryland, College Park, MD 20742 **Permanent Address: Physics Dept., Univ. of Tanta
NASA Astrophysics Data System (ADS)
Andreev, N. E.; Gorbunov, Leonid M.; Tikhonchuk, Vladimir T.
1994-09-01
A brief analysis is made of the most important nonlinear processes which result from the interaction of laser radiation with thermonuclear targets. lt is shown that problems in the physics of the plasma corona should be an essential part of any programme of research on laser controlled thermonuclear fusion. A list is given of the problems that have to be solved first before going to the next level of laser energies.
Modeling of Inelastic Collisions in a Multifluid Plasma: Excitation and Deexcitation
2016-05-31
AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES For publication in Physics of Plasma Vol #22, Issue...the fundamental physical processes may be individually known, it is not always clear how their combination affects the overall operation, or at what...arises from the complexity of the physical processes needed to be captured in the model. The required level of detail of the CR model is typically not
Modeling of Inelastic Collisions in a Multifluid Plasma: Excitation and Deexcitation (Preprint)
2015-06-01
AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES For publication in Physics of Plasma PA Case...the fundamental physical processes may be individually known, it is not always clear how their combination affects the overall operation, or at what...arises from the complexity of the physical processes needed to be captured in the model. The required level of detail of the CR model is typically not
plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry
NASA Astrophysics Data System (ADS)
Venkattraman, Ayyaswamy; Verma, Abhishek Kumar
2016-09-01
As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.
Modeling of helicon wave propagation and the physical process of helicon plasma production
NASA Astrophysics Data System (ADS)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao
2014-10-01
Helicon plasma is a high-density and low-temperature plasma generated by the helicon wave, and is expected to be useful for various applications. On the other hand, there still remain a number of unsolved physical issues regarding how the plasma is generated using the helicon wave. The generation involves such physical processes as wave propagation, mode conversion, and collisionless as well as collisional wave damping that leads to ionization/recombination of neutral particles. In this study, we attempt to construct a model for the helicon plasma production using numerical simulations. In particular, we will make a quantitative argument on the roles of the mode conversion from the helicon to the electrostatic Trivelpiece-Gould (TG) wave, as first proposed by Shamrai. According to his scenario, the long wavelength helicon wave linearly mode converts to the TG wave, which then dissipates rapidly due to its large wave number. On the other hand, the efficiency of the mode conversion depends strongly on the magnitudes of dissipation parameters. Particularly when the dissipation is dominant, the TG wave is no longer excited and the input helicon wave directly dissipates. In the presentation, we will discuss the mode conversion and the plasma heating using numerical simulations.
Towards Plasma-Based Water Purification: Challenges and Prospects for the Future
NASA Astrophysics Data System (ADS)
Foster, John
2016-10-01
Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.
Magnetic Field Effects on Plasma Plumes
NASA Technical Reports Server (NTRS)
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
The 2017 Plasma Roadmap: Low temperature plasma science and technology
NASA Astrophysics Data System (ADS)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.
2017-08-01
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
NASA Astrophysics Data System (ADS)
Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas
2010-07-01
Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.
Plasma total antioxidant capacity (TAC) in obese Malaysian subjects.
Lim, S H; Fan, S H; Say, Y H
2012-12-01
There is a pressing need to better understand the complex biochemical pathways that lead to the pathogenesis of obesity. Increased oxidative stress and decreased antioxidant capacity have been identified to be associated with obesity. Therefore, the objectives of this study were to determine the plasma total antioxidant capacity (TAC) levels of Malaysian subjects and to evaluate its potential association with obesity and related anthropometric measurements. Plasma TAC of 362 multi-ethnic Malaysian subjects from the Kampar Health Clinic (138 males, 224 females; 124 ethnic Malays, 152 Chinese, 86 Indians; 192 non-obese, 170 obese) was measured using Trolox equivalent antioxidant capacity (TEAC) 96-well plate assay. Plasma TAC was significantly lower in obese subjects (M +/- SE = 292 +/- 10.4 micromol/L) compared to non-obese subjects (397 +/- 8.58 micromol/L), whereas it was significantly higher in males and those in the 21-30 age group. Those with salty food preference and practising a strict vegetarian diet also had significantly higher plasma TAC. However, no association was found for other dietary habits (coffee intake) and lifestyle factors (physical activity, smoking). Plasma TAC was also significantly negatively correlated with diastolic blood pressure, waist and hip circumferences, weight, body mass index, total body fat, % subcutaneous fat, visceral fat level, resting metabolism and % skeletal muscle. Plasma TAC was found to be associated with obesity, strict vegetarian practice, salty food preference and all obesity anthropometric indicators, except systolic blood pressure and pulse rate. Obese people have decreased plasma TAC indicating a compromised systemic antioxidant defence and increased oxidative stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Skinner, C.H.; Brooks, J.N.
2001-01-10
The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less
Wang, Rex C.-C.; Liu, Cheng; Yang, Chyun-Yu
2017-01-01
The sand-blasting and acid etching (SLA) method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant, but can not achieve early bone healing. This study used two kinds of plasma treatments (Direct-Current and Radio-Frequency plasma) to modify the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. The results show that the plasma treatments do not change the micron scale topography, and plasma-treated specimens presented super hydrophilicity. The X-ray photoelectron spectroscopy (XPS)-examined result showed that the functional OH content of the RF plasma-treated group was higher than the control (SLA) and DC treatment groups. The biological responses (protein adsorption, cell attachment, cell proliferation, and differentiation) promoted after plasma treatments, and the cell responses, have correlated to the total content of amphoteric OH groups. The experimental results indicated that plasma treatments can create functional OH groups on SLA-treated specimens, and the RF plasma-treated SLA implant thus has potential for achievement of bone healing in early stage of implantation. PMID:29068417
Takada, M; Nishida, K; Kataoka-Kato, A; Gondo, Y; Ishikawa, H; Suda, K; Kawai, M; Hoshi, R; Watanabe, O; Igarashi, T; Kuwano, Y; Miyazaki, K; Rokutan, K
2016-07-01
This study aimed to examine the effects of Lactobacillus casei strain Shirota (LcS) on gut-brain interactions under stressful conditions. Three double-blind, placebo-controlled trials were conducted to examine the effects of LcS on psychological and physiological stress responses in healthy medical students under academic examination stress. Subjects received LcS-fermented milk or placebo daily for 8 weeks prior to taking a national standardized examination. Subjective anxiety scores, salivary cortisol levels, and the presence of physical symptoms during the intervention were pooled and analyzed. In the animal study, rats were given feed with or without LcS for 2 weeks, then submitted to water avoidance stress (WAS). Plasma corticosterone concentration and the expression of cFos and corticotropin releasing factor (CRF) in the paraventricular nucleus (PVN) were measured immediately after WAS. In an electrophysiological study, gastric vagal afferent nerve activity was monitored after intragastric administration of LcS to urethane-anesthetized rats. Academic stress-induced increases in salivary cortisol levels and the incidence rate of physical symptoms were significantly suppressed in the LcS group compared with the placebo group. In rats pretreated with LcS, WAS-induced increases in plasma corticosterone were significantly suppressed, and the number of CRF-expressing cells in the PVN was reduced. Intragastric administration of LcS stimulated gastric vagal afferent activity in a dose-dependent manner. These findings suggest that LcS may prevent hypersecretion of cortisol and physical symptoms under stressful conditions, possibly through vagal afferent signaling to the brain and reduced stress reactivity in the PVN. © 2016 John Wiley & Sons Ltd.
Effects of dance therapy on the selected hematological and rheological indicators in older women.
Filar-Mierzwa, Katarzyna; Marchewka, Anna; Bac, Aneta; Kulis, Aleksandra; Dąbrowski, Zbigniew; Teległów, Aneta
2017-01-01
The aim of this study was to analyze the effects of dance therapy on selected hematological and rheological indicators in older women. The study included 30 women (aged 71.8±7.4), and the control group comprised of 10 women of corresponding age. Women from the experimental group were subjected to a five-month dance therapy program (three 45-minute sessions per week); women from the control group were not involved in any regular physical activity. Blood samples from all the women were examined for hematological, rheological, and biochemical parameters prior to the study and five months thereafter. The dance therapy program was reflected by a significant improvement of erythrocyte count and hematocrit. Furthermore, the dance therapy resulted in a significant increase in the plasma viscosity, while no significant changes in glucose and fibrinogen levels were noted. Dance therapy modulates selected hematological parameters of older women; it leads to increase in erythrocyte count and hematocrit level. Dance therapy is reflected by higher plasma viscosity. Concentrations of fibrinogen and glucose are not affected by the dance therapy in older women, suggesting maintenance of homeostasis. Those findings advocate implementation of dance therapy programs in older women.
The Application of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
Thieman, J. R.; King, T. A.; Roberts, D.
2012-12-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at
PREFACE: Progress in the ITER Physics Basis
NASA Astrophysics Data System (ADS)
Ikeda, K.
2007-06-01
I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were fundamental to its completion. I am pleased to witness the extensive collaborations, the excellent working relationships and the free exchange of views that have been developed among scientists working on magnetic fusion, and I would particularly like to acknowledge the importance which they assign to ITER in their research. This close collaboration and the spirit of free discussion will be essential to the success of ITER. Finally, the PIPB identifies issues which remain in the projection of burning plasma performance to the ITER scale and in the control of burning plasmas. Continued R&D is therefore called for to reduce the uncertainties associated with these issues and to ensure the efficient operation and exploitation of ITER. It is important that the international fusion community maintains a high level of collaboration in the future to address these issues and to prepare the physics basis for ITER operation. ITPA Coordination Committee R. Stambaugh (Chair of ITPA CC, General Atomics, USA) D.J. Campbell (Previous Chair of ITPA CC, European Fusion Development Agreement—Close Support Unit, ITER Organization) M. Shimada (Co-Chair of ITPA CC, ITER Organization) R. Aymar (ITER International Team, CERN) V. Chuyanov (ITER Organization) J.H. Han (Korea Basic Science Institute, Korea) Y. Huo (Zengzhou University, China) Y.S. Hwang (Seoul National University, Korea) N. Ivanov (Kurchatov Institute, Russia) Y. Kamada (Japan Atomic Energy Agency, Naka, Japan) P.K. Kaw (Institute for Plasma Research, India) S. Konovalov (Kurchatov Institute, Russia) M. Kwon (National Fusion Research Center, Korea) J. Li (Academy of Science, Institute of Plasma Physics, China) S. Mirnov (TRINITI, Russia) Y. Nakamura (National Institute for Fusion Studies, Japan) H. Ninomiya (Japan Atomic Energy Agency, Naka, Japan) E. Oktay (Department of Energy, USA) J. Pamela (European Fusion Development Agreement—Close Support Unit) C. Pan (Southwestern Institute of Physics, China) F. Romanelli (Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Italy and European Fusion Development Agreement—Close Support Unit) N. Sauthoff (Princeton Plasma Physics Laboratory, USA and Oak Ridge National Laboratories, USA) Y. Saxena (Institute for Plasma Research, India) Y. Shimomura (ITER Organization) R. Singh (Institute for Plasma Research, India) S. Takamura (Nagoya University, Japan) K. Toi (National Institute for Fusion Studies, Japan) M. Wakatani (Kyoto University, Japan (deceased)) H. Zohm (Max-Planck-Institut für Plasmaphysik, Garching, Germany)
Orlando, Patrick; Silvestri, Sonia; Galeazzi, Roberta; Antonicelli, Roberto; Marcheggiani, Fabio; Cirilli, Ilenia; Bacchetti, Tiziana; Tiano, Luca
2018-12-01
Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise. 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed. A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q 10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged. Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.
NASA Astrophysics Data System (ADS)
Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.
2015-03-01
Written contributions from participants of the Joint 15th Latin American Workshop on Plasma Physics (LAWPP 2014) - 21st IAEA Technical Meeting on Research Using Small Fusion Devices (21st IAEA TM RUSFD). The International Advisory Committees of the 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and the 21st IAEA TM on Research Using Small Fusion Devices (RUSFD), agreed to carry out together this Joint LAWPP 2014 - 21st RUSFD in San José, Costa Rica, on 27-31 January 2014. The Joint LAWPP 2014 - 21st RUSFD meeting, organized by the Instituto Tecnológico de Costa Rica, Universidad Nacional de Costa Rica, and Ad Astra Rocket Company in collaboration with the International Atomic Energy Agency (IAEA). The Latin American Workshop on Plasma Physics (LAWPP) is a series of events which has been held periodically since 1982, with the purpose of providing a forum in which the research of the Latin American plasma physics community can be displayed, as well as fostering collaborations among plasma scientists within the region and with researchers from the rest of the world. Recognized plasma scientists from developed countries are specially invited to the meeting to present the state of the art on several "hot" topics related to plasma physics. It is an open meeting, with an International Advisory Committee, in which the working language is English. It was firstly held in 1982 in Cambuquira, Brazil, followed by workshops in Medellín, Colombia (1985), Santiago de Chile, Chile (1988), Buenos Aires, Argentina (1990), Mexico City, Mexico (1992), Foz do Iguaçu, Brazil (1994, combined with the International Congress on Plasma Physics (ICPP)), Caracas, Venezuela (1997), Tandil, Argentina (1998), La Serena, Chile (2000), Sao Pedro, Brazil (2003), Mexico City, Mexico (2005), Caracas, Venezuela (2007), Santiago de Chile, Chile (2010, combined with the ICPP) and Mar de Plata, Argentina (2011). The 21st IAEA TM on Research Using Small Fusion Devices is an ideal forum for small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January 2014 and was attended by 37 participants formally registered with the IAEA, who joined the LAWPP 2014 participants. Its separate scientific programme had two plenary talks, 12 oral presentations and 14 papers presented in poster sessions on Monday 27 and Tuesday 28 January 2014. The 2nd Workshop on Industrial Applications of Plasma Technology (2nd AITP) was held on 30 and 31 January 2014, had six invited speakers, which included 2 plenary talks, 4 invited talks, 11 oral presentations and 31 contributions in a single poster session on Thursday 30 January, 2014. Its proceedings have been merged with those of the joint meeting. Finally the 1st Costa Rican Summer School on Plasma Physics, held in Santa Clara, San Carlos on 20-24 January 2014, in the week previous to the meetings, had 80 participants, 40 international conferences on different plasma physics topics, and 12 professors. The topics included in the programme of the Joint LAWPP 2014 - 21st IAEA TM RUSFD were: space plasmas, dusty plasmas, nuclear fusion, nonthermal plasmas, plasma space propulsion, basic plasma processes, plasma simulation, and industrial plasma applications among others. We are very grateful to the sponsors of the meetings: the Instituto Tecnológico de Costa Rica, the International Atomic Energy Agency (IAEA), the Universidad Nacional de Costa Rica, and Ad Astra Rocket Company. We also want to thank our exhibitors and contributors: INTERCOVAMEX, Nuclear & Plasma Sciences Society, and the IEEE Costa Rica Chapter. The publication of the proceedings was fully supported by the International Atomic Energy Agency (IAEA). The support of the International Advisory and the Local Organizing Committees, is also acknowledged in a heartfelt way. Finally, the Editors of this special issue are grateful to José Asenjo for his excellent work and cooperation for the preparation of the proceedings. Iván Vargas-Blanco and J. Julio E. Herrera-Velázquez Editors of the proceedings
COSTEP: A comprehensive suprathermal and energetic particle analyzer for SOHO
NASA Technical Reports Server (NTRS)
Kunow, Horst; Fischer, Harald; Green, Guenter; Mueller-Mellin, Reinhold; Wibberenz, Gerd; Holweger, Hartmut; Evenson, Paul; Meyer, Jean-Paul; Hasebe, Nabuyuki; Vonrosenvinge, Tycho
1988-01-01
The group of instruments involved in the COSTEP (comprehensive suprathermal and energetic particle analyzer) project are described. Three sensors, the LION (low energy ion and electron) instrument, the MEICA (medium energy ion composition analyzer) and the EPHIN (electron proton helium instrument) are described. They are designed to analyze particle emissions from the sun over a wide range of species (electrons through iron) and energies (60 KeV/particle to 500 MeV/nucleon). The data collected is used in studying solar and space plasma physics.
Physics in Europe--A Data File of Selected Research.
1984-06-18
Negev Sapir Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 1025 CPBICF laser plasma soft x-ray refractometry France...CPBICF laser plasma Schlieren diagnostic France 623 CPBICF laser plasma self focusing numerics UK 1025 CPBICF laser plasma soft x-ray refractometry
Plasma Physics Lab and the Tokamak Fusion Test Reactor, 1989
None
2018-01-16
From the Princeton University Archives: Promotional video about the Plasma Physics Lab and the new Tokamak Fusion Test Reactor (TFTR), with footage of the interior, machines, and scientists at work. This film is discussed in the audiovisual blog of the Seeley G. Mudd Manuscript Library, which holds the archives of Princeton University.
Strongly-Perturbed Non-Equilibrium Gas Physics Model for the Paraxial Diode Transport Cell
2003-06-01
species and energy flow is critical to the plasma chemistry . The new model’s slight underestimate of the electron density may be a consequence of the...beam physics and plasma chemistry allows the modeling of intense charged-particle beam transport environments such as the paraxial diode gas cell
Theorell, T; Karasek, R A; Eneroth, P
1990-01-01
Job strain, a high level of psychological demands combined with a low level of decision latitude, has been hypothesized to induce mobilization of energy and inhibition of anabolism. In the present project this hypothesis was tested using four repeated observations every third month in a group of 44 men working in six widely different occupations. On each occasion scores of self-reported demands and decision latitude were calculated for every participant. An earlier report has shown that systolic blood pressure during work hours--an indicator of mobilization of energy--increased with increasing job strain (ratio between demands and decision latitude). Blood samples were drawn in the morning at the work site. For each man the plasma testosterone levels--representing the general level of anabolic activity--on the two occasions with the worst strain (ratio between demands and decision latitude) were compared with the plasma testosterone levels on the two occasions with the least strain. The results indicated that total plasma testosterone (but not free testosterone) levels increased when strain diminished in sedentary but not in physically demanding work. Subjects with a family history of hypertension showed a greater decrease in testosterone levels than others when job strain increased.
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Cohen, B. I.; Rognlien, T. D.; Boedo, J. A.; Rudakov, D. L.
2012-10-01
Recent BOUT simulations of edge plasma turbulence in L-mode regime in the boundary region of DIII-D tokamak have demonstrated reasonable match with key edge diagnostics [1]. Order-of-magnitude level agreement has been found in the characteristic amplitude, wavenumber, and frequency of turbulent fluctuations, as compared with experimental data from reciprocating edge Langmuir probe and Beam Emission Spectroscopy systems. Owing to this encouraging agreement, output data from these simulations are analyzed to get insights on physical mechanisms and properties of plasma particle and energy fluxes to material surfaces. Of particular interest is plasma turbulence propagating into, or generated in, the far scrape-off layer region where plasma interacts with material walls. Results of statistical analyses of simulated turbulence plasma transport will be presented and physical implications will be discussed. [4pt] [1] B.I. Cohen et al., APS-DPP 2012
Impact of the Hall effect on high-energy-density plasma jets.
Gourdain, P-A; Seyler, C E
2013-01-04
Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Péclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it.
Breast milk provides better antioxidant power than does formula.
Aycicek, Ali; Erel, Ozcan; Kocyigit, Abdurrahim; Selek, Sahbettin; Demirkol, Mehmet Resit
2006-06-01
We examined the effect of breast milk on plasma total antioxidant capacity (TAC), total peroxide (TP), and oxidative stress index (OSI), which are biomarkers of oxidative status. Fifty-four healthy term infants 3 to 6 mo of age were fed breast milk or a cow's milk modified formula. Plasma TAC, vitamin C, albumin, bilirubin, and uric acid levels were measured as indexes of antioxidative markers. Plasma TP levels were measured as an oxidative stress marker. The OSI was calculated to assess oxidative status. No significant differences were observed between groups with respect to growth or anthropometric measurements. Plasma uric acid, total protein, and albumin concentrations were slightly higher in the breast-fed group than in the formula-fed group. There was a positive correlation between infant's age and serum albumin levels; between TAC and plasma uric acid, albumin, and total bilirubin; and between plasma iron and TP levels in both groups (r > 0.256, P < 0.05). In addition, there was a negative correlation between plasma iron and TAC (r = -0.267, P = 0.01). Plasma TAC and vitamin C levels were significantly higher in the breast-fed group than in the formula-fed group (P < 0.05). Plasma TP levels and the OSI were higher in the formula-fed group than those in the breast-fed group (P < 0.05). Our data suggest that breast milk provides better antioxidant power than does formula.
Lab- and space-based researchers discuss plasma experiments
NASA Astrophysics Data System (ADS)
Baker, D. N.; Yamada, M.
Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.
Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A
2016-02-01
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.
2016-02-15
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less
Evolution of large-sclae plasma structures in comets: Kinematics and physics
NASA Technical Reports Server (NTRS)
Brandt, John C.
1988-01-01
Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng
2017-02-01
Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.
NASA Astrophysics Data System (ADS)
Nerney, E. G.; Bagenal, F.; Yoshioka, K.; Schmidt, C.
2017-12-01
Io emits volcanic gases into space at a rate of about a ton per second. The gases become ionized and trapped in Jupiter's strong magnetic field, forming a torus of plasma that emits 2 terawatts of UV emissions. In recent work re-analyzing UV emissions observed by Voyager, Galileo, & Cassini, we found plasma conditions consistent with a physical chemistry model with a neutral source of dissociated sulfur dioxide from Io (Nerney et al., 2017). In further analysis of UV observations from JAXA's Hisaki mission (using our spectral emission model) we constrain the torus composition with ground based observations. The physical chemistry model (adapted from Delamere et al., 2005) is then used to match derived plasma conditions. We correlate the oxygen to sulfur ratio of the neutral source with volcanic eruptions to understand the change in magnetospheric plasma conditions. Our goal is to better understand and constrain both the temporal and spatial variability of the flow of mass and energy from Io's volcanic atmosphere to Jupiter's dynamic magnetosphere.
In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment.
Chatraie, Maedeh; Torkaman, Giti; Khani, Mohammadreza; Salehi, Hossein; Shokri, Babak
2018-04-04
According to high incidence and prevalence of pressure ulcers worldwide, the purpose of this study is using of non-thermal atmospheric plasma as a novel therapy for pressure ulcers. Cold plasma was produced by applying a high-voltage (5 kV) and high-frequency (25 kHz), to helium gas. Under general anesthesia and sterile conditions, two circular magnets were used to create pressure ulcers on the dorsal skin of adult rats. The wounds were divided randomly into control and plasma-treated groups. Animals in the plasma-treated group received plasma radiation for 5 days, each day 3 times and every time 60 s. Mechanical assays were performed to determine plasma effects on the mechanical strength of the repaired tissue. The results showed that mechanical strength of repaired wound in the plasma-treated group was significantly higher than that in the control group (p < 0.05). In addition, evidence from histological studies indicates a significantly accelerated wound re-epithelialization in comparison with the control group; angiogenesis and fibrosis (collagen synthesis) were also significantly increased and the inflammation phase of wound healing was shorter in the plasma-treated group. The plasma treatment also resulted in significant wound contraction and acceleration of wound healing. The findings of present study indicate the effects of cold plasma on pressure ulcer treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripin, B.H.; Grun, J.; Herbst, M.J.
Laser plasma interaction experiments have now advanced to the point where very quantitative measurements are required to elucidate the physic issues important for laser fusion and other applications. Detailed time-resolved knowledge of the plasma density, temperature, velocity gradients, spatial structure, heat flow characteristics, radiation emission, etc, are needed over tremendou ranges of plasma density and temperature. Moreover, the time scales are very short, aggrevating the difficulty of the measurements further. Nonetheless, such substantial progress has been made in diagnostic development during the past few years that we are now able to do well diagnosed experiments. In this paper the authorsmore » review recent diagnostic developments for laser-plasma interactions, outline their regimes of applicability, and show examples of their utility. In addition to diagnostics for the high densities and temperature characteristic of laser fusion physics studies, diagnostics designed to study the two-stream interactions of laser created plasma flowing through an ambient low density plasma will be described.« less
Progress in Development of the ITER Plasma Control System Simulation Platform
NASA Astrophysics Data System (ADS)
Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel
2017-10-01
We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Sensitivity of RF-driven Plasma Filaments to Trace Gases
NASA Astrophysics Data System (ADS)
Burin, M. J.; Czarnocki, C. J.; Czarnocki, K.; Zweben, S. J.; Zwicker, A.
2011-10-01
Filamentary structures have been observed in many types of plasma discharges in both natural (e.g. lightning) and industrial systems (e.g. dielectric barrier discharges). Recent progress has been made in characterizing these structures, though various aspects of their essential physics remain unclear. A common example of this phenomenon can be found within a toy plasma globe (or plasma ball), wherein a primarily neon gas mixture near atmospheric pressure clearly and aesthetically displays filamentation. Recent work has provided the first characterization of these plasma globe filaments [Campanell et al., Physics of Plasmas 2010], where it was noticed that discharges of pure gases tend not to produce filaments. We have extended this initial work to investigate in greater detail the dependence of trace gases on filamentation within a primarily Neon discharge. Our preliminary results using a custom globe apparatus will be presented, along with some discussion of voltage dependencies. Newly supported by the NSF/DOE Partnership in Basic Plasma Science and Engineering.
Safety of the use of group A plasma in trauma: the STAT study.
Dunbar, Nancy M; Yazer, Mark H
2017-08-01
Use of universally ABO-compatible group AB plasma for trauma resuscitation can be challenging due to supply limitations. Many centers are now using group A plasma during the initial resuscitation of traumatically injured patients. This study was undertaken to evaluate the impact of this practice on mortality and hospital length of stay (LOS). Seventeen trauma centers using group A plasma in trauma patients of unknown ABO group participated in this study. Eligible patients were group A, B, and AB trauma patients who received at least 1 unit of group A plasma. Data collected included patient sex, age, mechanism of injury, Trauma Injury Severity Score (TRISS) probability of survival, and number of blood products transfused. The main outcome of this study was in-hospital mortality differences between group B and AB patients compared to group A patients. Data on early mortality (≤24 hr) and hospital LOS were also collected. There were 354 B and AB patients and 809 A patients. The two study groups were comparable in terms of age, sex, TRISS probability of survival, and total number of blood products transfused. The use of group A plasma during the initial resuscitation of traumatically injured patients of unknown ABO group was not associated with increased in-hospital mortality, early mortality, or hospital LOS for group B and AB patients compared to group A patients. These results support the practice of issuing thawed group A plasma for the initial resuscitation of trauma patients of unknown ABO group. © 2017 AABB.
Increased Plasma Levels of Heme Oxygenase-1 in Human Brucellosis.
Chen, Zhe; Zhang, Yu-Xue; Fu, Dong-Wei; Gao, Qing-Feng; Ge, Feng-Xia; Liu, Wei-Hua
2016-08-01
Brucellosis is associated with inflammation and the oxidative stress response. Heme oxygenase-1 (HO-1) is a cytoprotective stress-responsive enzyme that has anti-inflammatory and anti-oxidant effects. Nevertheless, the role of HO-1 in human brucellosis has not yet been studied. The aim of this study was to examine the plasma levels of HO-1 in patients with brucellosis and to evaluate the ability of plasma HO-1 levels as an auxiliary diagnosis, a severity predictor, and a monitor for brucellosis treatments. A total of 75 patients with brucellosis were divided into the acute, subacute, chronic active, and chronic stable groups. An additional 20 volunteers were included as the healthy control group. The plasma HO-1 levels and other laboratory parameters were measured in all groups. Furthermore, the plasma levels of HO-1 in the acute group were compared before and after treatment. The plasma HO-1 levels were considerably increased in the acute (4.97 ± 3.55), subacute (4.98 ± 3.23), and chronic active groups (4.43 ± 3.00) with brucellosis compared to the healthy control group (1.03 ± 0.63) (p < 0.01). In the acute group, the plasma HO-1 levels in the post-treatment group (2.33 ± 2.39) were significantly reduced compared to the pre-treatment group (4.97 ± 3.55) (p < 0.01). On the other hand, the plasma HO-1 levels were higher in the chronic active group (4.43 ± 3.00) than the chronic stable group (2.74 ± 2.23) (p < 0.05). However, the plasma HO-1 levels in the chronic stable group (2.74 ± 2.23) remained higher than the levels in the healthy control group (1.03 ± 0.63) (p < 0.05). The HO-1 levels were positively correlated with the C-reactive protein (CRP) levels in patients with brucellosis (r = 0.707, p < 0.01). The plasma HO-1 levels can reflect patients' brucellosis status and may be used as a supplementary plasma marker for diagnosing brucellosis and monitoring its treatment.
NASA Astrophysics Data System (ADS)
Gribkov, V.; Van Oost, G.; Malaquias, A.; Herrera, J.
2006-10-01
Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions—to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J.
Moreira, Neide Martins; de Moraes, Solange Marta Franzói; Dalálio, M M O; Gomes, Mônica Lúcia; Sant'ana, D M G; de Araújo, Silvana Marques
2014-02-01
Trypanosoma cruzi causes neuronal myenteric depopulation compromising intestinal function. The purpose of this study was to evaluate the influence of moderate physical exercise on NADH diaphorase (NADH-d)-positive neurons in the myenteric plexus and intestinal wall of the colon in mice infected with T. cruzi. Forty 30-day-old male Swiss mice were divided into the following groups: trained infected (TI), sedentary infected (SI), trained control (TC), and sedentary control. The TC and TI groups were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing physical exercise, the TI and SI groups were intraperitoneally inoculated with 1,300 blood trypomastigotes of the Y strain of Trypanosoma cruzi. Parasitemia was evaluated from days 4 to 61 after inoculation. On day 75 of infection, myenteric neurons in the colon were quantified (NADH-d), and inflammatory foci were counted. Tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) levels were evaluated in plasma. The results were compared using analysis of variance and the Kruskal-Wallis test at a 5 % significance level. Moderate physical exercise reduced the parasite peak on day 8 of infection (p = 0.0132) and total parasitemia (p = 0.0307). It also prevented neuronal depopulation (p < 0.01), caused hypertrophy of these cells (p < 0.05), prevented the formation of inflammatory foci (p < 0.01), and increased the synthesis of TNF-α (p < 0.01) and TGF-β (p > 0.05). These results reinforce the therapeutic benefits of moderate physical exercise for T. cruzi infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ruili; Liu, Jian; Xiao, Jianyuan
2016-07-15
The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between themore » stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.« less
Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elizabeth; Navas-Enamorado, Ignacio; Del Pozo-Cruz, Borja; Navas, Plácido; López-Lluch, Guillermo
2014-04-01
The impact of aging and physical capacity on coenzyme Q10 (Q10) levels in human blood is unknown. Plasma Q10 is an important factor in cardiovascular diseases. To understand how physical activity in the elderly affects endogenous Q10 levels in blood plasma, we studied a cohort of healthy community-dwelling people. Volunteers were subjected to different tests of the Functional Fitness Test Battery including handgrip strength, six-minute walk, 30 s chair to stand, and time up and go tests. Anthropometric characteristics, plasma Q10 and lipid peroxidation (MDA) levels were determined. Population was divided according to gender and fitness. We found that people showing higher levels of functional capacity presented lower levels of cholesterol and lipid peroxidation accompanied by higher levels of Q10 in plasma. The ratio Q10/cholesterol and Q10/LDL increased in these people. No relationship was found when correlated to muscle strength or agility. On the other hand, obesity was related to lower Q10 and higher MDA levels in plasma affecting women more significantly. Our data demonstrate for the first time that physical activity at advanced age can increase the levels of Q10 and lower the levels of lipid peroxidation in plasma, probably reducing the progression of cardiovascular diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Canonical Descriptions of High Intensity Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Le Cornu, B. J.
The problem of laser-plasma interaction has been studied extensively in the context of inertial confinement fusion (ICF). These studies have focussed on effects like the nonlinear force, self-focusing, Rayleigh- Taylor instabilities, stimulated Brillouin scattering and stimulated Raman scattering observed in ICF schemes. However, there remains a large discrepancy between theory and experiment in the context of nuclear fusion schemes. Several authors have attempted to gain greater understanding of the physics involved by the application of standard or 'canonical' methods used in Lagrangian and Hamiltonian mechanics to the problem of plasma physics. This thesis presents a new canonical description of laser-plasma interaction based on the Podolsky Lagrangian. Finite self-energy of charged particles, incroporation of high-frequency effects and an ability to quantise are the main advantages of this new model. The nature of the Podolsky constant is also analysed in the context of plasma physics, specifically in terms of the plasma dispersion relation. A new gauge invariant expression of the energy-momentum tensor for any gauge invariant Lagrangian dependent on second order derivatives is derived for the first time. Finally, the transient and nontransient expressions of the nonlinear ponderomotive force in laser-plasma interaction are discussed and shown to be closely approximated by a canonical derivation of the electromagnetic Lagrangian, a fact that seems to have been missed in the literature.
Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang
2016-10-01
Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue; Liu, Yueqiang; Gao, Zhe
Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less
Bai, Xue; Liu, Yueqiang; Gao, Zhe
2017-09-21
Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less
Hybrid simulations of weakly collisional plasmas
NASA Astrophysics Data System (ADS)
Xia, Qian; Reville, Brian; Tzoufras, Michail
2016-10-01
Laser produced plasma experiments can be exploited to investigate phenomena of astrophysical relevance. The high densities and velocities that can be generated in the laboratory provide ideal conditions to investigate weakly collisional or collisionless plasma shock physics. In addition, the high temperatures permit magnetic and kinetic Reynolds numbers that are difficult to achieve in other plasma experiments, opening the possibility to study plasma dynamo. Many of these experiments are based on a classic plasma physics problem, namely the interpenetration of two plasma flows. To investigate this phenomenon, we are constructing a novel multi-dimensional hybrid numerical scheme, that solves the ion distribution kinetically via a Vlasov-Fokker-Planck equation, with electrons providing a charge neutralizing fluid. This allows us to follow the evolution on hydrodynamic timescales, while permitting inclusion ofcollisionlesseffects on small scales. It also could be used to study the increasing collisional effects due to the stiff gradient and weakly anisotropic velocity distribution. We present some preliminary validation tests for the code, demonstrating its ability to accurately model key processes that are relevant to laboratory and astrophysical plasmas.
Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas
NASA Astrophysics Data System (ADS)
Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.
2017-10-01
Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.
NASA Astrophysics Data System (ADS)
Bai, Xue; Liu, Yueqiang; Gao, Zhe
2017-10-01
Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
NASA Technical Reports Server (NTRS)
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
Direct measurements of anode/cathode gap plasma in cylindrically imploding loads on the Z machine
NASA Astrophysics Data System (ADS)
Porwitzky, A.; Dolan, D. H.; Martin, M. R.; Laity, G.; Lemke, R. W.; Mattsson, T. R.
2018-06-01
By deploying a photon Doppler velocimetry based plasma diagnostic, we have directly observed low density plasma in the load anode/cathode gap of cylindrically converging pulsed power targets. The arrival of this plasma is temporally correlated with gross current loss and subtle power flow differences between the anode and the cathode. The density is in the range where Hall terms in the electromagnetic equations are relevant, but this physics is lacking in the magnetohydrodynamics codes commonly used to design, analyze, and optimize pulsed power experiments. The present work presents evidence of the importance of physics beyond traditional resistive magnetohydrodynamics for the design of pulsed power targets and drivers.
Photons, phonons, and plasmons with orbital angular momentum in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang; Qin, Hong; Liu, Jian
Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. Lastly, the OAM modes in plasmas and their characteristics can be explored for potential applications in plasmamore » physics and accelerator physics.« less
Photons, phonons, and plasmons with orbital angular momentum in plasmas
Chen, Qiang; Qin, Hong; Liu, Jian
2017-02-06
Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. Lastly, the OAM modes in plasmas and their characteristics can be explored for potential applications in plasmamore » physics and accelerator physics.« less
Long path-length experimental studies of longitudinal phenomena in intense beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, B. L.; Haber, I.; Kishek, R. A.
2016-05-15
Intense charged particle beams are nonneutral plasmas as they can support a host of plasma waves and instabilities. The longitudinal physics, for a long beam, can often be reasonably described by a 1-D cold-fluid model with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past five years on the University of Maryland Electron Ring, investigating longitudinal phenomena over time scales of thousands ofmore » plasma periods, illustrating good agreement with simulations.« less
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
1993-11-01
This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.
Physics in the Twentieth Century
ERIC Educational Resources Information Center
Weisskopf, Victor F.
1970-01-01
Provides a review of the great discoveries, theoretical concepts and development of physics in the 20th century. The growth and significance of diverse fields such as quantum theory, relativity theory, atomic physics, molecular physics, the physics of the solid state, nuclear physics, astrophysics, plasma physics, and particle physics are…
The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation
NASA Technical Reports Server (NTRS)
Whipple, E. C.
1986-01-01
Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.
Adipokine Profile in Patients with Type 2 Diabetes Depends on Degree of Obesity
Kocot, Joanna; Dziemidok, Piotr; Kiełczykowska, Małgorzata; Hordyjewska, Anna; Szcześniak, Grzegorz; Musik, Irena
2017-01-01
Background The fast pace of life, promoting fast food consumption and low physical activity, has resulted in obesity and/or diabetes as being serious social problems. The aim of the present study was to evaluate concentrations of selected adipokines (leptin, adiponectin, resistin, and visfatin) and to assess the leptin/adiponectin ratio in plasma of type 2 diabetes (T2D) patients in relation to degree of obesity. Material/Methods The study comprised 92 T2D subjects divided into 4 groups according to BMI value – I (normal body weight), II (overweight), III (obesity), and IV (severe obesity) – and 20 healthy volunteers (control group). Each group was divided into male and female subgroups. Plasma concentrations of adipokines were determined by enzyme-linked immunosorbent assay. Results In women, leptin concentration was significantly higher in group IV, whereas in men it was higher in groups III and IV than in the control group and groups I and II. Irrespective of sex, a significant decrease in adiponectin level was observed in group III vs. control. There was no significant difference in resistin levels. In women visfatin was markedly enhanced in group III, whereas in men in groups II, III and IV vs. control. Leptin/adiponectin ratio was increased in groups III and IV vs. control in women, whereas in men vs. both control and group I. Conclusions The obese type 2 diabetic patients presented a disturbed adipokine profile, which seems to be an important link between obesity and T2D. The future studies concerning the question if regulating of adipokines’ concentrations could be a promising approach for managing metabolic disorders seem to be well-grounded. PMID:29049270
The neurochemistry and social flow of singing: bonding and oxytocin
Keeler, Jason R.; Roth, Edward A.; Neuser, Brittany L.; Spitsbergen, John M.; Waters, Daniel J. M.; Vianney, John-Mary
2015-01-01
Music is used in healthcare to promote physical and psychological well-being. As clinical applications of music continue to expand, there is a growing need to understand the biological mechanisms by which music influences health. Here we explore the neurochemistry and social flow of group singing. Four participants from a vocal jazz ensemble were conveniently sampled to sing together in two separate performances: pre-composed and improvised. Concentrations of plasma oxytocin and adrenocorticotropic hormone (ACTH) were measured before and after each singing condition to assess levels of social affiliation, engagement and arousal. A validated assessment of flow state was administered after each singing condition to assess participants' absorption in the task. The feasibility of the research methods were assessed and initial neurochemical data was generated on group singing. Mean scores of the flow state scale indicated that participants experienced flow in both the pre-composed (M = 37.06) and improvised singing conditions (M = 34.25), with no significant difference between conditions. ACTH concentrations decreased in both conditions, significantly so in the pre-composed singing condition, which may have contributed to the social flow experience. Mean plasma oxytocin levels increased only in response to improvised singing, with no significant difference between improvised and pre-composed singing conditions observed. The results indicate that group singing reduces stress and arousal, as measured by ACTH, and induces social flow in participants. The effects of pre-composed and improvised group singing on oxytocin are less clear. Higher levels of plasma oxytocin in the improvised condition may perhaps be attributed to the social effects of improvising musically with others. Further research with a larger sample size is warranted. PMID:26441614
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Health physics measurement of Princeton Tokamaks, 1977-1987.
Stencel, J R; Gilbert, J D; Couch, J G; Griesbach, O A; Fennimore, J J; Greco, J M
1989-06-01
The Princeton Plasma Physics Laboratory (PPPL) began fusion experiments in 1951. In the early years, the major health physics concerns were associated with x radiation produced by energetic electrons in the plasma. Within the past year, neutron and 3H production from 2H-2H (represented hereafter as D-D) reactions has increased significantly on the larger fusion devices. Tritium retention noted in graphite tiles underscores the significance of material selection in present and future 3H-fueled fusion devices. This paper reports on operational health physics radiation measurements made on various PPPL machines over the past 10 y.
INTRODUCTION: Nonequilibrium Processes in Plasmas
NASA Astrophysics Data System (ADS)
Petrović, Zoran; Marić, Dragana; Malović, Gordana
2009-07-01
This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early cosmos collapsed from the uniform plasma stage into stars and empty space, practically nothing is in real equilibrium only in local equilibrium. How wrong we were. As our focus turned to anti particles, positrons and positronium, we realized that even in those early stages there was major non-equilibrium between matter and anti matter originating from the earliest stages of the Big Bang. Thus it is safe to correct the famous quote by the renowned natural philosopher Sheldon Cooper into: 'If you know the laws of [non-equilibrium] physics anything is possible'. From the matter-anti-matter ratio in the universe to life itself. But do we really need such farfetched introductory remarks to justify our scientific choices? It suffices to focus on non-equilibrium plasmas and transport of pollutants in the air and see how many new methods for diagnostics and treatment have been proposed for medicine in the past 10 years. So in addition to the past major achievements such as plasma etching for integrated circuit production, the field is full of possibilities and truly, almost anything is possible. We hope that some of the papers presented here summarize well how we learn about the laws of non-equilibrium physics in the given context of plasmas and air pollution and how we open new possibilities for further understanding and further applications. A wide range of topics is covered in this volume. This time we start with elementary collisional processes and a review of the data for excitation of polyatomic molecules obtained by the binary collision experiments carried out at the Institute of Physics in Belgrade by the group of Bratislav Marinković. A wide range of activities on the foundation of gaseous positronics ranging from new measurements in the binary regime to the simulation of collective transport in dense gases is presented by James Sullivan and coworkers. This work encompasses three continents, half a dozen groups and several lectures at the workshops while also covering a lot of material that was not presented as a lecture at the workshop. Michael Charlton has written a major review of the past work on the transport of positrons in gases. This review is a thorough summary of the field which more importantly looks at the future and invites a continuation of activities while providing an excellent foundation for the new experiments and modeling. The next paper submitted by Jasmina Jovanović covers the ongoing activities in the Gaseous Electronics Laboratory in Belgrade to prepare sets of data for ions that are required for modeling of gas discharges based on cross sections rather than interaction potentials. In many situations direct application of swarm physics modeling is possible, one such example is in the upper layers of the atmosphere - how this is done in the case of NO production and emissions from NO is shown in a paper by Laurence Campbell from Flinders University. Self-consistent coupling of electron kinetics as described by the solution to the Boltzmann equation and chemical and excited state kinetics in gases is described by Nuno Pinhao. From swarms to gas discharges the transition is made through gas breakdown. Studies of the development of the anatomy of a hollow cathode discharge obtained in collaboration between groups from Bulgaria and Serbia are presented by Dragana Marić. Remote treatment by plasmas is an option in biomedical applications and one such example is given by Kinga Kutasi, presenting results of a modeling of a well established plasma sterilizer. Another interesting application of plasmas is for the propulsion of satellites in vacuum where intelligent design (of plasma geometry and operating conditions) proves to be the most efficient method of controlling the orbits. Some new results combining experiments and modeling of plasma propulsion devices from Ecole Polytechnique in Paris are presented here by Ane Aanesland. Just how much can the studies inspired by the practical needs of plasma technologies lead to new fundamental understanding is illustrated well in the paper by Uwe Czarnetzki which describes a new method for separate control of flux and energy of ions reaching the surface of electrodes. Deborah O'Connell from Belfast has shown space and phase resolved mode transitions in rf inductively coupled plasmas obtained by optical emission measurements. At the same time an application of a similar rf discharge for the treatment of paper was presented by Irina Filatova from Belarus. Many applications of non-equilibrium plasmas depend on the development of plasma sources operating at atmospheric pressure and one such source that promises to be prominent in medicine is described by Timo Gans. In a similar way, practical considerations require studies of the injection of liquids into plasmas and progress on the development of one such source is described by Mathew Goeckner and his colleagues from Dallas. From the Institute Jožef Štefan in Slovenia and the group of Miran Mozetič we have a detailed review of their work on functionalization of organic materials by oxygen plasmas. Even higher density plasmas, where the collective phenomena dominate, show different degrees of non-equilibrium and one example presented here by Zoltan Donko deals with two dimensional plasma dust crystals and liquids, while the lecture by Jovo Vranješ from Belgium deals with the treatment of collisions in multicomponent plasmas. Finally we have papers on the transport of pollutants. The association of the two fields started initially through joint interest in some of the methods for removal of NOx and SOx, from electrostatic precipitation of industrial dust to dielectric barrier discharges. The joint work continued on the application of flowing afterglow plasma combined with a hollow cathode discharge in order to achieve a proton transfer mass analysis of organic volatile compounds and also on the possibilities of applying similar methods for solving transport equations. In this volume we have the presentation of monitoring of the deposition of airborne particles by the group from Belgrade led by Mirjana Tasić, and a study of such particles by elemental analysis by van Grieken and his colleagues from Belgium. We hope that the continuation of our workshops and the publication of our books will contribute to finding a common thread that connects different topics, even different fields, that share some aspects of the phenomena associated with non-equilibrium. As Anton Chekhov once stated 'Only entropy comes easy' so any work aimed at bringing order into the field is difficult. Organization of the workshop and publication of the book are of course not as hard as the pursuit of knowledge itself but we hope that it is, to some degree, a minor contribution to the everlasting human struggle against the entropy. And while we, of course, agree with scientists that are much better than we are that thermodynamics will never be overthrown, it is only human to try to cheat it. Doing the related science is allowing us to achieve exactly that and it is a source of numerous practical applications. The editors are grateful to all the members of the Gaseous Electronics Laboratory for organization of the workshop, in particular the members of the organizing committee and the staff of the Academy of Science and Institute of Physics. Finally and above all we acknowledge great efforts of all the participants who have invested a lot of funds, their time and effort to join us, sometimes travelling from distant continents. This book exists, however, mainly thanks to the efforts of all the authors who have invested their time and experience to write the papers. We also acknowledge the contribution by Professor Rastko Ćirić whose rendering of Maxwell's demon remains as symbol of our meeting and our publications. Perhaps the most chaotic aspect of human society, as our current experience teaches us, is the flow of funds and several agencies helped us get the needed funds to continue. The conference and this book were primarily supported by the COE Centre for Non-equilibrium processes and the Ministry of Science of the Republic of Serbia. Additional funding and facilities were provided by the Academy of Sciences and Arts of Serbia, Institute of Physics Belgrade (project No 141025) and Hiden Analytical. The editors Zoran Petrovic, Dragana Maric and Gordana Malovic
Ion Bernstein wave heating research
NASA Astrophysics Data System (ADS)
Ono, Masayuki
1993-02-01
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and nonlinear heating processes have been observed. Interestingly, improvement of plasma confinement was also observed in the PLT and Alcator-C experiments, opening up the possible use of IBW's for the active control of plasma transport. Two theoretical explanations have been proposed: one based on four-wave mixing of IBW with low-frequency turbulence, the other on the nonlinear generation of a velocity-shear layer. Both models are consistent with the observed threshold power level of a few hundred kW in the experiments. Experiments on lower field plasmas on JFTII-M [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 350] and DIII-D [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 314] have raised some concern with the IBW wave-launching process. The experiments showed serious impurity release from the walls but little or no core heating, a combination of circumstances strongly suggestive of edge heating. Possible parasitic channels could include the excitation of short wavelength modes by the Faraday shield's fringing fields, antenna-sheath-wave excitation, an axial-convective loss channel, and nonlinear processes such as parametric instability and ponderomotive effects. Suggested remedies include changes in the antenna phasing, the use of low-Z insulators, operating at higher frequencies, positioning the plasma differently with respect to the antenna, eliminating the Faraday shields, and using a waveguide launcher. The recent JIPPTII-U experiment, employing a 0-π phased antenna array with a higher frequency 130 MHz source, demonstrated that those remedies can indeed work. Looking to the future, one seeks additional ways in which IBWH can improve tokamak performance. The strong ponderomotive potential of the IBWH antenna may be used to stabilize external kinks and, acting as an rf limiter, to control the plasma edge. Control of the plasma pressure profile with local IBWH heating is already an important part of the Princeton Beta Experiment-Modified (PBX-M) [Ninth Topical Conference on Radio-Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] program in its exploration of the second-stability regime. Application of IBWH may also improve the performance of neutral beam heating and the efficiency and localization of lower-hybrid current drive for current profile control. Used with pellet injection, IBWH may also prolong the period of good confinement. The three planned high-power IBWH experiments covering vastly different parameters: f=40-80 MHz for PBX-M; f=130 MHz for JIPPT-II-U; and f=430 MHz for the Frascati Tokamak-Upgrade (FT-U) [16th European Physical Society Conference on Controlled Fusion and Plasma Physics, Venice, Italy, 1989 (European Physical Society, Amsterdam, 1989), Vol. III, p. 1069] appear to be well positioned to explore these possibilities and to clarify other issues including the physics of wave launching and associated nonlinear processes.
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.
2018-02-01
We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.
Scientific study in solar and plasma physics relative to rocket and balloon projects
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.
Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo
2017-12-01
Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.
Sadowska-Krępa, Ewa; Kłapcińska, Barbara; Pokora, Ilona; Domaszewski, Przemysław; Kempa, Katarzyna; Podgórski, Tomasz
2017-07-26
Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF) level in healthy, physically active young men, randomly allocated to two groups ( n = 9 each). At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP), and serum brain-derived neurotrophic factor (BDNF). Our results show that six weeks' supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO₂max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
NASA Astrophysics Data System (ADS)
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; ...
2017-07-14
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
The 2017 Plasma Roadmap: Low temperature plasma science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
ERIC Educational Resources Information Center
American Inst. of Physics, New York, NY.
Information is provided for students who may be interested in pursuing a career in physics. This information includes the type of work done and areas studied by physicists in the following areas: nuclear physics, solid-state physics, elementary-particle physics, atomic/molecular/electron physics, fluid/plasma physics, space/planetary physics,…
[Atherogenic index of plasma in patients with preeclampsia and in healthy pregnant women].
Aragon-Charris, Jhoan; Reyna-Villasmil, Eduardo; Guerra-Velasquez, Mery; Mejia-Montilla, Jorly; Torres-Cepeda, Duly; Santos-Bolívar, Joel; Reyna-Villasmil, Nadia
2014-08-04
To compare the values of the atherogenic index of plasma between preeclamptic patients and healthy pregnant women. Seventy patients were selected. Twenty-three severe preeclamptic patients (group A), 12 mild preeclamptic patients (group B) and 35 healthy pregnant women with similar age and body mass index (group C). Blood samples for lipids and lipoproteins determination were taken and the atherogenic plasma index was calculated. We did not find differences in group A and B with regard to maternal age, gestational age at the time of evaluation and body mass index compared with pregnant women in group C (P=ns). Plasma concentrations of triglycerides and low-density lipoproteins were significantly higher in patients of groups A and B compared with group C (P<.05). Normotensive patients presented higher concentrations of high-density lipoproteins than patients with severe and mild preeclampsia (P<.05). There were no differences between groups in plasma cholesterol concentrations (P=ns). Patients in groups A (1.14±0.44) and in group B (0.95±0.46) presented significantly higher values of the atherogenic index of plasma compared with pregnant women in group C (0.62±0.20; P<.05). Patients with preeclampsia had higher values of the atherogenic index of plasma than healthy pregnant women. Copyright © 2013 Elsevier España, S.L. All rights reserved.
The relation of obesity with serum resistin levels in smoker and nonsmokers
Gürsoy, Gül; Eşbah, Onur; Kirnap, Nazli Gülsoy; Çetiner, Hacer; Acar, Yaşar; Demirbaş, Berrin; Öztürk, Abidin; Kiliç, Zuhal
2012-01-01
Background: The demonstration that adipose tissue produces numerous cytokines increases interest of investigators in their role in the pathogenesis of obesity. Resistin is one of those cytokines. There are conflicing reports as cigarette smoking impairs insulin secretion, augments insulin resistance, or has no effect on glucose metabolism. In our study, we intended to examine the relationship of obesity with resistin levels in smokers and nonsmokers. Patients and Methods: The study included 52 male smokers and 34 age matched nonsmoker male control subjects. We classified smoker and nonsmoker groups according to their body mass index as BMI < 27 and ≥27. As well as making physical and anthropometric examinations, fasting plasma glucose and insulin, postprandial plasma glucose, lipid profile, and resistin levels were measured in all male subjects. We compared all parameters in smoker and nonsmokers either having BMI < 27 or ≥27. Results: In both BMI levels, resistin levels were higher in smoker groups than nonsmoker ones (P<0.01 all), we did not find any difference in other parameters. Conclusion: in conclusion we may speculate that if someone smokes resistin levels increase. PMID:23264782
Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen
2015-05-29
The aim of this study was to compare plasma cortisol concentration during anesthesia of children with congenital heart disease who received dexmedetomidine (DEX) with those who received etomidate (ETO). We recruited 99 ASA physical status II-III pediatric patients scheduled for congenital heart disease (CHD) corrective surgery and divided into them into 3 groups. Group DEX received an infusion of DEX intravenously with a bolus dose of 0.5 µg·kg-1 within 10 min during anesthesia induction, followed by a maintenance dose of DEX 0.5 µg·kg-1·h-1. Group ETO received ETO intravenously with a bolus dose of 0.3 mg·kg-1 without a maintenance dose. Group CON received routine anesthetics as controls. The preset timepoints were: before anesthesia induction (T0), at the end of induction (T1), 30 min after anesthesia induction (T2), at the time of aortic and inferior vena catheterization (T3), and at 180 min (T4) and 24 h (T5) after anesthesia induction. The cortisol concentration decreased gradually after anesthesia induction in all groups, and returned to baseline values after 24 h. The cortisol concentration was significantly lower in Group ETO children than in Group DEX or group CON at T4. The plasma concentrations of cortisol decreased in CHD children after the operation, but returned to baseline after 24 h of anesthesia induction. The adrenal cortex function inhibition induced by ETO in CHD children is longer and more serious than that induced by DEX (if any) during the preoperative period.
Li, Ying; Fu, Chao-Mei; Peng, Wei; Li, Bo; Fu, Shu; Zhang, Hui-Min
2016-04-01
To analyze the endogenous metabolite changes in rat plasma after intervention by Sini Tang and Sini Tang without Glycyrrhizae Radix et Rhizoma based on GC-MS metabonomics technology, and study the toxicity reduction effect of Glycyrrhizae Radix et Rhizoma in Sini Tang on Aconiti Lateralis Radix Preparata. Eighteen SD rats were randomly divided into normal group, Sini Tang group and Sini Tang without Glycyrrhizae Radix et Rhizoma group on average. The rats in Sini Tang group and Sini Tang without Glycyrrhizae Radix et Rhizoma group were treated respectively with physic liquor by intragastric administration at the dose of 0.02 mL•g ⁻¹ (equivalent to 0.8 g•mL ⁻¹ crude drugs) once a day for 7 days. The rats in normal group were given with equal volume of saline solution. The plasma samples were collected from each rat 0.5 h after the last administration for GC-MS detection. The data was used for multivariate statistical analysis to obtain 14 potential metabolic markers(13 of them were identified). Then their relative content and metabolic pathways were analyzed. Compared with Sini Tang without Glycyrrhizae Radix et Rhizoma group, seven metabolic markers of were reduced in Sini Tang group. Analysis on physiological functions of these potential metabolic markers showed that the Glycyrrhizae Radix et Rhizoma in Sini Tang could reduce the toxicity of Aconiti Lateralis Radix Preparata by adjusting the glycolysis, lipid metabolism, citrate cycle and some amino acids metabolism. Copyright© by the Chinese Pharmaceutical Association.
Do They Enter the Workforce? Career Choices after an Undergrad Research Experience
NASA Astrophysics Data System (ADS)
Greco, S.; Wissel, S.; Zwicker, A.; Ortiz, D.; Dominguez, A.
2015-11-01
Students in undergrad research internships go on to grad school at rates of 50-75% (Lopatto, 2007;Russell, 2005). NSF studied its undergrad program and found that 74% of physics interns (67% for engineering) go to grad school. PPPL undergrad interns were tracked for 10 years. Only 3% of physics PhD candidates are studying plasma physics, but 23% of our alumni that entered grad school did so in plasma. AIP reports that 60% of physics majors go to grad school (AIP, 2012), but 95% of PPPL interns have gone on to grad schools. Several programs track enrollment in grad school. AIP compiles statistics of undergrads who enter grad school and PhD students who work in the field. There has been no study of interns that follows the path from undergrad to grad school and then on to employment. Our tracking shows that most not only complete their advanced degrees but also stay in STEM fields following their academic careers. 88% of them become part of the STEM workforce, higher than the 82% of all physics PhDs employed in physics after obtaining their degree (AIP, 2014). PPPL puts more students in grad school in physics, and specifically plasma physics, and a higher percentage of those grad students stay in the STEM workforce.
Valtueña, J; Gracia-Marco, L; Huybrechts, I; Breidenassel, C; Ferrari, M; Gottrand, F; Dallongeville, J; Sioen, I; Gutierrez, A; Kersting, M; Kafatos, A; Manios, Y; Widhalm, K; Moreno, L A; González-Gross, M
2013-09-01
High prevalence of vitamin D insufficiency (<75 nmol/l) has been previously reported in European adolescents. Vitamin D deficiency has been related to physical fitness and adiposity but it is not clearly known whether this relationship applies to growing children and adolescents. To determine how body composition and physical fitness are related to 25-hydroxyvitamin D [25(OH)D] concentrations in European adolescents. The HEalthy Lifestyle in Europe by Nutrition in Adolescence-CSS study was a multi-centre cross-sectional study. Plasma 25(OH)D, body composition and physical fitness measures were obtained in 1006 European adolescents (470 males) aged 12.5-17.5 years. Stepwise regression and ANCOVA were performed by gender using 25(OH)D as dependent variable, with body composition, physical fitness as independent variables controlling for age, seasonality and latitude. For males, maximum oxygen consumption (VO2max) (B = 0.189) and body mass index (BMI) (B = -0.124) were independently associated with 25(OH)D concentrations (both P < 0.05). For females, handgrip strength (B = 0.168; P < 0.01) was independently associated with 25(OH)D concentrations. Those adolescents at lower BMI and high fitness score presented significant higher 25(OH)D concentrations than those at lower fitness score in the other BMI groups (P < 0.05). Cardiorespiratory fitness and upper limbs muscular strength are positively associated with 25(OH)D concentrations in male and female adolescents, respectively. Adiposity in males and low fat free mass in females are related to hypovitaminosis D. The interaction between fitness and BMI has a positive effect on 25(OH)D concentrations. Therapeutic interventions to correct the high rates of vitamin D deficiency in adolescents should consider physical fitness.
Sossdorf, Maik; Fischer, Jacqueline; Meyer, Stefan; Dahlke, Katja; Wissuwa, Bianka; Seidel, Carolin; Schrepper, Andrea; Bockmeyer, Clemens L; Lupp, Amelie; Neugebauer, Sophie; Schmerler, Diana; Rödel, Jürgen; Claus, Ralf A; Otto, Gordon P
2013-10-01
High physical activity levels are associated with wide-ranging health benefits, disease prevention, and longevity. In the present study, we examined the impact of regular physical exercise on the severity of organ injury and survival probability, as well as characteristics of the systemic immune and metabolic response during severe polymicrobial sepsis. Animal study. University laboratory. Male C57BL/6N mice. Mice were trained for 6 weeks by treadmill and voluntary wheel running or housed normally. Polymicrobial sepsis in mice was induced by injection of fecal slurry. Subsequently, mice were randomized into the following groups: healthy controls, 6 hours postsepsis, and 24 hours postsepsis. Blood and organ samples were collected and investigated by measuring clinical chemistry variables, cytokines, plasma metabolites, and bacterial clearance. Organ morphology and damage were characterized by histological staining. Physical exercise improved survival and the ability of bacterial clearance in blood and organs. The release of pro- and anti-inflammatory cytokines, including interleukin-6 and interleukin-10, was diminished in trained compared to untrained mice during sepsis. The sepsis-associated acute kidney tubular damage was less pronounced in pretrained animals. By metabolic profiling and regression analysis, we detected lysophosphatidylcholine 14:0, tryptophan, as well as pimelylcarnitine linked with levels of neutrophil gelatinase-associated lipocalin representing acute tubular injury (corrected R=0.910; p<0.001). We identified plasma lysophosphatidylcholine 16:0, lysophosphatidylcholine 17:0, and lysophosphatidylcholine 18:0 as significant metabolites discriminating between trained and untrained mice during sepsis. Regular physical exercise reduces sepsis-associated acute kidney injury and death. As a specific mechanism of exercise-induced adaptation, we identified various lysophosphatidylcholines that might function as surrogate for improved outcome in sepsis.
NASA Astrophysics Data System (ADS)
da Maia, J. V.; Pereira, F. P.; Dutra, J. C. N.; Mello, S. A. C.; Becerra, E. A. O.; Massi, M.; Sobrinho, A. S. da Silva
2013-11-01
The ethylene propylene diene monomer (EPDM) rubber possesses excellent physical/chemical bulk properties, is cost-effective, and has been used in the mechanical and aerospace industry. However, it has an inert surface and needs a surface treatment in order to improve its adhesion properties. Plasma modification is the most accepted technique for surface modification of polymers without affecting the properties of the bulk. In this study, an afterglow microwave plasma reactor was used to generate the plasma species responsible for the EPDM surface modification. The plasma modified surfaces were analyzed by means of contact angle measurement, adhesion tests, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Two experimental variables were analyzed: type of the plasma gases and exposure time were considered. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed and the best conditions tested there was an increase of the rupture strength of about 27%, that can be associated mainly with the creation of oxygen containing functional groups on the rubber surface (CO, COC and CO) identified by spectroscopic methods. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed. In various conditions tested the contact angles easily decreased more than 500%. What can be concluded that high wettability is a necessary condition to obtain good adhesion, but this is not a sufficient condition.
Kim, YongBok; Kim, GeunHyung
2015-01-01
Herein, poly(ɛ-caprolactone) (PCL) surfaces were treated to form various roughness values (R(a)=290-445 nm) and polar functional groups on the surfaces using a plasma-etching process, followed by immersion into simulated body fluid (SBF) for apatite formation. The surface morphology, chemical composition, and mean roughness of the plasma-etched PCL surfaces were measured, and various physical and morphological properties (water contact angles, protein absorption ability, and crystallite size of the apatite layer) of the in vitro mineralized PCL surfaces were evaluated. The roughened PCL surface P-3, which was treated with a sufficient plasma exposure time (4 h), achieved homogeneously distributed apatite formation after soaking in SBF for 7 days, as compared with other surfaces that were untreated or plasma-treated for 30 min or 2 h. Furthermore, to demonstrate their feasibility as a biomimetic surface, pre-osteoblast cells (MC3T3-E1) were cultured on the mineralized PCL surfaces, and cell viability, DAPI-phalloidin fluorescence assay, and alizarin red-staining of the P-3 surface were highly improved compared to the P-1 surface treated with a 30-min plasma exposure time; compared to untreated mineralized PCL surface (N-P), P-3 showed even greater improvements in cell viability and DAPI-phalloidin fluorescence assay. Based on these results, we found that the mineralized PCL surface supplemented with the appropriate plasma treatment can be implicitly helpful to achieve rapid hard tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.
TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview
NASA Astrophysics Data System (ADS)
Bradley, J. W.; Welzel, T.
2009-05-01
This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.