Science.gov

Sample records for plasma research experiment

  1. Summary of Plasma Liner Experiment (PLX) Research Results

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Davis, J. S.; Dunn, J. P.; Awe, T. J.; Merritt, E. C.; Adams, C. S.; Lynn, A. G.; Gilmore, M. A.; Brockington, S.; Case, A.; Messer, S. J.; van Doren, D.; Witherspoon, F. D.; Cassibry, J. T.; Stanic, M.

    2012-10-01

    Spherically imploding plasma liners could result in cm-, μs-, and Mbar-scale plasmas upon stagnation, which is of interest for fundamental high energy density (HED) plasma physics studies. They are also envisioned as a potential standoff compression driver for magneto-inertial fusion (MIF)@. Experiments on PLX over the past year have focused on characterizing the propagation of a single argon plasma jet and the oblique merging of two jets, and assessing the suitability of the jets for the HED and MIF applications. Via a multi-chord interferometer, survey spectrometer, photodiode array, and fast framing imaging camera, we are determining that the jets are near the PLX design goal with respect to density (10^17 cm-3) and velocity (50 km/s). The key physics issues being studied are the rate of jet expansion during propagation, and the potentially deleterious effects of jet merging such as shock formation and heating which could degrade imploding liner performance. This poster will provide a project summary, and a highlight of experimental results on both sin

  2. Madison Plasma Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kostadinova, Evdokiya; Forest, C.; Cooper, C.; Coquerel, M.

    2014-01-01

    The Madison Plasma Dynamo Experiment (MPDX) is investigating the self-generation of magnetic fields and related processes in a large, weakly magnetized, fast flowing, and hot (conducting) plasma. The dynamo re-creates conditions highly similar to many astrophysical plasmas. Stars and other planets have dynamos, and so do galaxies and clusters of galaxies, which makes it extremely crucial for researchers in the field to carry out experiments in this previously uninvestigated plasma regime, which will help for the development of a comprehensive theory of how magnetic fields are generated in planets, the Sun and other stars. MPDX is a laboratory astrophysical experiment where 200,000-degree Fahrenheit plasma is confined within a three-meter diameter spherical aluminum vacuum chamber with the help of multiple tracks of cusp magnets covering the inside shell. The dynamo utilizes six robotic insertion sweep probes that are programmed to find any point inside the sphere by given radial and angular coordinates. This innovative mechanical system allows us to take measurements of the state variables in key points in the plasma flow and to better investigate its cosmic-like plasma behavior. The probes are able to autonomously calculate coordinate transformations, move in a two dimensional plane, and return information about their relative position. This makes them an extremely useful, highly accurate, and easily controlled tool for plasma analysis.

  3. Plasma contactor research, 1989

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  4. Experiments with nonneutral plasmas

    NASA Astrophysics Data System (ADS)

    O'Neil, T. M.

    2016-03-01

    Selected experiments with nonneutral plasmas are discussed. These include the laser cooling of a pure ion plasma to a crystalline state, a measurement of the Salpeter enhancement factor for fusion in a strongly correlated plasma and the measurement of thermally excited plasma waves. Also, discussed are experiments that demonstrate Landau damping, trapping and plasma wave echoes in the 2D ExB drift flow of a pure electron plasma, which is isomorphic to the 2D ideal flow (incompressible and inviscid flow) of a neutral fluid.

  5. Energetic particle physics in fusion research in preparation for burning plasma experiments

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Pinches, S. D.; Toi, K.

    2014-12-01

    The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium-tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the ‘sea’ of Alfvén eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  6. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  7. Plasma contactor research - 1991

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.

    1992-01-01

    A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.

  8. Plasma stabilization experiment

    NASA Astrophysics Data System (ADS)

    Sziklas, E. A.; Fader, W. J.; Jong, R. A.; Stufflebeam, J. H.

    1980-07-01

    The plasma stabilization experiment is an effort to enhance stability in a mirror-confined plasma by trapping cold ions with rf fields applied near the mirror throats. Nagoya Type 3 antennas, coupled to a 60 kW rf power supply are mounted in the throats of the UTRC baseball magnet. An external washer gun provides a source of plasma for both streaming and confined plasma tests. Results show a strong stoppering effect on streaming plasmas and a marginal effect on confined plasmas. Theoretical calculations provide an explanation for the experimental observations. The field generates a ponderomotive force acting on the electrons. The resultant improvement in electron confinement changes the ambipolar potential and inhibits the flow of ions through the mirror throat. Criteria are derived for the validity of this trapping concept. The requisite field strengths are significantly lower than those required to trap ions directly. Scaling laws are developed for application of cold ion trapping to large mirror devices containing dense plasmas. The use of slow-wave antenna structures operated at frequencies above the lower hybrid frequency is recommended for these applications.

  9. CRRES plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.; Gurnett, Donald A.; Odem, Daniel L.

    1992-01-01

    The CRRES plasma wave experiment is designed to provide information on the plasma wave environment and the total plasma density in the Earth's radiation belts and throughout the CRRES orbit. This information is valuable both for studying the naturally occurring wave-particle interactions affecting the plasma and particle environment in the plasmasphere and magnetosphere as well as for studying the chemical releases. The electric field sensors for this instrument consist of two long electric dipole antennas (about 100 m tip-to-tip), and the magnetic field sensor is a search coil magnetometer mounted at the end of a 6-m boom. The instrument has a 14-channel spectrum analyzer covering the frequency range from 5.6 Hz to 10 kHz, and a 128-step sweep frequency receiver covering the frequency range from 100 Hz to 400 kHz.

  10. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be

  11. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Research and development in plasmas and magnetospheric environments is reported. Topics discussed include: analysis and techniques of software development; data analysis and modeling; spacecraft sheath effects; laboratory plasma flow studies; instrument development.

  12. Magnetized Plasma Experiments Using Thermionic- Thermoelectronic Plasma Emitter

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou; Cheng, C. Z.; Fujikawa, Nobuko; Lee, Jyun-Yi; Peng, Albert

    2008-11-01

    We are developing a magnetic mirror device, which is the first magnetized plasma device in Taiwan, to explore basic plasma sciences relevant to fusion, space and astrophysical plasmas. Our research subjects include electromagnetically induced transparency (EIT), Alfven wave physics, and plasma turbulence. A large diameter (> 200 mm) plasma emitter1, which utilizes thermionic- thermoelectronic emission from a mixture of LaB6 (Lanthanum-hexaboride) and beta-eucryptite (lithium type aluminosylicate) powders, is employed as a plasma source because of its production ability of fully ionized plasma and controllability of plasma emission rate. The plasma emitter has been installed recently and investigation of its characteristics will be started. The employment of beta-eucryptite in plasma emitter is the first experimental test because such investigation of beta-eucryptite has previously been used only for Li+-ion source2. Our plan for magnetized plasma experiments and results of the plasma emitter investigation will be presented. 1. K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett., 37, 1980, pp. 37-38. 2. M. Ueda, R. R. Silva, R. M. Oliveira, H. Iguchi, J. Fujita and K. Kadota, J. Phys. D: Appl. Phys. 30 1997, pp. 2711--2716.

  13. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  14. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the

  15. Plasma Wakefield Experiments at FACET

    SciTech Connect

    Hogan, M.J.; England, R.J.; Frederico, J.; Hast, C.; Li, S.Z.; Litos, M.; Walz, D.; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; Muggli, P.; Pinkerton, S.; Shi, Y.; /Southern California U.

    2011-08-19

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to {approx}20{micro}m long and focused to {approx}10{micro}m wide. The intense fields of the FACET bunches will be used to field ionize neutral lithium or cesium vapor produced in a heat pipe oven. Previous experiments at the SLAC FFTB facility demonstrated 50GeV/m gradients in an 85cm field ionized lithium plasma where the interaction distance was limited by head erosion. Simulations indicate the lower ionization potential of cesium will decrease the rate of head erosion and increase single stage performance. The initial experimental program will compare the performance of lithium and cesium plasma sources with single and double bunches. Later experiments will investigate improved performance with a pre-ionized cesium plasma. The status of the experiments and expected performance are reviewed. The FACET Facility is being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The facility will begin commissioning in summer 2011 and conduct an experimental program over the coming five years to study electron and positron beam driven plasma acceleration with strong wake loading in the non-linear regime. The FACET experiments aim to demonstrate high-gradient acceleration of electron and positron beams with high efficiency and negligible emittance growth.

  16. Experimental Plasma Research project summaries

    SciTech Connect

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  17. A rotating directional probe for the measurements of fast ion losses and plasma rotation at Tokamak Experiment for Technology Oriented Research.

    PubMed

    Rack, M; Liang, Y; Jaegers, H; Assmann, J; Satheeswaran, G; Xu, Y; Pearson, J; Yang, Y; Denner, P; Zeng, L

    2013-08-01

    This work discusses a new directional probe designed for measurements of fast ion losses and the plasma rotation with a high angular resolution in magnetically confined plasmas. Directional and especially Mach probes are commonly used diagnostics for plasma flow measurements, and their applicability for the fast ion losses detection has been demonstrated. A limitation of static Mach probes is their low angular resolution. At the Tokamak Experiment for Technology Oriented Research, the angular resolution is strongly restricted by the finite number of available measurement channels. In a dynamic plasma, where instabilities can lead to local changes of the field line pitch-angle, plasma flow, or fast ion losses, a low angular resolution makes a precise data analysis difficult and reduces the quality of the measured data. The new probe design, the rotating directional probe, combines the features of early directional probes and Mach probes. It consists of two radially aligned arrays of nine Langmuir probe pins with each array facing opposite directions. During the measurement the probe head rotates along its axis to measure the ion saturation current from all directions. As a result, the rotating directional probe simultaneously provides an angular dependent plasma flow and fast ion losses measurement at different radial positions. Based on the angular dependent data, a precise determination of the current density is made. In addition, the simultaneous measurement of the ion saturation current at different radial positions allows for resolving radially varying field line pitch-angles and identifying the radial dynamic of processes like fast ion losses.

  18. Space plasma contractor research, 1988

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1989-01-01

    Results of experiments conducted on hollow cathode-based plasma contractors are reported. Specific tests in which attempts were made to vary plasma conditions in the simulated ionospheric plasma are described. Experimental results showing the effects of contractor flowrate and ion collecting surface size on contactor performance and contactor plasma plume geometry are presented. In addition to this work, one-dimensional solutions to spherical and cylindircal space-charge limited double-sheath problems are developed. A technique is proposed that can be used to apply these solutions to the problem of current flow through elongated double-sheaths that separate two cold plasmas. Two conference papers which describe the essential features of the plasma contacting process and present data that should facilitate calibration of comprehensive numerical models of the plasma contacting process are also included.

  19. Plasma theory and simulation research

    SciTech Connect

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  20. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  1. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Several programs and variations have been developed to determine statistical means of different plasma parameters when binned in different variables. These parameters include temperature, densities and spacecraft potentials for any of the ion species, as well as ratios of these variables for any other ion species to the corresponding variable for H(+). The variables for binning include L, radial distance, and geomagnetic latitude; and separate statistics are automatically run for local morning and local evening data. These programs all run from output files from the plasma parameter thin sheath analysis program. A variant program also bins for magnetic activity, using either Kp or Dst, which requires an additional magnetic activity input file. These programs can be run either interactively or in batch mode, using file listings generated by a DIRECTORY command. In addition to printed output, these programs generate output files which can be used to plot the results. Programs to plot these averaged data are under development.

  2. Research in plasma physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  3. Space plasma research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1986-01-01

    Four basic areas were covered: development of analysis techniques and software and numerical simulations; data analysis and interpretation; spacecraft sheath studies; and laboratory studies. The important details were documented in terms of either appropriate software documentation or publication in referred publication, conference proceeding and technical reports. The major accomplishments are summarized, followed by a chronological listing of the publications and presentations which resulted from the research.

  4. Dense Plasma Injection Experiment at MCX

    NASA Astrophysics Data System (ADS)

    Uzun-Kaymak, I.; Messer, S.; Bomgardner, R.; Case, A.; Clary, R.; Ellis, R.; Elton, R.; Hassam, A.; Teodorescu, C.; Witherspoon, D.; Young, W.

    2009-09-01

    We present preliminary results of the High Density Plasma Injection Experiment at the Maryland Centrifugal Experiment (MCX). HyperV Technologies Corp. has designed, built, and installed a prototype coaxial gun to drive rotation in MCX. This gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. An array of diagnostics indicates the gun is capable of plasma jets with a mass of 160 μg at 70 km/s with an average plasma density above 1015 cm-3. Preliminary measurements are underway at MCX to understand the penetration of the plasma jet through the MCX magnetic field and the momentum transfer from the jet to the MCX plasma. Data will be presented for a wide range of MCX field parameters, and the prospects for future injection experiments will be evaluated.

  5. Research briefing on contemporary problems in plasma science

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.

  6. Using the Tritium Plasma Experiment to evaluate ITER PFC safety. [Plasma-Facing Components

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A. ); Bartlit, J.R. ); Causey, R.A. ); Haines, J.R. )

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 [times] 10[sup 19] ions/cm[sup 2] [center dot] s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.

  7. Microwave Plasma Window Theory and Experiments

    NASA Astrophysics Data System (ADS)

    McKelvey, Andrew; Zheng, Peng; Franzi, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Plasma, Pulsed Power,; Microwave Laboratory Team

    2011-10-01

    The microwave plasma window is an experiment designed to promote RF breakdown in a controlled vacuum-gas environment using a DC bias. Experimental data has shown that this DC bias will significantly reduce the RF power required to yield breakdown, a feature also shown in recent simulation. The cross-polarized conducting array is biased at (100's V) DC on the surface of a Lucite vacuum window. Microwave power is supplied to the window's surface by a single 1-kW magnetron operating at 2.45 GHz CW. The goal of this project is to establish controllable characteristics relating vacuum pressure, DC bias, RF power required for surface breakdown, as well as RF transmission after the formation of plasma. Experimental data will be compared with multipactor susceptibility curves generated using a Monte Carlo simulation which incorporates an applied DC bias and finite pressures of air and argon. Research supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharge, AFRL, L-3 Communications, and Northrop Grumman.

  8. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726

  9. Magnetized laboratory plasma jets: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  10. E-157: A Plasma Wakefield Acceleration Experiment

    SciTech Connect

    Muggli, Patrick

    2000-10-20

    The E-157 plasma wakefield experiment addresses issues relevant to a meter long plasma accelerator module. In particular, a 1.4 m long plasma source has been developed for the experiment. The transverse dynamics of the beam in the plasma is studied: multiple betatron oscillations of the beam envelope, flipping of the beam tail, stability against the hose instability, emission of synchrotron radiation by the beam in the plasma. The bending of the 28.5 GeV beam at the plasma/vapor interface is observed for the first time. The longitudinal dynamics of the beam, i.e. the energy loss and gain by the electrons in the wake, is strongly affected by the oscillation of the beam tail instability.

  11. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  12. Magnetized plasma jets in experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  13. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  14. PlasmaLab/EkoPlasma - The Future of Complex Plasma Research in Space

    NASA Astrophysics Data System (ADS)

    Knapek, Christina; Fortov, Vladimir; Huber, Peter; Mohr, Daniel; Konopka, Uwe; Lipaev, Andrey; Molotkov, Vladimir; Petrov, Oleg; Zähringer, Erich; Thomas, Hubertus

    2016-07-01

    The PlasmaLab project, a Russian-German cooperation, has the aim to develop a future laboratory for the investigation of complex plasmas under microgravity conditions on the International Space Station (ISS). Within the project, a new plasma chamber, the Zyflex chamber, has been developed and is now being prepared to be launched to the ISS in 2020 as a laboratory setup with the name EkoPlasma (Experiment komplex Plasma). The Zyflex chamber is a large, cylindrical plasma chamber with parallel, rf-driven electrodes and a flexible inner geometry. It is designed to extend the accessible experimental parameter range and to allow an independent control of the plasma parameters, therefore increasing the experimental possibilities and expected knowledge gain significantly. Further, a 3D optical diagnostic will allow for the study of particle dynamics in 3D realtime. Possible future research topics include e.g. phase transitions, the dynamics of liquids, phase separation, or turbulence. The experimental setup will be presented, as well as some preliminary results of experiments on earth and in parabolic flights to visualize the possibilities of this new laboratory. This work and some of the authors are funded by DLR/BMWi (FKZ 50WM1441).

  15. Plasma flow switch experiment on Procyon

    SciTech Connect

    Benage, J.F. Jr.; Bowers, R.; Peterson, D.

    1995-09-01

    This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.

  16. Plasma flow switch experiment on Procyon

    NASA Astrophysics Data System (ADS)

    Benage, J. F., Jr.; Bowers, R.; Peterson, D.

    This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.

  17. Solar Array Module Plasma Interaction Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1992-01-01

    The objective of the Solar Array Module Plasma Interaction Experiment (SAMPIE) is to investigate, by means of a shuttle-based flight experiment and relevant ground-based testing, the arcing and current collection behavior of materials and geometries likely to be exposed to the LEO plasma on high-voltage space power systems, in order to minimize adverse environmental interactions. An overview of the SAMPIE program is presented in outline and graphical form.

  18. Mini-Magnetospheric Plasma Propulsion Experiment (MMPX)

    NASA Astrophysics Data System (ADS)

    Ziemba, Tim; Slough, John; Winglee, Robert

    1999-11-01

    The MMPX is a new laboratory device that is designed to study plasma dynamics and confinement in a magnetic dipole with field strengths ranging from 0.01 to 0.2 T. The magnetic dipole is constructed of two short solenoidal Helmholtz coils with a 0.3 m diameter. Plasma is injected onto the field lines by a Helicon source located on the inner, high field side of the dipole field. Plasma densities of 1-2× 10^19m-3 are expected with electron temperatures of 4 eV or greater. As plasma flows out along the dipole field, the background neutral pressure is kept low to maintain the plasma in a collisionless, ``frozen-in'' state. As the local field decreases, the plasma pressure eventually exceeds the field pressure. At this point the magnetic flux will be pulled dynamically outward with the plasma. Observation of this flux expansion is the major goal of the experiment. In space the continued expansion of the dipole flux will be inhibited only by the solar wind pressure. The configuration would thus act as a large scale ( ~ 30 km) magneto-plasma barrier to the solar wind, and would allow for spacecraft propulsion with megawatt thrust power from a kilowatt source.

  19. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  20. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  1. Results from Plasma Wakefield Experiments at FACET

    SciTech Connect

    Li, S.Z.; Clarke, C.I.; England, R.J.; Frederico, J.; Gessner, S.J.; Hogan, M.J.; Jobe, R.K.; Litos, M.D.; Walz, D.R.; Muggli, P.; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; Adli, E.; /U. Oslo

    2011-12-13

    We report initial results of the Plasma Wakefield Acceleration (PWFA) Experiments performed at FACET - Facility for Advanced aCcelertor Experimental Tests at SLAC National Accelerator Laboratory. At FACET a 23 GeV electron beam with 1.8 x 10{sup 10} electrons is compressed to 20 {mu}m longitudinally and focused down to 10 {mu}m x 10 {mu}m transverse spot size for user driven experiments. Construction of the FACET facility completed in May 2011 with a first run of user assisted commissioning throughout the summer. The first PWFA experiments will use single electron bunches combined with a high density lithium plasma to produce accelerating gradients > 10 GeV/m benchmarking the FACET beam and the newly installed experimental hardware. Future plans for further study of plasma wakefield acceleration will be reviewed. The experimental hardware and operation of the plasma heat-pipe oven have been successfully commissioned. Plasma wakefield acceleration was not observed because the electron bunch density was insufficient to ionize the lithium vapor. The remaining commissioning time in summer 2011 will be dedicated to delivering the FACET design parameters for the experimental programs which will begin in early 2012. PWFA experiments require the shorter bunches and smaller transverse sizes to create the plasma and drive large amplitude wakefields. Low emittance and high energy will minimize head erosion which was found to be a limiting factor in acceleration distance and energy gain. We will run the PWFA experiments with the design single bunch conditions in early 2012. Future PWFA experiments at FACET are discussed in [5][6] and include drive and witness bunch production for high energy beam manipulation, ramped bunch to optimize tranformer ratio, field-ionized cesium plasma, preionized plasmas, positron acceleration, etc.. We will install a notch collimator for two-bunch operation as well as new beam diagnostics such as the X-band TCAV [7] to resolve the two bunches

  2. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  3. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  4. Plasma Guns for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Bomgardner, R.; Case, A.; Messer, S. J.; Brockington, S.; Wu, L.; Elton, R.; Hsu, S. C.; Cassibry, J. T.; Gilmore, M. A.

    2009-11-01

    A spherical array of minirailgun plasma accelerators is planned for the Plasma Liner Experiment (PLX) to be located at LANL. The plasma liner would be formed via merging of 30 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose due to their reduced system complexity and cost, with each gun planned to operate at ˜300 kA peak current, and launching up to ˜8000 μg of high-Z plasma using a ˜50 kJ pfn. We describe experimental development of the minirailguns and their current and projected performance. Fast operating repetitive gas valves have recently been added to allow injection of high density gases including helium, argon, and (eventually) xenon. We will present the latest test results with the high-Z gases, and discuss future plans for augmenting the rails, optimizing the nozzle configuration, preionizing the injected gas, and configuring the pulse forming networks with the capacitors available to the program.

  5. Overview of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M. A.; the PLX Team

    2011-10-01

    The Plasma Liner Experiment (PLX) is a multi-institutional collaboration that is exploring and demonstrating the formation of imploding spherical plasma liners to reach peak pressures exceeding 0.1 Mbar upon stagnation. The liners will be formed via the merging of 30 dense high Mach number plasma jets (n ~1017 cm-3, M ~ 10 -35, v ~ 50 km/s, rjet ~ 2 . 5 cm) in a spherically convergent geometry. We are aiming for two follow-on applications if this work is successful: (1) assembling repetitive, macroscopic (cm and μs scale) plasmas suitable for fundamental HEDLP scientific studies and (2) a standoff driver for magneto-inertial fusion. This is a staged project where scientific issues will be studied first at modest stored energies (~ 300 kJ) before attempting to reach HED- relevant pressures (requiring ~ 1 . 5 MJ). This poster provides an overview of the project's status/plans and emphasizes the progress made in the past year: completion of phase one facility and diagnostic construction, progress in numerical simulations, and initial experiments on single jet propagation and two jet merging. Finally, we describe cosmically-relevant collisionless shock experiments based on the head-on collision of two lower density but higher velocity plasma jets. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  6. Dusty Plasma Experiments Using an Electrodynamic Balance

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Abbas, M. M.; Suess, S. T.; Venturini, C. C.; Comfort, R. H.

    2000-01-01

    Knowledge of the formation, distribution, physical, chemical and optical characteristics of interstellar, interplanetary, and planetary dust grains provide valuable information about many issues dealing with the origin and formation of the solar system bodies, interplanetary and interstellar environments as well as various industrial processes. Understanding the microphysics of individual grains and their interaction with the surrounding environment is key to properly model various conditions and interpret existing data. The theory and models of individual dust grains are well developed for environments that vary from dense planetary atmospheres to dusty plasmas to diffuse environments such is interplanetary space. However, experimental investigations of individual dust grains in equilibrium are less common, perhaps due to the difficult of these experiments. Laboratory measurements of dust grains have primarily measured ensemble properties or transient properties of single grains. A technique developed in the 1950's for ion spectroscopy, known as a quadrupole trap or 'Paul Trap', has recently been used to investigate single micron-sized dust grains. This scaled ion trap called an electrodynamic balance has been used for atmospheric aerosol research. A description of this technique is provided. Recent results from experiments to investigate the equilibrium potential of dust grains exposed to far ultraviolet light or to -,in electron or ion beam are presented. This laboratory technique ]ends itself to many applications that relate to planetary atmospheres, heliospheric environments, pre-stellar and pre-planetary conditions, and industrial settings. Several planned experimental approaches are presented. Potential experiments to investigate the interaction of multiple dust grains using an electrodynamic balance are proposed.

  7. SPDE: Solar Plasma Diagnostic Experiment

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  8. Magnetic Nozzle and Plasma Detachment Experiment

    NASA Technical Reports Server (NTRS)

    Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher

    2006-01-01

    High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.

  9. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  10. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  11. Alpha-particle Measurements Needed for Burning Plasma Experiments

    SciTech Connect

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  12. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  13. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  14. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  15. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    PubMed

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  16. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  17. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  18. DHS Research Experience Summary

    SciTech Connect

    Venkatachalam, V

    2008-10-24

    I learned a great deal during my summer internship at Lawrence Livermore National Laboratory (LLNL). I plan to continue a career in research, and I feel that my experience at LLNL has been formative. I was exposed to a new area of research, as part of the Single Particle Aerosol Mass Spectrometry (SPAMS) group, and I had the opportunity to work on projects that I would not have been able to work on anywhere else. The projects both involved the use of a novel mass spectrometer that was developed at LLNL, so I would not have been able to do this research at any other facility. The first project that Zachary and I worked on involved using SPAMS to detect pesticides. The ability to rapidly detect pesticides in a variety of matrices is applicable to many fields including public health, homeland security, and environmental protection. Real-time, or near real-time, detection of potentially harmful or toxic chemical agents can offer significant advantages in the protection of public health from accidental or intentional releases of harmful pesticides, and can help to monitor the environmental effects of controlled releases of pesticides for pest control purposes. The use of organophosphate neurotoxins by terrorists is a possibility that has been described; this is a legitimate threat, considering the ease of access, toxicity, and relatively low cost of these substances. Single Particle Aerosol Mass Spectrometry (SPAMS) has successfully been used to identify a wide array of chemical compounds, including drugs, high explosives, biological materials, and chemical warfare agent simulants. Much of this groundbreaking work was carried out by our group at LLNL. In our work, we had the chance to show that SPAMS fulfills a demonstrated need for a method of carrying out real-time pesticide detection with minimal sample preparation. We did this by using a single particle aerosol mass spectrometer to obtain spectra of five different pesticides. Pesticide samples were chosen to

  19. Research Experiences for Undergraduates.

    ERIC Educational Resources Information Center

    Rettig, Terrence W.; And Others

    1990-01-01

    Reviewed are six programs at different colleges and universities which provide research opportunities for undergraduate students in physics, astronomy, marine biology, meteorology, and anthropology. Background, features, and accomplishments of the programs are discussed. (CW)

  20. Plasma shape experiments for an optimized tokamak

    NASA Astrophysics Data System (ADS)

    Hyatt, A. W.; Osborne, T. H.; Lazarus, E. A.

    1994-07-01

    In this paper we present results from recent experiments at DIII-D which measured the plasma stability and confinement performance product, beta(tau)(sub E), in one previously studied and three new plasma shapes. One important goal of these experiments was to identify performance vs. shape trends which would identify a shape compatible with both high performance and the planned effort to decrease the power flux to the divertor floor using a closed 'slot' divertor geometry. The closed divertor hardware must be designed for a reduced set of plasma shapes, so care must be taken to choose the shape that optimizes beta(tau)(sub E) and divertor performance. The four shapes studied form a matrix of moderate and high elongations (kappa congruent to 1.8 and 2.1) and low and high triangularities (delta congruent to 0.3 and 0.9). All configurations were double-null diverted (DND), held fixed during a shot, with neutral beam heating. The shapes span a range of X-point locations compatible with the envisioned closed divertor. We find that from shape to shape, a shot's transient normalized performance, beta(sub N)H, where beta(sub N) is equivalent to beta/(I(sup p)/aB(sub T)) and H is equivalent to tau(sub E)/tau(sub E)(sup ITER-89P), increases strongly with triangularity, but depends only weakly on elongation. However, the normalized performance during quasi stationary ELMing H-mode, to which these discharges eventually relax, is insensitive to both triangularity and elongation. The moderate elongation, high triangularity DND shape is shown to be near optimum for future studies on DIII-D.

  1. Intervention research: GAO experiences.

    PubMed

    Grasso, P G

    1996-04-01

    This paper describes tools of program evaluation that may prove useful in conducting research on occupational health and safety interventions. It presents examples of three studies conducted by the U.S. General Accounting Office that illustrate a variety of techniques for collecting and analyzing data on program interventions, including analysis of extant data, synthesis of results of existing studies, and combining data from administrative files with survey results. At the same time, it stresses the importance and difficulty of constructing an adequate "theory" of how the intervention is expected to affect outcomes, both for guiding data collection and for allowing adequate interpretation of results.

  2. Intervention research: GAO experiences.

    PubMed

    Grasso, P G

    1996-04-01

    This paper describes tools of program evaluation that may prove useful in conducting research on occupational health and safety interventions. It presents examples of three studies conducted by the U.S. General Accounting Office that illustrate a variety of techniques for collecting and analyzing data on program interventions, including analysis of extant data, synthesis of results of existing studies, and combining data from administrative files with survey results. At the same time, it stresses the importance and difficulty of constructing an adequate "theory" of how the intervention is expected to affect outcomes, both for guiding data collection and for allowing adequate interpretation of results. PMID:8728140

  3. Overview, Status, and Plans of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Awe, T. J.; Hanna, D. S.; Davis, J. S.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M. A.; Hwang, D. Q.

    2010-11-01

    The Plasma Liner Experiment (PLX) is a multi-institutional collaboration that is exploring and demonstrating the feasibility of forming imploding spherical plasma liners to reach peak pressures ˜0.1 Mbar upon stagnation. The liners will be formed via merging of 30--60 dense high Mach number plasma jets (n˜10^17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in spherically convergent geometry. We are aiming for two potential follow-on applications if this work is successful: (1) assembling repetitive, macroscopic (cm and μs scale) plasmas suitable for fundamental HEDLP scientific studies and (2) a standoff driver solution for magneto-inertial fusion. This is a staged project where scientific issues will be studied first at modest stored energies (˜300 kJ) before attempting to reach HED-relevant pressures (requiring ˜1.5 MJ)@. This poster provides an overview/status of the project and the research plan, which includes numerical/theoretical and experimental studies of plasma jet formation/acceleration, propagation/merging, liner convergence/stagnation, and laser driven beat waves for magnetizing the imploding liner.

  4. New diagnostic facilities for Caltech plasma experiments

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang; Bellan, Paul

    2011-10-01

    An optically coupled high voltage probe (HV probe) and a visible and near infrared (VNIR) detector are being developed for Caltech solar coronal loop and astrophysical jet experiments. The HV probe uses a capacitive voltage divider coupled a fast LED to convert the electrical signal into an optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array powered by ambient laboratory lighting charges a capacitor that when triggered acts as a short-duration power supply for an onboard amplifier in the HV probe. The fast VNIR detector combined with specific atomic line filters measures the spectra with 10ns time resolution. Measurements show that before detachment, the gross VNIR emission power of the solar coronal plasma loop is a function of the axial electric current. H α and H β line emission power is found to be 102 ~103 greater than predicted by assuming local thermodynamic equilibrium. This indicates that the plasma is not in an ionization-recombination equilibrium state and can have a larger population of neutrals than predicted for an equilibrium state. NSF, DOE, AFOSR

  5. Plasma gun pellet acceleration modeling and experiment

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1996-12-31

    Modifications to the electrothermal plasma gun SIRENS have been completed to allow for acceleration experiments using plastic pellets. Modifications have been implemented to the 1-D, time dependent code ODIN to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON, compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking. 16 refs., 5 figs.

  6. Electron density and plasma dynamics of a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-01

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH2 at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ṡ 1015 cm-3 for a single accelerated plasma and a maximum value of ≈2.6 ṡ 1016 cm-3 for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  7. Research in solar plasma theory

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1992-01-01

    The main thrust and significance of our research results are presented. The topics covered include: (1) coronal structure and dynamics; (2) coronal heating; (3) filament formation; and (4) flare energy release.

  8. Design and Assembly of the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Fisher, Ross; Artis, Darrick; Lynch, Brian; Wood, Keith; Shaw, Joseph; Gilmore, Kevin; Robinson, Daniel; Polka, Christian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2013-10-01

    Over the last two years, the Magnetized Dusty Plasma Experiment (MDPX) has been under construction at Auburn University. This new research device, whose assembly will be completed in late Summer, 2013, uses a four-coil, superconducting, high magnetic field system (|B | >= 4 Tesla) to investigate the confinement, charging, transport, and instabilities in a dusty plasma. A new feature of the MDPX device is the ability to operate the magnetic coils independently to allow a variety of magnetic configurations from highly uniform to quadrapole-like. Envisioned as a multi-user facility, the MDPX device features a cylindrical vacuum vessel whose primary experimental region is an octagonal chamber that has a 35.5 cm inner diameter and is 19 cm tall. There is substantial diagnostics and optical access through eight, 10.2 cm × 12.7 cm side ports. The chamber can also be equipped with two 15.2 cm diameter, 76 cm long extensions to allow long plasma column experiments, particularly long wavelength dust wave studies. This presentation will discuss the final design, assembly, and installation of the MDPX device and will describe its supporting laboratory facility. This work is supported by a National Science Foundation - Major Research Instrumentation (NSF-MRI) award, PHY-1126067.

  9. Fundamental Complex Plasma Research on Ground and under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Fortov, Vladimir; Thoma, Markus; Pustylnik, Mikhail; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Usachev, Alexander; Nosenko, Vladimir; Fink, Martin; Petrov, Oleg; Rubin-Zuzic, Milenko

    2016-07-01

    Complex (dusty) plasma is plasma containing small solid particles in the sub-mm range. Those "dust" particles are highly charged due to the collection of electrons and ions and they interact electrostatically. Depending on the charge, density, and kinetic temperature of the particles, the interaction may be strong leading to collective effects and the emergence of liquid or solid behavior. In that sense complex plasmas are perfect model systems for the investigation of fundamental processes in classical condensed matter physics since their constituent mesoscopic particles are individually observable and can be regarded as classically interacting "proxy atoms". The term "complex plasmas" is widely used in the literature to distinguish dusty plasmas composed of a weakly ionized gas and charged microparticles specially "designed" for investigations in classical condensed matter, from naturally occurring systems. Gravity influences the complex plasma, the microparticles sediment and stable systems can only be achieved through counteracting gravity with other volume forces, e.g. electric or thermophoretic force. This allows producing two-dimensional - monolayer - systems, or three-dimensional systems under stress. Only under weightlessness conditions, large and homogeneous 3D systems can be formed. Although phenomena in classical condensed matter physics are in the forefront of complex plasma research the basic know-how gained from experiments, theory and numerical simulations can be of importance for the understanding of naturally occurring dusty plasmas in space. Thus, in this presentation I will show recent work on complex plasmas from the ground and first results from the PK-4 facility onboard the International Space Station ISS. Acknowledgements: We would like to acknowledge the joint ESA-ROSCOSMOS Experiment «Plasma Kristall-4» onboard the International Space Station ISS. This work is partly supported by DLR grant 50WM1441/ 50WM1442 and by the Russian Science

  10. First results of the plasma wakefield acceleration experiment at PITZ

    NASA Astrophysics Data System (ADS)

    Lishilin, O.; Gross, M.; Brinkmann, R.; Engel, J.; Grüner, F.; Koss, G.; Krasilnikov, M.; Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J.; Pathak, G.; Philipp, S.; Renier, Y.; Richter, D.; Schroeder, C.; Schütze, R.; Stephan, F.

    2016-09-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ.

  11. SAFE II: Large systems space plasma evaluation experiment

    NASA Astrophysics Data System (ADS)

    Carruth, M. R., Jr.; Young, L. E.; Purvis, C. K.; Stevens, N. J.

    1983-05-01

    A shuttle flight experiment, the purpose of which is to obtain space data on the interaction of a high voltage solar array with the ambient space plasma is addressed. This flight experiment is a reflight of the solar array flight experiment, SAFE, except that three active solar array panels, electron release devices and plasma diagnostics are added. This experiment, SAFE 2, evaluates power loss due to parasitic current collected by the solar array, arcing on the solar array and perturbations to the plasma which may increase power loss and disturb plasma and charged particle science acquisition.

  12. Oscillating plasma bubbles. II. Pulsed experiments

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    Time-dependent phenomena have been investigated in plasma bubbles which are created by inserting spherical grids into an ambient plasma and letting electrons and ions form a plasma of different parameters than the ambient one. There are no plasma sources inside the bubble. The grid bias controls the particle flux. There are sheaths on both sides of the grid, each of which passes particle flows in both directions. The inner sheath or plasma potential develops self consistently to establish charge neutrality and divergence free charge and mass flows. When the electron supply is restricted, the inner sheath exhibits oscillations near the ion plasma frequency. When all electrons are excluded, a virtual anode forms on the inside sheath, reflects all ions such that the bubble is empty. By pulsing the ambient plasma, the lifetime of the bubble plasma has been measured. In an afterglow, plasma electrons are trapped inside the bubble and the bubble decays as slow as the ambient plasma. Pulsing the grid voltage yields the time scale for filling and emptying the bubble. Probes have been shown to modify the plasma potential. Using pulsed probes, transient ringing on the time scale of ion transit times through the bubble has been observed. The start of sheath oscillations has been investigated. The instability mechanism has been qualitatively explained. The dependence of the oscillation frequency on electrons in the sheath has been clarified.

  13. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  14. Complex Plasma Research Under Extreme Conditions

    SciTech Connect

    Ishihara, Osamu

    2008-09-07

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  15. The Plasma Interaction Experiment (PIX) description and test program. [electrometers

    NASA Technical Reports Server (NTRS)

    Ignaczak, L. R.; Haley, F. A.; Domino, E. J.; Culp, D. H.; Shaker, F. J.

    1978-01-01

    The plasma interaction experiment (PIX) is a battery powered preprogrammed auxiliary payload on the LANDSAT-C launch. This experiment is part of a larger program to investigate space plasma interactions with spacecraft surfaces and components. The varying plasma densities encountered during available telemetry coverage periods are deemed sufficient to determine first order interactions between the space plasma environment and the biased experimental surfaces. The specific objectives of the PIX flight experiment are to measure the plasma coupling current and the negative voltage breakdown characteristics of a solar array segment and a gold plated steel disk. Measurements will be made over a range of surface voltages up to plus or minus kilovolt. The orbital environment will provide a range of plasma densities. The experimental surfaces will be voltage biased in a preprogrammed step sequence to optimize the data returned for each plasma region and for the available telemetry coverage.

  16. Adventures in Laser Produced Plasma Research

    SciTech Connect

    Key, M

    2006-01-13

    In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

  17. The Burning Plasma Experiment conventional facilities

    SciTech Connect

    Commander, J.C.

    1991-01-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN{sub 2}) building; and the associated Instrumentation and Control (I C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab.

  18. The Burning Plasma Experiment conventional facilities

    SciTech Connect

    Commander, J.C.

    1991-12-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F&ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F&ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN{sub 2}) building; and the associated Instrumentation and Control (I&C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab.

  19. Development and research of a coaxial microwave plasma thruster

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Xu, Yingqiao; Tang, Jinlan; Mao, Genwang; Yang, Tielian; Tan, Xiaoquen

    2008-08-01

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15mN and 340s in the performance of the microwave plasma thruster at 70W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)×1016/m3. Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate.

  20. Development and research of a coaxial microwave plasma thruster

    SciTech Connect

    Yang Juan; Xu Yingqiao; Tang Jinlan; Mao Genwang; Yang Tielian; Tan Xiaoquen

    2008-08-15

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15 mN and 340 s in the performance of the microwave plasma thruster at 70 W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)x10{sup 16}/m{sup 3}. Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate.

  1. Researchers build a secure plasma prison

    SciTech Connect

    Glanz, J.

    1995-07-28

    Research groups at Princeton University`s Tokamak Fusion Test Reactor and at the DIII-D tokamak at General Atomics in San Diego have made a major breakthrough. By tailoring the magnetic fields with unprecedented finesse, they appear to have tamed the plasma instabilities that rattle and tear the fragile magnetic cage, allowing particles to leak out and limiting a tokamak`s performance. In the process they increased the central density of the plasma by as much as threefold and reduced the particle leakage by a factor of 50.

  2. An Experiment to Tame the Plasma Material Interface

    SciTech Connect

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  3. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  4. Progress of plasma wakefield self-modulation experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Berglyd Olsen, V. K.; Lindstrøm, C. A.; Muggli, P.; Reimann, O.; Vieira, J. M.; Amorim, L. D.; Clarke, C. I.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O`Shea, B. D.; Yakimenko, V.; Clayton, C.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Williams, O.

    2016-09-01

    Simulations and theory predict that long electron and positron beams may under favorable conditions self-modulate in plasmas. We report on the progress of experiments studying the self-modulation instability in plasma wakefield experiments at FACET. The experimental results obtained so far, while not being fully conclusive, appear to be consistent with the presence of the self-modulation instability.

  5. Analysis and experiments of a whistler-wave plasma thruster

    SciTech Connect

    Hooper, E.B.; Ferguson, S.W.; Makowski, M.A.; Stallard, B.W.; Power, J.L.

    1993-08-06

    A plasma thruster operating at high specific impulse ({ge} 3500 s) has been proposed to be based on electron-cyclotron resonance heating of whistler waves propagating on a plasma column on a magnetic hill. Calculations using a particle-in-cell code demonstrate that the distortion of the electron velocity distribution by the heating significantly reduces the flow of plasma up the field, greatly improving efficiency and reducing material interactions relative to a thermal plasma. These and other calculations are presented together with initial experiments on the plasma generated in the proposed device. The experiments are conducted in a magnetic field (3.3 {times} 10{sup {minus}2} T at resonance) and a magnetic mirror ratio of 5. Microwaves (0.915 GHz, <20 kW) are coupled to the plasma with a helical antenna. Vacuum field measurements are in good agreement with prediction. The desired plasma spatial distribution has not yet been achieved.

  6. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  7. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Wallace, J.; Brookhart, M.; Clark, M.; Collins, C.; Ding, W. X.; Flanagan, K.; Khalzov, I.; Li, Y.; Milhone, J.; Nornberg, M.; Nonn, P.; Weisberg, D.; Whyte, D. G.; Zweibel, E.; Forest, C. B.

    2014-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ˜14 m3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (MA2=(v/vA)2>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  8. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  9. Pinch Related Research At Institute For Plasma Research, India

    SciTech Connect

    Shyam, Anurag

    2006-01-05

    Several pinch related experiment, their drivers and related diagnostics are being developed in our laboratory. The first set of experiments is to investigate various aspects of magnetized target fusion (MTF/MAGO). To drive the liner, in Z or theta pinch configuration, a 1.2 MJ, 3.6 MA capacitor bank is developed. For liner diagnostics flash radiography, VISAR and pyrometery are being developed. To produce magnetized (target) plasma a 120 kJ, 3 MA and several other banks are developed. Hot magnetized Plasma will be diagnosed by optical schlieren, interferometery and X-Ray spectrometry. A terra-watt system consisting of a Marx bank and water line delivering 800 kA at 1.6 MV will be commissioned, soon. The device will be used to study different pinch (wire array) configurations for production of electro-magnetic radiations. Smaller pulsed power systems, consisting of 1MV/500 kV Marx bank/tesla transformer and than water or solid state (cables) pulse forming network (coax) are also being developed for capillary discharge and other experiments. Two plasma foci experiments are also being conducted. The effort is produce a repetitively operating compact plasma focus.

  10. Experiments and Theory of Dusty Plasmas

    SciTech Connect

    Shukla, P. K.

    2011-11-29

    The purpose of this paper is to present the most important theoretical and experimental discoveries that have been made in the area of dusty plasma physics. We describe the physics and observations of the well celebrated dust acoustic wave (DAW) and the dust ion-acoustic wave (DIAW) in dusty plasmas with weakly coupled dust grains, as well as the dust Coulomb crystal and dust lattice oscillations (DLOs) in dusty plasmas with strongly coupled dust grains. In dusty plasmas, the dust charge fluctuation is a dynamical variable, which provides a novel collisionless damping of the DA and DIA waves. The latter and the DLOs are excited by external sources, which are here discussed. Besides the Debye-Hueckel short-range repulsive force between like charged dust grains, there are novel attractive forces (e.g. due to dipole-dipole dust particle interactions, overlapping Debye spheres, ion focusing and ion wakefields, dipole magnetic moments etc.), which provide unique possibilities for attracting charged dust particles of similar polarity. The dust particle attraction is responsible for the formation of dust Coulomb crystals in laboratory dusty plasmas, as well as for the formation of planets and large astrophysical bodies in the Milky Way galaxy and in interstellar media. Furthermore, the nonlinear DAW, DIAW, and DLOs also appear in the form of solitary and shock waves, the physics and observations of which are briefly discussed. Finally, we discuss possible applications of dust-in-plasmas and dusty plasmas in laboratory and space.

  11. Pre-plasma formation in experiments using petawatt lasers.

    PubMed

    Wagner, Florian; Bedacht, Stefan; Ortner, Alex; Roth, Markus; Tauschwitz, Anna; Zielbauer, Bernhard; Bagnoud, Vincent

    2014-12-01

    We used time-resolved shadowgraphy to characterize the pre-plasma formation in solid-target interaction experiments with micrometer-scale accuracy. We performed quantitative measurements of the plasma density for amplified spontaneous emission (ASE) levels ranging from 2 · 10(-7) to 10(-10) backed with 2-dimensional hydrodynamic simulations. We find that ASE levels above 10(-9) are able to create a significant pre-plasma plume that features a plasma canal driving a self-focusing of the laser beam. For ASE levels of 10(-10), no ASE pre-plasma could be detected.

  12. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  13. Researching the Experience of Pedagogy.

    ERIC Educational Resources Information Center

    van Manen, Max

    2002-01-01

    This discussion of phenomenological research methods examines the importance of secrets in children's development of self-identity, autonomy, independence, and maturity; the experience of recognition in children and its relationship to teaching, learning, and child development; and Alzheimer's dementia and the relationship between memory and sense…

  14. Plasma-materials interactions during rf experiments in tokamaks

    SciTech Connect

    Cohen, S.A.; Bernabei, S.; Budny, R.; Chu, T.K.; Colestock, P.; Hinnov, E.; Hooke, W.; Hosea, J.; Hwang, D.; Jobes, F.

    1984-09-01

    Plasma-materials interactions studied in recent ICRF heating and lower hybrid current drive experiments are reviewed. The microscopic processes responsible for impurity generation are discussed. In ICRF experiments, improvements in machine operation and in antenna and feedthrough design have allowed efficient plasma heating at RF powers up to 3 MW. No significant loss of energy from the plasma core due to impurity radiation occurs. Lower hybrid current drive results in the generation and maintenance of hundreds of kiloamperes of plasma current carried by suprathermal electrons. The loss of these electrons and their role in impurity generation are assessed. Methods to avoid this problem are evaluated.

  15. Experiments on the Propagation of Plasma Filaments

    SciTech Connect

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos

    2008-07-04

    We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

  16. Stopping Power in Dense Plasmas: Models, Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Grabowski, Paul; Fichtl, Chris; Graziani, Frank; Hazi, Andrew; Murillo, Michael; Sheperd, Ronnie; Surh, Mike; Cimarron Collaboration

    2011-10-01

    Our goal is to conclusively determine the minimal model for stopping power in dense plasmas via a three-pronged theoretical, simulation, and experimental program. Stopping power in dense plasma is important for ion beam heating of targets (e.g., fast ignition) and alpha particle energy deposition in inertial confinement fusion targets. We wish to minimize our uncertainties in the stopping power by comparing a wide range of theoretical approaches to both detailed molecular dynamics (MD) simulations and experiments. The largest uncertainties occur for slow-to-moderate velocity projectiles, dense plasmas, and highly charged projectiles. We have performed MD simulations of a classical, one component plasma to reveal where there are weaknesses in our kinetic theories of stopping power, over a wide range of plasma conditions. We have also performed stopping experiments of protons in heated warm dense carbon for validation of such models, including MD calculations, of realistic plasmas for which bound contributions are important.

  17. Preliminary results of noncircular plasma experiments in Doublet III

    SciTech Connect

    Ohkawa, T.

    1980-02-01

    Preliminary results of noncircular plasma experiments in Doublet III are reported. Shaping and discharge characteristics in doublet plasmas with high-Z limiters are described. Electron energy confinement and maximum plasma density are in agreement with standard circular tokamak empirical scaling laws. Chromium and molybdenum appear to be the dominant high-Z contaminants while carbon appears to dominate low-Z contaminants. High-Z impurity radiation does not appear to dominate the central power balance.

  18. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field

  19. Electron Diffraction Experiments using Laser Plasma Electrons

    SciTech Connect

    Fill, E E; Trushin, S; Tommasini, R; Bruch, R

    2005-09-07

    We demonstrate that electrons emitted from a laser plasma can be used to generate diffraction patterns in reflection and transmission. The electrons are emitted in the direction of laser polarization with energies up to 100 keV. The broad electron energy spectrum makes possible the generation of a ''streaked'' diffraction pattern which allows recording fast processes in a single run.

  20. Production of Uniform Dense Titanium Plasmas for Experiments on Atlas

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.; Wood, Blake P.

    2000-10-01

    Atlas is a large pulsed power machine being built at Los Alamos for the purpose of doing basic physics and hydrodynamic experiments for the stockpile stewardship program. One class of the basic physics experiments involves studying the properties and behavior of plasmas at very high density. These experiments will typically involve the production of a high density plasma to be imploded by the solid liners driven by the Atlas machine. The requirements for these high density ``target" plasmas are that they be uniform in density and temperature, have ion densities ≈ 0.1 x solid density, and temperatures of a few eV. The production of such plasmas has not been demonstrated; therefore, we have initiated an experimental program to learn to do this. We are conducting a series of experiments on the Colt capacitor bank at Los Alamos. These experiments use a novel configuration to heat a titanium foil to plasma conditions using the current from Colt, but without imploding the plasma. We will present preliminary density profiles of the titanium plasma using x-ray radiography along with magnetic probe data showing the current distribution in the machine. Measurements of the electrical resistivity of titanium under these conditions will also be presented.

  1. Production of Uniform Dense Plasmas for Experiments on Atlas

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.

    1999-11-01

    Atlas is a large pulsed power machine being built at Los Alamos for the purpose of doing basic physics and hydrodynamic experiments for the stockpile stewardship program. One class of the basic physics experiments involves studying the properties and behavior of plasmas at very high density. These experiments will typically involve the production of a high density plasma to be imploded by the solid liners driven by the Atlas machine. The requirements for these high density ``target" plasmas are that they be uniform in density and temperature, have ion densities 0.1 x solid density, and temperatures of a few eV. The production of such plasmas has not been demonstrated; therefore, we have initiated an experimental program to learn to do this. We are conducting a series of experiments on the Colt capacitor bank at Los Alamos. These experiments use a novel configuration to heat a titanium foil to plasma conditions using the current from Colt, but without imploding the plasma. We will present preliminary density profiles of the titanium plasma using x-ray radiography along with magnetic probe data showing the current distribution in the machine.

  2. Progress toward positron-electron pair plasma experiments

    SciTech Connect

    Stenson, E. V.; Stanja, J.; Hergenhahn, U.; Saitoh, H.; Niemann, H.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-29

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  3. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  4. Diagnosis in Complex Plasmas for Microgravity Experiments (PK-3 plus)

    SciTech Connect

    Takahashi, Kazuo; Hayashi, Yasuaki; Thomas, Hubertus M.; Morfill, Gregor E.; Ivlev, Alexei V.; Adachi, Satoshi

    2008-09-07

    Microgravity gives the complex (dusty) plasmas, where dust particles are embedded in complete charge neutral region of bulk plasma. The dust clouds as an uncompressed strongly coupled Coulomb system correspond to atomic model with several physical phenomena, crystallization, phase transition, and so on. As the phenomena tightly connect to plasma states, it is significant to understand plasma parameters such as electron density and temperature. The present work shows the electron density in the setup for microgravity experiments currently onboard on the International Space Station.

  5. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; McComas, D. J.; Nordholdt, J. E.; Thomsen, M. F.; Berthelier, J. J.; Robson, R.

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  6. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  7. Plasma lens experiments at the Final Focus Test Beam

    SciTech Connect

    Barletta, B. |; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  8. Plasma lens experiments at the final focus test beam

    SciTech Connect

    Barletta, W.; Chattopadhyay, S.; Chen, P.

    1995-02-01

    The authors intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. They will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam induced tunneling ionization of a working gas--the latter which has never been observed before. The compactness of the device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  9. Status of Magnetic Nozzle and Plasma Detachment Experiment

    SciTech Connect

    Chavers, D. Gregory; Dobson, Chris; Jones, Jonathan; Lee, Michael; Martin, Adam; Gregory, Judith; Cecil, Jim; Bengtson, Roger D.; Breizman, Boris; Arefiev, Alexey; Chang-Diaz, Franklin; Squire, Jared; Glover, Tim; McCaskill, Greg; Cassibry, Jason; Li Zhongmin

    2006-01-20

    High power plasma propulsion can move large payloads for orbit transfer, lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue if the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment is being performed to test the theory regarding the MHD detachment scenario. The status of that experiment will be discussed in this paper.

  10. MHD Experiment At CIRA GHIBLI Plasma Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Trifoni, E.; Purpura, C.; Martucci, A.; Graps, E.; Schettino, A.; Battista, F.; Passaro, A.; Baccarella, D.; Cristofolini, A.; Neretti, G.

    2011-05-01

    A Test campaign in the frame of the ASI (Italian Space Agency) funded project CAST (Advanced Aerothermodynamic Configurations for Space Transport) was performed at the CIRA GHIBLI plasma wind tunnel. The CAST Test campaign in GHIBLI consisted of more than 20 test cases including Probe measurements, microwave absorption measurements and a MHD experiment. The microwave absorption measurements were performed in plasma free jet conditions in order to determine the integral electron number density of the plasma flow. A correlation between the measured electron number density and the facility operating conditions was found. The MHD experiment was performed by insertion in the hypersonic plasma jet of a ceramic flat faced blunt cone model containing a permanent magnet inside, able to generate a magnetic field of 0.5 Tesla; also another model identical to the previous but not containing any magnet inside, was inserted in the hypersonic plasma jet at the same flow conditions. The effects of such interactions were compared.

  11. Particle Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sherman, Justin; James, R. W.; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    A small Helicon Plasma Experiment (HPX) has been constructed at the Coast Guard Academy Plasma Lab (CGAPL) to utilize the reputed high densities at low pressure (.01 T) [1], in high temperature and density diagnostic development for future laboratory investigations. With the initial construction phase complete, HPX has produced its first plasmas. Efforts to develop and enhance the high temperature and density (10^13 cm-3 and higher) helicon plasmas at low pressures (.01 T) reported by Toki, Shinohara, et. al. continue. Currently, particle probes to measure plasmas' temperatures and densities, necessary to discern the plasma mode transitions, are in development. Construction of independent mach and triple probes for single point surface investigations are underway and once installed, they will be followed by a triple probe array to produce a more comprehensive density and surface view. Progress on the construction and findings of these probes on HPX will be reported.

  12. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  13. The Orbital Acceleration Research Experiment

    NASA Astrophysics Data System (ADS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  14. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  15. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  16. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    SciTech Connect

    Cooper, C. M.; Brookhart, M.; Collins, C.; Khalzov, I.; Milhone, J.; Nornberg, M.; Weisberg, D.; Forest, C. B.; Wallace, J.; Clark, M.; Flanagan, K.; Li, Y.; Nonn, P.; Ding, W. X.; Whyte, D. G.; Zweibel, E.

    2014-01-15

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ∼14 m{sup 3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB{sub 6}) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB{sub 6} cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M{sub A}{sup 2}=(v/v{sub A}){sup 2}>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  17. Comparing simulation of plasma turbulence with experiment

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for E×B low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement.

  18. Research on Orbital Plasma Electrodynamics (ROPE)

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.

    1998-01-01

    This final report summarizes some of the important scientific contributions to the Research on Orbital Plasma Electrodynamics (ROPE) investigation, to the Tethered Satellite System (TSS) mission, and to NASA that resulted from the work carried out under this contract at Carmel Research Center. These include Dr. Intriligator's participation in the PIT for the TSS-1R simulations and flight, her participation in ROPE team meetings and IWG meetings, her scientific analyses, and her writing and submitting technical papers to scientific journals. The scientific analyses concentrated on the characterization of energetic ions and their possible relation to pickup ion effects, correlation of particle and other effects (e.g., magnetic field, satellite surface), and collaboration with theorists including with ROPE co-investigators. In addition, scientific analyses were carried out of the effects due to satellite gas releases.

  19. Review of high-energy plasma wakefield experiments

    NASA Astrophysics Data System (ADS)

    Muggli, Patric; Hogan, Mark J.

    2009-03-01

    Plasma wakefield accelerator (PWFA) experiments have made considerable progress in the past decade by using high-energy particle beams to drive large amplitude waves or wakes in a plasma. Electron beam driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high-energy betatron radiation photons, particle beam refraction at the plasma/neutral gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100 MeV/m to 50 GeV/m for acceleration have been excited in plasmas with densities of 10 14 to 10 cm, respectively. The large accelerating gradient led to the energy doubling of 42 GeV electrons in only 85 cm of plasma. Positron beam driven experiments have evidenced the comparatively more complex dynamic and integrated plasma focusing, the subsequent halo formation and emittance growth in the positron beam and demonstrated accelerating gradients of nearly 100 MeV/m. This article summarizes this experimental progress, illustrates the key enabling technologies that made the work possible, concludes with a brief discussion of proposed future directions, and suggests that the PWFA could one day revolutionize e/e linear colliders. To cite this article: P. Muggli, M.J. Hogan, C. R. Physique 10 (2009).

  20. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  1. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  2. Plasma Motor Generator (PMG) electrodynamic tether experiment

    NASA Technical Reports Server (NTRS)

    Grossi, Mario D.

    1995-01-01

    The Plasma Motor Generator (PMG) flight of June 26, 1993 has been the most sophisticated and most successful mission that has been carried out thus far with an electrodynamic tether. Three papers from the Smithsonian Astrophysical Observatory, Washington, DC concerned with the PMG, submitted at the Fourth International Space Conference on Tethers in Space, in Washington, DC, in April 1995, are contained in this document. The three papers are (1) Electromagnetic interactions between the PMG tether and the magneto-ionic medium of the Ionosphere; (2) Tether-current-voltage characteristics, as determined by the Hollow Cathode Operation Modes; and (3) Hawaii-Hilo ground observations on the occasion for the PMG flight of June 23, 1993.

  3. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  4. Laboratory plasma interactions experiments: Results and implications to future space systems

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1986-01-01

    The experimental results discussed show the significance of the effects caused by spacecraft plasma interactions, in particular the generation of Electromagnetic Interference. As the experimental results show, the magnitude of the adverse effects induced by Plasma Interactions (PI) will be more significant for spacecraft of the next century. Therefore, research is needed to control possible adverse effects. Several techniques to control the selected PI effects are discussed. Tests, in the form of flight experiments, are needed to validate these proposed ideas.

  5. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  6. Solvent/detergent plasma: pharmaceutical characteristics and clinical experience.

    PubMed

    Liumbruno, Giancarlo Maria; Franchini, Massimo

    2015-01-01

    The solvent/detergent treatment is an established virus inactivation technology that has been industrially applied for manufacturing plasma derived medicinal products for almost 30 years. Solvent/detergent plasma is a pharmaceutical product with standardised content of clotting factors, devoid of antibodies implicated in transfusion-related acute lung injury pathogenesis, and with a very high level of decontamination from transfusion-transmissible infectious agents. Many clinical studies have confirmed its safety and efficacy in the setting of congenital as well as acquired bleeding disorders. This narrative review will focus on the pharmaceutical characteristics of solvent/detergent plasma and the clinical experience with this blood product.

  7. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  8. US/Russian Magnetized Target Fusion Plasma Formation Experiments

    NASA Astrophysics Data System (ADS)

    Benage, John F., Jr.; Mtf Team; Broste, W.; Westley, D.; Mago Team

    1998-11-01

    Magnetized target fusion (MTF) is a potentially very low cost route to producing a fusion energy source. Many of MTF's plasma properties are intermediate between magnetically confined fusion (MFE) and inertially confined fusion (ICF). MTF consists of first producing a magnetically thermally insulated target plasma with a temperature of 100 eV or more with a lifetime of 5-10 microseconds. The target plasma is then compressed to fusion conditions by a magnetically driven imploding liner. One target plasma candidate is VNIIEF's MAGO, in which a cylindrical chamber with two cavities is filled with DT gas at a pressure of 10 Torr and driven by a current of 2-8 MA. A series of experiments under different plasma conditions have been performed to evaluate MAGO as an MTF target plasma. Diagnostics used to characterize the MAGO plasma include B dot probes to measure the current distribution, filtered silicon diodes to measure the spectrum and duration of the plasma radiation and a UV spectrometer to measure impurity line radiation.

  9. RF experiments on spherical torus plasmas

    SciTech Connect

    Majeski, R.; Menard, J.; Batchelor, D.; Bigelow, T.; Carter, M. D.; Finkenthal, M.; Jaeger, E. F.; Jones, B.; Kaita, R.; Mau, T. K.

    1999-09-20

    Experimental operations are about to begin on the next generation of spherical torus (ST) devices-the National Spherical Torus eXperiment (NSTX) in the U.S. and the Mega-Amp Spherical Torus (MAST) in the U.K. The application of RF heating and current drive to these high beta, compact confinement devices is a challenging problem. The initial focus for NSTX had been on the High Harmonic Fast Wave (HHFW) regime. Although modeling of HHFW heating and current drive has been performed at ORNL, UCSD, MIT, and PPPL, there are few experiments in this frequency range. In conventional tokamaks, the DIII-D experiments at the 5{sup th}-7{sup th} cyclotron harmonic are the closest approach to the HHFW regime. In an ST, the only RF heating experiments to date have been performed at the 15{sup th} harmonic on the Current Drive eXperiment-Upgrade (CDX-U) at PPPL. General features of HHFW heating and current drive and the degree to which experimental confirmation of these features is available will be discussed. (c) 1999 American Institute of Physics.

  10. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  11. Solar Array Module Plasma Interaction Experiment (SAMPIE): Technical requirements document

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a NASA shuttle space flight experiment scheduled for launch in early 1994. The SAMPIE experiment will investigate plasma interactions of high voltage space power systems in low earth orbit. Solar cell modules, representing several technologies, will be biased to high voltages to characterize both arcing and plasma current collection. Other solar modules, specially modified in accordance with current theories of arcing and breakdown, will demonstrate the possibility of arc suppression. Finally, several test modules will be included to study the basic nature of these interactions. The science and technology goals for the project are defined in the Technical Requirements Document (TRD) which is presented here.

  12. CO2 Laser Beat-Wave Experiment in an Unmagnetized Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Hwang, David; Horton, Robert; Hong, Sean; Evans, Russell

    2012-10-01

    The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics and fusion energy research. It is even more advantageous if the wave penetration is independent of the electron acceleration process. Plasma current can be generated through beat-wave mixing process by launching two intense electromagnetic waves (φ>>φpe) into plasma. The beat wave formation process can be efficient if the difference frequency of the two pump waves is matched to a local resonant frequency of the medium, i.e. in this case the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in a low-density plasma using microwaves.footnotetextRogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992). The CO2 lasers provide the high tunability for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. Two sections of Lumonics TEA CO2 lasers have been modified to serve as the two pump wave sources with peak power over 100MW. The development of the tunable CO2 lasers, a high-density plasma target source and diagnostics system will be presented. The initial results of unbalanced beat-wave experiment using one high-power pulsed and one low-power CW CO2 lasers will be presented and discussed using the independent plasma source to control the φpe of the interaction region. This work is supported by U.S. DOE under Contract No. DE-FG02-10ER55083.

  13. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  14. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    SciTech Connect

    Not Available

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

  15. Experimental and theoretical research in applied plasma physics

    SciTech Connect

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  16. Freestanding film structures for laser plasma experiments

    SciTech Connect

    Klyuenkov, E B; Lopatin, A Ya; Luchin, V I; Salashchenko, Nikolai N; Tsybin, N N

    2013-04-30

    The technique is developed for fabricating 5-500-nm-thick freestanding films of various materials and multilayer compositions. Apart from the traditional use in spectral filtration of soft X-ray and extreme ultraviolet radiation, the possibility of using the ultrathin films fabricated by this technique as targets in experiments on laser acceleration of ions is considered. A sample of the target in the form of a 5-nm-thick carbon film on a supporting net is fabricated. (extreme light fields and their applications)

  17. Hybrid-PIC Algorithms for Simulation of Merging Plasma Jets in the Plasma Liner Experiment

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten; Welch, Dale; Clark, Robert; Macfarlane, Joseph; Golovkin, Igor; Witherspoon, F. Douglas

    2010-11-01

    In the upcoming Plasma Liner Experiment (PLX) at Los Alamos National Laboratory a spherical array of 30-60 jets generated by plasma guns will be merged to form imploding plasma liners. We describe the Hybrid particle-in-cell (PIC) methods implemented in the code LSP for plasma jet simulation and present results of simulations of merging Ar jets. Electron macroparticles are treated as fluid elements which carry an intrinsic temperature while ion macroparticles are treated kinetically. The effective charge state is obtained from EOS tables as a function of the local plasma parameters under the assumption of local thermodynamic equilibrium (LTE). The effect of radiation cooling on the electrons is also included self-consistently into the Hybrid PIC formalism. The LSP results of jet merging simulations will be post-processed using the SPECT3D code to generate simulated radiation flux levels, spectra and images (MacFarlane et al., this meeting).

  18. Plasma production for the 50 MeV plasma lens experiment at LBL

    SciTech Connect

    Leemans, W.; van der Geer, B.; de Loos, M.; Conde, M.; Govil, R.; Chattopadhyay, S.

    1994-06-01

    The Center for Beam Physics at LBL has constructed a Beam Test Facility (BTF) housing a 50 MeV electron beam transport line, which uses the linac injector from the Advanced Light Source, and a terawatt Ti:Al{sub 2}O{sub 3} laser system. The linac operates at 50 MeV and generates 15 ps long electron bunches containing a charge of up to 2 nC. The measured unnormalized beam emittance is 0.33 mm-mrad. These parameters allow for a comprehensive study of focusing of relativistic electron beams with plasma columns, in both the overdense and underdense regime (adiabatic and tapered lenses). A study of adiabatic and/or tapered lenses requires careful control of plasma density and scale lengths of the plasma. We present experimental results on the production of plasmas through resonant two-photon ionization, with parameters relevant to an upcoming plasma lens experiment.

  19. Particle Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sherman, Justin; James, R. W.; Nolan, S.; Page, E. J.; Romano, B.; Zuniga, J.; Schlank, C.; Lopez, M.; Karama, J.; Duke-Tinson, O.; Stutzman, B. S.

    2013-10-01

    Coast Guard Academy Plasma Lab(CGAPL) has constructed a Helicon Plasma Experiment. Plasmas will be used in high-temperature and -density diagnostic development for future lab investigations of fusion-grade plasma. Efforts to develop and enhance high temperature and density (1013cm-3 and up) helicon plasmas at low pressures (.01T) reported by Toki et al., continue. HPX will integrate a 32-channel National Instruments DAQ(Data Acquisition) board, designed to digitize data from tests. With LabView as the programing language, CGAPL will take samples at 12bits of precision at 2MS/s to create a Graphical User Interface (GUI). The GUI will control experimental variables (one or several concurrent tests) and monitor systems during data collection. Data collection will be conducted with particle probes, currently under construction. Probes, used to discern the plasma mode transitions, will measure plasma particle velocity, temperature, density and floating potential at different regimes. Once independent triple and mach probes for surface point investigations are installed, a triple probe array to produce a more comprehensive density and surface view will follow. Progress on development of GUI and construction of probes will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  20. The Material Plasma Exposure eXperiment (MPEX)

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  1. Experiment and simulation on one-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Lin; Ouyang, Ji-Ting

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.

  2. Partnership in Undergraduate Research Experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practical laboratory and work experience has been helpful in reinforcing the undergraduate educational experience. With limited resources, individual organizations may struggle to give a student a well rounded opportunity. Most undergraduates work within internships or cooperative educational fram...

  3. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  4. Plasma flow switch and foil implosion experiments on Pegasus 2

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. R.; Forman, P. R.; Gribble, R. F.; Ladish, J. S.; Oona, H.; Parker, J. V.; Scudder, D. W.; Shlachter, J. S.

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground Experiments) program. A goal of the program is to produce an intense (greater than 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  5. PISCES Program: Plasma-materials interactions and edge-plasma physics research

    SciTech Connect

    Conn, R.W.; Hirooka, Y.

    1992-07-01

    This program investigates and characterizes the behavior of materials under plasma bombordment, in divertor regions. The PISCES facility is used to study divertor and plasma edge management concepts (in particular gas target divertors), as well as edge plasma turbulence and transport. The plasma source consists of a hot LaB[sub 6] cathode with an annular, water-cooled anode and attached drift tube. This cross sectional area of the plasma can be adjusted between 3 and 10 cm. A fast scanning diagnostic probe system was used for mapping plasma density profiles during biased limiter and divertor simulation experiments. Some experimental data are given on: (1) materials and surface physics, (2) edge plasma physics, and (3) a theoretical analysis of edge plasma modelling.

  6. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  7. Results from the SLAC High Energy Density Plasma Lens Experiment

    NASA Astrophysics Data System (ADS)

    Ng, Johnny S. T.

    2000-04-01

    The plasma lens was proposed(P. Chen, Part. Acc. 20), 171 (1987). as a final focusing mechanism to achieve high luminosity for future high energy linear colliders. Previous experiments(See, for example, R. Govil et al.), Phys. Rev. Lett, 86, No. 16, 3202 (1999), and references therein. to test this concept were carried out at low energy densities. In this talk, results from the SLAC E-150 experiment(P. Chen et al.), Proposal for a Plasma Lens Experiment at the Final Focus Test Beam, SLAC Expt. Prop. E-150, April 1997. on plasma lens focusing of a high energy density beam with parameters relevant to linear colliders are presented and compared with theoretical expectations. The experiment was carried out at the SLAC Final Focus Test Beam, with nominal parameters of 30 GeV beam energy, 1.5× 10^10 electrons per bunch, bunch length σz = 0.7 mm and beam cross-section σ_x^* × σ_y^* = 7 μm × 3 μm. The plasma lens was produced by a fast pulsing gas-jet providing a neutral Nitrogen gas column with density up to 5× 10^18 / cm^3. The gas was then ionized by the leading portion of the incident high energy density electron beam, while the rest of the electrons in the same bunch were focused by the strong plasma pinching force and a reduction in the beam size of up to 40% was measured. The beam waist was also measured and compared with detailed numerical calculations with a particles-in-cell code. The reduction in focal length indicated a focusing strength approximately 100 times that of the FFTB final focus magnets. The synchrotron radiation with critical energy in the 1-10 MeV range due to the strong bending of beam particles inside the plasma lens was observed for the first time.

  8. Web life: The Internet Plasma Physics Education Experience

    NASA Astrophysics Data System (ADS)

    2009-02-01

    An educational outreach site maintained by the Princeton Plasma Physics Laboratory in the US, IPPEX features several interactive, game-like tools (applets) for exploring the physics of fusion, the doughnut-shaped "tokamak" reactors used in fusion experiments around the world, and related topics.

  9. Rocket exhaust effects as active space plasma experiments of opportunity

    NASA Astrophysics Data System (ADS)

    Mendillo, M.

    1983-07-01

    Examples of how photometer and wide-angle airglow imaging systems can be used to study diffusive and photochemical properties of the upper atmosphere are given. Incoherent scatter measurements of a large-scale ionospheric hole are shown to yield estimates of dynamical and chemical rate constants associated with the plasma perturbations themselsves. The Spacelab-2 series of shuttle engine burn experiments are summarized.

  10. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    SciTech Connect

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-06-17

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed.

  11. Plasma Jet Experiments Using LULI 2000 Laser Facility

    NASA Astrophysics Data System (ADS)

    Loupias, B.; Falize, E.; Koenig, M.; Bouquet, S.; Ozaki, N.; Benuzzi-Mounaix, A.; Michaut, C.; Goahec, M. Rabec Le; Nazarov, W.; Courtois, C.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.

    2007-01-01

    We present experiments performed with the LULI2000 nanosecond laser facility. We generated plasma jets by using specific designed target. The main measured quantities related to the jet such as its propagation velocity, temperature and emissive radius evolution are presented. We also performed analytical work, which explains the jet evolution in some cases.

  12. Experiments on beam plasma interactions and EM waves in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Phelps, Alan D. R.

    2012-04-01

    An energetic electron beam can exhibit several types of interesting behaviour when interacting with plasmas and/or magnetic fields. The focus in the present work is on electron cyclotron maser interactions. The instabilities that occur are also often observed in space as well as in the laboratory. Some of the high power sources of electromagnetic radiation, such as gyrodevices, make use of similar instability mechanisms. Laboratory experiments and numerical simulations have led to both a better understanding of natural phenomena and the development of high power electromagnetic radiation sources for several applications in fusion plasma physics. The gyrotron is one such device that is being used to provide auxiliary heating for large tokamaks via electron cyclotron resonance heating (ECRH). It is planned to use a number of gyrotrons supplied by several nations in the ITER experiment. In the ITER experiment these gyrotrons will not only be used for auxiliary heating but also for advanced tailoring of the tokamak plasma properties.

  13. Synergy Between Experiments and Simulations in Laser and Beam-Driven Plasma Acceleration and Light Sources

    NASA Astrophysics Data System (ADS)

    Mori, Warren B.

    2015-11-01

    Computer simulations have been an integral part of plasma physics research since the early 1960s. Initially, they provided the ability to confirm and test linear and nonlinear theories in one-dimension. As simulation capabilities and computational power improved, then simulations were also used to test new ideas and applications of plasmas in multi-dimensions. As progress continued, simulations were also used to model experiments. Today computer simulations of plasmas are ubiquitously used to test new theories, understand complicated nonlinear phenomenon, model the full temporal and spatial scale of experiments, simulate parameters beyond the reach of current experiments, and test the performance of new devices before large capital expenditures are made to build them. In this talk I review the progress in simulations in a particular area of plasma physics: plasma based acceleration (PBA). In PBA a short laser pulse or particle beam propagates through long regions of plasma creating plasma wave wakefields on which electrons or positrons surf to high energies. In some cases the wakefields are highly nonlinear, involve three-dimensional effects, and the trajectories of plasma particles cross making it essential that fully kinetic and three-dimensional models are used. I will show how particle-in-cell (PIC) simulations were initially used to propose the basic idea of PBA in one dimension. I will review some of the dramatic progress in the experimental demonstration of PBA and show how this progress was dramatically helped by a synergy between experiments and full-scale multi-dimensional PIC simulations. This will include a review of how the capability of PIC simulation tools has improved. I will also touch on some recent progress on improvements to PIC simulations of PBA and discuss how these improvements may push the synergy further towards real time steering of experiments and start to end modeling of key components of a future linear collider or XFEL based on PBA

  14. Development of a plasma driven permeation experiment for TPE

    DOE PAGES

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ionmore » chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.« less

  15. Development of a plasma driven permeation experiment for TPE

    SciTech Connect

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.

  16. Hydrodynamic Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Witherspoon, Doug; Gilmore, Marc

    2009-11-01

    Implosions of plasma liners in cylindrically or spherically convergent geometries can produce high pressures and temperatures with a confinement or dwell time of the order of the rarefaction timescale of the liner. The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding plasma liners with the spherical convergence of hypersonic plasma jets. Modeling will be performed using SPHC and MACH2. According to preliminary 3D SPHC results, high Z plasma liners imploding on vacuum with ˜1.5MJ of initial stored energy will reach ˜100kbar, which is a main objective of the experimental program. Among the objectives of the theoretical PLX effort are to assist in the diagnostic analysis of the PLX, identify possible deleterious effects due to instabilities or asymmetries, identify departures from ideal behavior due to thermal and radiative transport, and help determine scaling laws for possible follow-on applications of ˜1 Mbar HEDP plasmas and magneto-inertial fusion. An overview of the plan to accomplish these objectives will be presented, and preliminary results will be summarized.

  17. Theory and Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, J. T.; Stanic, M. D.; Awe, T. J.; Hanna, D. S.; Davis, J. S.; Hsu, S. C.; Witherspoon, F. D.

    2010-11-01

    High pressures and temperatures may be generated at the center an imploding plasma liner. These phenomena are being studied on the Plasma Liner Experiment (PLX) in which a spherical liner is formed via the merging of plasma jets. The basic physical processes include pulsed plasma acceleration, plasma jet propagation in a vacuum, plasma jet merging, liner formation, liner implosion, stagnation, and rarefaction. Each of these processes is dominated by different physics, requiring different models. For example, λei at the jet merging radius may be ˜1 cm, so that liner formation is partially collisionless, while liner implosion is collision dominated. Further, the liner transitions from optically thin to gray during the implosion. An overview of the theory and modeling plan in support of PLX will be given, which includes 1D rad-hydro, 3D hydro, 3D MHD, 2D PIC, and 2D hybrid codes. We will emphasize our recent 3D hydro modeling, which provides insights into liner formation, implosion, and effects of initial jet parameters on scaling of peak pressure.

  18. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental

  19. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  20. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  1. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  2. Plasma Physics Research at an Undergraduate Institution

    NASA Astrophysics Data System (ADS)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  3. Research on atmospheric pressure plasma processing sewage

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  4. Progress in Development of Low Pressure High Density Plasmas on a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range and employs an electromagnet to provide the external energy in the plasma's magnetic field to transition from the H-Mode to the Helicon Mode. An acceleration coil, currently under construction, will place the plasma in the vacuum chamber for optical and particle probing. With the initial construction phase complete and first plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel DAQ system capable 12 bits of sampling precision at 2 MS/s for plasma property investigations. Progress on the development of the RF coupling system, magnetic coils, and qualitative observations from the optical and electric diagnostics are to be reported. [4pt] [1] K. Toki, et al., Thin Solid Films 506-507 (2005).

  5. The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, Uri

    1986-01-01

    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.

  6. Initial Results from the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; Leblanc, Spencer; Artis, Darrick; Dubois, Ami; Merlino, Robert; Rosenberg, Marlene

    2014-10-01

    The MDPX device is envisioned as a flexible, multi-user, research instrument that can perform a wide range of studies in fundamental and applied plasma physics. The MDPX device consists of two main components. The first is a four-coil, open bore, superconducting magnet system that is designed to produce uniform magnetic fields of up to 4 Tesla and non-uniform magnetic fields with gradients up to up to 2 T/m configurations. Within the warm bore of the magnet is placed an octagonal vacuum chamber that has a 46 cm outer diameter and is 22 cm tall. The primary missions of the MDPX device are to: (1) investigate the structural, thermal, charging, and collective properties of a plasma as the electrons, ions, and finally charged microparticles become magnetized; (2) study the evolution of a dusty plasma containing magnetic particles (paramagnetic, super-paramagnetic, or ferromagnetic particles) in the presence of uniform and non-uniform magnetic fields; and, (3) explore the fundamental properties of strongly magnetized plasmas (``i.e., dust-free'' plasmas). This presentation will summarize the initial characterization of the magnetic field structure, initial plasma parameter measurements, and the development of in-situ and optical diagnostics. This work is supported by funding from the NSF and the DOE.

  7. Enhancement of the radiation yield in plasma flow switch experiments

    SciTech Connect

    Buff, J. ); Peterkin, R.E. Jr.; Roderick, N.F. ); Degnan, J.H. ); Frese, M.H. ); Turchi, P.J. . Dept. of Aeronautical and Astronautical Engineering)

    1991-06-01

    This paper reports that in a series of experiments that was performed at the Phillips Laboratory (Kirtland Air Force Base, New Mexico), the Shiva Star fast capacitor bank, an inductive store, and a plasma flow switch were used together to deliver multimega-ampere currents with submicrosecond rise times to cylindrical foil loads. Based on two-dimensional MHD simulations with the MACH2 code, the authors previously suggested design modifications to the switch that, when implemented in experiments, substantially increased the fraction of available current that was delivered to the load. The authors have performed a new series of numerical simulations of the plasma flow switch/imploding load system with the goal of discovering a way to boost the total power radiated by the imploding plasmas as it stagnates on the axis of symmetry. The changes to the experimental design that were investigated and which are discussed in this paper include variations of: The shape of the electrodes, size, and mass of the load foil, structure of the axial view vanes, shape and mass of the switching plasma, material from which the load is constructed, the degree to which the load is bowed, and the energy of the capacitor bank. Radiation yields in the range 6-9 TW are predicted for future experiments on Shiva Star.

  8. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research scientist Greg Goins monitors radish growth under a sulfur-microwave light at Hangar L at the Cape Canaveral Air Force Station. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long- duration spaceflight and environmental/ecological stewardship.

  9. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  10. Experience Effect in E-Learning Research

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Xu, WenXia; Ge, Jun

    This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning experience in E-Learning research. The result indicates that the number of literature productions on experience effect in ELearning research is still growing from 2005. The main research development country is Croatia, and from the analysis of the publication year, the number of papers is increasing to the peaking in 2010. And the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research. Moreover the research focuses on are mainly survey research and empirical research, in order to explore experience effect in E-Learning research. Also the limitations and future research of these research were discussed, so that the direction for further research work can be exploited

  11. Fusion Ignition Research Experiment System Integration

    SciTech Connect

    T. Brown

    1999-11-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components.

  12. Formation of Plasma Targets Suitable for Equation of State Experiments.

    NASA Astrophysics Data System (ADS)

    Benage, John

    2005-10-01

    The measurement of the Equation of State (EOS) of materials in the dense-plasma state is difficult. The standard method for measuring EOS relies on the shock driven Hugoniot technique, where the material is initially at standard temperature and pressure and is shocked using a flyer plate. The locus of states produced using this technique is called the standard Hugoniot. However, the states produced do not fall into the regime of dense plasmas, where the EOS of the material is quite uncertain. We are developing a technique for measuring the EOS in a dense plasma, conditions far away from the standard Hugoniot. This technique requires that the initial condition of the material be at densities well below and temperatures well above standard. We have completed initial experiments producing and characterizing the plasma targets, a CH foam that has been heated to 1 eV using gold m-band x-rays created with the Trident laser. The measurements include visible spectroscopy and imaging along with x-ray radiography of this plasma target. Simulations of these initial measurements and of the laser drive necessary to produce a uniform shock in the material are also shown. The conditions that we calculate to be produced by this shock are then compared to models for the EOS of this material.

  13. Characterization of Dense Plasma Targets for Equation of State Experiments.

    NASA Astrophysics Data System (ADS)

    Hurry, Tom; Benage, John; Cobble, Jim; Dodd, Evan; Herrmann, Hans; Ortiz, Tom; Workman, Jonathan

    2006-10-01

    The measurement of the Equation of State (EOS) of materials in the dense-plasma state is difficult. The standard method for measuring EOS relies on the shock driven Hugoniot technique, where the material is initially at standard temperature and pressure and is shocked using a flyer plate. The locus of states produced using this technique is called the standard Hugoniot. However, the states produced do not fall into the regime of dense plasmas, where the EOS of the material is quite uncertain. We are developing a technique for measuring the EOS in a dense plasma, conditions far away from the standard Hugoniot. This technique requires that the initial condition of the material be at densities well below and temperatures well above standard. We have completed initial experiments producing and characterizing the plasma targets using visible spectroscopy and imaging. We have also begun development of a dynamic phase contrast imaging system required for measuring the shock velocity in the plasma. Simulations of these initial measurements and of the laser drive necessary to produce a uniform shock in the material are also shown. The conditions that we calculate to be produced by this shock are then compared to models for the EOS of this material.

  14. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  15. Exploring space plasmas - The WISP/HF experiment

    SciTech Connect

    James, H.G.; Darlington, T.R.; Hersom, C.H.; Gruno, R.S.; Gore, J.V.

    1987-02-01

    WISP/HF is the high-frequency part of the collaborative U.S.-Canada investigation, Waves in Space Plasmas. Instrumentation is being developed that will be flown on NASA's Space Shuttle starting with the Space Plasma Lab missions in the 1990s. Using a high-inclination orbit at heights near the maximum density of the ionospheric F region, active experiments will be carried out on antennas, electromagnetic and electrostatic wave propagation, problems in linear and nonlinear plasma physics, large-scale ionospheric structures, ionospheric irregularities, and the interaction of charged-particle beams with the ionospheric plasma. The WISP/HF equipment will generate, receive, and process signals in the 0.1-to 30-MHz range. The Orbiter-based transmitter will have variable pulse-power levels up to 0.5 kW and will use a dipole of variable length up to 300 m tip-to-tip. WISP/HF receivers will be located both on the Orbiter and on a subsatellite. A high level of operational flexibility in the WISP/HF instrument design has been achieved through programmable digital control. The design also permits human control of experiments, both from the Orbiter and from the ground.

  16. Experiments on Initial Formation of Plasma Flow Switches.

    NASA Astrophysics Data System (ADS)

    Benage, John F., Jr.; Bowers, Richard; Oona, Hank; Wysocki, Fred; Broste, William B.; Harper, Ron; Roderick, Norm

    1996-11-01

    Plasma flow switches have been used to shorten the current pulse for inductive storage capacitor banks to implode plasmas for producing radiation.(J.H.Degnan, et.al., IEEE Trans. Plasma Sci., PS-15, 760(1987).)They consist of two components, an aluminum wire array and a plastic barrier film separated by a few mm. We have performed a series of experiments at Los Alamos to understand the sensitivity of the performance of plasma flow switches to their initial conditions. These experiments were done on two facilities, one a 250 kJ capacitor bank called the Colt facility with a maximum current of 1.0 MA in 2.5 microseconds. The other is the Pegasus II facility with a maximum current of 10 MA in a time of 4 microseconds. The overall performance of the switch as determined by the voltage developed was measured as a function of the mass of the switch, the distribution of the mass among the switch components, and the separation of the components. A preliminary understanding of the important parameters and the physical basis for their importance will be given. (This worked performed under the auspices of the Department of Energy.)

  17. Commercialization of Plasma-Assisted Technologies: The Indian Experience

    NASA Astrophysics Data System (ADS)

    John, P. I.

    The paper describes an initiative by the Institute for Plasma Research (IPR), India in establishing links with the Indian industry for developing and commercialising advanced plasma-based industrial technologies. This has culminated in the creation of a self-financing technology development, incubation, demonstration and delivery facility. A business plan for converting the knowledge base to commercially viable technologies conceived technology as a product and the industry as the market and addressed issues like resistance to new technologies, the key role of entrepreneur, thrust areas and the necessity of technology incubation and delivery. Success of this strategy is discussed in a few case studies. We conclude by identifying the cost, environmental, strategic and techno-economic aspects, which would be the prime drivers for plasma-assisted manufacturing technology in India.

  18. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Duke-Tinson, Omar; Frank, John; Karama, Jackson; Hopson, Jordan; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2015-11-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas (~ 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  19. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, R. W.; Duke-Tinson, O.; Nolan, S.; Page, E. J.; Lopez, M.; Karama, J.; Paolino, R. N.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Crilly, P. B.

    2013-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T), for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. With the initial construction phase complete and repeatable plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  20. Researching the Study Abroad Experience

    ERIC Educational Resources Information Center

    McLeod, Mark; Wainwright, Philip

    2009-01-01

    The authors propose a paradigm for rigorous scientific assessment of study abroad programs, with the focus being on how study abroad experiences affect psychological constructs as opposed to looking solely at study-abroad-related outcomes. Social learning theory is used as a possible theoretical basis for making testable hypotheses and guiding…

  1. Confinement projections for the Burning Plasma Experiment (BPX)

    SciTech Connect

    Goldston, R.J.; Bateman, G.; Kaye, S.M.; Perkins, F.W.; Pomphrey, N.; Stotler, D.P.; Zarnstorff, M.C. . Plasma Physics Lab.); Houlberg, W.A.; Neilson, G.H. ); Porkolab, M. ); Reidel, K.S. ); Stambaugh, R.D.; Waltz, R.E. )

    1991-01-01

    The mission of the Burning Plasma Experiment (BPX, formerly CIT) is to study the physics of self-heated fusion plasmas (Q = 5 to ignition), and to demonstrate the production of substantial amounts of fusion power (P{sub fus} = 100 to 500 MW). Confinement projections for BPX have been made on the basis of (1) dimensional extrapolation (2) theory-based modeling calibrated to experiment, and (3) statistical scaling from the available empirical data base. The results of all three approaches, discussed in this paper, roughly coincide. We presently view the third approach, statistical scaling, as the most reliable means for projecting the confinement performance of BPX, and especially for assessing the uncertainty in the projection. 11 refs., 2 figs., 1 tab.

  2. Experiments of new plasma concepts for enhanced microwave vacuum electronics

    SciTech Connect

    Muggli, P.; Hoffman, J.R.; Yampolsky, J.; Cordell, J.F.; Gundersen, M.A.; Joshi, C.; Katsouleas, T.

    1999-07-01

    Recently new schemes have been proposed for plasma based microwave sources that could lead to output power increases by orders of magnitude, as well as offer new possibilities such as broad band tuning and frequency chirping, ultra-short pulse generation, pulse design, etc. In the first scheme, the static field of an alternatively biased capacitor is directly converted into short pulses of turnable electromagnetic (em) radiation upon transmission through a relativistic; under dense ionization front. The structure presently under investigation consists of pin pairs (capacitors) inserted into an X-band waveguide through its narrow sidewall and separated by 1.134 cm. The generated frequency is in the X-band frequency range (8.4--12.4 GHz) when operated with plasma densities between 10{sup 11} and 10{sup 12} cm{sup {minus}3}. The output power is in the 100 W range with an applied voltage of 6 kV and is limited by high voltage (HV) breakdown inside the structure. Much higher output power levels are expected with the new, shorter pulse, HV pulser, since the output power is proportional to the square of the applied voltage. At larger plasma densities, generation of a higher order mode traveling in the backward direction is also observed. In the second scheme, a fraction of the large amplitude electrostatic (es) wave generated in a plasma beat wave acceleration (PBWA) experiment (up to 3 GeV/m) is converted into em radiation by applying a static magnetic field perpendicularly to the driving laser beam. The two-frequency CO{sub 2} laser beam resonantly drives the es wave, and couples to the L branch of the XO mode of the magnetized plasma through Cherenkov radiation. The radiation is emitted predominantly in the forward direction (direction of the laser beam), and is at the plasma frequency (n{sub c} {approximately}10{sup 16} cm{sup {minus}3}, f{approximately}1 THz). With an applied magnetic field of 6 kG the output power is calculated to be in the megawatt range (for a

  3. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    SciTech Connect

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec le Goahec, M.; Falize, E.; Bouquet, S.; Courtois, C.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Schiavi, A.

    2007-08-02

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  4. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec Le Goahec, M.; Falize, E.; Bouquet, S.; Michaut, C.; Herpe, G.; Baroso, P.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Courtois, C.; Woolsey, N. C.; Gregory, C. D.; Howe, J.; Schiavi, A.; Atzeni, S.

    2007-08-01

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  5. Plasma Simulation for the SHIP Experiment at GDT

    SciTech Connect

    Anikeev, A.V.; Bagryansky, P.A.; Collatz, S.; Noack, K

    2005-01-15

    The concept of the Synthesized Hot Ion Plasmoid (SHIP) experiment at the gas dynamic trap (GDT) facility of the Budker Institute Novosibirsk was presented at the 29{sup th} EPS Conference. During the last year several numerical simulations were made by means of the Integrated Transport Code System (ITCS) to determine the best experimental scenario for getting high plasma parameters. This contribution presents important results of the recent numerical simulations of SHIP by means of the ITCS modules.

  6. Research and Experiment in Stuttering.

    ERIC Educational Resources Information Center

    Beech, H.R.; Fransella, Fay

    A survey of research and experimentation in the field of stuttering is presented for those engaged in teaching or studying speech therapy, speech pathology, and psychology. The background to stuttering is discussed as are definition, diagnosis, and measurement. The perceptual, organic, perseverative, expectancy, diagnosogenic, and conflict…

  7. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  8. Magnetospheric radio and plasma wave research - 1987-1990

    SciTech Connect

    Kurth, W.S. )

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  9. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  10. Limitations of Experiments in Education Research

    ERIC Educational Resources Information Center

    Schanzenbach, Diane Whitmore

    2012-01-01

    Research based on randomized experiments (along with high-quality quasi-experiments) has gained traction in education circles in recent years. There is little doubt this has been driven in large part by the shift in research funding strategy by the Department of Education's Institute of Education Sciences under Grover Whitehurst's lead, described…

  11. Academic Factors that Affect Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Taraban, Roman; Logue, Erin

    2012-01-01

    Undergraduate research experiences are considered an essential component in college curricula, and there is an ideological push to provide these experiences to all students. However, it is not clear whether engagement in research is better suited for higher ability undergraduates late in their programs or for all undergraduates and whether…

  12. Designing Effective Research Experiences for Undergraduates (Invited)

    NASA Astrophysics Data System (ADS)

    Jones Whyte, P.; Dalbotten, D. M.

    2009-12-01

    The undergraduate research experience has been recognized as a valuable component of preparation for graduate study. As competition for spaces in graduate schools become more keen students benefit from a formal introduction to the life of a scholar. Over the last twenty years a model of preparing students for graduate study with the research experience as the base has been refined at the University of Minnesota. The experience includes assignment with a faculty member and a series of seminars that support the experience. The seminars cover topics to include academic writing, scholarly literature review, writing of the abstract, research subject protection protocols, GRE test preparation, opportunities to interact with graduate student, preparing the graduate school application, and preparation of a poster to demonstrate the results of the research. The next phase of the process is to determine the role of the undergraduate research experience in the graduate school admission process.

  13. Studies of dynamic processes related to active experiments in space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Neubert, Torsten

    1992-01-01

    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.

  14. Modeling of Spherical Torus Plasmas for Liquid Lithium Wall Experiments

    SciTech Connect

    R. Kaita; S. Jardin; B. Jones; C. Kessel; R. Majeski; J. Spaleta; R. Woolley; L. Zakharo; B. Nelson; M. Ulrickson

    2002-01-29

    Liquid metal walls have the potential to solve first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.

  15. Plasma mitigation of shock wave: experiments and theory

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2007-12-01

    Two types of plasma spikes, generated by on-board 60 Hz periodic and pulsed dc electric discharges in front of two slightly different wind tunnel models, were used to demonstrate the non-thermal plasma techniques for shock wave mitigation. The experiments were conducted in a Mach 2.5 wind tunnel. (1) In the periodic discharge case, the results show a transformation of the shock from a well-defined attached shock into a highly curved shock structure, which has increased shock angle and also appears in diffused form. As shown in a sequence with increasing discharge intensity, the shock in front of the model moves upstream to become detached with increasing standoff distance from the model and is eliminated near the peak of the discharge. The power measurements exclude the heating effect as a possible cause of the observed shock wave modification. A theory using a cone model as the shock wave generator is presented to explain the observed plasma effect on shock wave. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow; such a flow deflection modifies the structure of the shock wave generated by the cone model, as shown by the numerical results, from a conic shape to a curved one. The shock front moves upstream with a larger shock angle, matching well with that observed in the experiment. (2) In the pulsed dc discharge case, hollow cone-shaped plasma that envelops the physical spike of a truncated cone model is produced in the discharge; consequently, the original bow shock is modified to a conical shock, equivalent to reinstating the model into a perfect cone and to increase the body aspect ratio by 70%. A significant wave drag reduction in each discharge is inferred from the pressure measurements; at the discharge maximum, the pressure on the frontal surface of the body decreases by more than 30%, the pressure on the cone surface increases by about 5%, whereas the pressure on the cylinder surface remains

  16. Researching the experience of kidney cancer patients.

    PubMed

    Taylor, K

    2002-09-01

    The author's personal experience as a kidney cancer patient, researcher and founder of a kidney cancer support group forms the basis for consideration of the challenges involved in researching patients' experiences. The researcher needs to understand the variability of those experiences in both clinical and psychological-emotional terms, and in relation to the personal, familial and social contexts of the patient. It is also essential to define the purpose of the research and to show how an understanding of personal experiences of cancer can be used to enhance the quality of care for cancer patients. The research encounter with a patient is also in some respects a therapeutic encounter requiring a considerable degree of sensitivity on the part of the researcher. The person-centred approach of Carl Rogers is of value in supporting such an encounter.

  17. Researching the experience of kidney cancer patients.

    PubMed

    Taylor, K

    2002-09-01

    The author's personal experience as a kidney cancer patient, researcher and founder of a kidney cancer support group forms the basis for consideration of the challenges involved in researching patients' experiences. The researcher needs to understand the variability of those experiences in both clinical and psychological-emotional terms, and in relation to the personal, familial and social contexts of the patient. It is also essential to define the purpose of the research and to show how an understanding of personal experiences of cancer can be used to enhance the quality of care for cancer patients. The research encounter with a patient is also in some respects a therapeutic encounter requiring a considerable degree of sensitivity on the part of the researcher. The person-centred approach of Carl Rogers is of value in supporting such an encounter. PMID:12296838

  18. Experiments on Plasma Injection into a Centrifugally Confined System

    NASA Astrophysics Data System (ADS)

    Messer, S.; Bomgardner, R.; Brockington, S.; Case, A.; Witherspoon, F. D.; Uzun-Kaymak, I.; Elton, R.; Young, W.; Teodorescu, C.; Morales, C. H.; Ellis, R. F.

    2009-11-01

    We describe the cross-field injection of plasma into a centrifugally-confined system. Two different types of plasma railgun have been installed on the Maryland Centrifugal Experiment (MCX) in an attempt to drive that plasma's rotation. The initial gun was a coaxial device designed to mitigate the blowby instability. The second one was a MiniRailgun with a rectangular bore oriented so that the MCX magnetic field augments the railgun's internal magnetic field. Tests at HyperV indicate this MiniRailgun reaches much higher densities than the original gun, although muzzle velocity is slightly reduced. We discuss the impact of these guns on MCX for various conditions. Initial results show that even for a 2 kG field, firing the MiniRailgun modifies oscillations of the MCX diamagnetic loops and can impact the core current and voltage. The gun also has a noticeable impact on MCX microwave emissions. These observations suggest plasma enters the MCX system. We also compare diagnostic data collected separately from MCX for these and other guns, focussing primarily on magnetic measurements.

  19. Plasma density observations from the Dynamic Ionosphere Cubesat Experiment (DICE)

    NASA Astrophysics Data System (ADS)

    Barjatya, A.; Swenson, C.; Fish, C. S.; Crowley, G.; Pilinski, M.; Azeem, S. I.; Neilsen, T. L.

    2012-12-01

    The Dynamic Ionosphere Cubesat Experiment (DICE) was launched into an eccentric low Earth orbit on October 28, 2011 on a NASA rocket from Vandenburg Air Force Base. DICE consists of two identical 1.5U CubeSats with a mission objective to study and characterize geomagnetic Storm Enhanced Density (SED) bulge and plume by multipoint measurements. Each identical spacecraft carries two Langmuir probes to measure in-situ plasma densities, electric field probes to measure in-situ DC and AC electric fields, and a magnetometer to measure in-situ DC and AC magnetic fields. This work presents Langmuir probe data from both the CubeSats as they follow each other. The two Langmuir probes are deployed 180 degrees apart on 10cm long scissor booms from the top and bottom of the CubeSats. The probes are primarily operated in the ion saturation region as fixed bias probes to give relative plasma densities, but periodically swept (every 100 seconds) to give absolute plasma density and temperature. The derived densities will be compared to International Reference Ionosphere as well as other models.; Comparison of relative plasma density derived from two fixed bias Langmuir probes (DCP+ and DCP-) on DICE with IRI model.

  20. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    SciTech Connect

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-15

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH{sub 2} with 2.8% H{sub 2} served as the discharge medium. H{sub 2} was chosen in order to observe the broadening of the H{sub β} emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 10{sup 16} cm{sup −3}. Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  1. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-01

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  2. The research of anodic microdischarges in plasma-electrolyte processing

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2015-06-01

    The article is devoted to the topic of anodic microdischarges in plasma-electrolyte processing. The aim of this work is to research the conditions of anodic micro-discharges during the plasma-electrolytic treatment and the influence they have on the surface of metals. As a result of experimental researches, was made a mechanism of influence anodic microdischarges on the surface of the electrode, burning of anodic microdischarges occur in the voltage range of 40-100 W.

  3. Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin

    2014-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (10 cm-3 and higher) at low pressure (.01 T) of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. HPX is completing construction of triple and mach particle probes, magnetic probes, and is designing a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  4. Los Alamos research in nozzle based coaxial plasma thrusters

    NASA Technical Reports Server (NTRS)

    Scheuer, Jay; Schoenberg, Kurt; Gerwin, Richard; Henins, Ivars; Moses, Ronald, Jr.; Wurden, Glen

    1992-01-01

    The topics are presented in viewgraph form and include the following: research approach; perspectives on efficient magnetoplasmadynamic (MPD) operation; NASA and DOE supported research in ideal magnetohydrodynamic plasma acceleration and flow, electrode phenomena, and magnetic nozzles; and future research directions and plans.

  5. Evaluation of a BSW Research Experience: Improving Student Research Competency

    ERIC Educational Resources Information Center

    Whipple, Ellen E.; Hughes, Anne; Bowden, Susan

    2015-01-01

    This article examines the experience of 24 BSW students in a faculty-mentored undergraduate research experience (URE) over the course of 1 academic year. In particular, we sought to better understand students' self-perceived sense of competency across 15 specific research skills. In addition, we examined the URE's impact on students' knowledge…

  6. Researching Children's Experience Hermeneutically and Holistically

    ERIC Educational Resources Information Center

    Ellis, Julia

    2006-01-01

    This article is about the possibilities of conducting research with children productively. Children may need suitable prompts, occasions, or media for their expression. The discussion begins with an overview of the challenges or dynamics researchers can experience with any participants in qualitative research in the constructivist paradigm. It…

  7. Doctoral Students' Experience of Information Technology Research

    ERIC Educational Resources Information Center

    Bruce, Christine; Stoodley, Ian; Pham, Binh

    2009-01-01

    As part of their journey of learning to research, doctoral candidates need to become members of their research community. In part, this involves coming to be aware of their field in ways that are shared amongst longer-term members of the research community. One aspect of candidates' experience we need to understand, therefore, involves how they…

  8. Education. Undergraduate research experiences: impacts and opportunities.

    PubMed

    Linn, Marcia C; Palmer, Erin; Baranger, Anne; Gerard, Elizabeth; Stone, Elisa

    2015-02-01

    Most undergraduates give high ratings to research experiences. Studies report that these experiences improve participation and persistence, often by strengthening students' views of themselves as scientists. Yet, the evidence for these claims is weak. More than half the 60 studies reviewed rely on self-report surveys or interviews. Rather than introducing new images of science, research experiences may reinforce flawed images especially of research practices and conceptual understanding. The most convincing studies show benefits for mentoring and for communicating the nature of science, but the ideas that students learn are often isolated or fragmented rather than integrated and coherent. Rigorous research is needed to identify ways to design research experiences so that they promote integrated understanding. These studies need powerful and generalizable assessments that can document student progress, help distinguish effective and ineffective aspects of the experiences, and illustrate how students interpret the research experiences they encounter. To create research experiences that meet the needs of interested students and make effective use of scarce resources, we encourage systematic, iterative studies with multiple indicators of success.

  9. SUMMA hot-ion plasma heating research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Patch, R. W.; Lauver, M. R.

    1975-01-01

    The SUMMA superconducting magnetic mirror facility and the associated hot-ion plasma research were described. SUMMA is characterized by intense magnetic fields and a large-diameter working bore (41 cm diameter) with room-temperature access. The goal of the plasma research program is to produce steady-state plasmas of fusion reactor densities and temperatures (but not confinement times). The program includes electrode development to produce a hot, dense, large-volume, steady-state plasma and diagnostics development to document the plasma properties. SUMMA and its hot-ion plasma are ideally suited to develop advanced plasma diagnostics methods. Two such methods whose requirements are well matched to SUMMA are: (1) heavy ion beam probing to measure plasma space potential; and (2) submillimeter wavelength laser Thomson scattering to measure local ion temperature.

  10. On 45 Years of Space Plasma Research

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.

    2011-12-01

    After 47 years of immersion in space physics, I have many stories to tell, some of which are not suitable for all audiences and will remain untold today. But after a few such tales, I will recount the most satisfying research I have done and then outline a new book I am working on entitled "The Earth's Electric Field". I also will outline five sources of electric fields: thunderstorms, motions of the atmosphere, the solar wind, the magnetosphere, and wave phenomena. The most satisfying work I have published involves proof that the Earth was hit by a comet in 1908, studies of the long-lasting meteor trail during Leonids1998/9, and results of barium/TMA releases. On the human side, the most satisfying work has been with Cornell students, both undergraduate and graduate. Although many books have been written on the Earth's magnetic field, to my knowledge, none have been written on the electric field. This is not surprising since Gauss first noted that the Earth is a giant magnet hundreds of years ago. The first evidence of an electric field in the atmosphere was provided by Ben Franklin with his kite/thunderstorm experiments. We began considering the possibility of an electric field in space about 50 years ago, using the motion of auroral patches. Then, in the 1960s, Forrest Mozer and Ulf Fahleson showed that the electric field could be measured using rockets and, eventually, satellites. Luckily, I was Forrest's second student and Ulf was in Berkeley for a year, so I was in the perfect place for a graduate student. Thus began the quest for knowledge of the Earth's electric field, which continues today.

  11. The Skylab barium plasma injection experiments. I - Convection observations

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Two barium-plasma injection experiments were carried out during magnetically active periods in conjunction with the Skylab 3 mission. The high-explosive shaped charges were launched near dawn on November 27 and December 4, 1973, UT. In both cases, the AE index was near 400 gammas, and extensive pulsating auroras covered the sky. The first experiment, Skylab Alpha, occurred in the waning phase of a 1000-gamma substorm, and the second, Skylab Beta, occurred in the expansive phase of an 800-gamma substorm. In both, the convection was generally magnetically eastward, with 100-km-level electric fields near 40 mV/m. However, in the Alpha experiment the observed orientation of the barium flux tube fit theoretical field lines having no parallel current, but the Beta flux-tube orientation indicated a substantial upward parallel sheet current.

  12. OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT

    SciTech Connect

    Warren, Harry P.; Doschek, George A.; Mariska, John T.

    2013-06-20

    One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

  13. Plasma Flow and Equilibrium Considerations in the STX Experiment

    NASA Astrophysics Data System (ADS)

    Miller, K. E.; Slough, J. T.

    2001-10-01

    The STX experiment was operated during the construction phase of TCS, primarily to investigate the ability of the Rotating Magnetic Field (RMF) to directly form an FRC, without the usual theta pinch technology. STX utilized a 25G RMF at 350kHz to form 2m long by 0.2m radius FRCs. Plasmas were typically fully ionized deuterium with a temperature of 60 eV and a peak density of 5x10^18m-3. Axial confining fields of 100G maintained a true vacuum boundary around the plasma and allowed for the study of FRC RMF equilibrium interactions. Key findings are that the RMF drove strong radial and axial flows, produced radial profiles markedly different from those of theta pinch formed FRCs, and resulted in enhanced particle and energy confinement. Although the FRCs were usually not sustained, they evolved into an interesting mirror like configuration that also exhibited enhanced particle and energy confinement. Issues discussed include the importance of the RMF driving an azimuthal current distribution consistent with that of the FRC, possible benefits of varying the average beta condition, and potential RMF antenna length limits set by the tendency of driven axial flows to screen the RMF from the plasma.

  14. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  15. National Spherical Torus Experiment Real Time Plasma Control Data Acquisition Hardware

    SciTech Connect

    R.J. Marsala; J. Schneider

    2002-08-05

    The National Spherical Torus Experiment (NSTX) is currently providing researchers data on low aspect-ratio toroidal plasmas. NSTX's Plasma Control System adjusts the firing angles of thyristor rectifier power supplies, in real time, to control plasma position, shape and density. A Data Acquisition system comprised of off-the-shelf and custom hardware provides the magnetic diagnostics data required in calculating firing angles. This VERSAmodule Eurocard (VME) bus-based system utilizes Front Panel Data Port (FPDP) for high-speed data transfer. Data coming from physically different locations is referenced to several different ground potentials necessitating the need for a custom FPDP multiplexer. This paper discusses the data acquisition system configuration, the in-house designed 4-to-1 FPDP Input Multiplexing Module (FIMM), and future expansion plans.

  16. Final Technical Report on DOE Grant for Modeling of Plasma Rotation in the National Spherical Torus Experiment

    SciTech Connect

    Shaing, K. C.

    2009-07-09

    This is the final technical report on the Modeling of Plasma Rotation in National Spherical Torus Experiment (NSTX) DOE Grant No. DE-FG02-02ER54679. The research subjects, technical abstracts, and publications where details of the research results can be found are reported here.

  17. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments [Simulating the MagLIF plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-20

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  18. Faculty Experiences in a Research Learning Community

    ERIC Educational Resources Information Center

    Holmes, Courtney M.; Kozlowski, Kelly A.

    2014-01-01

    The current study examines the experiences of faculty in a research learning community developed to support new faculty in increasing scholarly productivity. A phenomenological, qualitative inquiry was used to portray the lived experiences of faculty within a learning community. Several themes were found including: accountability, belonging,…

  19. Reflection on Lived Experience in Educational Research

    ERIC Educational Resources Information Center

    Barnacle, Robyn

    2004-01-01

    While debate about the meaning of hermeneutics and phenomenology for educational research continues, the notion of lived experience, and its application to reflective practice, has become a feature of much that goes by the name of phenomenological within this area. The prevalence of the lived experience model can be attributed in large part to the…

  20. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  1. Planning for an integrated research experiment

    SciTech Connect

    Barnard, J.J.; Ahle, L.E.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Friedman, A.; Grote, D.P.; Haber, I.; Henestroza, E.; Kishek, R.A.; de Hoon, M.J.L.; Karpenko, V.P.; Kirhek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.

    2001-03-25

    We describe the goals and research program leading to the Heavy Ion Integrated Research Experiment (IRE). We review the basic constraints which lead to a design and give examples of parameters and capabilities of an IRE. We also show design tradeoffs generated by the systems code IBEAM.

  2. Graphite as a plasma-facing material in fusion experiments

    SciTech Connect

    Langley, R.A. )

    1989-01-01

    Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab.

  3. ISEE-1 data reduction and analysis plasma composition experiment

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Sharp, R. D.

    1985-01-01

    The plasma composition experiment covers energies from OeV to 17 keV/e and has a mass-per-charge range from less than 1 to about 150 amu. Measurements were made from the inner ring current region to the plasma sheet, magnetotail lobes, and the magnetopause boundary layers and beyond. Possibly the most significant results from the experiment are those related to energetic (0+) ions of terrestrial origin. These ions are found in every region of the magnetosphere reached by the spacecraft and can have energy and pitch-angle distributions that are similar to those traditionally associated with protons of solar wind origin. The (0+) ions are commonly the most numerous ions in the 0.1 - 17 keV/e energy range and are often a substantial part of the ion population at large distances as well, especially during geomagnetically disturbed conditions. An overview of results obtained for the (0+) and other ions with energies in the 0.1 - 17 keV/e range in the magnetosphere is given.

  4. Moral experience: a framework for bioethics research.

    PubMed

    Hunt, Matthew R; Carnevale, Franco A

    2011-11-01

    Theoretical and empirical research in bioethics frequently focuses on ethical dilemmas or problems. This paper draws on anthropological and phenomenological sources to develop an alternative framework for bioethical enquiry that allows examination of a broader range of how the moral is experienced in the everyday lives of individuals and groups. Our account of moral experience is subjective and hermeneutic. We define moral experience as "Encompassing a person's sense that values that he or she deem important are being realised or thwarted in everyday life. This includes a person's interpretations of a lived encounter, or a set of lived encounters, that fall on spectrums of right-wrong, good-bad or just-unjust". In our conceptualisation, moral experience is not limited to situations that are heavily freighted with ethically-troubling ramifications or are sources of debate and disagreement. Important aspects of moral experience are played out in mundane and everyday settings. Moral experience provides a research framework, the scope of which extends beyond the evaluation of ethical dilemmas, processes of moral justification and decision-making, and moral distress. This broad research focus is consistent with views expressed by commentators within and beyond bioethics who have called for deeper and more sustained attention in bioethics scholarship to a wider set of concerns, experiences and issues that better captures what is ethically at stake for individuals and communities. In this paper we present our conceptualisation of moral experience, articulate its epistemological and ontological foundations and discuss opportunities for empirical bioethics research using this framework.

  5. NSF program gives research experience to undergrads

    NASA Astrophysics Data System (ADS)

    Swift, Daniel W.

    Research Experience for Undergraduates (REU) is a new National Science Foundation (NSF) program designed to attract talented undergraduates into research careers in science, engineering, and mathematics. The program is intended to provide active research experience to students while they are still in their undergraduate years. There are two categories of support under this program: REU Sites and REU Supplements. The supplement, as the name implies, is to supplement existing NSF grants to permit an investigator to hire an undergraduate assistant. Here, I will report o n the REU site award made to the Geophysical Institute of the University of Alaska for summer 1987.

  6. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  7. Participatory Action Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved

  8. Developing a plasma focus research training system for the fusion energy age

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2014-08-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  9. Electromagnetic Safety of Spacecraft During Active Experiments with the Use of Plasma Accelerators and Ion Injectors

    NASA Astrophysics Data System (ADS)

    Plokhikh, Andrey; Popov, Garri; Shishkin, Gennady; Antropov, Nikolay; Vazhenin, Nikolay; Soganova, Galina

    Works under the development and application of stationary and pulsed plasma accelerators of charged particles conducted at the Moscow Aviation Institute and Research Institute of Applied Mechanics and Electrodynamics during over 40 years, active experiments on board meteorological rockets, artificial Earth satellites and "Mir" orbital station including [1], allowed to obtain data on the influence of pulsed and continuous plasma injection with the given parameters on the drop of energetic particles out of the radiation belts, efficiency of artificial excitation and propagation of electromagnetic waves in ELF and VLF ranges, and evolution of artificial plasma formations in different regions of ionosphere. Variation of the near-spacecraft electromagnetic environment related to the operation of plasma injectors was registered during active experiments along with the global electrodynamic processes. The measured electromagnetic fields are of rather high intensity and occupy frequency spectrum from some Hz to tens of GHz that may be of definite danger for the operation of spacecraft and its onboard systems. Analysis for the known test data is presented in the paper and methods are discussed for the diagnostics and modeling under laboratory conditions of radiative processes proceeding at the operation of plasma accelerators and ion injectors used while making active space experiments. Great attention is paid to the methodological and metrological bases for making radio measurements in vacuum chambers, design concept and hardware configuration of ground special-purpose instrumentation scientific complexes [2]. Basic requirements are formulated for the measurements and analysis of electromagnetic fields originating during the operation of plasma accelerators, including the radiative induced and conductive components inside the spacecraft, as well as the wave emission and excitation outside the spacecraft, in the ionosphere including. Measurement results for the intrinsic

  10. Research on Orbital Plasma-Electrodynamics (ROPE)

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Wright, K.

    1994-01-01

    Since the development of probe theory by Langmuir and Blodgett, the problem of current collection by a charged spherically or cylindrically symmetric body has been investigated by a number of authors. This paper overviews the development of a fully three-dimensional particle simulation code which can be used to understand the physics of current collection in three dimensions and can be used to analyze data resulting from the future tethered satellite system (TSS). According to the TSS configurations, two types of particle simulation models were constructed: a simple particle simulation (SIPS) and a super particle simulation (SUPS). The models study the electron transient response and its asymptotic behavior around a three dimensional, highly biased satellite. The potential distribution surrounding the satellite is determined by solving Laplace's equation in the SIPS model and by solving Poisson's equation in the SUPS model. Thus, the potential distribution in space is independent of the density distribution of the particles in the SUPS model but it does depend on the density distribution of the particles in the SUPS model. The evolution of the potential distribution in the SUPS model is described. When the spherical satellite is charged to a highly positive potential and immersed in a plasma with a uniform magnetic field, the formation of an electron torus in the equatorial plane (the plane in perpendicular to the magnetic field) and elongation of the torus along the magnetic field are found in both the SIPS and the SUPS models but the shape of the torus is different. The areas of high potential that exist in the polar regions in the SUPS model exaggerate the elongation of the electron torus along the magnetic field. The current collected by the satellite for different magentic field strengths is investigated in both models. Due to the nonlinear effects present in SUPS, the oscillating phenomenon of the current collection curve during the first 10 plasma periods

  11. Across the Arctic Teachers Experience Field Research

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Warburton, J.; Wiggins, H. V.; Marshall, S. A.; Darby, D. A.

    2005-12-01

    From studying snow geese on the North Slope of Alaska to sediment coring aboard the U.S. Coast Guard Cutter Healy in the Arctic Ocean, K-12 teachers embark on scientific expeditions as part of a program that strives to make science in the Arctic a "virtual" reality. In the past two years, seventeen K-12 teachers have participated in Teachers and Researchers Exploring and Collaborating (TREC), a program that pairs teachers with researchers to improve science education through arctic field experiences. TREC builds on the scientific and cultural opportunities of the Arctic, linking research and education through topics that naturally engage students and the wider public. TREC includes expeditions as diverse as studying plants at Toolik Field Station, a research facility located 150 miles above the Arctic Circle; climate change studies in Norway's Svalbard archipelago; studying rivers in Siberia; or a trans-arctic expedition aboard the USCGC Healy collecting an integrated geophysical data set. Funded by the National Science Foundation Office of Polar Programs, TREC offers educators experiences in scientific inquiry while encouraging the public and students to become active participants in the scientific inquiry by engaging them virtually in arctic research. TREC uses online outreach elements to convey the research experience to a broad audience. While in remote field locations, teachers and researchers interact with students and the public through online seminars and live calls from the field, online journals with accompanying photos, and online bulletin boards. Since the program's inception in 2004, numerous visitors have posted questions or interacted with teachers, researchers, and students through the TREC website (http://www.arcus.org/trec). TREC teachers are required to transfer their experience of research and current science into their classroom through the development of relevant activities and resources. Teachers and researchers are encouraged to participate

  12. (High beta tokamak research and plasma theory)

    SciTech Connect

    Not Available

    1990-01-01

    Our activities on High Beta Tokamak Research during the past 12 months of the present budget period can be divided into four areas: completion of kink mode studies in HBT; completion of carbon impurity transport studies in HBT; design of HBT-EP; and construction of HBT-EP. Each of these is described briefly in the sections of this progress report.

  13. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  14. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  15. Scientific Reports of Plasma Medicine and its Mechanism for Therapy in Plasma Bioscience Research Center

    NASA Astrophysics Data System (ADS)

    Choi, Eun Ha

    2015-09-01

    Scientific reports of plasma medicine and its basic mechanism for therapy will be introduced, especially, performed in Plasma Bioscience Research Center, Korea. We have investigated enhanced anticancer effect of monocytes and macrophages activated by nonthermal plasma which act as immune-modulator on these immune cells. Further, we investigated the action of the nanosecond pulsed plasma activated media (NPPAM) on the lung cancer cells and its DNA oxidation pathway. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signaling cascade. We also studied DNA oxidation by extracting DNA from treated cancer cell and analyzed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes.

  16. Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Donkó, Z.; Schulze, J.; Czarnetzki, U.; Derzsi, A.; Hartmann, P.; Korolov, I.; Schüngel, E.

    2012-12-01

    Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. ‘Classical’ dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach.

  17. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    SciTech Connect

    Eck, H. J. N. van; Koppers, W. R.; Rooij, G. J. van; Goedheer, W. J.; Cardozo, N. J. Lopes; Kleyn, A. W.; Engeln, R.; Schram, D. C.

    2009-03-15

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial magnetic field. In this way, the neutrals are prevented to reach the target region. The neutral flux to the target must be lower than the plasma flux to enable ITER relevant plasma-surface interaction (PSI) studies. It is therefore essential to control the neutral gas dynamics. The DSMC method was used to model the expansion of a hot gas in a low pressure vessel where a small discrepancy in shock position was found between the simulations and a well-established empirical formula. Two stage differential pumping was modeled and applied in the linear plasma devices Pilot-PSI and PLEXIS. In Pilot-PSI a factor of 4.5 pressure reduction for H{sub 2} has been demonstrated. Both simulations and experiments showed that the optimum skimmer position depends on the position of the shock and therefore shifts for different gas parameters. The shape of the skimmer has to be designed such that it has a minimum impact on the shock structure. A too large angle between the skimmer and the forward direction of the gas flow leads to an influence on the expansion structure. A pressure increase in front of the skimmer is formed and the flow of the plasma beam becomes obstructed. It has been shown that a skimmer with an angle around 53 deg. gives the best performance. The use of skimmers is implemented in the design of the large linear plasma generator Magnum-PSI. Here, a three stage differentially pumped vacuum system is used to reach low enough neutral pressures near the target, opening a door to PSI research in the ITER relevant regime.

  18. Plasma-depleted holes, waves, and energized particles from high-altitude explosive plasma perturbation experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Deehr, C.; Romick, J.; Olson, J.; Kelley, M. C.; Pfaff, R.; Torbert, R. B.; Newell, P.

    1985-01-01

    The results of high-explosive shaped charge experiments King Crab and Bubble Machines I and II, intended to perturb the ambient plasma and magnetic field, are discussed. The instrumentation was flown above an altitude of 460 km in March 1980 and 1981 and comprised a single-axis dipole electric field detector, a fixed bias cylindrical Langmuir probe, a three-axis attitude magnetometer, and curved plated energetic ion and electron electrostatic analyzer. Among the effects of the explosion which are detailed, emphasis is placed on the creation of an ion-depleted dark hole during the Bubble Machine II experiment; mechanisms explaining the phenomenon are outlined. The auroral intensity ion beams with energies of up to 6.8 keV, observed following the explosion in the field-aligned ion electrostatic analyzer, are suggested to represent an existing ion conic population pitch angle scattered by the released barium into the view of the detector.

  19. Active experiments in space in conjunction with Skylab. [barium plasma injection experiment and magnetic storm of March 7, 1972

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1974-01-01

    Two papers are presented which relate to the Skylab barium shaped charge experiments. The first describes the L=6.6 OOSIK barium plasma injection experiment and magnetic storm of March 7, 1972. Rocket payload, instrumentation, data reduction methods, geophysical environment at the time of the experiment, and results are given. The second paper presents the observation of an auroral Birkeland current which developed from the distortion of a barium plasma jet during the above experiment.

  20. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  1. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  2. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961

  3. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect

    Yushkov, Yu. G. Zolotukhin, D. B.; Tyunkov, A. V.; Oks, E. M.

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  4. Inverse time-of-flight spectrometer for beam plasma research.

    PubMed

    Yushkov, Yu G; Oks, E M; Zolotukhin, D B; Tyunkov, A V; Savkin, K P

    2014-08-01

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5-20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed. PMID:25173261

  5. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  6. Laser-induced fluorescence measurements on plasma science experiments at PPPL

    SciTech Connect

    Koepke, Mark

    2011-12-20

    Collaborative research between WVU and PPPL was carried out at WVU for the purpose of incorporating the sophisticated diagnostic technique known as laser-induced fluorescence (LIF) in the Paul-Trap Simulation Experiment (PTSX) at PPPL. WVU assembled a LIF system at WVU, transported it to PPPL, helped make LIF experiments on the PTSX device, participated in PTSX science, and trained PPPL staff in LIF techniques. In summary, WVU refurbished a non-operational LIF system being loaned from University of Maryland to PPPL and, by doing so, provided PPPL with additional diagnostic capability for its PTSX device and other General Plasma Science experiments. WVU students, staff, and faculty will visit PPPL to collaborate on PTSX experiments in the future.

  7. Determining an optimal set of research experiments

    NASA Technical Reports Server (NTRS)

    Adams, B. H.; Gearing, C. E.

    1974-01-01

    Description of a procedure for optimal selection of research experiments to be performed aboard the Space Shuttle. The procedure is designed to provide the study team with a credible approach to their task. The procedure is characterized as methodologically sound and based on assumptions which reasonably approximate the real conditions. The data-gathering techniques proposed are accepted by scientifically trained personnel.

  8. International Research Students' Experiences in Academic Success

    ERIC Educational Resources Information Center

    Yeoh, Joanne Sin Wei; Terry, Daniel R.

    2013-01-01

    The flow of international students to study in Australia increases each year. It is a challenge for students to study abroad in a different sociocultural environment, especially for postgraduate research students, as they experience numerous difficulties in an unfamiliar and vastly different study environment. A study aimed to investigate the…

  9. The Microgravity Research Experiments (MICREX) Data Base

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  10. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  11. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  12. Results from D-T Experiments on TFTR and Implications for Achieving an Ignited Plasma

    SciTech Connect

    Hawryluk, R.J. and the TFTR Group

    1998-07-14

    Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain for achieving a magnetic fusion energy reactor. In this paper, the implications of the TFTR experiments for overcoming these remaining issues will be discussed.

  13. Results from D-T experiments on TFTR and implications for achieving an ignited plasma

    SciTech Connect

    Hawryluk, R.J.; Blanchard, W.; Batha, S.

    1998-07-01

    Progress in the performance of tokamak devices has enable not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain. In this paper, the implications for the TFTR experiments for overcoming these remaining issues will be discussed.

  14. Experiments with Plasmas Produced by Potassium-Seeded Cyanogen Oxygen Flames for Study of Radio Transmission at Simulated Reentry Vehicle Plasma Conditions

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; Gooderum, Paul B.

    1961-01-01

    A method for the chemical production of an ionized gas stream for application to radio transmission studies is described. Involved is the combustion of gaseous cyanogen and oxygen with the addition of vaporized potassium in some cases to further increase the ionization. Experiments are described in which a 3-inch-diameter subsonic free jet at atmospheric pressure is used, and the results are presented. The plasma obtained by using this method is sufficient to simulate plasma conditions expected for reentering hypersonic vehicles. The unseeded plasma stream temperature is indicated to be about 4,200 K, with the degree of ionization indicated to be that expected from thermal equilibrium considerations. Measurements of radio-signal loss due to the unseeded flame plasma are presented for microwaves of 8 to 20 kmc transmitted through the stream and for a dipole transmitting model of 219.5 mc immersed in the stream. Favorable comparison of these results with the simple plane-wave signal-attenuation theory was obtained. In the case of a 9.4-kmc microwave signal of 30-kw peak power, the preliminary indication is that the plasma characteristics were not changed due to this strong signal. Comparison of a simplified concept of radio-signal attenuation due to plasmas is made with some hypersonic reentry vehicle signal-loss data. Other areas of plasma research using this method for the transmission problem are indicated.

  15. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  16. A Next-Generation Experiment To Study Magnetic Reconnection and Related Explosive Phenomena in Large and Collisionless Plasmas

    NASA Astrophysics Data System (ADS)

    Ji, H.; Yamada, M.; Prager, S.; Daughton, W.; Roytershteyn, V.

    2009-11-01

    Magnetic reconnection, a topological change in magnetic field in plasmas, often occurs explosively leading to rapid conversion of magnetic energy to plasma particle energy in space, astrophysical and laboratory fusion plasmas. The Magnetic Reconnection Experiment (MRX, http://mrx.pppl.gov) is a primary dedicated experiment to study reconnection in a controlled environment. However, further critical understanding and contributions to space and astrophysical plasmas are limited by the parameters achievable in MRX and other dedicated experiments. The MRX plasmas are relatively collisional (Lundquist numbers S ˜10^3) and effectively small (plasma size normalized by ion skin depth or ion sound radius ˜10). In this paper, we discuss plans for a next-generation reconnection experiment based on MRX. By a combination of larger physical size, stronger magnetic field, and higher heating power, we aim to increase S by a factor of 100 and effective size by a factor of 10, representing a very large jump in the laboratory capabilities. Kinetic simulations in realistic boundaries will be used to guide the experimental design. Research topics include: (1) transition of collisional to collisionless reconnection and its scaling with collisionality and size, (2) interacting multiple reconnections as a possible cause of explosive phenomena, (3) particle energization by reconnection, (4) relation between local reconnection and global magnetic self-organization in 3D realistic geometry and boundary.

  17. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-08-05

    This public data set contains openly-documented, machine readable digital research data accompanying 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment' by K.E. Thome et al., accepted for publication in Nuclear Fusion.

  18. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  19. A capstone research experience for physics majors

    NASA Astrophysics Data System (ADS)

    Jackson, David

    2013-03-01

    Dickinson College is a small liberal arts college with a thriving physics program. For years, one of the key features of our program has been a year-long senior research project that was required for each student. Unfortunately, as our number of majors increased, it became more and more difficult to supervise such a large number of senior research projects. To deal with this growing challenge, we developed a capstone research experience that involves a larger number of students working together on an independent group project. In this talk I will give a broad overview of our new senior research model and provide a few examples of projects that have been carried out over the past few years. I will also briefly describe the positive and negative aspects of this model from the perspective of faculty and students.

  20. Blood plasma reference material: a global resource for proteomic research.

    PubMed

    Malm, Johan; Danmyr, Pia; Nilsson, Rolf; Appelqvist, Roger; Végvári, Akos; Marko-Varga, György

    2013-07-01

    There is an ever-increasing awareness and interest within the clinical research field, creating a large demand for blood fraction samples as well as other clinical samples. The translational research area is another field that is demanding for blood samples, used widely in proteomics, genomics, as well as metabolomics. Blood samples are globally the most common biological samples that are used in a broad variety of applications in life science. We hereby introduce a new reference blood plasma standard (heparin) that is aimed as a global resource for the proteomics community. We have developed these reference plasma standards by defining the Control group as those with C-reactive protein levels <3 mg/L and a Disease group with C-reactive protein ranges >30 mg/L. In these references we have used both newborn children 1-2 weeks, as well as youngsters 15-30 years, and middle aged 30-50 years, and elderly patients at the ages of 65+. In total, there were 80 patients in each group in the reference plasma pools. We provide data on the developments and characteristics of the reference blood plasma standards, as well as what is used by the team members at the respective laboratories. The standards have been evaluated by pilot sample processing in biobanking operations and are currently a resource that allows the Proteomic society to perform quantitative proteomic studies. By the use of high quality reference plasma samples, global initiatives, such as the Chromosome Human Proteome Project (C-HPP), will benefit as one scientific program when the entire human proteome is mapped and linked to human diseases. The plasma reference standards are a global resource and can be accessed upon request. PMID:23701512

  1. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    SciTech Connect

    Kyle A. Morrison; Stephen F. Paul; Ronald C. Davidson

    2003-08-11

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion.

  2. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main

  3. Swashzone Fellowships: a 6-month research experience

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.

    2011-12-01

    The Swashzone Fellowships funded by the CAREER program were designed to provide sufficient time for undergraduates with little knowledge of ocean processes and minimal prior research experience to participate in observational nearshore oceanographic studies. The fellows learned background material, developed hypotheses, planned field experiments, designed sensor arrays, tested and debugged instrumentation, collected and analyzed data, and communicated the results through oral and written presentations. The program funded 12 undergraduate student fellows (4 male and 8 female), with backgrounds in math (3 students), physics (4), geology (1), and environmental sciences (4). Preference was given to applicants who had not taken oceanography classes and who were unsure of career plans. All the students presented their results at department seminars, and most presented their results at a professional conference (eg, AGU or Ocean Sciences). The results often were incorporated in peer-reviewed manuscripts. Evaluations conducted following the fellowships and again several years after each fellowship indicated that many of the students pursued STEM careers: 5 are pursuing PhD degrees, including bio-mathematics, physics, atmospheric physics, and ocean physics; 2 are employed at environmental engineering and consulting firms; 4 are employed as research technicians at WHOI; and 1 is a lawyer (currently being considered as a clerk for the Supreme Court). Many of the students were excited to learn about the range of oceanographic career options, including engineering and technical staff, as well as science research. The graduating seniors expressed their appreciation for the fellowship opportunity, stating that there were few science positions available to students without significant prior research experience. Several students noted that the fellowships were critical to their later employment and to their decisions to pursue careers in science. In particular, the students noted

  4. Megagauss field generation for high-energy-density plasma science experiments.

    SciTech Connect

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-10-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

  5. Response to "Comment on `A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma'" [Phys. Plasmas 23, 094701 (2016)

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Xiaoping; Xie, Kai; Liu, yanming; Liu, Donglin

    2016-09-01

    We respond to the issues raised in the comment by Eliseev and Kudryavtsev [Phys. Plasmas 23, 094701 (2016)]. We re-examine the principle of plasma generation and the operating situations in our plasma device, and some simplified models are founded to illustrate the qualitative relations between the pressure and the magnitude and uniformity of ne. We stand by our original conclusions in our plasma device that the magnitude and uniformity of ne are in roughly reverse proportion to the gas pressure in the chamber, as observed in the experiment.

  6. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  7. Neutron computed tomography of plasma facing components for fusion experiments

    NASA Astrophysics Data System (ADS)

    Schillinger, B.; Greuner, H.; Linsmeier, Ch.

    2011-09-01

    In nuclear fusion experiments, divertor plates are used to remove energy and particles from the plasma. These divertor plates can be made of water-cooled copper heat sinks covered by carbon fiber composite (CFC) protection tiles. During operation, surface temperatures in excess of 1000 °C are reached for typical heat loads of 10 MW/m 2. The large mismatch in the coefficients of thermal expansion for CFC and Cu causes high stresses and possibly bonding defects. Growing joint defects, which lead to unacceptable overheating of the protection tiles, are critical for the lifetime of the components. A prototype component was subjected to 10,000 cycles at 10 MW/m 2 to study the crack growth mechanism. Neutron computed tomography offers the possibility to analyze such structures on centimeter-sized samples non-destructively with a high spatial resolution. At the ANTARES neutron imaging facility of the FRM II reactor, the samples were loaded with a contrast agent and examined with neutron computed tomography.

  8. Modeling ultrafast shadowgraphy in laser-plasma interaction experiments

    NASA Astrophysics Data System (ADS)

    Siminos, E.; Skupin, S.; Sävert, A.; Cole, J. M.; Mangles, S. P. D.; Kaluza, M. C.

    2016-06-01

    Ultrafast shadowgraphy is a new experimental technique that uses few-cycle laser pulses to image density gradients in a rapidly evolving plasma. It enables structures that move at speeds close to the speed of light, such as laser driven wakes, to be visualized. Here we study the process of shadowgraphic image formation during the propagation of a few cycle probe pulse transversely through a laser-driven wake using three-dimensional particle-in-cell simulations. In order to construct synthetic shadowgrams a near-field snapshot of the ultrashort probe pulse is analyzed by means of Fourier optics, taking into account the effect of a typical imaging setup. By comparing synthetic and experimental shadowgrams we show that the generation of synthetic data is crucial for the correct interpretation of experiments. Moreover, we study the dependence of synthetic shadowgrams on various parameters such as the imaging system aperture, the position of the object plane and the probe pulse delay, duration and wavelength. Finally, we show that time-dependent information from the interaction can be recovered from a single shot by using a broadband, chirped probe pulse and subsequent spectral filtering.

  9. Convex Crystal X-ray Spectrometer for Laser Plasma Experiments

    SciTech Connect

    May, M; Heeter, R; Emig, J

    2004-04-15

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48

  10. PISCES Program: Plasma-materials interactions and edge-plasma physics research. Progress report, 1991--1992

    SciTech Connect

    Conn, R.W.; Hirooka, Y.

    1992-07-01

    This program investigates and characterizes the behavior of materials under plasma bombordment, in divertor regions. The PISCES facility is used to study divertor and plasma edge management concepts (in particular gas target divertors), as well as edge plasma turbulence and transport. The plasma source consists of a hot LaB{sub 6} cathode with an annular, water-cooled anode and attached drift tube. This cross sectional area of the plasma can be adjusted between 3 and 10 cm. A fast scanning diagnostic probe system was used for mapping plasma density profiles during biased limiter and divertor simulation experiments. Some experimental data are given on: (1) materials and surface physics, (2) edge plasma physics, and (3) a theoretical analysis of edge plasma modelling.

  11. Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2015-11-01

    The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.

  12. Understanding Pulsed Plasma Jets with Advanced Simulations, Ground and Space Experiments

    NASA Astrophysics Data System (ADS)

    Gatsonis, Nikolaos

    2004-11-01

    Pulsed plasma jets are found in diverse areas, such as thruster plume/spacecraft interactions, artificial release experiments, space plasma physics, and plasma materials processing. We review recent experimental and computational work and elucidate on physical characteristics and processes relevant to electric propulsion plumes. We present first results of experimental investigations of pulsed plasma thruster (PPT) plumes that led to the development of a new method of operation for triple and quadruple Langmuir probes. This novel current-mode method involves biasing all probe electrodes and requires the measurement of probe currents providing the electron temperature, the electron density and the ratio of ion speed to most probable thermal speed. We review the current-mode probe theory for a single species, two-temperature, collisionless plasma along with formal sensitivity analysis of the new diagnostic. The NASA Glenn Research Center laboratory Teflon® PPT used in the experiments was operating at discharge energies of 5, 20 and 40 Joules, with a pulse duration of 10-15 microseconds, ablating 20-50 micrograms/pulse. We present current-mode triple and quadruple probe measurements obtained at various locations in the plume of the plasma source. Extensive comparisons between double probe and current-mode probe measurements validate the new method. We present next computational modeling of plumes from a NASA Glenn Research Center laboratory micro Pulsed Plasma Thruster. The axisymmetric, hybrid (fluid/particle) methodology that introduced several new modeling and algorithmic approaches. Neutrals are modeled with the Direct Simulation Monte Carlo (DSMC) method and ions with a Hybrid-Particle-in-Cell (hybrid-PIC) collisional method. Electrons are modeled as a massless fluid with a momentum equation. The Non-Time-Counter methodology is used for neutral-neutral, elastic ion-neutral, and charge exchange collisions. Ion-electron collisions are modeled with the use of a

  13. Transverse oscillations in plasma wakefield experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; White, G. R.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-09-01

    We study transverse effects in a plasma wakefield accelerator. Experimental data from FACET with asymmetry in the beam-plasma system is presented. Energy dependent centroid oscillations are observed on the accelerated part of the charge. The experimental results are compared to PIC simulations and theoretical estimates.

  14. An outlook of heavy ion driven plasma research at IMP-Lanzhou

    NASA Astrophysics Data System (ADS)

    Zhao, Yongtao; Xiao, Guoqing; Xu, Hushan; Zhao, Hongwei; Xia, Jiawen; Jin, Genming; Ma, Xinwen; Liu, Yong; Yang, Zhihu; Zhang, Pengming; Wang, Yuyu; Li, Deihui; Zhao, Huanyu; Zhan, Wenlong; Xu, Zhongfeng; Zhao, Di; Li, Fuli; Chen, Ximeng

    2009-01-01

    Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 10 9 1 GeV/u C 6+ particles or 10 8 235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running, the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.

  15. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  16. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  17. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  18. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  19. Redirecting plasma and E-beam research at NRL, from death rays to doodads

    SciTech Connect

    Manheimer, W.

    1996-12-31

    Like much of the rest of the plasma physics community, and in fact, like much of scientific research in general, plasma physics at NRL has undergone a redirection from large projects, with payoffs in the distant future, to smaller projects with nearer term payoffs. Generally these newer projects are just as scientifically challenging. This talk will explore where NRL has come from, and where they seem to be going. It will discuss their successful transitions, as well as potential projects that at the outset looked good scientifically, and also marketable, but which still have not been funded. What do they hope to accomplish on the former? What did they learn from the latter? To what extent is their experience typical of science in the 90`s? Finally, if time and circumstance permit, there will be a few comments about the largest plasma physics project of all, magnetic fusion.

  20. Electron beam-plasma interaction experiments with the Versatile Toroidal Facility (VTF)

    SciTech Connect

    Murphy, S.M.; Lee, M.C.; Moriarty, D.T.; Riddolls, R.J.

    1995-12-31

    The laboratory investigation of electron beam-plasma interactions is motivated by the recent space shuttle experiments. Interesting but puzzling phenomena were observed in the shuttle experiments such as the bulk heating of background ionospheric plasmas by the injected electron beams and the excitation of plasma waves in the frequency range of ELF waves. The plasma machine, the Versatile Toroidal Facility (VTF) can generate a large magnetized plasma with the electron plasma frequency greater than the electron gyrofrequency by a factor of 3--5 similar to the plasma condition in the ionosphere. Short pulses of electron beams are injected into the VTF plasmas in order to simulate the beam injection from spacecrafts in the ionosphere. A Langmuir probe installed at a bottom port of VTF monitors the spatial variation of electron beams emitted from LaB6 filaments. An energy analyzer has been used to determine the particle energy distribution in the VTF plasmas. Several mechanisms will be tested as potential causes of the bulk heating of background plasmas by the injected electron beams as seen in the space shuttle experiments. It is speculated that the observed ELF emissions result from the excitation of purely growing modes detected by the space shuttle-borne detectors. Results of the laboratory experiments will be reported to corroborate this speculation.

  1. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    SciTech Connect

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

  2. Dense Plasma Focus Z-Pinch Fully Kinetic Modeling and Ion Probe-Beam Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea

    2013-10-01

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions on a cm-scale length, even for kJ-scale devices. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the mechanisms behind these large gradients using the first fully kinetic simulations of a DPF Z-pinch as well as an ion probe beam experiment in which a 4 MeV deuteron beam is injected along the z-axis of a DPF Z-pinch plasma and accelerated. Our table-top DPF has demonstrated >50 MV/m acceleration gradients during 800 J operation using a fast capacitive driver. We have now directly measured the DPF gradients and demonstrated acceleration of an injected ion beam for the first time. Our particle-in-cell simulations have successfully predicted observed DPF ion beams and neutron yield, which past fluid simulations have not reproduced. We have now experimentally measured and observed in the simulations for the first time, electric field oscillations near the lower hybrid frequency. This is suggestive that the lower hybrid drift instability, long speculated to be the cause of the anomalous plasma resistivity that produces large DPF gradients, is playing an important role. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  3. Rare gas flow structuration in plasma jet experiments

    NASA Astrophysics Data System (ADS)

    Robert, E.; Sarron, V.; Darny, T.; Riès, D.; Dozias, S.; Fontane, J.; Joly, L.; Pouvesle, J.-M.

    2014-02-01

    Modifications of rare gas flow by plasma generated with a plasma gun (PG) are evidenced through simultaneous time-resolved ICCD imaging and schlieren visualization. The geometrical features of the capillary inside which plasma propagates before in-air expansion, the pulse repetition rate and the presence of a metallic target are playing a key role on the rare gas flow at the outlet of the capillary when the plasma is switched on. In addition to the previously reported upstream offset of the laminar to turbulent transition, we document the reverse action leading to the generation of long plumes at moderate gas flow rates together with the channeling of helium flow under various discharge conditions. For higher gas flow rates, in the l min-1 range, time-resolved diagnostics performed during the first tens of ms after the PG is turned on, evidence that the plasma plume does not start expanding in a laminar neutral gas flow. Instead, plasma ignition leads to a gradual laminar-like flow build-up inside which the plasma plume is generated. The impact of such phenomena for gas delivery on targets mimicking biological samples is emphasized, as well as their consequences on the production and diagnostics of reactive species.

  4. Investigation of iron opacity experiment plasma gradients with synthetic data analyses

    SciTech Connect

    Nagayama, T.; Bailey, J. E.; Rochau, G. A.; Hansen, S. B.; Mancini, R. C.; MacFarlane, J. J.; Golovkin, I.

    2012-10-15

    Experiments have been performed at Sandia National Laboratories Z-facility to validate iron opacity models relevant to the solar convection/radiation zone boundary. Sample conditions were measured by mixing Mg with the Fe and using Mg K-shell line transmission spectra, assuming that the plasma was uniform. We develop a spectral model that accounts for hypothetical gradients, and compute synthetic spectra to quantitatively evaluate the plasma gradient size that can be diagnosed. Two sample designs are investigated, assuming linear temperature and density gradients. First, Mg uniformly mixed with Fe enables temperature gradients greater than 10% to be detected. The second design uses Mg mixed into one side and Al mixed into the other side of the sample in an attempt to more accurately infer the sample gradient. Both temperature and density gradients as small as a few percent can be detected with this design. Experiments have successfully recorded spectra with the second design. In future research, the spectral model will be used to place bounds on gradients that exist in Z opacity experiments.

  5. Characterization of a linear device developed for research on advanced plasma imaging and dynamics

    SciTech Connect

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Choi, M. C.

    2010-10-15

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 deg. C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5x10{sup -8} Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  6. Characterization of a linear device developed for research on advanced plasma imaging and dynamics.

    PubMed

    Chung, J; Lee, K D; Seo, D C; Nam, Y U; Choi, M C

    2010-10-01

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 °C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5×10(-8) Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  7. Plasma skin resurfacing: personal experience and long-term results.

    PubMed

    Bentkover, Stuart H

    2012-05-01

    This article presents a comprehensive clinical approach to plasma resurfacing for skin regeneration. Plasma technology, preoperative protocols, resurfacing technique, postoperative care, clinical outcomes, evidence-based results, and appropriate candidates for this procedure are discussed. Specific penetration depth and specific laser energy measurements are provided. Nitrogen plasma skin regeneration is a skin-resurfacing technique that offers excellent improvement of mild to moderate skin wrinkles and overall skin rejuvenation. It also provides excellent improvement in uniformity of skin color and texture in patients with hyperpigmentation with Fitzpatrick skin types 1 through 4. PMID:22537783

  8. UCLA/FNPL Underdense Plasma Lens Experiment: Results and Analysis

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Fliller, R; Kazakevich, G M; Piot, P; Santucci, J; Li, J; Tikhoplav, R

    2006-08-04

    Focusing of a 15 MeV, 16 nC electron bunch by a gaussian underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated. The strong 1.9 cm focal length plasma lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Time resolved measurements of the focused electron bunch are also reported and compared to simulations.

  9. Plasma skin resurfacing: personal experience and long-term results.

    PubMed

    Bentkover, Stuart H

    2012-05-01

    This article presents a comprehensive clinical approach to plasma resurfacing for skin regeneration. Plasma technology, preoperative protocols, resurfacing technique, postoperative care, clinical outcomes, evidence-based results, and appropriate candidates for this procedure are discussed. Specific penetration depth and specific laser energy measurements are provided. Nitrogen plasma skin regeneration is a skin-resurfacing technique that offers excellent improvement of mild to moderate skin wrinkles and overall skin rejuvenation. It also provides excellent improvement in uniformity of skin color and texture in patients with hyperpigmentation with Fitzpatrick skin types 1 through 4.

  10. Plasma-filled applied B ion diode experiments using a plasma opening switch

    SciTech Connect

    Renk, T.J. )

    1994-12-15

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 [Omega], 40 ns) at Cornell University. This plasma readily crossed the 2.1 T magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.

  11. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  12. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1982-01-01

    Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.

  13. Overview of Final CDX-U Experiments with Lithium Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Majeski, R.; Gray, T.; Kugel, H.; Mansfield, D.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Doerner, R.; Lynch, T.; Maingi, R.; Soukhanovskii, V.

    2006-10-01

    The final phase of Current Drive eXperiment Upgrade (CDX-U) research involved plasma-facing surfaces nearly completely coated with lithium. The CDX-U device is a spherical tokamak with the following typical parameters: R=34 cm, a=22 cm, Bt=2 kG, Ip=100 kA, Te(0)=100 eV, and ne(0)=5x10^19 m-3. Electron beam-induced evaporation from a lithium target and vapor deposition from a lithium-filled oven created lithium coatings. Convective flows for highly-efficient power dissipation were observed in the lithium with electron beam heating. Lithium layers up to 100 nm thick between were deposited between discharges. These coatings reduced global recycling coefficients to as low as 0.3, a record for magnetically-confined hydrogen plasmas. New magnetic diagnostics constrained equilibrium reconstructions that were used to determine energy confinement times. With lithium coatings, plasmas had the largest global confinement enhancement ever achieved in an Ohmically-heated tokamak, exceeding ITER98P(y,1) scaling by up to a factor of three.

  14. Baseline geoenvironmental experiments for in-situ soil transformation by plasma torch

    SciTech Connect

    Beaver, J.R.; Mayne, P.W.

    1995-12-31

    The advent of the nontransferred plasma arc torch has implicated a range of in-situ geoenvironmental applications that can revolutionize methods of ground modification and field remediation of contaminated sites. With reverse polarity nontransferred arc type plasma torches, temperatures of 4,000 C to 7,000 C can be directed at specific targets of contaminated soil or waste. At these extreme temperatures, all organic materials within the soil undergo pyrolysis, while the bulk composition is transformed into a magma that subsequently cools to form a vitrified mass resembling volcanic obsidian or a dense partially crystalline material resembling microcrystalline igneous rock. Simulations of in-situ transformation of soil have been conducted using both 100-kW and 240-kW torches to alter clay, silty sand, and sand in chamber tests. Although these materials are primarily composed of silica and alumina oxides having melting temperatures of 1,100 C to 1,600 C, the formation of a spheroidal magma core occurred within the first five minutes of exposure to the plasma flame. Experiments were conducted to quantify the improved engineering properties that occur after transformation and to demonstrate the relative effects of power level, water content, and soil type on the size and strength of the altered material. The ongoing research also serves as a baseline study for further experimentation that will focus on the in-situ remediation of soils with varied contaminants.

  15. Experiments on rotamak plasma equilibrium and shape control

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Wang Yonghui; Huang, T.-S.

    2010-01-15

    A set of magnetic shaping coils and copper rings is installed in cylindrical chamber rotamak to allow for an active equilibrium control in 40 ms plasma discharges. The coils, which are powered by programmable current source, are used to control both the plasma shape and the boundary poloidal magnetic flux. Without the active equilibrium control, the boundary flux drops from its vacuum value of 0.3 mWb to zero after the plasma current is generated. If the coils are activated, the boundary magnetic flux can be sustained within the 0.2-0.3 mWb range, thus keeping the separatrix away from chamber wall during whole period of the shot. The passive copper rings help in eliminating the fast variations of the boundary magnetic flux. The response of rotamak plasma to the active equilibrium control is drastically different in regimes with or without external toroidal field. A model is presented that describes the change in plasma shape, plasma current, and pressure under the effect of active equilibrium coils.

  16. Integrated predictive modelling simulations of burning plasma experiment designs

    NASA Astrophysics Data System (ADS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H.

    2003-11-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied.

  17. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  18. Experiments on a current-toggled plasma-opening switch

    SciTech Connect

    Mendel, C.W. Jr.; Savage, M.E.; Zagar, D.M.; Simpson, W.W.; Grasser, T.W.; Quintenz, J.P. )

    1992-04-15

    Plasma-opening switches have been used to improve pulsed-power wave shapes for over a decade. These switches have used the inertia of the plasma to hold the switch closed. This results in conflicting requirements when long hold-off time and fast opening are required, and also results in variation in opening current due to variation in initial plasma fill. The current-toggled plasma-opening switch attempts to overcome these problems by using external magnetic fields rather than inertia to control the plasma conductor. Data will be presented showing several features of the operation of this switch. These data will be compared to models used to design the switch. The comparisons indicate that the mass can be measured approximately from fast coil data and that the slow coil flux does set the opening level of the current. They also indicate that the opening current is somewhat dependent upon plasma mass, and that the design of the field coils that provide the control fields must be done more carefully to provide a switch that opens satisfactorily.

  19. Experiments of discharge guiding using strongly and weakly ionized plasma channels for laser-triggered lightning

    NASA Astrophysics Data System (ADS)

    Shimada, Yoshinori; Uchida, Shigeaki; Yamanaka, Chiyoe; Ogata, Akihisa; Yamanaka, Tatsuhiko; Kawasaki, Zen-ichiro; Fujiwara, Etsuo; Ishikubo, Yuji; Kawabata, Kinya

    2000-01-01

    Generation of a long laser-plasma channel capable of triggering and guiding an electrical discharge is a crucial issue for laser-triggering protection system. We make a long plasma channel to increase the probability of triggered lightning by laser. To produce a long laser plasma channel, we propose da new technique called hybrid plasma channel method which combines weakly and strongly ionized plasma channels to maximize laser-energy efficiency of discharge guiding. We investigate the characteristics of the hybrid plasma channels to maximize laser-energy efficiency of discharge guiding. We investigate the characteristics of the hybrid plasma channel method through several laboratory experiments. The weakly ionized channel was generated by UV laser pulses in air. As the number density of electrons in weakly ionized channel is proportional to 1.1 power of laser intensity, nitrogen and oxygen molecules can not attributed to the source of ionized plasma. It is suggested that dissociation process of impurities in air whose density is 1011 - 1012 cm-3 plays an important role in plasma formation and leader triggering effect. The 50 percent flashover voltage using the hybrid plasma channel method is lower than that without the weakly ionized plasma channel. It was also found that higher repetition rate of the plasma generation on lowers the V50 furthermore.

  20. Review of upconverted Nd-glass laser plasma experiments at the Lawrence Livermore National Laboratory

    SciTech Connect

    Manes, K.R.

    1982-05-01

    Systematic scaling experiments aimed at deducing the dependence of laser-plasma interaction phenomena on target plasma material and target irradiation history have been underway in laboratories all over the world in recent years. During 1980 and 1981 the Livermore program undertook to measure the laser light absorption of high and low Z plasmas and the partition of the absorbed energy amongst the thermal and suprathermal electron populations as a function of both laser intensity and wavelength. Simulations suggested that short wavelength laser light would couple more efficiently than longer wavelengths to target plasmas. Shorter wavelength heating of higher electron plasma densities would, it was felt, lead to laser-plasma interactions freer of anomalous absorption processes. The following sections review LLNL experiments designed to test these hypotheses.

  1. Waves In Space Plasmas (WISP): A space plasma lab active experiment

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.

    1983-01-01

    The Waves in Space Plasmas (WISP) series of Spacelab Space Plasma Labs devoted to active experimentation, are introduced. Space Plasma Lab-1 is keyed to active probing of the ionosphere and magnetosphere using controlled wave injections by the WISP VLF and HF transmitters, supported by a free-flying plasma diagnostics package instrumented with wave receivers and particle probe diagnostics, designed to measure radiation and propagation of plasma waves, precipitated particle fluxes due to wave/particle interactions, and similar phenomena resulting from wave injectons. The VLF transmitter delivers up to 1 kW of RF power into the antenna terminals over the range from 0.3 to 30 kHz. The HF transmitter delivers up to 500 W to the antenna over the range from 1 to 30 MHz. A dipole antenna commandable to any extension up to 300 m tip-to-tip is available.

  2. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  3. Experiment and Results on Plasma Etching of SRF cavities

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Peshl, J.; Vuskovic, Leposova; Popovic, Svetozar; Valente, Anne-Marie; Phillips, H. Lawrence

    2015-09-01

    The inner surfaces of SRF cavities are currently chemically treated (etched or electropolished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed.

  4. Plasma isotopic changeover experiments in JET under carbon and ITER-like wall conditions

    NASA Astrophysics Data System (ADS)

    Loarer, T.; Brezinsek, S.; Philipps, V.; Romanelli-Gruenhagen, S.; Alves, D.; Carvalho, I.; Felton, R.; Douai, D.; Esser, H. G.; Frigione, D.; Smith, R.; Stamp, M. F.; Reux, C.; Vartanian, S.; Contributors, JET

    2015-04-01

    In JET-ILW isotopic plasma wall changeover experiments have been carried out to determine the amount of particles accessible by changing the plasma from H to D and from D to H. The gas balance analysis integrated over the experimental sessions show that the total amount of H or D removed from the wall is in the range of (1-3) × 1022D. For both changeover experiments, the respective plasma isotopic ratio behaviour is exactly the same as a function of the pulse number. After only 80 s of plasma (4 pulses), the plasma isotopic ratio is lower than 10%, below 4.5% after 13 pulses and then saturates around ˜2-3%. In these conditions, the removal efficiency through plasma operation becomes very poor. The saturation of the plasma isotopic ratio in the range of 10% is also observed for the JET-C configuration although the amount of tritium retained in the vessel after the DT pulses was more than one order of magnitude compared to the retention observed with the JET-ILW. This demonstrates that the amount of particle recovery through plasma changeover is independent from the long term retention. Since this long term reservoir results from codeposition, these experiments suggest that there is a limited access to these codeposited particles by plasma isotopic changeover. Finally, in ITER, change over from D/T to H at the end of the discharge for possibly reducing the long term retention does not appear as a good strategy.

  5. Experiments on Ion-Ion Plasmas From Discharges

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  6. Data processing of absorption spectra from photoionized plasma experiments at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-15

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  7. Experiences with remote collaborations in fusion research

    SciTech Connect

    Wurden, G.A.; Davis, S.; Barnes, D.

    1998-03-01

    The magnetic fusion research community has considerable experience in placing remote collaboration tools in the hands of real user. The ability to remotely view operations and to control selected instrumentation and analysis tasks has been demonstrated. University of Wisconsin scientists making turbulence measurements on TFTR: (1) were provided with a remote control room from which they could operate their diagnostic, while keeping in close contact with their colleagues in Princeton. LLNL has assembled a remote control room in Livermore in support of a large, long term collaboration on the DIII-D tokamak in San Diego. (2) From the same control room, a joint team of MIT and LLNL scientists has conducted full functional operation of the Alcator C-Mod tokamak located 3,000 miles away in Cambridge Massachusetts. (3) These early efforts have been highly successful, but are only the first steps needed to demonstrate the technical feasibility of a complete facilities on line environment. These efforts have provided a proof of principle for the collaboratory concept and they have also pointed out shortcomings in current generation tools and approaches. Current experiences and future directions will be discussed.

  8. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  9. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1983-01-01

    An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.

  10. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGES

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; Zylstra, A.  B.; Stoeckl, C.; Séguin, F.  H.; Frenje, J.  A.; Petrasso, R. D.

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. Themore » absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less

  11. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    SciTech Connect

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; Zylstra, A.  B.; Stoeckl, C.; Séguin, F.  H.; Frenje, J.  A.; Petrasso, R. D.

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.

  12. Fusion Ignition Research Experiment System Integration

    SciTech Connect

    T. Brown

    2000-10-17

    This paper describes the current status of the FIRE configuration and the integration of the major subsystem components. FIRE has a major radius of 2 m, a field on axis of 10T, a plasma current of 6.4 MA. It is capable of 18 second pulses when operated with DT and 26 s when operated with DD. The general arrangement consists of sixteen wedged TF coils that surround a free standing central solenoid, a double wall vacuum vessel and internal plasma facing components that are segmented for maintenance through horizontal ports. Large rings located outside the TF coils are used to obtain a load balance between wedging of the intercoil case structure and wedging at the upper/lower inboard corners of the TF coil winding. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. Within the vacuum vessel, plasma-facing components frame the plasma. First wall tiles are attached directly to inboard and outboard vacuum vessel walls. The divertor is designed for a high triangularity, double-null plasma with a short inner null point-to-wall distance and near vertical outer divertor flux line. The FIRE configuration has been developed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF boundary.

  13. Experiments with an rf dusty plasma and an external plasma jet

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.

    2010-12-01

    A plasma jet produced in a coaxial plasma gun was aimed at a cloud of dust particles levitated in the sheath of a radio-frequency (rf) plasma produced between two parallel-plate electrodes. A high-speed camera with a side-view on the dust cloud was used to track the dust particles. Several cases of dust motion could be observed. When the jet was parallel with the horizontal electrodes of the rf plasma the dust particles were either pushed out of the trapping region by the plasma jet or were only perturbed from their equilibrium position, oscillating with a frequency of the order of a few kHz. In the first case the trajectory of the dust particles followed the curvature of the sheath. In the second case, when the jet was fired at a small angle with the horizontal electrodes the dust particles hit the bottom electrode and ricocheted back into the sheath. Finally, another situation was observed when the jet perturbed the rf plasma and its sheath and the whole dust crystal fell to the electrode.

  14. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  15. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping

    SciTech Connect

    Robicheaux, Francis

    2013-03-29

    Ever since Dirac predicted the existence of antimatter in 1928, it has excited our collective imagination. Seventy-four years later, two collaborations at CERN, ATHENA and ATRAP, created the first slow antihydrogen. This was a stunning achievement, but the most important antimatter experiments require trapped, not just slow, antihydrogen. The velocity, magnetic moment, and internal energy and state of the antihydrogen depend strongly on how it is formed. To trap antihydrogen, physicists face two broad challenges: (1) Understanding the behavior of the positron and antiprotons plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Recombination lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The proposed collaborative research campaign will address both of these challenges. The collaboration members have unique experience in the relevant fields of experimental and theoretical non-neutral plasma physics, numerical modeling, nonlinear dynamics and atomic physics. This expertise is not found elsewhere amongst antihydrogen researchers. The collaboration members have strong ties already, and seek to formalize them with this proposal. Three of the four PIs are members of the ALPHA collaboration, an international collaboration formed by most of the principal members of the ATHENA collaboration.

  16. Research on plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, Demetrius D.; Han, Kwang S.

    1993-01-01

    The plasma-puff triggering mechanism based on hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. Research is presented and resulting conference papers are attached. These papers include 'Characteristics of Plasma-Puff Trigger for an Inverse-Pinch Plasma Switch'; 'Ultra-High-Power Plasma Switch INPUTS for Pulse Power Systems'; 'Characteristics of Switching Plasma in an Inverse-Pinch Switch'; 'Comparative Study of INPIStron and Spark Gap'; and 'INPIStron Switched Pulsed Power for Dense Plasma Pinches.'

  17. Structural and Dynamic Phenomena in the ``Plasma Kristall-4'' Experiments under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Höfner, H.; Kretschmer, M.; Fink, M.; Morfill, G. E.

    2011-11-01

    New results from the recent experiments using the "Plasma Kristall-4", "PK-4", onboard of the parabolic flight plane A-300 Zero-G are presented. These are: a) structural and dynamics properties of dusty plasma clouds containing elongated dust particles—microrods; b) formation of a boundary-free dust cluster due to attractive forces caused by ion fluxes in a bulk plasma region; c) shock wave in dusty plasma driven by the electrical manipulative electrode in polarity switching direct current discharge. Physical models of the observed phenomena are presented and discussed. Universal possibilities of the "PK-4" setup are demonstrated.

  18. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  19. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    NASA Astrophysics Data System (ADS)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  20. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  1. Incorporation of the Data Acquisition System with a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Nolan, Stephen; James, R. W.; Page, E. L.; Zuniga, J.; Schlank, C.; Lopez, M.; Sherman, J.; Stutzman, B. S.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], in high temperature and density diagnostic development for future laboratory investigations. With first plasmas at hand, HPX is constructing triple and mach particle probes, magnetic probes, and a single point Thompson Scattering system for HPX plasma property investigations. A 32-channel National Instruments Data Acquisition (DAQ) Board capable of sampling at 12 bits of precision at 2 MS/s and running multiple simultaneous experiments is currently under construction. This DAQ System with integrated storage and GUI's will gather and digitize plasma data from the associated diagnostics for further analysis. Progress on the current implementation of the DAQ system will be reported.

  2. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    SciTech Connect

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-05-12

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered.

  3. Registration of ELF waves in rocket-satellite experiment with plasma injection

    NASA Astrophysics Data System (ADS)

    Korobeinikov, V. G.; Oraevskii, V. N.; Ruzhin, Iu. Ia.; Sobolev, Ia. P.; Skomarovskii, V. S.; Chmyrev, V. M.; Namazov, C. A.; Pokhunkov, A. A.; Nesmeianov, V. I.

    1992-12-01

    Two rocket KOMBI-SAMA experiments with plasma injection at height 100-240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when COSMOS 1809 satellite passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during not less than 300 s by an electric plasma generator separated from the payload. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by a factor of 2 was registered on board the satellite. An enhancement of energetic particle flux by a factor of 4-5 was registered on board the rocket. Observed ELF emission below 100 Hz is interpreted as the generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.

  4. My Rewarding Summer Research Experience at NASA

    NASA Technical Reports Server (NTRS)

    Aviles, Andres

    2007-01-01

    My summer research experience at the Kennedy Space Center has been a truly rewarding one. As an electrical engineering student at the University of South Florida, I was blessed with a beneficial opportunity to gain valuable knowledge in my career, and also apply it through working at NASA. One of my inspirations in becoming an engineer is to work at NASA someday, and I was very excited and honored to have this opportunity. My goal in this internship was to strengthen my preparation in becoming an engineer by learning new material, acquiring skills by practicing what I learned, and discovering the expectations of engineering work at NASA. Through this summer research, I was able to learn new computer programs and perform various tasks that gave me experience and skills as an engineer. My primary job was to conduct work on the Constellation Test article, which is a simulation model of the Crew Launch Vehicle (CLV) tanking system. This is a prototype of a launch facility and an Ares I Vehicle, which God willing will transport astronauts to the moon. Construction of the CLV is in progress and a test launch is anticipated for 2010. Moreover, the Test Article serves as a demonstration too, training test bed, and may be expanded for new simulation of launch system elements, which could be applied to real life operations. The test article is operated and run by a Programmable Logic Controller (PLC), which is a digital computer that is used to control all forms of machinery such as those in manufacturing buildings and other industries. PLCs are different than other computers because of the physical protection they have against damaging environmental conditions that would destroy other computers. Also, PLCs are equipped with lots of input and output connections that allow extensive amounts of commands to be executed, which would normally require many computers to do. Therefore, PLCs are small, rugged, and extremely powerful tools that may continue to be employed at NASA

  5. Recent Results of MJ Plasma-Focus Experiment

    SciTech Connect

    Scholz, M.; Paduch, M.; Tomaszewski, K.; Stepniewski, W.; Bienkowska, B.; Ivanova-Stanik, I.; Karpinski, L.; Miklaszewski, R.; Sadowski, M.J.; Jakubowski, L.; Malinowska, A.; Malinowski, K.; Skladnik-Sadowska, E.; Szydlowski, A.; Kubes, P.; Kravarik, J.; Barvir, P.; Klir, D.; Tsarenko, A.V.; Schmidt, H.

    2006-01-05

    Plasma-Focus (PF) devices, which are based on high-voltage high-current pulse discharges, belong to the non-cylindrical Z-pinches. They produce high-temperature dense magnetized plasma and radiation pulses (of X-rays, electrons, ion beams and fusion protons). The paper reports on studies of intense soft (a few keV) X-ray emission, as performed with a four-frame X-ray camera, and their correlation with time-resolved measurements of current waveforms, neutrons, soft and hard X-rays. Possible mechanisms of the production of fusion neutrons (thermal and non-thermal) were also investigated on the basis of neutron pulses measured at different angels to the electrode outlet axis, and their comparison with time-resolved measurements of the soft and hard X-ray radiation.

  6. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1982-01-01

    Results of analyses of data received from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission are discussed in two papers prepared for publication. A study of plasma wave levels in and interplanetary magnetic field orientation preceding observations of interplanetary shocks by the satellite infers that quasi-parallel, interplanetary shocks are preceded by foreshocks whose presence is not obviously attributable to scattering of ion beams generated at quasi-perpendicular zones of these interplanetary shocks. Investigations of whistler mode turbulence in the disturbed solar wind resulted in various indirect lines of evidence indicating that these whistler waves are generated propagating at large angles to the local interplanetary field, a fact which helps identify possible free energy sources for their growth.

  7. Drift waves and chaos in a LAPTAG plasma physics experiment

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  8. Measurements of interactions between waves and energetic ions in basic plasma experiments

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Preiwisch, A.; Zhang, Y.; Zhao, L.; Zhou, S.; Bovet, A.; Fasoli, A.; Furno, I.; Gustafson, K.; Ricci, P.; Carter, T.; Leneman, D.; Tripathi, S. K. P.; Vincena, S.

    2012-12-01

    To measure the transport of fast ions by various types of waves, complementary experiments are conducted in linear and toroidal magnetic fields in the large plasma device and the toroidal plasma experiment. Lithium sources that are immersed in the plasma provide the energetic ions. Spatial scans of collectors measure the transport. Techniques to find the beam and optimize the spatial sensitivity are described. Measurements of Coulomb scattering, resonant interaction with Alfvén waves, and transport by drift-wave and interchange turbulence are summarized.

  9. Rayleigh-Taylor instability in dusty plasma experiment

    SciTech Connect

    Avinash, K.; Sen, A.

    2015-08-15

    The stability of a stratified dust cloud levitated in an anodic plasma is studied in the weakly and strongly coupled dust regimes. It is shown that the cloud is predominantly unstable to a Rayleigh-Taylor (RT) instability driven by a component of the ambient gravity in a direction opposite to the direction of dust density stratification in the cloud. The elasticity of the strongly coupled dust is shown to set a threshold for the RT instability, which is consistent with experimental observations.

  10. Rayleigh-Taylor instability in dusty plasma experiment

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Sen, A.

    2015-08-01

    The stability of a stratified dust cloud levitated in an anodic plasma is studied in the weakly and strongly coupled dust regimes. It is shown that the cloud is predominantly unstable to a Rayleigh-Taylor (RT) instability driven by a component of the ambient gravity in a direction opposite to the direction of dust density stratification in the cloud. The elasticity of the strongly coupled dust is shown to set a threshold for the RT instability, which is consistent with experimental observations.

  11. High Magnetic field generation for laser-plasma experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  12. Simulation of laser-driven, ablated plasma flows in collisionless shock experiments on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Kuranz, C. C.; Rutter, E. M.; Ross, J. S.; Kugland, N. L.; Plechaty, C.; Remington, B. A.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C. D.; Meinecke, J.; Reville, B.; Sakawa, Y.; Kuramitsu, Y.; Takabe, H.; Froula, D. H.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Liang, E.; Fu, W.; Woolsey, N.; Park, H.-S.

    2013-03-01

    Experiments investigating the physics of interpenetrating, collisionless, ablated plasma flows have become an important area of research in the high-energy-density field. In order to evaluate the feasibility of designing experiments that will generate a collisionless shock mediated by the Weibel instability on the National Ignition Facility (NIF) laser, computer simulations using the Center for Radiative Shock Hydrodynamics (CRASH) radiation-hydrodynamics model have been carried out. This paper reports assessment of whether the experiment can reach the required scale size while maintaining the low interflow collisionality necessary for the collisionless shock to form. Comparison of simulation results with data from Omega experiments shows the ability of the CRASH code to model these ablated systems. The combined results indicate that experiments on the NIF are capable of reaching the regimes necessary for the formation of a collisionless shock in a laboratory experiment.

  13. Uncovering Students' Preconceptions of Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Adedokun, Omolola A.; Burgess, Wilella D.

    2011-01-01

    Like all learners, undergraduate research interns bring to their research internships a variety of initial ideas, opinions, expectations, beliefs and attitudes about research internships. However, there is little published research on students' preconceptions about research internships and the relationships of these preconceptions to actual…

  14. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    SciTech Connect

    Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

    2009-03-23

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li{sup +} ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify

  15. Beams, brightness, and background: Using active spectroscopy techniques for precision measurements in fusion plasma research

    SciTech Connect

    Thomas, Dan M.

    2012-05-15

    The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.

  16. Teacher Experience: What Does the Research Say?

    ERIC Educational Resources Information Center

    TNTP, 2012

    2012-01-01

    Experience makes a difference--especially at the beginning of a teacher's career. On average, teachers with some experience are more effective than brand new teachers. Teachers improve the most early in their careers. One study found that "close to half of the teacher achievement returns to experience arise during the first few years of teaching."…

  17. Progress towards high performance plasmas in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kaye, S. M.; Bell, M. G.; Bell, R. E.; Bernabei, S; Bialek, J.; Biewer, T.; Blanchard, W.; Boedo, J.; Bush, C.; Carter, M. D.; Choe, W.; Crocker, N.; Darrow, D. S.; Davis, W.; Delgado-Aparicio, L.; Diem, S.; Ferron, J.; Field, A.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gibney, T.; Harvey, R.; Hatcher, R. E.; Heidbrink, W.; Hill, K.; Hosea, J. C.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kessel, C.; Kubota, S.; Kugel, H. W.; Lawson, J.; LeBlanc, B. P.; Lee, K. C.; Levinton, F.; Maingi, R.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastrovito, D.; Mau, T. K.; Medley, S. S.; Menard, J.; Meyer, H.; Mikkelsen, D. R.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S.; Peebles, T.; Peng, M.; Phillips, C.; Pigarov, A.; Pinsker, R.; Ram, A.; Ramakrishnan, S.; Raman, R.; Rasmussen, D.; Redi, M.; Rensink, M.; Rewoldt, G; Robinson, J.; Roney, P.; Roquemore, A. L.; Ruskov, E; Ryan, P.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B.; Stutman, D.; Swain, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Halle, A. von; Wade, M.; White, R.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Betti, R.; Bigelow, T.; Bitter, M.; Bonoli, P.; Bourdelle, C.; Chang, C. S.; Chrzanowski, J.; Domier, C.; Dudek, L.; Efthimion, P. C.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Greenough, N. L.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Hogan, J.; Houlberg, W.; Humphreys, D.; Jaeger, F.; Kalish, M.; Krasheninnikov, S.; Lao, L. L.; Lawrence, J.; Leuer, J.; Liu, D.; Luhmann, N. C.; Mazzucato, E.; Oliaro, G.; Pacella, D.; Parsells, R.; Schaffer, M.; Semenov, I.; Shaing, K. C.; Shapiro, M. A.; Shinohara, K.; Sichta, P.; Tang, X.; Vero, R.; Walker, D.; Wampler, W.

    2005-10-01

    The major objective of the National Spherical Torus Experiment (NSTX) is to understand basic toroidal confinement physics at low aspect ratio and high βT in order to advance the spherical torus (ST) concept. In order to do this, NSTX utilizes up to 7.5 MW of neutral beam injection, up to 6 MW of high harmonic fast waves (HHFWs), and it operates with plasma currents up to 1.5 MA and elongations of up to 2.6 at a toroidal field up to 0.45 T. New facility, and diagnostic and modeling capabilities developed over the past two years have enabled the NSTX research team to make significant progress towards establishing this physics basis for future ST devices. Improvements in plasma control have led to more routine operation at high elongation and high βT (up to ~40%) lasting for many energy confinement times. βT can be limited by either internal or external modes. The installation of an active error field (EF) correction coil pair has expanded the operating regime at low density and has allowed for initial resonant EF amplification experiments. The determination of the confinement and transport properties of NSTX plasmas has benefited greatly from the implementation of higher spatial resolution kinetic diagnostics. The parametric variation of confinement is similar to that at conventional aspect ratio but with values enhanced relative to those determined from conventional aspect ratio scalings and with a βT dependence. The transport is highly dependent on details of both the flow and magnetic shear. Core turbulence was measured for the first time in an ST through correlation reflectometry. Non-inductive start-up has been explored using PF-only and transient co-axial helicity injection techniques, resulting in up to 140 kA of toroidal current generated by the latter technique. Calculated bootstrap and beam-driven currents have sustained up to 60% of the flat-top plasma current in NBI discharges. Studies of HHFW absorption

  18. Construction of a solenoid used on a magnetized plasma experiment

    NASA Astrophysics Data System (ADS)

    Klein, S. R.; Manuel, M. J.-E.; Pollock, B. B.; Gillespie, R. S.; Deininger, M.; Kuranz, C. C.; Keiter, P. A.; Drake, R. P.

    2014-11-01

    Creating magnetized jets in the laboratory is relevant to studying young stellar objects, but generating these types of plasmas within the laboratory setting has proven to be challenging. Here, we present the construction of a solenoid designed to produce an axial magnetic field with strengths in the gap of up to 5 T. This novel design was a compact 75 mm × 63 mm × 88 mm, allowing it to be placed in the Titan target chamber. It was robust, surviving over 50 discharges producing fields ≲ 5 T, reaching a peak magnetic field of 12.5 T.

  19. Current halo structures in high-current plasma experiments: {theta}-pinch

    SciTech Connect

    Matveev, Yu. V.

    2007-03-15

    Experimental data elucidating mechanisms for halo formation in {theta}-pinch discharges are presented and discussed. The experiments were performed with different gases (H{sub 2}, D{sub 2}, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 {mu}s, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  20. [University, Research, Neurosciences: forty years of experience and experiments].

    PubMed

    Calas, André

    2009-01-01

    Closing this symposium, André Calas remembers his teachers, his past and present collaborators, his students, his teaching and research itineraries and enlarges on the problems of public policy concerning these areas in France.

  1. LHCD and ICRF heating experiments in H-mode plasmas on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Wan, B. N.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.; Collaboration: EAST Team

    2014-02-12

    An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report.

  2. A cesium TELEC experiment at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1979-01-01

    The thermoelectronic laser energy converter (TELEC), was studied as a method of converting a 10.6 mm CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter to provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma was produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt. The magnitudes of these electric outputs were smaller than anticipated but consistent with the power levels of the laser during this experiment.

  3. Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment

    NASA Astrophysics Data System (ADS)

    Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor

    2015-11-01

    Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.

  4. Theory and modelling of helium enrichment in plasma experiments with pump limiters

    SciTech Connect

    Prinja, A.K.; Conn, R.W.

    1984-01-01

    Helium enrichment in the exhaust gas stream flowing from a hydrogen-helium plasma is studied using an analytical theory and Monte Carlo simulations. To provide a sensitive experimental test in a tokamak, an unusual configuration, inverted from traditional designs, is proposed for a pump limiter. The principle can be tested in other plasma devices as well. The theory suggests that for typical plasma edge conditions in a confinement device, namely, n = 10/sup 13/cm/sup -3/ and T/sub i/ = T/sub e/ approx. = 5-30eV, helium enrichment in the neutral gas exhaust stream can be very high, in the range 5 to 7, relative to the helium-hydrogen ratio in the plasma. Such high enrichment factors are achieved by exploiting the difference between the ionization rates of hydrogen and helium and the negligible helium charge exchange rate at these plasma conditions. A limiter arrangement is proposed in which the natural curvature of the toroidal magnetic field is used to isolate, using the plasma itself, the point of plasma neutralization from the location of the gas exhaust. The plasma region then acts to preferentially screen the recycling hydrogen by the processes of ionization and of charge-exchange-induced losses at open boundaries. The theory and analysis suggests that an experiment can provide a sensitive test of modules used to describe the plasma edge and of atomic and surface physics data used in these models.

  5. D-alpha Probe Investigation on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Karama, Jackson; James, Royce; Sherman, Justin; Page, Eric; Schlank, Carter; Stutzman, Brook; Duke-Tenson, Omar; Coast Guard Academy Plasma Laboratory Team

    2013-10-01

    Now that reproducible plasmas have been created on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL) we are starting to set up a spectral probes to help verify plasma mode transitions to the W-mode. These optical probes will utilize movable filters, ccd cameras and diodes, to gather data at selected spectral frequency bands. Data collected will be used to investigate the plasma's structure and behavior during experiments. The spectral probes will take advantage of HPX's magnetic fields to define and measure the plasma's radiation temp as a function of time. A d-alpha filter will allow for the collection of neutral density fluctuations for different plasma behaviors. In d-alpha mode, the probe may also provide some information on the internal plasma structure and perhaps reveal some global plasma interactions. The spectral probe will add to HPX's data collection capabilities and be used in conjunction with the particle probes, and Thomson Scattering device to create a robust picture of the internal and external plasma parameters on HPX. Progress on the construction of the probe will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  6. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  7. Connecting Arctic/Antarctic Researchers and Educators (CARE): Supporting Teachers and Researchers Beyond the Research Experience

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Warnick, W. K.; Breen, K.; Fischer, K.; Wiggins, H.

    2007-12-01

    Teacher research experiences (TREs) require long-term sustained support for successful transfer of research experiences into the classroom. Specifically, a support mechanism that facilitates focused discussion and collaboration among teachers and researchers is critical to improve science content and pedagogical approaches in science education. Connecting Arctic/Antarctic Researchers and Educators (CARE) is a professional development network that utilizes online web meetings to support the integration of science research experiences into classroom curriculum. CARE brings together teachers and researchers to discuss field experiences, current science issues, content, technology resources, and pedagogy. CARE is a component of the Arctic Research Consortium of the U.S. (ARCUS) education program PolarTREC--Teachers and Researchers Exploring and Collaborating. PolarTREC is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. The CARE network was established to develop a sustainable learning community through which teachers and researchers will further their work to bring polar research into classrooms. Through CARE, small groups of educators are formed on the basis of grade-level and geographic region; each group also contains a teacher facilitator. Although CARE targets educators with previous polar research experiences, it is also open to those who have not participated in a TRE but who are interested in bringing real-world polar science to the classroom

  8. Review of D-T Experiments Relevant to Burning Plasma Issues

    SciTech Connect

    R.J. Hawryluk

    2001-12-21

    Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. The TFTR and JET, in conjunction with the worldwide fusion effort, have studied a broad range of topics including magnetohydrodynamic stability, transport, wave-particle interactions, the confinement of energetic particles, and plasma boundary interactions. The D-T experiments differ in three principal ways from previous experiments: isotope effects associated with the use of deuterium-tritium fuel, the presence of fusion-generated alpha particles, and technology issues associated with tritium handling and increased activation. The effect of deuterium-tritium fuel and the presence of alpha particles is reviewed and placed in the perspective of the much large r worldwide database using deuterium fuel and theoretical understanding. Both devices have contributed substantially to addressing the scientific and technical issues associated with burning plasmas. However, future burning plasma experiments will operate with larger ratios of alpha heating power to auxiliary power and will be able to access additional alpha-particle physics issues. The scientific opportunities for extending our understanding of burning plasmas beyond that provided by current experiments is described.

  9. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials

    NASA Astrophysics Data System (ADS)

    Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf

    2013-03-01

    Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather

  10. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  11. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    SciTech Connect

    Adams, Colin Stuart

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  12. Flow dynamics and magnetic induction in the von-Kármán plasma experiment

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Bousselin, G.; Palermo, F.; Morales, J.; Bos, W. J. T.; Godeferd, F.; Bourgoin, M.; Pinton, J.-F.; Moulin, M.; Aanesland, A.

    2015-01-01

    The von-Kármán plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (1016-1019 particles. m-3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through J × B azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the J × B azimuthal torque.

  13. Medical School Research Pipeline: Medical Student Research Experience in Psychiatry

    ERIC Educational Resources Information Center

    Balon, Richard; Heninger, George; Belitsky, Richard

    2006-01-01

    Objective: The authors discuss the importance of introducing research training in psychiatry and neurosciences to medical students. Methods: A review of existing models of research training in psychiatry with focus on those providing research training to medical students is presented. Results: Two research-training models for medical students that…

  14. Perioperative Research Fellowship: Planning, Implementation, Experience

    PubMed Central

    Memtsoudis, Stavros G; Mazumdar, Madhu; Stundner, Ottokar; Hargett, Mary J.

    2014-01-01

    Perioperative outcomes research has gained widespread interest and is viewed as increasingly important among different specialties, including anesthesiology. Outcome research studies serve to help in the adjustment of risk, allocation of resources, and formulation of hypotheses to guide future research. Pursuing high quality research projects requires familiarity with a wide range of research methodologies, and concepts are ideally learned in a dedicated setting. Skills associated with the use of these methodologies as well as with scientific publishing in general, however, are increasingly challenging to acquire. This article is intended to describe the curriculum and implementation of the Perioperative Medicine and Regional Anesthesia Research Fellowship at the Hospital for Special Surgery. We also propose a methodology to evaluate the success of a research fellowship curriculum. PMID:24942850

  15. Plasma potential control: initial results from tandem mirror experiment-upgrade

    SciTech Connect

    Hopper, E.B. Jr.

    1984-02-28

    Initial plasma potential control experiments used plates in the end fan, insulated from the end walls of TMX-U, which mapped along field lines to the plasma core (r/sub c/ less than or equal to 12.9 cm). Measurements in which these plates are shorted to ground during plugging demonstrate that floating the plates increases the buildup rate of the central cell plasma, steepens the core density profile, and affects the plasma throughout the entire cross section. Floating the plates decreases the ion radial transport rate in the core by a factor of at least 1.5. Because of these encouraging results, in the next series of experiments more plates will be added, extending to a larger radius (r/sub c/ less than or equal to 19.4 cm).

  16. Research and Development of Large Area Color AC Plasma Displays

    NASA Astrophysics Data System (ADS)

    Shinoda, Tsutae

    1998-10-01

    Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.

  17. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  18. Plasma waves produced by the xenon ion beam experiment on the Porcupine sounding rocket

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M.

    1982-01-01

    The production of electrostatic ion cyclotron waves by a perpendicular ion beam in the F-region ionosphere is described. The ion beam experiment was part of the Porcupine program and produced electrostatic hydrogen cyclotron waves just above harmonics of the hydrogen cyclotron frequency. The plasma process may be thought of as a magnetized background ionosphere through which an unmagnetized beam is flowing. The dispersion equation for this hypothesis is constructed and solved. Preliminary solutions agree well with the observed plasma waves.

  19. Solvent/detergent-treated plasma: a tale of 30 years of experience.

    PubMed

    Liumbruno, Giancarlo Maria; Marano, Giuseppe; Grazzini, Gioia; Capuzzo, Enrico; Franchini, Massimo

    2015-06-01

    Solvent/detergent-treated plasma was licensed >30 years ago. It has several specific characteristics, the most important being the standardized content of clotting factors, the lack of antibodies implicated in transfusion-related acute lung injury pathogenesis and the very high level of safety against transfusion-related viral infections. Since 1992, many clinical studies have confirmed its safety and efficacy in a wide range of congenital and acquired bleeding disorders. After a brief analysis of the pharmaceutical characteristics of solvent/detergent plasma, this review will focus on the clinical experience with this virus-inactivated plasma.

  20. Experimental observations and model calculations of impurity radiation in a plasma gun compact torus experiment

    SciTech Connect

    Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Turner, W.C.

    1982-08-10

    Several types of radiation measurements were performed on the Beta II compact forms experiment. Among these are time integrated spectra ranging in wavelength from the vuv to the uv, time resolved bolometer measurements of radiation from the x-ray to the infrared, and time and wavelength resolved measurements of certain spectral lines. It is difficult to relate any one of these measurements to plasma parameters of interest such as temperature, density, or impurity content. In this report we compare the results of these, and other measurements with two simple models of the power balance in the plasma in order to estimate the effect of carbon and oxygen impurities on plasma lifetime.

  1. National Spherical Torus Experiment (NSTX) and Planned Research

    SciTech Connect

    Kaye, S.; Neumeyer, C.; Ono, M.; Peng, M.

    1999-11-13

    The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX [1,2] is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated inboard solenoid magnet. These properties of the ST plasma, if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in Fig.1. The device is designed to study plasmas with major radius up to 85 cm, minor radius up to 68 cm, elongation up to 2, with flexibility in forming double-null, single-null, and inboard limited plasmas. The nominal operation calls for a toroidal field of 0.3 T for 5 s at the major radius, and a plasma current at 1 MA with q {approximately} 10 at edge. It features a compact center stack containing the inner legs of the toroidal field coils, a full size solenoid capable of delivering 0.6 Wb induction, inboard vacuum vessel, and composite carbon tiles. The center stack can be replaced without disturbing the main device, diagnostics, and auxiliary systems. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall conditioning techniques are also planned.

  2. Alumni Perceptions Used To Assess Undergraduate Research Experience.

    ERIC Educational Resources Information Center

    Bauer, Karen W.; Bennett, Joan S.

    2003-01-01

    On a survey of 986 alumni from a research-extensive university, respondents with undergraduate research experience, when compared to those with no research experience, reported greater enhancement of important cognitive and personal skills as well as higher satisfaction with their undergraduate education. They were also more likely to pursue…

  3. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    NASA Astrophysics Data System (ADS)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  4. Proposal for secondary enclosure setup for experiments to expose plasma facing materials to tritiated plasma in VISIONI

    SciTech Connect

    Broeckx, W.E.K.; Dylst, K.; Bornea, A.; Zamfirache, M.

    2015-03-15

    VISIONI is an equipment at SCK-CEN that allows the exposure of candidate plasma facing materials to tritium - deuterium plasmas at ITER first wall conditions. VISIONI itself, being a vacuum setup, acts as primary confinement. To protect operators against exposure to a tritiated atmosphere VISIONI must be placed in a secondary confinement. The current Tritium lab at SCK-CEN has a walk-in process cell which can be used to enclose the plasma chamber and diagnostics of the VISIONI setup, which have a limited tritium inventory. This allows easy accessibility to the setup in a well-ventilated environment. Routine operations should be conducted from outside the process cell and maintenance operations can be conducted from within the process cell with proper protections. The tritium storage and supply can be enclosed in a glove box with a dedicated air detritiation system which is activated during an experiment or in case of an incident. The detritiation system will oxidize tritium and capture it on molecular sieves. By using this confinement approach it is possible to expose materials to a tritiated plasma while maintaining good accessibility of the VISIONI setup. This paper describes the proposed confinement system and compares it to the most common approach where the entire system is enclosed into one large glovebox.

  5. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  6. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    SciTech Connect

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-03-20

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity.

  7. Partnering the University Field Experience Research Model with Action Research.

    ERIC Educational Resources Information Center

    Schnorr, Donna; Painter, Diane D.

    This paper presents a collaborative action research partnership model that involved participation by graduate school of education preservice students, school and university teachers, and administrators. An elementary teacher-research group investigated what would happen when fourth graders worked in teams to research and produce a multimedia…

  8. Present Status and Future Prospects of Laser Fusion and Related High Energy Density Plasma Research

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2004-12-01

    The present status and future prospects of the laser fusion research and related laser plasma physics are reviewed. In laser fusion research, giant lasers for ignition and burn by imploding DT fuel pellets are under construction at LLNL (Lawrence Livermore National Laboratory) and CEA, France. In Japan , the Gekko XII and the Peta Watt laser system have been operated to investigate the implosion hydrodynamics, fast ignition, and the relativistic laser plasma interactions and a new project; FIREX( Fast Ignition Realization Experiment) had started toward the ignition and burn at the Institute of laser Engineering of Osaka University. Recently, heating experiments with cone shell target have been carried out. The thermal neutron yield is found to increase by three orders of magnitude by the peta watt laser injection to the cone shell target. The FIREX-I is planned according to this experimental results, where multi 10kJ peta watt laser is used to heat compressed DT fuel to the ignition temperature. The FIREX-II will follow for demonstrating ignition and burn, in which the implosion laser and heating laser are up-graded.

  9. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    NASA Astrophysics Data System (ADS)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  10. Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments

    SciTech Connect

    N.N. Gorelenkov; H.L. Berk; R. Budny; C.Z. Cheng; G.-Y. Fu; W.W. Heidbrink; G. Kramer; D. Meade; and R. Nazikian

    2002-07-02

    A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong

  11. The AMY experiment: Microwave emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Blanco, M.; Boháčová, M.; Buonomo, B.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Facal San Luis, P.; Foggetta, L.; Gaïor, R.; Garcia-Fernandez, D.; Iarlori, M.; Le Coz, S.; Letessier-Selvon, A.; Louedec, K.; Maris, I. C.; Martello, D.; Mazzitelli, G.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Valente, P.; Vazquez, J. R.; Verzi, V.; Williams, C.

    2016-07-01

    You The Air Microwave Yield (AMY) experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  12. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  13. Laser-plasma interaction in the context of inertial fusion: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.

    2007-08-01

    Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.

  14. Artificial plasma experiments. Chemical release observations associated with the CRRES program

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.

    1994-01-01

    This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques.

  15. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Nakamura, K.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Panasenko, D.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Lin, C.

    2009-01-22

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 {mu}m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 {mu}m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  16. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Advanced Light Source; Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2008-09-29

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filledcapillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  17. Rotating plasma disks in dense Z-pinch experiments

    SciTech Connect

    Bennett, M. J. E-mail: s.lebedev@imperial.ac.uk; Lebedev, S. V. E-mail: s.lebedev@imperial.ac.uk; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Hall, G. N.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2014-12-15

    We present data from the first z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates at 60 kms{sup −1} for 150 ns. By analysing the Thomson scattered spectrum we make estimates for the ion and electron temperatures as T{sub i} ∼ 60 eV and ZT{sub e} ∼ 150 to 200 eV.

  18. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    SciTech Connect

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  19. Reinvigorating the Undergraduate Experience with a Research-Supportive Curriculum

    NASA Astrophysics Data System (ADS)

    Karukstis, Kerry K.

    2004-07-01

    The programs, publications, meetings, and services of the Council on Undergraduate Research (CUR) are expressly designed to share successful models and strategies for establishing and institutionalizing undergraduate research programs. A research-supportive curriculum that provides undergraduates with a learning experience rooted in the process of discovery is a critical factor in establishing a strong research culture on campus. The newest publication of CUR, Reinvigorating the Undergraduate Experience: Successful Models Supported by NSF's AIRE/RAIRE Program , is a collection of case studies highlighting twenty institutions that have successfully transformed the undergraduate experience through an integration of research and education.

  20. Researching Graduates' Lived Experiences of Vocational Learning

    ERIC Educational Resources Information Center

    Leach, Tony

    2012-01-01

    The aim of this article is to exemplify the value of using a phenomenological approach when investigating graduates' lived experiences of vocational learning. For this study, qualitative data was obtained during a series of email interviews with 35 participants. As a group they are highly aspirational and, during their graduate studies, were…

  1. Preservice Teachers' Research Experiences in Scientists' Laboratories

    ERIC Educational Resources Information Center

    Brown, Sherri; Melear, Claudia

    2007-01-01

    To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended,…

  2. Replication concepts for bioenergy research experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While there are some large and fundamental differences among disciplines related to the conversion of biomass to bioenergy, all scientific endeavors involve the use of biological feedstocks. As such, nearly every scientific experiment conducted in this area, regardless of the specific discipline, is...

  3. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  4. Gas Research Institute experience in solar fuel research

    NASA Astrophysics Data System (ADS)

    Krist, Kevin

    Between 1981-1989, the Gas Research Institute (GRI) conducted a fundamental research program aimed at low-cost conversion of inorganic materials to gaseous fuels, using solar energy. Although the program focussed on photochemical approaches, thermochemical pathways were also evaluated. General conclusions are presented in the following areas: photochemical fuel synthesis, thermochemical fuel synthesis, photochemical processes, thermal processes, and collector systems.

  5. Plasma stabilization experiment. Final report, 1 October 1979-30 April 1980

    SciTech Connect

    Sziklas, E. A.; Fader, W. J.; Jong, R. A.; Stufflebeam, J. H.

    1980-07-01

    The Plasma Stabilization Experiment is an effort to enhance stability in a mirror-confined plasma by trapping cold ions with rf fields applied near the mirror throats. Nagoya Type III antennas, coupled to a 60 kW rf power supply are mounted in the throats of the UTRC baseball magnet. An external washer gun provides a source of plasma for both streaming and confined plasma tests. Results show a strong stoppering effect on streaming plasmas and a marginal effect on confined plasmas. Theoretical calculations provide an explanation for the experimental observations. The field generates a ponderomotive force acting on the electrons. The resultant improvement in electron confinement changes the ambipolar potential and inhibits the flow of ions through the mirror throat. Criteria are derived for the validity of this trapping concept. The requisite field strengths are significantly lower than those required to trap ions directly. Scaling laws are developed for application of cold ion trapping to large mirror devices containing dense plasmas. The use of slow-wave antenna structures operated at frequencies above the lower hybrid frequency is recommended for these applications.

  6. Updates on the Optical Emission Spectroscopy and Thomson Scattering Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Duke-Tinson, Omar; Karama, Jackson; Azzari, Phillip; Royce, James; Page, Eric; Schlank, Carter; Sherman, Justin; Stutzman, Brooke; Zuniga, Jonathan

    2014-10-01

    HPX at the Coast Guard Academy Plasma Laboratory (CGAPL) have set up spectral probes to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Raw data collected will be used to measure the plasma's relative density, temperature, structure, and behavior during experiments. Direct measurements of the plasma's properties can be determined through modeling and by comparison with the state transition tables, using Optical Emission Spectroscopy (OES). The spectral probes will take advantage of HPX's magnetic field structure to define and measure the plasma's radiation temp as a function of time and space. In addition, the Thomson Scattering (TS) device will measure internal temperature and density data as the HPX plasma transitions through capacitive and inductive modes while developing into helicon plasma. Currently CGAPL is focused on building its laser beam transport and scattered light collection optical systems. Recently, HPX has acquired an Andor ICCD spectrometer for the spectral analysis. Data collected by the TS system will be logged in real time by CGAPL's Data Acquisition (DAQ) system with LabView remote access. Further progress on HPX will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  7. VUV spectroscopy of armor erosion from plasma gun disruption simulation experiments

    SciTech Connect

    Rockett, P.D.; Hunter, J.A.

    1994-12-31

    Extensive simulations of Tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. The authors have designed and utilized two transmission grating vacuum ultraviolet (VUV) spectrographs to study the plasma-material interface in plasma gun simulation experiments. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of {approximately}0.7 mm resolution on VIKA at Efremov and on 2MK-200 at Troitsk. Time-resolved data with 40-200 ns resolution was then recorded along with the same spatial resolution on 2MK-200. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface. This apparently constituted the absorption region, which confirmed past computer simulations. Spectra indicated both the species and ionization level that were being ablated from the target, demonstrating impurity content, and showing plasma ablation velocity. Graphite samples clearly showed C V lines as well as impurity lines from O V and O VI. The BN tiles produced textbook examples of B IV and B V, and extensive N IV, V, and VI lines. These are being compared to radiation-hydrodynamic calculations.

  8. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  9. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found

  10. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of

  11. Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments

    SciTech Connect

    Ragozin, Eugene N.; Pirozhkov, Alexander S.; Yogo, Akifumi; Ma Jinglong; Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; Mori, Michiaki; Li, Zhong; Nishiuchi, Mamiko; Daido, Hiroyuki

    2006-12-15

    Proton acceleration experiments involving a 5 {mu}m thick Ti foil target irradiation are carried out with the femtosecond Ti:sapphire laser JLITE-X. The plasma emission at 13.5 nm is recorded employing concave multilayer mirrors, which image the front- and rear-side plasmas onto the sensitive surfaces of a fast x-ray photodiode and a backside-illuminated charge coupled device. Online time-of-flight fast-particle measurements are performed simultaneously with the extreme ultraviolet (XUV) measurements. A strong correlation is observed between the energetic proton signal and the spatiotemporal behavior of the XUV plasma emission. In particular, the longer duration of the prepulse-produced XUV plasma emission indicates a lowering of the maximum proton energy. This allows using the XUV emission for the diagnostics of the high-intensity laser-solid-target interaction.

  12. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  13. Exploration of spontaneous vortex formation and intermittent behavior in ECR plasmas: The HYPER-I experiments

    NASA Astrophysics Data System (ADS)

    Yoshimura, S.; Terasaka, K.; Tanaka, E.; Aramaki, M.; Okamoto, A.; Nagaoka, K.; Tanaka, M. Y.

    2015-04-01

    HYPER-I (High Density Plasma Experiment-I) is a linear device that combines a wide operation range of plasma production with flexible diagnostics. The plasmas are produced by the electron cyclotron resonance (ECR) heating with parallel injection of right-handed circularly polarized microwaves of 2.45 GHz from the high-field side. The maximum attainable electron density is more than two orders of magnitude higher than the cutoff density of ordinary waves. Spontaneous formation of a variety of large-scale flow structures, or vortices, has been observed in the HYPER-I plasmas. Flow-velocity field measurements using directional Langmuir probes (DLPs) and laser-induced fluorescence (LIF) method have clarified the physical processes behind such vortex formations. Recently, a new intermittent behavior of local electron temperature has also been observed. Statistical analysis of the floating potential changes has revealed that the phenomenon is characterized by a stationary Poisson process.

  14. Preliminary Results from the Flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.

  15. Active experiments in geospace plasmas with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, James

    2016-07-01

    The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.

  16. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  17. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  18. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently. PMID:26172803

  19. High-energy 4{omega} probe laser for laser-plasma experiments at nova

    SciTech Connect

    Glenzer, S. H., LLNL

    1998-06-02

    For the characterization of inertial confinement fusion plasmas we implemented a high-energy 4{omega} probe laser at the Nova laser facility. A total energy of > 50 Joules at 4{omega}, a focal spot size of order 100 {micro}m, and a pointing accuracy of 100 {micro}m was demonstrated for target shots. This laser provides intensities of up to 3 x 10{sup 14}W cm{sup -2} and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4{omega} probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n{sub e} > 2 X 10{sup 21}cm{sup -3} which represents the highest density plasma so far being diagnosed with Thomson scattering.

  20. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  1. Failed Rocket Payload Included Research Experiments

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-11-01

    About an hour and a half before the launch of the Orbital Sciences Corporation's Antares rocket and Cygnus cargo spacecraft at 6:22 p.m. on 28 October, Jeff Goldstein arrived at his vantage point on Arbuckle Neck Road in Assawoman, Va. It was just 1.5 miles from launchpad 0A at NASA's Wallops Flight Facility. Goldstein, director of the National Center for Earth and Space Science Education (NCESSE) had come with about 35 elementary school through college students, as well as some parents, teachers, and school administrators, to watch the liftoff that would deliver the students' microgravity experiments to the International Space Station (ISS).

  2. Linguistic analysis of project ownership for undergraduate research experiences.

    PubMed

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership.

  3. Evolution of plasma loops in a semi-toroidal pinch experiment

    SciTech Connect

    Mackel, F. Ridder, S.; Tenfelde, J.; Tacke, T.; Soltwisch, H.

    2015-04-15

    The FlareLab experiment is a pulsed-power discharge generating magnetized plasma loops similar to a pinch experiment in a semi-toroidal configuration. After gas breakdown along a circular magnetic guide field, the structure expands in its major radius as the plasma becomes highly conductive and the discharge current rises. Photographs, current and electron density measurements reveal a significant broadening in the lateral direction leading to an increasing departure from radial symmetry of plasma parameters in the cross section. It is shown that the luminosity is related to both high electron density and high current density. Simultaneous measurements of current density and electric field reveal a high parallel resistivity of the plasma leading to fast diffusion across the magnetic field. Indications for anomalous resistivity are found by comparison with the Spitzer formula. As the experiment differs from a z-pinch experiment only by the semi-circular shape of the current path, the observed evolution is unexpected and might be of more fundamental significance.

  4. Experiments in diamond film fabrication in table-top plasma apparatus

    NASA Technical Reports Server (NTRS)

    Masi, James V.

    1994-01-01

    The objectives of this experiment are to illustrate the process of plasma assisted chemical vapor deposition and to show devices which can be made simply in the laboratory. These devices illustrate clearly the concepts of bandgap, junctions, and photoelectronic processes. Films and devices are measured electrically, optically, and thermally.

  5. Numerical modeling of Large Plasma Device Alfvén wave experiments using AstroGK

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin D.; Howes, Gregory G.; Tatsuno, Tomoya; Numata, Ryusuke; Dorland, William

    2010-02-01

    Collisions between counterpropagating Alfvén waves represent the fundamental building block of plasma turbulence, a phenomenon of great importance to a wide variety of fields, from space physics and astrophysics to controlled magnetic fusion. Proposed experiments to study Alfvén wave collisions on the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles, will benefit significantly from numerical modeling capable of reproducing not only the linear dispersive effects of kinetic and inertial Alfvén waves, but also the nonlinear evolution of the Alfvénic turbulence. This paper presents a comparison of linear simulation results using the astrophysical gyrokinetics code, AstroGK, to the measured linear properties of kinetic and inertial Alfvén waves in the LAPD plasma. Results demonstrate that: (1) finite frequency effects due to the ion cyclotron resonance do not prevent satisfactory modeling of the LAPD plasma using gyrokinetic theory; and (2) an advanced collision operator, recently implemented in AstroGK, enables the code to successfully reproduce the collisionally enhanced damping rates of linear waves measured in recent LAPD experiments. These tests justify the use of AstroGK in the modeling of LAPD Alfvén wave experiments and suggest that AstroGK will be a valuable tool in modeling the nonlinear evolution of proposed Alfvén wave collision experiments.

  6. An 1.2 MJ Capacitor Bank 'RUDRA' for MTF and Plasma Focus Experiments

    SciTech Connect

    Verma, Rishi; Shyam, A.; Chaturvedi, S.; Kumar, R.; Lathi, D.; Chaudhary, V.; Shukla, R.; Debnath, K.; Sharma, S.; Sonara, J.; Shah, K.; Adhikary, B.; Bhavsar, T.; Mehida, R.; Mehta, C.

    2006-01-05

    Pinch experiments like Magnetized Target Fusion (MTF) and Dense Plasma Focus require for their operation fast rising high power and high energy pulses. To perform such experiments, an 1.2MJ Capacitor Bank capable of delivering 3.6MA of peak current with 5 to 7{mu}s rise time has been designed and commissioned. The major application of bank is focused on fast discharge applications where large peak currents are required.

  7. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  8. Taking Research Experiences for Undergraduates Online

    NASA Astrophysics Data System (ADS)

    Hubenthal, Michael; Judge, Jasmeet

    2013-04-01

    To today's budding scientists, the notion of sharing experiences and working collaboratively with distant peers is not a novelty. Instead, this is what most young scientists expect to achieve through the Internet portals they carry in their pockets and backpacks. They have never known a world without information and communication technologies (ICT) such as laptops, mobile phones, text messaging, and the Internet. As a result, they have grown to rely on uninterrupted access to the Internet for a range of information-gathering and communication activities. Further, this generation of students has fully embraced structured online learning opportunities. For example, in 2011 more than 6.7 million U.S. students in higher education took at least one online course [Allen and Seaman, 2013].

  9. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  10. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1985-01-01

    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  11. Deuterium flux measurements in the edge plasmas of PLT and PDX during auxiliary heating experiments

    SciTech Connect

    Wampler, W.R.; Cohen, S.A.; Dylla, H.F.; Manos, D.M.; Magee, C.W.

    1981-01-01

    The flux of deuterium in the plasma edge several centimeters outside the limiter has been measured using collector probes during neutral beam heating experiments on the PDX tokamak and RF heating experiments on the PLT tokamak. The dependence of the flux on the distance from the plasma was determined, and the time dependence of the flux was measured with a time resolution of 90 ms. In PDX the deuterium flux decreased rapidly with increasing distance from the plasma. The deuterium flux increased strongly when the beams came on and decreased when they turned off. The depth distribution of the deuterium in the samples, measured using SIMS, shows that when the beams are on about 30% of the deuterium incident on the probe is superthermal deuterium from the beams. In PLT the deuterium flux decreased only slightly with increasing distance from the plasma. The ICRH heating in PLT caused an increase of about 30% in the flux of deuterium to the samples and in the plasma density. In both machines the deuterium fluxes were fairly low (less than or equal to 10/sup 16/D/cm/sup 2/s) at the positions sampled.

  12. Deuterium flux measurements in the edge plasmas of PLT and PDX during auxiliary heating experiments

    SciTech Connect

    Wampler, W.R.; Cohen, S.A.; Dylla, H.F.; Manos, D.M.; Magee, C.W.

    1982-04-01

    The flux of deuterium in the plasma edge several centimeters outside the limiter has been measured using collector probes during neutral beam heating experiments on the PDX tokamak and rf heating experiments on the PLT tokamak. The dependence of the flux on the distance from the plasma was determined, and the time dependence of the flux was measured with a time resolution of 90 ms. In PDX the deuterium flux decreases rapidly with increasing distance from the plasma. The deuterium flux increased strongly when the beams came on and decreased when they turned off. The depth distribution of the deuterium in the samples, measured using SIMS, shows that when the beams are on, about 30% of the deuterium incident on the probe is superthermal deuterium from the beams. In PLT the deuterium flux decreased only slightly with increasing distance from the plasma. The ICRH heating in PLT caused an increase of about 30% in the flux of deuterium to the samples and in the plasma density. In both machines the deuterium fluxes were fairly low (< or approx. =10/sup 16/ D/cm/sup 2/s) at the positions sampled.

  13. Updates on Optical Emission Spectroscopy & Langmuir Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Karama, Jackson; Frank, John; Azzari, Phillip; Hopson, Jordan; James, Royce; Duke-Tinson, Omar; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Eva; Turk, Jeremy

    2015-11-01

    HPX is developing a to shorter lifetime (20 - 30 ns) more reproducible plasma at the Coast Guard Academy Plasma Laboratory (CGAPL). Once achieved, spectral and particle probes will help to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Once corrections for the RF field are in place for the Langmuir probe, raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Direct measurements of plasma properties can be determined with modeling and by comparison with the state transition tables, both using Optical Emission Spectroscopy (OES). The spectral will add to HPX's data collection capabilities and be used in conjunction with the particle probes, and Thomson Scattering device to create a robust picture of the internal and external plasma parameters on HPX. Progress on the implementation of the OES and Langmuir probes will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  14. Analysis of Data From Z-Pinch MTF Target-Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Taccetti, J. M.; Wysocki, F. J.; Benage, J. F.; Idzorek, G.; Oona, H.; Kirkpatrick, R. C.; Lindemuth, I. R.; Sheehey, P. T.

    1999-11-01

    Magnetized Target Fusion (MTF) target-plasma experiments have been performed at Los Alamos National Laboratory Colt facility for roughly three years(F. J. Wysocki et al., Digest of Technical Papers for the 11th IEEE International Pulsed Power Conference, Baltimore, Maryland, June 29 to July 2, 1997, G. Cooperstein and I. Vitkovitsky editors, p. 1393.). The capacitor bank has a max output voltage of 120 kV, max energy store of 0.25 MJ, and can deliver at least 2 MA of current to a load in 2.5 μs. The MTF target plasma is generated by driving a z-directed current through a plasma which is contained by a 2 cm radius by 2 cm high cylindrical metal wall. The initial mass for the target plasma comes from either a static uniform fill of hydrogen or deuterium gas, or from a polyethylene fiber mounted along the central axis. The diagnostic set includes an array of 12 B-dot probes, optical framing camera, gated OMA visible spectrometer, time-resolved monochrometer, filtered silicon photodiodes, neutron yield, and a laser interferometer. Measurements of the plasma temperature and impurity content obtained to date with a transmission grating spectrometer will also be presented. The data obtained allows an assessment of the plasma temperature, density, magnetization, and decay time.

  15. Research Administrator Salary: Association with Education, Experience, Credentials and Gender

    ERIC Educational Resources Information Center

    Shambrook, Jennifer; Roberts, Thomas J.; Triscari, Robert

    2011-01-01

    The 2010 Research Administrators Stress Perception Survey (2010 RASPerS) collected data from 1,131 research administrators on salary, years experience, educational level, Certified Research Administrator (CRA) status, and gender. Using these data, comparisons were made to show how salary levels are associated with each of these variables. Using…

  16. Does Early Research Experience Affect Subsequent Career Choice?

    ERIC Educational Resources Information Center

    Pechmann, Connie A.; Pichert, James W.

    The Vanderbilt Summer Research Program in diabetes, which was designed to interest medical students in research careers and diabetes care, was evaluated. The program provides stipends to 20 sophomore and junior medical students for 12 weeks of preceptor-supervised laboratory research work, clinical experience, and classroom instruction. The…

  17. Reinvigorating the Undergraduate Experience with a Research-Supportive Curriculum

    ERIC Educational Resources Information Center

    Karukstis, Kerry K

    2004-01-01

    Educators recognize that undergraduate research programs flourish on campuses that provide a strong curricular structure to support research. Reinvigorating the undergraduate experience: successful models supported by NSF's AIRE/RAIRE program, the publication of Council on Undergraduate Research (CUR) is expressly designed to share successful…

  18. Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment

    SciTech Connect

    Kessel, C.E.; Bell, R.E.; Bell, M.G.; Gates, D.A.; Harvey, R.W.

    2006-01-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  19. Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space Clouds (MOSC) Experiment

    NASA Astrophysics Data System (ADS)

    Pedersen, T.; Caton, R. G.; Miller, D.; Holmes, J. M.; Groves, K. M.

    2015-12-01

    The Metal Oxide Space Clouds (MOSC) chemical release experiments employed the ALTAIR radar as a primary measurement of plasma density in the clouds. However, the radar provides only the local plasma density along the beam line of sight, and the measurements are of limited value without context to determine the location of the radar beam relative to the larger plasma cloud. We have constructed an empirical model of the cloud locations, shapes, and sizes as a function of time for both MOSC launches using fits to all-sky images recorded from near the launch site. When combined with ALTAIR radar measurements of local plasma density at the sampled point and ionosonde measurements of the peak plasma density, a robust 4-D representation of the plasma density can be derived and used to estimate ionization yields and to study impacts on the background ionosphere and RF propagation. Optical image data was fit to a 2-D Gaussian model to derive peak intensity, background, rotation of the cloud in the horizontal plane, and half-widths in the N-S and E-W directions. The optical images show a closely linear increase in half-width after the first minute or two. Very good agreement between the model and radar integrated total electron content (TEC) measurements are obtained with a simple exponential envelope to the peak TEC within the cloud, indicating that the optical distribution closely tracks the plasma density. Comparison of TEC with peak plasma density and the observed spatial dimensions of the cloud are used to estimate the rate of change in total electron number during the period of observation and to compare with predictions of prior theoretical and numerical models.

  20. ECH Plasma Experiments on an Internal Coil Device with a High Temperature Superconductor Coil

    SciTech Connect

    Ogawa, Yuichi; Morikawa, Junji; Ohkuni, Kotaro; Yamakoshi, Shigeo; Goto, Takuya; Mito, Toshiyuki; Yanagi, Nagato; Iwakuma, Masataka

    2005-01-15

    Self-organization related with relaxation phenomenon is playing an important role in various aspects of magnetic confined plasmas. Recently a relaxation theory including the plasma flow has been developed by Mahajan-Yoshida, and a new relaxation state has been identified. The two-fluid relaxation condition is given by {beta} + (V/V{sub A}){sup 2} = const. To study a self-organized structure with strong plasma flow, we have introduced an internal coil device. By inducing a radial electric field with appropriate methods, we could drive a toroidal plasma flow, and confine a high beta plasma in a core region. The internal coil device Mini-RT with a high temperature superconductor(HTS) coil(Rc=0.15m, Ic=50kA) has been constructed. The vacuum chamber is 1 m in diameter and {approx}0.7 m in height. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. We have started ECH plasma experiments with the coil supported mechanically. The electron density, which has a peak near the internal coil, is of order 10{sup 16} m{sup -3}, reaching the cut-off density of the microwave. While, the electron temperature is of order 10 eV with a broad profile. Estimated energy confinement time is of order 10{sup -(5-6)} sec. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured with laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded to levitating the HTS coil during one hour with an accuracy of less than 20 {omega}m. A preliminary experiment for the plasma production at the floating condition of the HTS coil has been initiated. It is affirmed that the levitation system works well and plasma with separatrix configuration is produced.

  1. Photon Physics and Plasma Research, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].

  2. Cold pulse experiments in plasma with an electron internal transport barrier on LHD

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; LHD Experimental Group

    2004-05-01

    Transient transport experiments are performed in LHD plasma with electron internal transport barrier (e-ITB). Evidence for a reduction of electron heat diffusivity inside the ITB is observed from cold and heat pulse propagations. The observed enhancement of the cold pulse peak is explained by the temperature dependent electron heat diffusivity. The heat diffusivity inside the ITB decreases with an increase in the electron temperature in LHD. A preliminary version of this study was presented in the 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreux, Switzerland, 17 21 June 2002) [1].

  3. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    SciTech Connect

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  4. A two-color terawatt laser system for high-intensity laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Sanders, James; Zgadzaj, Rafal; Downer, Michael

    2012-10-01

    In some high-field laser-plasma experiments, it is advantageous to accompany the main high-energy (˜1 J) laser with a second high-energy pulse (˜0.1 J) which has been frequency-shifted by ˜10%. Such a pulse-pair would have a low walk-off velocity while remaining spectrally distinct for use in two-color pump-probe experiments. Moreover, by shifting the second pulse by ˜plasma frequency, it is theoretically possible to enhance or suppress relativistic self-focusing, which is the first (uncontrolled) step in many laser-plasma experiments. We report a hybrid chirped pulse Raman amplifier (CPRA)/Ti-Sapphire amplifier (>200 mJ, 15-20 nm bandwidth (FWHM), >60 fs duration) that is capable of performing such two-color high-field experiments. When amplified and compressed, this beam's power exceeds 1 TW. This two-color capability can be added to any commercial terawatt laser system without compromising the energy, duration or beam quality of the main system. We will report progress with a two-color seeded relativistic self-phase modulation experiment.

  5. Plasma theory and simulation research. Final technical report, January 1, 1986--October 31, 1989

    SciTech Connect

    Birdsall, C.K.

    1989-12-31

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the ``sheath``), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  6. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  7. On the Observation of Jitter Radiation in Solid-Density Laser-Plasma Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Medvedev, Mikhail

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., ``sub-Larmor scales''. Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence, known as jitter radiation, has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, jitter radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  8. The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation

    SciTech Connect

    Rapson, Christopher; Grulke, Olaf; Matyash, Konstantin; Klinger, Thomas

    2014-05-15

    The ion acoustic beam-plasma instability is known to excite strong solitary waves near the Earth's bow shock. Using a double plasma experiment, tightly coupled with a 1-dimensional particle-in-cell simulation, the results presented here show that this instability is critically sensitive to the experimental conditions. Boundary effects, which do not have any counterpart in space or in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these instabilities lead to an increase of the beam temperature which reduces the growth rate such that non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the increased temperature modifies the range of beam velocities for which an ion acoustic beam plasma instability is observed.

  9. Ignition of beam plasma discharge in the electron beam experiment in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  10. Research relative to plasma transport across the magnetopause

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1984-01-01

    The concept of how magnetosheath plasma can cross the magnetopause is one of the key elements for a global view of the magnetosphere. According to this view, viscous interaction is the main process to produce convection of plasma in the magnetotail, resulting in auroral phenomena, and other related processes. The mechanism is illustrated herein. The key element is that the electric field is not constant, as assumed in reconnection theories, but reverse within the magnetopause current sheet. Particles, representing magnetosheath ions were traced as they impinge upon the magnetopause.

  11. Three-dimension reconstruction research of plasma during laser welding

    NASA Astrophysics Data System (ADS)

    Liu, Jinhe; Lei, Danggang; Ma, Licai; Zhang, Fusheng

    2005-01-01

    In this study, the method of three-dimension reconstruction of laser welding plasma on the basis of three-dimension synchrony high-speed photo is proposed. The method of anti-RADON transformation is used to finish three-dimension reconstruction. The anti-RADON transformation utilizes the projected data to reconstruct the initial image, which bases on the projection of the parallel beam. It is found that there are the cavitations on most section images and the area of cavitations is ever-changing. The space shape of plasma represents irregularity on the different surface.

  12. Student Experience of Final-Year Undergraduate Research Projects: An Exploration of "Research Preparedness"

    ERIC Educational Resources Information Center

    Shaw, Kylie; Holbrook, Allyson; Bourke, Sid

    2013-01-01

    During this past decade the level of interest in building research capacity has intensified in Australia and internationally, with a particular emphasis on the development of postgraduate research students, but also extending to undergraduate research experience. This study investigated the student experience across a diverse range of fourth-year…

  13. Academics' Perceptions of the Purpose of Undergraduate Research Experiences in a Research-Intensive Degree

    ERIC Educational Resources Information Center

    Wilson, Anna; Howitt, Susan; Wilson, Kate; Roberts, Pam

    2012-01-01

    The inclusion of research experiences as core components of undergraduate curricula implies that students will be exposed to and situated within the research activities of their university. Such experiences thus provide a new prism through which to view the relations between teaching, research and learning. The intentions and actions of academics…

  14. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    SciTech Connect

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

  15. Design, development, and results from a charge-collector diagnostic for a toroidal electron plasma experiment.

    PubMed

    Pahari, Sambaran; Lachhvani, Lavkesh; Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P K

    2015-08-01

    A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset "hold" time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the "non-neutrality" of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.

  16. Design, development, and results from a charge-collector diagnostic for a toroidal electron plasma experiment

    SciTech Connect

    Pahari, Sambaran; Lachhvani, Lavkesh Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P. K.

    2015-08-15

    A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset “hold” time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the “non-neutrality” of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.

  17. The Charged Aerosol Release Experiment (Care II) to Study Artificial Dusty Plasmas in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Gatling, G.; Briczinski, S. J., Jr.; Vierinen, J.; Bhatt, A.; Holzworth, R. H., II; McCarthy, M.; Gustavsson, B.; La Hoz, C.; Latteck, R.

    2015-12-01

    A sounding rocket launched from Andoya, Norway in September 2015 carried 37 rocket motors and a multi-instrument daughter payload into the ionosphere to study the generation of plasma wave electric fields and ionospheric density disturbances by the high-speed injection of dust particles. The primary purpose of the CARE II mission is to validate the dress-particle theory of enhanced incoherent scatter from a dusty plasma and to validate models of plasma instabilities driven by high-speed charged particles. The CARE II chemical payload produces 66 kg of micron-sized dust particles composed of aluminium oxide. In addition to the dust, simple molecular combustion products such as N2, H2, CO2, CO, H20 and NO will be injected into the bottomside of the F-layer. Charging of the dust and ion charge exchange with the molecules yields plasma particles moving at hypersonic velocities. Streaming instabilities and shear electric fields causes plasma turbulence that can be detected using ground radars and in situ plasma instruments. The instrument payload was separated from the chemical release payload soon after launch to measure electric field vectors, electron and ion densities, and integrated electron densities from the rocket to the ground. The chemical release of high speed dust was directed upward on the downleg of the rocket trajectory to intersect the F-Layer. The instrument section was about 600 meters from the dust injection module at the release time. Ground HF and UHF radars were operated to detected scatter and refraction by the modified ionosphere. Optical instruments from airborne and ground observatories were used to map the dispersal of the dust using scattered sunlight. The plasma interactions are being simulated with both fluid and particle-in-cell (PIC) codes. CARE II is a follow-on to the CARE I rocket experiment conducted from Wallops Island Virginia in September 2009.

  18. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    SciTech Connect

    .R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team

    2010-09-24

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________

  19. A Community Mentoring Model for STEM Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Kobulnicky, Henry A.; Dale, Daniel A.

    2016-01-01

    This article describes a community mentoring model for UREs that avoids some of the common pitfalls of the traditional paradigm while harnessing the power of learning communities to provide young scholars a stimulating collaborative STEM research experience.

  20. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  1. Current Status of MPPE (Mercury Plasma Particle Experiment) on BepiColombo/MMO

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Hirahara, Masafumi; Barabash, Stas; Delcourt, Dominique; André, Nicolas; Takashima, Takeshi; Asamura, Kazushi

    2015-04-01

    Mercury's plasma/particle environment has gradually become clear thanks to the new observations made by MESSENGER spacecraft orbiting around Mercury. However, it is also true that many questions will be left unsolved. In order to elucidate the detailed plasma structure and dynamics around Mercury, an orbiter BepiColombo MMO (Mercury Magnetospheric Orbiter) is going to be launched in 2016 as a joint mission between ESA and ISAS/JAXA. Mercury Plasma/Particle Experiment (MPPE) is a comprehensive instrument package for plasma, high-energy particle and energetic neutral atom measurements. It consists of 7 sensors: two Mercury Electron Analyzers (MEA1 and MEA2), Mercury Ion Analyzer (MIA), Mass Spectrum Analyzer (MSA), High Energy Particle instrument for electron (HEP-ele), High Energy Particle instrument for ion (HEP-ion), and Energetic Neutrals Analyzer (ENA). Currently, the MPPE sensors are on the MMO spacecraft under system integration test at ISAS/JAXA (Institute of Space and Astronautical Science / Japan Aerospace Exploration Agency). Evaluation of the sensor calibration data and the final check of the onboard processing software are being made in order to realize the flawless future plasma/particle observations around Mercury.

  2. Measurements of Plasma Power Losses in the C-2 Field-Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Donin, Alexandr; Kondakov, Alexey; Singatulin, Shavkat

    2013-10-01

    A high-confinement operating regime with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection in the C-2 field-reversed configuration (FRC) experiment. To analyze the power balance in C-2, two new diagnostic instruments - the pyroelectric (PE) and infrared (IR) bolometers - were developed. The PE bolometer, designed to operate in the incident power density range from 0.1-100 W/cm2, is used to measure the radial power loss, which is dominated by charge-exchange neutrals and radiation. The IR bolometer, which measures power irradiated onto a thin metal foil inserted in the plasma, is designed for the power density range from 0.5-5 kW/cm2. The IR bolometer is used to measure the axial power loss from the plasma near the end divertors. The maximum measurable pulse duration of ~ 10 ms is limited by the heat capacitance of the IR detector. Both detectors have time resolution of about 10-100 μs and were calibrated in absolute units using a high power neutral beam. We present the results of first direct measurements of axial and radial plasma power losses in C-2.

  3. An experiment to measure the electron ion thermal equilibration rate in a strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Taccetti, J. M.; Shurter, R. P.; Roberts, J. P.; Benage, J. F.; Graden, B.; Haberle, B.; Murillo, M. S.; Vigil, B.; Wysocki, F. J.

    2006-04-01

    We present the most recent results from an experiment aimed at obtaining the temperature equilibration rate between ions and electrons in a strongly coupled plasma by directly measuring the temperature of each component. The plasma is formed by heating a sonic gas jet with a 10 ps laser pulse. The electrons are preferentially heated by the short pulse laser (we are aiming for Te ~ 100 eV), while the ions, after undergoing very rapid (sub-ps timescale) disorder-induced heating, should only reach a temperature of 10-15 eV. This results in a strongly coupled ion plasma with a Γii ~ 3-5. We plan to measure the electron and ion temperatures of the resulting plasma independently during and after heating, using collective Thomson scattering for electrons and a high-resolution x-ray spectrometer for the ions (measuring Doppler-broadened absorption lines). Theory indicates that the equilibration rate could be significantly lower than that given by the usual weakly coupled model (Landau-Spitzer) due to coupled collective modes present in the dense plasma.

  4. Initial operation of a large-scale Plasma Source Ion Implantation experiment

    SciTech Connect

    Wood, B.P.; Henins, I.; Gribble, R.J.; Reass, W.A.; Faehl, R.J.; Nastasi, M.A.; Rej, D.J.

    1993-10-01

    In Plasma Source Ion Implantation (PSII), a workpiece to be implanted is immersed in a weakly ionized plasma and pulsed to a high negative voltage. Plasma ions are accelerated toward the workpiece and implanted in its surface. Experimental PSII results reported in the literature have been for small workpieces. A large scale PSII experiment has recently been assembled at Los Alamos, in which stainless steel and aluminum workpieces with surface areas over 4 m{sup 2} have been implanted in a 1.5 m-diameter, 4.6 m-length cylindrical vacuum chamber. Initial implants have been performed at 50 kV with 20 {mu}s pulses of 53 A peak current, repeated at 500 Hz, although the pulse modulator will eventually supply 120 kV pulses of 60 A peak current at 2 kHz. A 1,000 W, 13.56 MHz capacitively-coupled source produces nitrogen plasma densities in the 10{sup 15} m{sup {minus}3} range at neutral pressures as low as 0.02 mtorr. A variety of antenna configurations have been tried, with and without axial magnetic fields of up to 60 gauss. Measurements of sheath expansion, modulator voltage and current, and plasma density fill-in following a pulse are presented. The authors consider secondary electron emission, x-ray production, workpiece arcing, implant conformality, and workpiece and chamber heating.

  5. Organization by Gordon Research Conferences of the 2012 Plasma Processing Science Conference 22-27 July 2012

    SciTech Connect

    Chang, Jane

    2012-07-27

    The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

  6. Exploring perceptions and experiences of Bolivian health researchers with research ethics.

    PubMed

    Sullivan, Sarah; Aalborg, Annette; Basagoitia, Armando; Cortes, Jacqueline; Lanza, Oscar; Schwind, Jessica S

    2015-04-01

    In Bolivia, there is increasing interest in incorporating research ethics into study procedures, but there have been inconsistent application of research ethics practices. Minimal data exist regarding the experiences of researchers concerning the ethical conduct of research. A cross-sectional study was administered to Bolivian health leaders with research experience (n = 82) to document their knowledge, perceptions, and experiences of research ethics committees and infrastructure support for research ethics. Results showed that 16% of respondents reported not using ethical guidelines to conduct their research and 66% indicated their institutions did not consistently require ethics approval for research. Barriers and facilitators to incorporate research ethics into practice were outlined. These findings will help inform a comprehensive rights-based research ethics education program in Bolivia.

  7. Experimental observation of plasma formation and current transfer in fine wire expansion experiments.

    SciTech Connect

    Deeney, Christopher E.; Duselis, Peter U. (Cornell University, Ithaca, NY); Kusse, Bruce; Sinars, Daniel Brian

    2003-05-01

    When several kA pulses are passed through single, fine 25 {micro}m diameter wires, the wire material heats, melts, vaporizes and expands. Initially the voltage across--and current through--a wire increases until an abrupt voltage collapse occurs. After this collapse the voltage remains at a relative small value while the current continues to increase. In order to understand how this early time behavior may affect the subsequent implosion, small-scale experiments at Cornell University's Laboratory of Plasma Studies concentrated on diagnosing expanding single wire dynamics. X-ray backlighting, interferometry and Schlieren imaging as well as current and voltage measurements have been employed. The voltage collapse has been attributed to the formation of plasma around the wire and a transfer of current to this highly conducting coronal plasma. Interferometry has confirmed the plasma formation, but the current transfer has only been postulated. Subsequent experiments on the Z-Facility at Sandia National Laboratories have produced impressive x-ray yields etc.

  8. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    NASA Technical Reports Server (NTRS)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  9. On Improving the Experiment Methodology in Pedagogical Research

    ERIC Educational Resources Information Center

    Horakova, Tereza; Houska, Milan

    2014-01-01

    The paper shows how the methodology for a pedagogical experiment can be improved through including the pre-research stage. If the experiment has the form of a test procedure, an improvement of methodology can be achieved using for example the methods of statistical and didactic analysis of tests which are traditionally used in other areas, i.e.…

  10. How to Conduct Clinical Qualitative Research on the Patient's Experience

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2011-01-01

    From a perspective of patient-centered healthcare, exploring patients' (a) preconceptions, (b) treatment experiences, (c) quality of life, (d) satisfaction, (e) illness understandings, and (f) design are all critical components in improving primary health care and research. Utilizing qualitative approaches to discover patients' experiences can…

  11. A design of experiment study of plasma sprayed alumina-titania coatings

    SciTech Connect

    Steeper, T.J.; Varacalle, D.J. Jr.; Wilson, G.C.; Riggs, W.L. II; Rotolico, A.J.; Nerz, J.E.

    1992-08-01

    An experimental study of the plasma spraying of alumina-titania powder is presented in this paper. This powder system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Coating experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coating. The coatings were characterized by hardness and electrical tests, image analysis, and optical metallography. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. The attributes of the coatings are correlated with the changes in operating parameters.

  12. A design of experiment study of plasma sprayed alumina-titania coatings

    SciTech Connect

    Steeper, T.J. and Co., Aiken, SC . Savannah River Lab.); Varacalle, D.J. Jr.; Wilson, G.C. ); Riggs, W.L. II ); Rotolico, A.J.; Nerz, J.E. )

    1992-01-01

    An experimental study of the plasma spraying of alumina-titania powder is presented in this paper. This powder system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Coating experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coating. The coatings were characterized by hardness and electrical tests, image analysis, and optical metallography. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. The attributes of the coatings are correlated with the changes in operating parameters.

  13. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    SciTech Connect

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasma facing components are identified and attributes of an experiment to close those gaps are presented.

  14. The electric field structure of auroral arcs as determined from barium plasma injection experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1981-01-01

    Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.

  15. Optical pyrometer system for collisionless shock experiments in high-power laser-produced plasmas.

    PubMed

    Morita, T; Sakawa, Y; Kuramitsu, Y; Dono, S; Ide, T; Shibata, S; Aoki, H; Tanji, H; Sano, T; Shiroshita, A; Waugh, J N; Gregory, C D; Woolsey, N C; Takabe, H

    2012-10-01

    A temporally and spatially resolved optical pyrometer system has been fielded on Gekko XII experiments. The system is based on the self-emission measurements with a gated optical imager (GOI) and a streaked optical pyrometer (SOP). Both detectors measure the intensity of the self-emission from laser-produced plasmas at the wavelength of 450 nm with a bandpass filter with a width of ~10 nm in FWHM. The measurements were calibrated with different methods, and both results agreed with each other within 30% as previously reported [T. Morita et al., Astrophys. Space Sci. 336, 283 (2011)]. As a tool for measuring the properties of low-density plasmas, the system is applicable for the measurements of the electron temperature and density in collisionless shock experiments [Y. Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)]. PMID:23126856

  16. Optical pyrometer system for collisionless shock experiments in high-power laser-produced plasmas

    SciTech Connect

    Morita, T.; Sakawa, Y.; Kuramitsu, Y.; Sano, T.; Takabe, H.; Dono, S.; Ide, T.; Tanji, H.; Shiroshita, A.; Shibata, S.; Aoki, H.; Waugh, J. N.; Woolsey, N. C.; Gregory, C. D.

    2012-10-15

    A temporally and spatially resolved optical pyrometer system has been fielded on Gekko XII experiments. The system is based on the self-emission measurements with a gated optical imager (GOI) and a streaked optical pyrometer (SOP). Both detectors measure the intensity of the self-emission from laser-produced plasmas at the wavelength of 450 nm with a bandpass filter with a width of {approx}10 nm in FWHM. The measurements were calibrated with different methods, and both results agreed with each other within 30% as previously reported [T. Morita et al., Astrophys. Space Sci. 336, 283 (2011)]. As a tool for measuring the properties of low-density plasmas, the system is applicable for the measurements of the electron temperature and density in collisionless shock experiments [Y. Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)].

  17. Embedding a Recovery Orientation into Neuroscience Research: Involving People with a Lived Experience in Research Activity.

    PubMed

    Stratford, Anthony; Brophy, Lisa; Castle, David; Harvey, Carol; Robertson, Joanne; Corlett, Philip; Davidson, Larry; Everall, Ian

    2016-03-01

    This paper highlights the importance and value of involving people with a lived experience of mental ill health and recovery in neuroscience research activity. In this era of recovery oriented service delivery, involving people with the lived experience of mental illness in neuroscience research extends beyond their participation as "subjects". The recovery paradigm reconceptualises people with the lived experience of mental ill health as experts by experience. To support this contribution, local policies and procedures, recovery-oriented training for neuroscience researchers, and dialogue about the practical applications of neuroscience research, are required.

  18. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    SciTech Connect

    Chen, Xing

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (..beta.. less than or equal to 0.3) hot electron plasmas (T/sub e/approx. =400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. The hollowness of the plasma pressure profile is not limited by the marginal stability condition. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (..omega../sub i//..omega../sub r/ less than or equal to 10/sup -2/) and saturate at very low level (deltaB//bar B/ less than or equal to 10/sup -3/). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the

  19. Electron Bunch Length Measurements in the E-167 Plasma Wakefield Experiment

    SciTech Connect

    Blumenfeld, I.; Auerbach, D.; Berry, M.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, Cheng-Kun; Ischebeck, R.; Iverson, R.; Johnson, D.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, Wei; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.; Zacherl, W.; /SLAC /UCLA /Southern California U.

    2007-03-27

    Bunch length is of prime importance to beam driven plasma wakefield acceleration experiments due to its inverse relationship to the amplitude of the accelerating wake. We present here a summary of work done by the E167 collaboration measuring the SLAC ultra-short bunches via autocorrelation of coherent transition radiation. We have studied material transmission properties and improved our autocorrelation traces using materials with better spectral characteristics.

  20. Electron Gyro-scale Fluctuation Measurements in National Spherical Torus Experiment H-mode Plasmas

    SciTech Connect

    Smith, D R; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; LeBlanc, B P; Levinton, F M; Luhmann, N C; Menard, J E

    2009-08-10

    A collective scattering system has measured electron gyro-scale fluctuations in National Spherical Torus Experiment (NSTX) H-mode plasmas to investigate electron temperature gradient (ETG) turbulence. Observations and results pertaining to fluctuation measurements in ETGstable regimes, the toroidal field scaling of fluctuation amplitudes, the relation between between fluctuation amplitudes and transport quantities, and fluctuation magnitudes and k-spectra are presented. Collectively, the measurements provide insight and guidance for understanding ETG turbulence and anomalous electron thermal transport.

  1. Measurements of Prompt and MHD-Induced Fast Ion Loss from National Spherical Torus Experiment Plasmas

    SciTech Connect

    D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod'ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij

    2002-10-15

    A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.

  2. [Experience of stroke prevention-Enlightenment for cancer research].

    PubMed

    You, Weicheng

    2015-08-01

    Cancer, stroke and heart diseases are most common causes of death. This paper summarized the experience of stroke prevention, which is an enlightenment for cancer research. In addition, this paper also described the progress of cancer epidemiological research, particular the primary and second preventions in China.

  3. A Model for an Introductory Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Canaria, Jeffrey A.; Schoffstall, Allen M.; Weiss, David J.; Henry, Renee M.; Braun-Sand, Sonja B.

    2012-01-01

    An introductory, multidisciplinary lecture-laboratory course linked with a summer research experience has been established to provide undergraduate biology and chemistry majors with the skills needed to be successful in the research laboratory. This three-credit hour course was focused on laboratory skills and was designed to reinforce and develop…

  4. Rutgers University Research Experience for Teachers in Engineering: Preliminary Findings

    ERIC Educational Resources Information Center

    Laffey, Evelyn H.; Cook-Chennault, Kimberly; Hirsch, Linda S.

    2013-01-01

    In addressing the nation's need for a more technologically-literate society, the Rutgers University Research Experience for Teachers in Engineering (RU RET-E) is designed to: (1) engage middle and high school math and science teachers in innovative "green" engineering research during the summer, and (2) support teachers in integrating…

  5. Using Phenomenology to Conduct Environmental Education Research: Experience and Issues

    ERIC Educational Resources Information Center

    Nazir, Joanne

    2016-01-01

    Recently, I applied a phenomenological methodology to study environmental education at an outdoor education center. In this article, I reflect on my experience of doing phenomenological research to highlight issues researchers may want to consider in using this type of methodology. The main premise of the article is that phenomenology, with its…

  6. Evidence in Support of Removing Boundaries to Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Haave, Neil; Audet, Doris

    2013-01-01

    Undergraduate research is one of several high impact educational practices used by educational institutions to increase student engagement and success (Kuh, 2008). Many studies on the impact of undergraduate research have surveyed students or faculty on their personal experience and its influence on students' subsequent degrees and employment…

  7. Faculty's Degrees, Experience and Research Vary with Specialty.

    ERIC Educational Resources Information Center

    Fedler, Fred; Counts, Tim; Carey, Arlen; Santana, Maria Cristina

    1998-01-01

    Examines issues of professional experience, degrees, research, and productivity for journalism and mass communication faculty members, separating and comparing different specialties. Finds that requirements regarding academic degrees and research vary from specialty to specialty and that 53% of those teaching in advertising, radio/television, and…

  8. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  9. [Experience of stroke prevention-Enlightenment for cancer research].

    PubMed

    You, Weicheng

    2015-08-01

    Cancer, stroke and heart diseases are most common causes of death. This paper summarized the experience of stroke prevention, which is an enlightenment for cancer research. In addition, this paper also described the progress of cancer epidemiological research, particular the primary and second preventions in China. PMID:26733022

  10. Field-Based Research Experience in Earth Science Teacher Education.

    ERIC Educational Resources Information Center

    O'Neal, Michael L.

    2003-01-01

    Describes the pilot of a field-based research experience in earth science teacher education designed to produce well-prepared, scientifically and technologically literate earth science teachers through a teaching- and research-oriented partnership between in-service teachers and a university scientist-educator. Indicates that the pilot program was…

  11. PRES 2013: Results from the Postgraduate Research Experience Survey

    ERIC Educational Resources Information Center

    Bennett, Paul; Turner, Gosia

    2013-01-01

    This document outlines the results of the "2013 Postgraduate Research Experience Survey" ("PRES"), where 48,401 replies were received from 122 participating institutions. Redeveloped for 2013, our biennial survey is the only national survey to gather insight from postgraduate research students about their learning and…

  12. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  13. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  14. NASA Glenn Research Center Experience with LENR Phenomenon

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  15. Experience-based, body-anchored qualitative research interviewing.

    PubMed

    Stelter, Reinhard

    2010-06-01

    Two theoretical constructs that lay the foundation for experience-based, body-anchored interviewing are presented: the first-person perspective and the concept of meaning. These theoretical concepts are concretized, first, by means of a methodological framework for experience-based, body-anchored interviewing, and second, by an interview guide that explores a research participant's personal experience with mindfulness meditation. An excerpt from an interview is discussed to illustrate the advantages of this interview form, namely its value as a methodological instrument for qualitative research in areas such as traditional and holistic medicine, Western alternative and complementary medicine, nursing, psychotherapy, coaching, physiotherapy, movement arts, and physical education.

  16. NASA Glenn Research Center Experience with "LENR Phenomenon"

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  17. In situ measurements of ionospheric plasma turbulence over five frequency decades: Heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE)

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Enloe, C. L.; McHarg, M. G.

    2013-12-01

    Observations of ionospheric plasma density and frequency-dependent broadband plasma turbulence made during the heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE) are presented. Rather than record high frequency time series data, the experiment was designed to record Power Spectral Distributions (PSDs) in five decadal frequency bins with upper limits ranging from 1.0 Hz to 10 kHz. Additionally, PLANE was designed distinguish turbulence in the ambient plasma from that local to the spacecraft. The instrument consists of two retarding potential analyzers (RPAs) connected together via a feedback loop to force one analyzer into the I-V trace retardation region at all times. Fluctuations in this measurement are believed to be ambient only as the RPA's voltage would be too high for locally turbulent plasma to surmount the potential barrier, which is nominally at ram energy. The instrument requires pointing along the spacecraft's ram velocity vector to make this measurement, thus requiring stabilization in pitch and yaw. During PLANE's heritage flight, though the satellite's attitude control system failed early in the mission, plasma data were collected during opportune times in which the instrument rotated into and out of the ram. Observations of plasma density and PSDs of high frequency plasma turbulence were recorded on several occasions. Additionally, a plasma source onboard the satellite was used to generate artificial plasma turbulence, and the PLANE data observed periodic structure presumably associated with the rotation of the spacecraft during these source firings. A brief comparison with other high frequency in situ plasma instruments is presented.

  18. ELM simulation experiments using transient heat and particle load produced by a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Shoda, K.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    It is considered that thermal transient events such as type I edge-localized modes (ELMs) and disruptions will limit the lifetime of plasma-facing components (PFCs) in ITER. It is predicted that the heat load onto the PFCs during type I ELMs in ITER is 0.2-2MJ/m2 with pulse length of ~0.1-1ms. We have investigated interaction between transient heat and particle load and the PFCs by using a magnetized coaxial plasma gun (MCPG) at University of Hyogo. In the experiment, a pulsed plasma with duration of ~0.5ms, incident ion energy of ~30eV, and surface absorbed energy density of ~0.3-0.7MJ/m2 was produced by the MCPG. However, no melting occurred on a tungsten surface exposed to a single plasma pulse of ~0.7MJ/m2, while cracks clearly appeared at the edge part of the W surface. Thus, we have recently started to improve the performance of the MCPG in order to investigate melt layer dynamics of a tungsten surface such as vapor cloud formation. In the modified MCPG, the capacitor bank energy for the plasma discharge is increased from 24.5 kJ to 144 kJ. In the preliminary experiments, the plasmoid with duration of ~0.6 ms, incident ion energy of ~ 40 eV, and the surface absorbed energy density of ~2 MJ/m2 was successfully produced at the gun voltage of 6 kV.

  19. Soft x-ray studies of plasma-focus pinch structures in PF-1000U experiments

    NASA Astrophysics Data System (ADS)

    Sadowski, M. J.; Paduch, M.; Skladnik-Sadowska, E.; Surala, W.; Zaloga, D.; Miklaszewski, R.; Zielinska, E.; Tomaszewski, K.

    2015-10-01

    This work reports on recent experiments performed at the modernized PF-1000U plasma-focus facility. In contrast to earlier studies the main attention was focussed on measurements of the soft x-ray emission. Detailed time-integrated x-ray measurements, carried out using filtered pinhole cameras with sensitive x-ray films, are presented and analysed. The fine structure of the collapsing current sheath and dense pinch column is investigated. Observations of ‘plasma filaments’ are discussed and compared with those from the old POSEIDON facility. New results are time-integrated x-ray images of PF-1000U discharges with additional gas puffing, which in many cases show distinct plasma filaments and/or ‘hot spots’ formed inside the dense pinch column. The formation of such ‘hot-spots’ is explained by necking and breaking of the plasma filaments. Results of time-resolved x-ray measurements, performed outside the experimental chamber by means of scintillation probes, and inside with PIN-diodes placed behind pinholes and absorption filters, are also presented Time-resolved measurements, carried out using an old XUV framing-camera and a new soft x-ray four-frame camera (SXRFFC), are also presented and discussed. Correlations of the time-integrated x-ray images (of plasma filaments and hot spots) with time-resolved x-ray signals are discussed. The hypothesis that plasma-current filaments appear in almost all PF-type discharges is supported by pictures of radial erosion tracks on the anode front-plate after many discharges.

  20. Designing Undergraduate Research Experiences: A Multiplicity of Options

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2001-12-01

    Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in

  1. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Nam, Y. U.; Chung, J.

    2010-10-15

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  2. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  3. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  4. Authentic Research Immersion Experiences: the Key to Enduring Understandings

    NASA Astrophysics Data System (ADS)

    Klug, S. L.

    2007-12-01

    Do authentic research experiences have a role in today's classrooms? Where do they fit into the constrained curriculum units and high-stakes testing regimen that define a teacher's world? It is possible, even in today's somewhat narrow teaching environment, to integrate authentic research into the classroom and evolve away from the worksheets and lessons that simply "teach to the test"? Authentic research immersion experiences must be carefully packaged the for classroom use with clear alignment to standards and a learning curve that is not too daunting. By helping teachers to see the value in replacing curricular units with authentic research experiences and designing the research program to fit within a teacher's needs, the rate of successful adoption of the research program becomes much higher. As a result, not only do their students reap the educational rewards of becoming active research participants in the process of science and learn it from the inside out, but the opportunity for the teachers to grow professionally in content and science process knowledge is also an additional benefit. NASA has had and continues to have a significant role in providing these data and mission- related immersion experiences for elementary classrooms through graduate school students.

  5. Application of imaging plate to x-ray imaging and spectroscopy in laser plasma experiments

    SciTech Connect

    Izumi, N; Snavely, R; Gregori, G; Koch, J A; Park, H; Remington, B A

    2006-04-25

    We report recent progress of x-ray diagnostic techniques in laser plasma experiment with using imaging plates. Imaging plate is a photo-stimulable phosphor screen (BaF(Br0.85,10.15):Eu{sup 2+}) deposited on flexible metal or plastic substrate. We applied the imaging plate to x-ray microscopy in laser fusion experiment experiments. Self-emission x-ray images of imploded core were obtained successfully with using imaging plate and high magnification target mounted pinhole arrays. The imaging plates were applied also in ultra-intense laser experiment at the Rutherford Appleton Laboratory. Small samarium foil was irradiated by high intensity laser pulse from the Vulcan laser system. The k shell x-rays from the foil ({approx}40keV) was used as a line x-ray source for microscopic radiography. Performance of imaging plate on high-energy x-ray backlit radiography was demonstrated by imaging sinusoidal grooves of 6um amplitude on a Au foil. Detailed spectrum of k shell x-ray from Cu embedded foil target was successfully observed by fully coupling imaging plate with a highly ordered pyrolytic graphite crystal spectrometer. The performances of the imaging plates evaluated in actual laser plasma experiments will be presented.

  6. Experience of stress in childhood negatively correlates with plasma oxytocin concentration in adult men.

    PubMed

    Opacka-Juffry, Jolanta; Mohiyeddini, Changiz

    2012-01-01

    Early life experience is known to affect responses to stress in adulthood. Adverse experience in childhood and/or adolescence sensitises to life events that precipitate depression in later life. Published evidence suggests a relationship between depression and oxytocin (OT), but the extent to which early life experience influences OT disposition in adulthood deserves further exploration. This study hypothesised that early life stress (ELS) has a long-term negative effect on OT system activity. The study was performed on 90 male volunteers (18-56 years; mean ± standard deviation = 27.7 ± 7.09 years). Several questionnaires were used to assess: health, early life stressful experiences in childhood (ELS-C, up to 12 years) and early life stressful adolescence (13-18 years), recent stressful life events, depressive symptoms, state-trait anxiety and social desirability. Plasma OT concentration was estimated by means of a competitive enzyme immunoassay. Lower OT concentrations were significantly associated with higher levels of ELS-C (p < 0.01), and with depressive symptoms and trait anxiety (both p < 0.05). The interaction between ELS-C and trait anxiety was significant (p < 0.05), indicating that the link between ELS-C and plasma OT concentration is moderated by trait anxiety. These results contribute to the evidence that early life adverse experience is negatively associated with OT system activity in adulthood, and offer further insight into mediator and moderator effects on this link.

  7. Beyond benchmarking—how experiments and simulations can work together in plasma physics

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2004-12-01

    There has been dramatic progress in the scope and power of plasma simulations in recent years; and because codes are generally cheaper to write, to run and to diagnose than experiments, they have a well-recognized potential to extend our understanding of complex phenomena like plasma turbulence. However, simulations are imperfect models for physical reality and can be trusted only so far as they demonstrate agreement, without bias, with experimental results. This "validation" process tests the correctness and completeness of the physical model along with the assumptions and simplifications required for solution. At the same time, it must be understood that experimental measurements are almost always incomplete and subject to significant uncertainties and errors. For optimum scientific progress, simulations and experiments must be seen as complementary not competitive approaches. We need experiments dedicated to answering critical questions raised by the simulations, which examine the validity of models and which explicitly test their assumptions. A premium should be placed on ongoing collaborations which are open and candid about the sources of error and the strengths and weaknesses of each approach. Ultimately both experiments and simulation have much to gain by adopting an approach of co-development, where simulations are continuously and carefully compared to experimental data and where experiments are guided by the results of simulations.

  8. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016.

  9. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. PMID:27124101

  10. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  11. Status of Issues in U.S. Edge-Plasma Research and Priority Topics for the Next Five Years

    SciTech Connect

    Bateman, G; Chang, C; Fenstermacher, M; Guzdar, P; Hahm, T S; Krasheninnikov, S; Kritz, A; Rognlien, T D; Schnack, D; Schultz, D; Snyder, P; Stotler, D; Terry, J; Ulrickson, M; Bolton, C

    2005-03-16

    The Edge Coordinating Committee (ECC) was formed in July 14-15, 2004 when OFES Theory Team invited 14 plasma researchers to a two-day meeting in Germantown, MD to discuss the state of edge-plasma research in the U.S. with a focus on theory and modeling (see http://www.mfescience.org/ecc/ ecc/). At that time, OFES tasked the ECC with providing, in about a six month period, a report on the present status of key issues in this area together with a roadmap of what range of activities should be undertaken in the next five years to resolve these issues. This document is a response to that charge. Future edge-plasma research described here is assumed to fit into a budget constraint of a ''flat budget,'' with some additional activities cited for budget increases of as much as 50%. To obtain some measure of the relative fraction of OFES Theory funding presently devoted to edge plasma research, the OFES Theory Team informally surveyed funded work they support in this area at National Labs, Universities, and industry. John Mandrekas reported to us that approximately 10% of the present budget goes to edge-physics areas at 10 institutions, for a total of {approx}$2.5M each year. While not explicitly estimated, we note that there are also important edge plasma projects in the Plasma Technology program, especially related to plasma/material sputtering interactions, near-surface plasma chemistry and transport, and impurity transport. Likewise, the Confinement Program has important efforts in interpreting edge-plasma data through modeling codes. This initial status/roadmap work of the ECC is complimentary to the Fusion Energy Science Sciences Advisory Committee (FESAC) Panel on Program Priorities (see http://www.mfescience.org/fesac/ fesac/). This Panel is charged with identifying major science and technology issues for all of controlled fusion and also with recommending campaigns to address these issues. The Panel has organized their report along six thematic areas, one of which

  12. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  13. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  14. Experiments on the interaction of heavy-ion beams with dense plasmas

    SciTech Connect

    Stoeckl, C.; Roth, M.; Suess, W.; Wetzler, H; Seelig, W.; Kulish, M.; Spiller, P.; Jacoby, J.; Hoffmann, D.H.H.

    1997-03-01

    Gas discharge plasma targets were used for energy loss and charge state measurements of fast heavy ions 5 MeV/u < E{sub kin} < 10 MeV/u in a regime of electron density and temperature up to 10{sup 19}cm{sup -3} and 20 eV, respectively. Progress has been achieved in the understanding of charge exchange processes in fully ionized hydrogen plasma. An improved model that has taken excitation-autoionization processes into account has removed some of the discrepancies of previous theoretical descriptions. Furthermore, the energy loss of the ion beam serves as an excellent diagnostic tool for measuring the electron density in partially ionized plasmas such as argon. The experience with these methods will be used in the future to diagnose dense laser-produced plasmas. A setup with a 5-GW neodymium-glass laser, currently under construction, will provide access to density ranges up to 10{sup 21} cm{sup -3} and temperatures > 100 eV. 13 refs., 7 figs.

  15. Feasibility of an experiment to measure stopping powers in solid-density deuterium plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Rinderknecht, H. G.; Zylstra, A. B.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Regan, S.; Sangster, C.; Graziani, F.; Collins, G. W.; Rygg, J. R.; Grabowski, P.; Glenzer, S.; Keiter, P.

    2014-10-01

    An experimental design to measure the stopping powers of charged-particles through solid-density, fully-ionized deuterium plasmas at temperatures around 10 eV is investigated. Stopping power in this regime is crucial to the understanding of alpha-heating and burn in Internal Confinement Fusion. Recent work by A.B. Zylstra et al. on the OMEGA laser facility has demonstrated such measurements of stopping power in partially ionized Be plasmas, by measuring the downshift of D3He-protons in an isochorically heated sample. As noted in their work, the effects of partial ionization are not well understood; however such effects are not applicable to hydrogenic fuels, for which the plasmas are expected to be fully ionized. This study will consider the viability of isochorically or shock heating a target to Warm Dense Matter conditions using a platform similar to the planar cryogenic system described by S.P. Regan et al. Plasma properties will be determined by x-ray Thomson scattering while stopping powers will be inferred through measuring downshift of either DD-protons, D3He-protons or D3He-alphas, the latter of which is directly applicable to the stopping of DT-alphas in ignition experiments. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  16. Inward radial transport in differentially rotated plasma discs formed in z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey; Bennett, M.; Swadling, G. F.; Suttle, L.; Blackman, E.; Burdiak, G.; Chittenden, J. P.; Ciardi, A.; Drake, R. P.; Frank, A.; Hall, G. N.; Hare, J.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F.

    2014-10-01

    We will present experimental results showing the development of instabilities and an inward transport of matter in a differentially rotating supersonic plasma disc with dimensionless parameters relevant to modeling physics of astrophysical discs. The converging off-axis plasma flow forming the disc is produced by ablation of wires in a cylindrical wire array z-pinch (1.4 MA, 250 ns) combined with a cusp magnetic field, and the rotating disc is supported in equilibrium by the ram pressure of the flow. The radial profile of rotation velocity in the disc is measured using Doppler shifts of the ion feature of Thomson scattering spectra, while the broadening of the spectra yields the plasma temperature. The evolution of the disc structure is observed with multi-frame XUV and optical cameras, and the plasma density is measured using end-on laser interferometry. The Reynolds number in the disc is sufficiently large (>105) to allow development of turbulence on the time-scale of the experiment, and the observed inward transport of matter with the growth of small scale structures suggests that turbulence is responsible for the transport.

  17. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  18. Broadband Plasma-Sprayed Anti-reflection Coating for Millimeter-Wave Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Jeong, O.; Lee, A.; Raum, C.; Suzuki, A.

    2016-08-01

    We have developed a plasma-sprayed anti-reflection (AR) coating technology for millimeter-wave astrophysics experiments with cryogenic optics which achieves minimal dissipative loss and broad bandwidth and is easily and accurately applied. Plasma spraying is a coating process through which melted or heated materials are sprayed onto a substrate. The dielectric constants of the plasma-sprayed coatings were tuned between 2.7 and 7.9 by mixing hollow ceramic microspheres with alumina powder as the base material and varying the plasma energy of the spray. By spraying low loss ceramic materials with a tunable dielectric constant, we can apply multiple layers of AR coating for broadband millimeter-wave detection. At 300 K, we achieved a fractional bandwidth of 106 over 90% transmission using a three-layer AR coating. Applying ceramic coatings on ceramic lenses offers an additional benefit of preventing cryogenic delamination of the coatings. We report on methodology of coating application and measurement of uniformity, repeatability, transmission property, and cryogenic adhesion performance.

  19. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    SciTech Connect

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth

  20. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-01

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 - 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 - 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 - 3000 Hz) and VLF (3 - 30 kHz) radio waves which are guided to global distances in the Earth-ionosphere waveguide. We review