Sample records for plasma source sps

  1. Surface plasma source with saddle antenna radio frequency plasma generator.

    PubMed

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  2. Ion extraction from a saddle antenna RF surface plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less

  3. Ion extraction from a saddle antenna RF surface plasma source

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.

    2015-04-01

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).

  4. H- Ion Sources for High Intensity Proton Drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H + and H - ion generation around 3 to 5 mA/cm 2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm 2 per kW of RF power at 13.56more » MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.« less

  5. Saddle antenna radio frequency ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R.; Murray, S.

    Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA withmore » RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.« less

  6. Grain size effect on the giant dielectric constant of CaCu3Ti4O12 nanoceramics prepared by mechanosynthesis and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-01

    In the present work, CaCu3Ti4O12 (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ˜200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2-3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 103, 2.4 × 104, and 3.2 × 104 for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 104. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  7. Measurements of the cesium flow from a surface-plasma H/sup -/ ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less

  8. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    DTIC Science & Technology

    2014-08-15

    AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388

  9. Grain size effect on the giant dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} nanoceramics prepared by mechanosynthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Mohamad M., E-mail: mmohamad@kfu.edu.sa; Department of Physics, Faculty of Science, Assiut University in the New Valley, El-Kharga 72511; Yamada, Koji

    2014-04-21

    In the present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ∼200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2–3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed inmore » CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 10{sup 3}, 2.4 × 10{sup 4}, and 3.2 × 10{sup 4} for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 10{sup 4}. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.« less

  10. Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings.

    PubMed

    Yu, L-G; Khor, K A; Li, H; Cheang, P

    2003-07-01

    The crystalline phases and degree of crystallinity in plasma sprayed calcium phosphate coatings on Ti substrates are crucial factors that influence the biological interactions of the materials in vivo. In this study, plasma sprayed hydroxyapatite (HA) coatings underwent post-spray treatment by the spark plasma sintering (SPS) technique at 500 degrees C, 600 degrees C, and 700 degrees C for duration of 5 and 30 min. The activity of the HA coatings before and after SPS are evaluated in vitro in a simulated body fluid. The surface microstructure, crystallinity, and phase composition of each coating is characterized by scanning electron microscopy and X-ray diffractometry before, and after in vitro incubation. Results show that the plasma sprayed coatings treated for 5 min in SPS demonstrated increased proportion of beta-TCP phase with a preferred-orientation in the (214) plane, and the content of beta-TCP phase corresponded to SPS temperature, up to 700 degrees C. SPS treatment at 700 degrees C for 30 min enhanced the HA content in the plasma spray coating as well. The HA coatings treated in SPS for 5 min revealed rapid surface morphological changes during in vitro incubation (up to 12 days), indicating that the surface activity is enhanced by the SPS treatment. The thickest apatite layer was found in the coating treated by SPS at 700 degrees C for 5 min.

  11. Loading Mode Optimization and Structure Tailoring in Spark Plasma Sintering of Monocarbide Powder-based Components for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Wei, Xialu

    In this study, the spark plasma sintering (SPS) is employed to consolidate poorly sinter-able ultra-high temperature ceramic (UHTC) powders due to the fact that the conjoint application of electric current and mechanical pressure during SPS can largely offset the required processing temperature. Zirconium carbide (ZrC) is selected as target material as it broadly represents properties of typical UHTCs. Investigations on SPS of ZrC are concurrently conducted in two correlated regimes: One regime is used to optimize the SPS densification efficiency by manipulating the loading schematics. The other regime is used to produce complex shape carbide components for high temperature applications via SPS. Both theoretical and experimental studies are involved in the achievement of the formulated research objectives. Consolidation of ZrC has been carried out to form a densification map with determining the optimal processing parameters. The densification of ZrC is studied through the continuum theory of sintering, in which the ZrC power-law creep parameters have been determined through the clarification of electrical and thermal aspects of the employed SPS system. Then the SPS-forging setup is proposed as it is theoretically and experimentally proven to be able to render more densification than the regular SPS. SPS-forging and regular SPS are eventually integrated into a hybrid loading mode SPS regime to combine the advantages of the individual setups to obtain the optimal densification kinetics. Annular shape ZrC pellets have been fabricated using SPS. Finite element modeling framework is constructed to manifest the thermomechanical interactions during the SPS of annular shape ZrC specimens. The fabrication procedures are practically adapted to produce also annular shape carbide composites with excellent high temperature structural strength being used as alternative SPS tooling components. The applicability of annular shape fuel pellet to accommodate volume swelling under its service conditions is investigated. The irradiation-induced swelling phenomena are analyzed by analytical modeling and finite element simulations, in which the generated fission products are considered to be the sources of the fuel pellet swelling.

  12. Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation

    NASA Astrophysics Data System (ADS)

    Wei, Xialu; Maximenko, Andrey L.; Back, Christina; Izhvanov, Oleg; Olevsky, Eugene A.

    2017-07-01

    Theoretical studies on the densification kinetics of the new spark plasma sinter-forging (SPS-forging) consolidation technique and of the regular SPS have been carried out based on the continuum theory of sintering. Both modelling and verifying experimental results indicate that the loading modes play important roles in the densification efficiency of SPS of porous ZrC specimens. Compared to regular SPS, SPS-forging is shown to be able to enhance the densification more significantly during later sintering stages. The derived analytical constitutive equations are utilised to evaluate the high-temperature creep parameters of ZrC under SPS conditions. SPS-forging and regular SPS setups are combined to form a new SPS hybrid loading mode with the purpose of reducing shape irregularity in the SPS-forged specimens. Loading control is imposed to secure the geometry as well as the densification of ZrC specimens during hybrid SPS process.

  13. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    PubMed

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (p<0.05). The SPS P3 sample had a reduction in MCS compared with the CS group (p<0.05). XRD of the SPS samples revealed major lithium disilicate/lithium metasilicate phases and minor lithium orthophosphate and cristobalite/quartz phases. Densified IPS e.max Press glass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    NASA Astrophysics Data System (ADS)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  15. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    PubMed Central

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; Haines, Christopher D.; Olevsky, Eugene A.

    2016-01-01

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrC specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. The constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly. PMID:28773697

  16. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    DOE PAGES

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; ...

    2016-07-14

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrCmore » specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. Finally, the constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly.« less

  17. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2017-12-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  18. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  19. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  20. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  1. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    PubMed Central

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process. PMID:27877472

  2. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  3. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  4. The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys

    NASA Astrophysics Data System (ADS)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu

    2017-07-01

    The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.

  5. Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design

    PubMed Central

    Giuntini, Diletta; Olevsky, Eugene A.; Garcia-Cardona, Cristina; Maximenko, Andrey L.; Yurlova, Maria S.; Haines, Christopher D.; Martin, Darold G.; Kapoor, Deepak

    2013-01-01

    The present paper shows the application of a three-dimensional coupled electrical, thermal, mechanical finite element macro-scale modeling framework of Spark Plasma Sintering (SPS) to an actual problem of SPS tooling overheating, encountered during SPS experimentation. The overheating phenomenon is analyzed by varying the geometry of the tooling that exhibits the problem, namely by modeling various tooling configurations involving sequences of disk-shape spacers with step-wise increasing radii. The analysis is conducted by means of finite element simulations, intended to obtain temperature spatial distributions in the graphite press-forms, including punches, dies, and spacers; to identify the temperature peaks and their respective timing, and to propose a more suitable SPS tooling configuration with the avoidance of the overheating as a final aim. Electric currents-based Joule heating, heat transfer, mechanical conditions, and densification are imbedded in the model, utilizing the finite-element software COMSOL™, which possesses a distinguishing ability of coupling multiple physics. Thereby the implementation of a finite element method applicable to a broad range of SPS procedures is carried out, together with the more specific optimization of the SPS tooling design when dealing with excessive heating phenomena. PMID:28811398

  6. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)

    NASA Astrophysics Data System (ADS)

    Yeo, S.; Mckenna, E.; Baney, R.; Subhash, G.; Tulenko, J.

    2013-02-01

    Uranium dioxide (UO2)-10 vol% silicon carbide (SiC) composite fuel pellets were produced by oxidative sintering and Spark Plasma Sintering (SPS) at a range of temperatures from 1400 to 1600 °C. Both SiC whiskers and SiC powder particles were utilized. Oxidative sintering was employed over 4 h and the SPS sintering was employed only for 5 min at the highest hold temperature. It was noted that composite pellets sintered by SPS process revealed smaller grain size, reduced formation of chemical products, higher density, and enhanced interfacial contact compared to the pellets made by oxidative sintering. For given volume of SiC, the pellets with powder particles yielded a smaller grain size than pellets with SiC whiskers. Finally thermal conductivity measurements at 100 °C, 500 °C, and 900 °C revealed that SPS sintered UO2-SiC composites exhibited an increase of up to 62% in thermal conductivity compared to UO2 pellets, while the oxidative sintered composite pellets revealed significantly inferior thermal conductivity values. The current study points to the improved processing capabilities of SPS compared to oxidative sintering of UO2-SiC composites.

  7. Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties.

    PubMed

    Uo, Motohiro; Hasegawa, Tomoka; Akasaka, Tsukasa; Tanaka, Isao; Munekane, Fuminori; Omori, Mamoru; Kimura, Hisamichi; Nakatomi, Reiko; Soga, Kohei; Kogo, Yasuo; Watari, Fumio

    2009-01-01

    Three types of multiwalled carbon nanotube (MWCNT) monoliths without any binders were obtained by spark plasma sintering (SPS) treatment at 2000 degrees C under 80 MPa sintering pressure. Three MWCNTs with different diameters: thin (slashed circle20-30 nm, CNT Co., Ltd., Korea), thick (slashed circle100 nm, Nano Carbon Technologies Co., Ltd., Japan) and spherical thin (slashed circle20-30 nm, granulated diameter = 1-3 microm, Shimizu Corporation, Japan) were employed for SPS. SEM observation confirmed that these materials maintained the nanosized tube microstructure of raw CNT powder after SPS treatment. The densest monolith was prepared with the spherical MWCNTs. The mechanical properties of this material were estimated by the dynamic hardness test. The elastic modulus of the monolith did not depend on the difference of MWCNTs, but the hardness of spherical MWCNTs was higher than that of thick MWCNTs. The high density and hardness of the spherical MWCNTs were caused by the high packing density during the SPS process because of its spherical granulation. Thus, the spherical MWCNTs were most useful for the MWCNT monolith preparation with the SPS process and its application as a bone substitute material and a bone tissue engineering scaffold material was suggested.

  8. Plasma methods of obtainment of multifunctional composite materials, dispersion-hardened by nanoparticles

    NASA Astrophysics Data System (ADS)

    Sizonenko, O. N.; Grigoryev, E. G.; Zaichenko, A. D.; Pristash, N. S.; Torpakov, A. S.; Lipyan, Ye V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2016-04-01

    The new approach in developed plasma methods consists in that dispersionhardening additives (TiC, TiB2 in particular) are not mechanically added to powder mixture as additional component, as in conventional methods, but are instead synthesized during high voltage electric discharges (HVED) in disperse system “hydrocarbon liquid - powder” preservation of ultrafine structure is ensured due to use of spark plasma sintering (SPS) as a consolidation method. HVED in disperse system “hydrocarbon liquid - powder” due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. SPS is the passage of pulsed current (superposition of direct and alternating current) through powder with the simultaneous mechanical compressing. The formation of plasma is initiated in gaseous phase that fills gaps between particles. SPS allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10 - 20%), hardness and wear-resistance (by 30 - 60%) of obtained materials.

  9. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    PubMed

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  10. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys

    PubMed Central

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-01-01

    Ti–Al–Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti–Al–Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti–10Al–20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti5Si3 silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5. PMID:28772824

  11. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  12. The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites

    PubMed Central

    Li, Jing; Cui, Bencang; Wang, Huining; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Composite ceramics BaTiO3/3Y-TZP containing 0 mol %, 3 mol %, 5 mol %, 7 mol %, and 10 mol % BaTiO3 have been prepared by conventional sintering and spark-plasma sintering (SPS), respectively. Analysis of the XRD patterns and Raman spectra reveal that the phase composition of t-ZrO2, m-ZrO2, and BaTiO3 has been obtained. Our results indicate that SPS can be effective for the decrease in grain size and porosity compared with conventional sintering, which results in a lower concentration of m-ZrO2 and residual stress. Therefore, the fracture toughness is enhanced by the BaTiO3 phase through the SPS technique, while the behavior was impaired by the piezoelectric second phase through conventional sintering. PMID:28773445

  13. Density, Microstructure, Strength and Fractography of Spark Plasma and Conventionally Sintered Mn Steels

    NASA Astrophysics Data System (ADS)

    Tenerowicz-Zaba, M.; Kupkova, M.; Kabatova, M.; Dudrova, E.; Dzupon, M.; Sulowski, M.

    2017-12-01

    The aim of the study was to investigate Spark Plasma Sintering (SPS) of 1-3%Mn steels and compare the resultant microstructures, strengths and failure mechanisms with those of conventionally sintered materials. SPS was performed in a vacuum of 5 Pa at 1000°C for 15min under a uniaxial pressure of 20 MPa. The heating rate of 100°C/min was applied. For conventional processing, mixtures of powders were prepared in a Turbula mixer for 30 minutes. Samples were single pressed at 660 MPa, according to PN-EN ISO 2740 standard. Sintering of compacts was carried out in a laboratory tube furnace at 1120°C and 1250°C for 60 minutes in a mixture of 95%N2-5%H2. Heating and cooling rates were 75C°/min and 60°C/min, respectively. The density of SPS samples was higher (up to 7.37 g/cm3) than those after conventional sintering (up to 6.7 g/cm3). Yield strengths of SPS samples were in the range 920-1220 MPa, compared to the maximum of 602 MPa for conventionally sintered Fe-3%Mn-0.8%C. Transverse rupture strengths were the same for this alloy, 1234 MPa, but reached 1473 MPa for SPS 2Mn variant. Interfaces in SPS samples were significantly less contaminated with oxides, which is the result of a more favorable microclimate and pressure acting during SPS. These preliminary results indicate that further research on the SPS of Mn steels is warranted.

  14. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs. The different thermal conduction behaviors were linked to the porosity and compositional properties of the coatings using immersion density, SEM, and synchrotron radiation characterization techniques.

  15. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  16. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  17. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    NASA Astrophysics Data System (ADS)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  18. Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl2O4

    NASA Astrophysics Data System (ADS)

    Bernard-Granger, Guillaume; Benameur, Nassira; Addad, Ahmed; Nygren, Mats; Guizard, Christian; Deville, Sylvain

    2009-05-01

    Spark plasma sintering (SPS) of MgAl2O4 powder was investigated at temperatures between 1200 and 1300{\\deg}C. A significant grain growth was observed during densification. The densification rate always exhibits at least one strong minimum, and resumes after an incubation period. Transmission electron microscopy investigations performed on sintered samples never revealed extensive dislocation activity in the elemental grains. The densification mechanism involved during SPS was determined by anisothermal (investigation of the heating stage of a SPS run) and isothermal methods (investigation at given soak temperatures). Grain-boundary sliding, accommodated by an in-series {interface-reaction/lattice diffusion of the O$^2$-anions} mechanism controlled by the interface-reaction step, governs densification. The zero-densification-rate period, detected for all soak temperatures, arise from the difficulty of annealing vacancies, necessary for the densification to proceed. The detection of atomic ledges at grain boundaries and the modification of the stoichiometry of spinel during SPS could be related to the difficulty to anneal vacancies at temperature soaks.

  19. Electrostatic protection of the Solar Power Satellite and rectenna

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Few, A. A., Jr.; Reiff, P. H.; Cooke, D.; Bohannon, J.; Haymes, B.

    1979-01-01

    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure.

  20. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  1. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip

    2017-01-01

    The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192

  2. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    PubMed Central

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-01-01

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidation of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique. PMID:27624641

  3. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    DOE PAGES

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-09-14

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidationmore » of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique.« less

  4. Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832

  5. Binary Alkali-Metal Silicon Clathrates by Spark Plasma Sintering: Preparation and Characterization

    PubMed Central

    Veremchuk, Igor; Beekman, Matt; Antonyshyn, Iryna; Schnelle, Walter; Baitinger, Michael; Nolas, George S.; Grin, Yuri

    2016-01-01

    The binary intermetallic clathrates K8-xSi46 (x = 0.4; 1.2), Rb6.2Si46, Rb11.5Si136 and Cs7.8Si136 were prepared from M4Si4 (M = K, Rb, Cs) precursors by spark-plasma route (SPS) and structurally characterized by Rietveld refinement of PXRD data. The clathrate-II phase Rb11.5Si136 was synthesized for the first time. Partial crystallographic site occupancy of the alkali metals, particularly for the smaller Si20 dodecahedra, was found in all compounds. SPS preparation of Na24Si136 with different SPS current polarities and tooling were performed in order to investigate the role of the electric field on clathrate formation. The electrical and thermal transport properties of K7.6Si46 and K6.8Si46 in the temperature range 4–700 K were investigated. Our findings demonstrate that SPS is a novel tool for the synthesis of intermetallic clathrate phases that are not easily accessible by conventional synthesis techniques. PMID:28773710

  6. Preparation of Functionally Graded Materials (FGMs) Using Coal Fly Ash and NiCr-Based Alloy Powder by Spark Plasma Sintering (SPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro

    2008-02-15

    Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil and Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 deg. C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2}) and silica (SiO{sub 2}) phases were predominant. Direct joining of coal fly ash and NiCr causesmore » fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86x10{sup -6} K{sup -1}, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77x10{sup -6} K{sup -1}.« less

  7. SPS-RS technique for solid-phase “in situ” synthesis of biocompatible ZrO2 porous ceramics

    NASA Astrophysics Data System (ADS)

    Shichalin, O. O.; Medkov, M. A.; Grishchenko, D. N.; Mayorov, V. Yu; Fedorets, A. N.; Belov, A. A.; Golub, A. V.; Gridasova, E. A.; Papynov, E. K.

    2018-02-01

    The prospective method of spark plasma sintering-reaction synthesis (SPS-RS) for fabrication of ceramics based on ZrO2 and biocompatible with living tissue is presented. Nanostructured ceramics has high mechanical strength (more than 400 MPa) and controlled porosity depending on specified sintering conditions. Biocompatible phases Ca10(PO4)6(OH)2 are formed “in situ” during SPS sintering of ZrO2 powder due to chemical interaction of phosphate precursors preliminary introduced into the mixture. The effective method to improve (to develop) porous structure of bioceramics obtained by SPS or SPS-RS techniques using poreforming agent (carbon black) is proposed. Suggested original SPS-RS “in situ” technique provides fabrication of new ZrO2 ceramics containing biocompatible phosphate components and possessing unique structural and mechanical characteristics. Such ceramics is indispensable for bone-ceramic implants that are able to activate processes of osteogenesis during bone tissue recovery.

  8. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.; Alsagabi, Sultan F.

    2016-03-01

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr-Ti-La-O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 1024 m-3. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  9. Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe–Al Mixtures: Current-Related or Kirkendall Effect?

    PubMed Central

    Dudina, Dina V.; Bokhonov, Boris B.; Mukherjee, Amiya K.

    2016-01-01

    A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500–650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe–Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe–Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C. PMID:28773498

  10. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering.

    PubMed

    Dutel, Guy-Daniel; Langlois, Patrick; Tingaud, David; Vrel, Dominique; Dirras, Guy

    2017-04-01

    Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS) are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  11. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different temperatures ranging from 570 °C to 800 °C. Maximum compression strength (1.1+/-0.2 MPa) was obtained for the samples sintered in the supercooled region. Effects of crystallization on tribological behavior of sintered samples were also investigated where crystallization resulted in increase in wear resistance. Laser surface hardening of SPS sintered amorphous samples were performed. Depending on the processing parameters, the laser surface irradiation causes structural relaxation and nanocrystallization, resulting in surface hardening.

  12. Single-sample method for the estimation of glomerular filtration rate in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, W.N.; Bagchi, A.; Tepe, P.G.

    1987-03-01

    A method for the determination of the glomerular filtration rate (GFR) in children which involves the use of a single-plasma sample (SPS) after the injection of a radioactive indicator such as radioiodine labeled diatrizoate (Hypaque) has been developed. This is analogous to previously published SPS techniques of effective renal plasma flow (ERPF) in adults and children and GFR SPS techniques in adults. As a reference standard, GFR has been calculated from compartment analysis of injected radiopharmaceuticals (Sapirstein Method). Theoretical volumes of distribution were calculated at various times after injection (Vt) by dividing the total injected counts (I) by the plasmamore » concentration (Ct) expressed in liters, determined by counting an aliquot of plasma in a well type scintillation counter. Errors of predicting GFR from the various Vt values were determined as the standard error of estimate (Sy.x) in ml/min. They were found to be relatively high early after injection and to fall to a nadir of 3.9 ml/min at 91 min. The Sy.x Vt relationship was examined in linear, quadratic, and exponential form, but the simpler linear relationship was found to yield the lowest error. Other data calculated from the compartment analysis of the reference plasma disappearance curves are presented, but at this time have apparently little clinical relevance.« less

  13. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    NASA Astrophysics Data System (ADS)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  14. Investigations of SPS Orbit Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel

    2014-07-01

    The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variationsmore » are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.« less

  15. Pure & crystallized 2D Boron Nitride sheets synthesized via a novel process coupling both PDCs and SPS methods

    PubMed Central

    Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère

    2016-01-01

    Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs. PMID:26843122

  16. Tungsten-microdiamond composites for plasma facing components

    NASA Astrophysics Data System (ADS)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  17. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  18. Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Castle, Elinor; Sheridan, Richard; Grasso, Salvatore; Walton, Allan; Reece, Mike

    2016-11-01

    A Spark Plasma Sintering (SPS) furnace was used to Flash-Sinter (FS) Nd-Fe-Dy-Co-B-Ga melt spun permanent magnetic material. During the 10 s "Flash" process (heating rate 2660 K min-1), sample sintering (to theoretical density) and deformation (54% height reduction) occurred. This produced texturing and significant magnetic anisotropy, comparable to conventional die-upset magnets; yet with much greater coercivities (>1600 kA m-1) due to the nanoscale characteristics of the plate-like sintered grains. These preliminary results suggest that Flash-SPS could provide a new processing route for the mass production of highly anisotropic, nanocrystalline magnetic materials with high coercivity.

  19. Modeling the mechanical behavior of ceramic and heterophase structures manufactured using selective laser sintering and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.

    A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.

  20. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    NASA Technical Reports Server (NTRS)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  1. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions.

    PubMed

    Haigler, Candace H; Singh, Bir; Zhang, Deshui; Hwang, Sangjoon; Wu, Chunfa; Cai, Wendy X; Hozain, Mohamed; Kang, Wonhee; Kiedaisch, Brett; Strauss, Richard E; Hequet, Eric F; Wyatt, Bobby G; Jividen, Gay M; Holaday, A Scott

    2007-04-01

    Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V (max) SPS activity in leaf and fiber. Lines with the highest V (max) SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of (14)C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO(2) concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.

  2. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO₃ Ceramics Fabricated by Spark Plasma Sintering.

    PubMed

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-03-07

    Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO₃ ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO₃ ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe 3+ to Fe 2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO₃ ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage.

  3. Spark Plasma Sintering of Commercial Zirconium Carbide Powders: Densification Behavior and Mechanical Properties

    PubMed Central

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; Khasanov, Oleg L.; Haines, Christopher D.; Olevsky, Eugene A.

    2015-01-01

    Commercial zirconium carbide (ZrC) powder is consolidated by Spark Plasma Sintering (SPS). Processing temperatures range from 1650 to 2100 °C. Specimens with various density levels are obtained when performing single-die SPS at different temperatures. Besides the single-die tooling setup, a double-die tooling setup is employed to largely increase the actual applied pressure to achieve higher densification in a shorter processing time. In order to describe the densification mechanism of ZrC powder under SPS conditions, a power-law creep constitutive equation is utilized, whose coefficients are determined by the inverse regression of the obtained experimental data. The densification of the selected ZrC powder is shown to be likely associated with grain boundary sliding and dislocation glide controlled creep. Transverse rupture strength and microhardness of sintered specimens are measured to be up to 380 MPa and 24 GPa, respectively. Mechanical properties are correlated with specimens’ average grain size and relative density to elucidate the co-factor dependencies. PMID:28793550

  4. Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit; Kumara, Chamara; Nylén, Per

    2017-08-01

    Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.

  5. Fabrication of thermoelectric modules with Mg2Si and SrRuO3 by the spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Nishio, Keishi; Sawada, Yukie; Arai, Koya; Sakamoto, Tatsuya; Kogo, Yasuo; Iida, Tsutomu

    2012-06-01

    Thermoelectric (TE) modules with a π structure were fabricated by the spark plasma sintering method. The modules were composed of SrRuO3 for the p-type semiconductor, Mg2Si for the n-type semiconductor, and Ni for the electrodes. The SrRuO3 powder was synthesized using the metal-citric-acid complex decomposition method. Mg2Si bulk prepared by meltquenching was ground into powder and sieved to a particle size of 75 μm or less. To obtain the sintered body of SrRuO3, the powder was sintered using spark plasma sintering (SPS). For SPS, the precursor powder was placed in a graphite die and kept at that temperature under a uni-axial pressure of 50 MPa and in vacuum conditions (less than 7 Pa). After sintering by SPS, the ceramic sample was annealed at 1573K in air because the SrRuO3 was slightly reduced during the SPS process in the graphite die. These TE sintered bodies were cut and polished. The dimensions of the samples used for fabrication of the p-type parts of the TE modules were 4.50×9.50×7.45 mm3 and those for the n-type parts were 5.50×11.45×7.45 mm3. Pressed Ni powder was put between these TE materials and the Ni electrodes in order to connect them together, and electrical power was passed through the electrodes from the SPS equipment. The output power under temperature differences ΔT ranging from 100 to 500 K was measured. The open-circuit voltage, maximum output current and maximum output power increased with increasing temperature difference ΔT. The open-circuit voltage of the single module was 91.0 mV, and the maximum output current and maximum output power were 5000 mA and 110 mW at ΔT=500 K, respectively.

  6. Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.

    2018-02-01

    The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.

  7. Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2017-09-01

    High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.

  8. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders.

    PubMed

    Hinson, Shannon R; Lopez-Chiriboga, A Sebastian; Bower, James H; Matsumoto, Joseph Y; Hassan, Anhar; Basal, Eati; Lennon, Vanda A; Pittock, Sean J; McKeon, Andrew

    2018-03-01

    Glycine receptor alpha-1 subunit (GlyRα1)-immunoglobulin G (IgG) is diagnostic of stiff-person syndrome (SPS) spectrum but has been reported detectable in other neurologic diseases for which significance is less certain. To assess GlyRα1-IgGs as biomarkers of SPS spectrum among patients and controls, specimens were tested using cell-based assays (binding [4°C] and modulating [antigen endocytosing, 37°C]). Medical records of seropositive patients were reviewed. GlyRα1-IgG (binding antibody) was detected in 21 of 247 patients with suspected SPS spectrum (8.5%) and in 8 of 190 healthy subject sera (4%) but not CSF. Among 21 seropositive patients, 20 had confirmed SPS spectrum clinically, but 1 was later determined to have a functional neurologic disorder. Sera from 9 patients with SPS spectrum , but not 7 controls, nor the functional patient, caused GlyRα1 modulation (100% specificity). SPS spectrum phenotypes included progressive encephalomyelitis with rigidity and myoclonus (PERM) (8), classic SPS (5), stiff limb (5), stiff trunk (1), and isolated exaggerated startle (hyperekplexia, 1). Neuropsychiatric symptoms present in 12 patients (60%) were anxiety (11), depression (6), and delirium (3). Anxiety was particularly severe in 3 patients with PERM. Objective improvements in SPS neurologic symptoms were recorded in 16 of 18 patients who received first-line immunotherapy (89%, 9/10 treated with corticosteroids, 8/10 treated with IVIg, 3/4 treated with plasma exchange, and 1 treated with rituximab). Treatment-sparing maintenance strategies were successful in 4 of 7 patients (rituximab [2/3], azathioprine [1/1], and mycophenolate [1/3]). GlyRα1-modulating antibody improves diagnostic specificity for immunologically treatable SPS spectrum disorders. This study provides Class IV evidence that GlyRα1-modulating antibody accurately identifies patients with treatable SPS spectrum disorders.

  9. Influence of spark plasma sintering parameters on magnetic properties of FeCo alloy

    NASA Astrophysics Data System (ADS)

    Albaaji, Amar J.; Castle, Elinor G.; Reece, Mike J.; Hall, Jeremy P.; Evans, Sam L.

    2018-04-01

    Equiatomic FeCo alloys with average particle size of 24 μm were sintered using spark plasma sintering (SPS) system at sintering temperatures of 1100, 800, and 850 °C for heating rates 50, 100, 300 °C/min by applying pressure of 50 MPa instantly at room temperature for sintering time of 5 and 15 minutes. The highest saturation induction was achieved at SPS conditions of 50 MPa, 50 °C/min, 1100 °C, without dwelling, of value 2.39 T. The saturation induction was improved with extending sintering time, the coercivity was higher in samples sintered at a fast heating rate in comparison to the slowest heating rate.

  10. Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Han, Hyuksu; Voisin, Christophe; Guillemet-Fritsch, Sophie; Dufour, Pascal; Tenailleau, Christophe; Turner, Christopher; Nino, Juan C.

    2013-01-01

    Barium titanate (BT) ceramics with Ba/Ti ratios of 0.95 and 1.00 were synthesized using spark plasma sintering (SPS) technique. Dielectric spectroscopy (frequency range from 40 Hz to 1 MHz and temperature range from 300 K to 30 K) was performed on those ceramics (SPS BT). SPS BT showed extremely high permittivity up to ˜105, which can be referred to as colossal permittivity, with relatively low dielectric loss of ˜0.05. Data analyses following Debye relaxation and universal dielectric response models indicate that the origin of colossal permittivity in BT ceramics is the result of a hopping polaron within semiconducting grains in combination with interfacial polarization at the insulating grain boundary. Furthermore, the contributions of each polarization mechanism to the colossal permittivity in SPS BT, such as a hopping polarization, internal barrier layer capacitance effect, and electrode effect, were estimated.

  11. Electrostatic protection of the solar power satellite and rectenna. Part 1: Protection of the solar power satellite

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several features of the interactions of the Solar Power Satellite (SPS) with its space environment are examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets are calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Lastly, magnetic shielding of the satellite is considered to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. Subsequent design changes will substantially alter the basic conclusions.

  12. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    PubMed

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  13. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziendzikowska, K., E-mail: k.dziendzikowska@gmail

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20 nm AgNPs (groups Ag I and Ag II) and 200 nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Agmore » I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24 h, 7 days and 28 days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28 days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. - Highlights: • Assessment of the toxic effects of AgNPs/AgSPs on the regulation of male reproductive function • AgNP −/AgSP-induced alterations of sex steroid status in male Wistar rats. • Regulation of male reproductive function is differently modulated by AgNPs and AgSPs. • Endocrine-mediated toxicity of AgNPs/AgSPs increased over time. • AgNPs/AgSPs alter male reproductive function regulation at the transcriptional level.« less

  14. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  15. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lianjun, E-mail: wanglj@dhu.edu.cn; Jiang, Wan

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered,more » amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.« less

  16. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods

    PubMed Central

    Ghasali, Ehsan; Fazili, Ali; Alizadeh, Masoud; Shirvanimoghaddam, Kamyar; Ebadzadeh, Touradj

    2017-01-01

    In this research, the mechanical properties and microstructure of Al-15 wt % TiC composite samples prepared by spark plasma, microwave, and conventional sintering were investigated. The sintering process was performed by the speak plasma sintering (SPS) technique, microwave and conventional furnaces at 400 °C, 600 °C, and 700 °C, respectively. The results showed that sintered samples by SPS have the highest relative density (99% of theoretical density), bending strength (291 ± 12 MPa), and hardness (253 ± 23 HV). The X-ray diffraction (XRD) investigations showed the formation of TiO2 from the surface layer decomposition of TiC particles. Scanning electron microscopy (SEM) micrographs demonstrated uniform distribution of reinforcement particles in all sintered samples. The SEM/EDS analysis revealed the formation of TiO2 around the porous TiC particles. PMID:29088114

  17. Analysis of the SPS Long Term Orbit Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velotti, Francesco; Bracco, Chiara; Cornelis, Karel

    2016-06-01

    The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessitymore » to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.« less

  18. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  19. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k

  20. Tailored Net-Shape Powder Composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Khaleghi, Evan Aryan

    This dissertation investigates the ability to produce net-shape and tailored composites in spark plasma sintering (SPS), with an analysis of how grain growth, densification, and mechanical properties are affected. Using alumina and four progressively anisotropic dies, we studied the impact of specimen shape on densification. We found specimen shape had an impact on overall densification, but no impact on localized properties. We expected areas of the specimen to densify differently, or have higher grain growth, based on current anisotropy in the specimen during sintering, and preliminary results indicated this, but further investigation showed this did not occur. Overall average grain size and porosity decreased as shape complexity increased. In Fe-V-C steel, we mechanical alloyed two rapidly solidified powders, and used spark sintering to retain the properties imparted during the rapid solidification. We noticed VC grains being produced during densification, which improved the final properties. We conducted spark plasma extrusion (SPE) of aluminum to understand the effect on microstructure. We found, through an analysis of the grain structure, that SPE did have a grain deformation potential, and grain size was severely decreased compared to conventional sintering. Dynamic recrystallization did not occur, due to the reduced temperatures we were able to extrude with SPS. Finally, we examined whether there were particular sintering conditions for SPS that reduced the complexity of the grain growth and porosity relationship to one similar to conventional sintering, of the form G = k G0 ε -1/. We found that although a reasonable case could be made for free sintering, as found in the literature, for hot-pressing and SPS the conditions required go against the common knowledge in grain growth and densification kinetics. We were able to fit our data very well to the model, but the correlated results do not make physical sense.

  1. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  2. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO3 Ceramics Fabricated by Spark Plasma Sintering

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO3 ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO3 ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe3+ to Fe2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO3 ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage. PMID:28772626

  3. Fast synthesis and consolidation of porous FeAl by pressureless Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Dudina, D. V.; Brester, A. E.; Anisimov, A. G.; Bokhonov, B. B.; Legan, M. A.; Novoselov, A. N.; Skovorodin, I. N.; Uvarov, N. F.

    2017-07-01

    We report one-step fast synthesis and consolidation of iron aluminide FeAl of high open porosity by pressureless reactive Spark Plasma Sintering (SPS). The starting material of the Fe-40at.%Al composition was a mixture of an iron powder with an average particle diameter of 4 μm and an aluminum powder with an average particle diameter of 6 μm. The rationale behind the choice of the SPS as a processing technique and fine and comparable sizes of the two reactants for the synthesis of high-open porosity FeAl was realization of fast full chemical conversion of Fe and Al into single-phase FeAl reducing the time available for the compact shrinkage. According to the XRD phase analysis, single-phase FeAl compacts formed after SPS at 800 and 900°C. These compacts had open porosities of 41 and 46%, respectively. The transverse rupture strength of the compacts sintered at 700-900°C was found to change little with the sintering temperature in the selected range.

  4. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generatemore » a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.« less

  5. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    The Department of Energy (DOE) is currently conducting an evaluation of approaches to provide energy to meet demands in the post-2000 time period. The Satellite Power System (SPS) is a candidate for producing significant quantities of base-load power using solar energy as the source. The SPS concept is illustrated for a solar photovoltaic concept. A satellite, located at geosynchronous orbit, converts solar energy to dc electrical energy using large solar arrays. This study is a continuing effort to provide system definition data to aid in the evaluation of the SPS concept.

  6. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  7. Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering

    PubMed Central

    Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene

    2018-01-01

    Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165

  8. Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of Pennisetum species.

    PubMed

    Li, H C; Lu, H B; Yang, F Y; Liu, S J; Bai, C J; Zhang, Y W

    2015-03-31

    Sucrose phosphate synthase (SPS) is an enzyme used by higher plants for sucrose synthesis. In this study, three primer sets were designed on the basis of known SPS sequences from maize (GenBank: NM_001112224.1) and sugarcane (GenBank: JN584485.1), and five novel SPS genes were identified by RT-PCR from the genomes of Pennisetum spp (the hybrid P. americanum x P. purpureum, P. purpureum Schum., P. purpureum Schum. cv. Red, P. purpureum Schum. cv. Taiwan, and P. purpureum Schum. cv. Mott). The cloned sequences showed 99.9% identity and 80-88% similarity to the SPS sequences of other plants. The SPS gene of hybrid Pennisetum had one nucleotide and four amino acid polymorphisms compared to the other four germplasms, and cluster analysis was performed to assess genetic diversity in this species. Additional characterization of the SPS gene product can potentially allow Pennisetum to be exploited as a biofuel source.

  9. Effect of Synthesis Procedure on Thermoelectric Property of SiGe Alloy

    NASA Astrophysics Data System (ADS)

    Li, Jing; Han, Jun; Jiang, Tao; Luo, Lili; Xiang, Yongchun

    2018-05-01

    SiGe thermoelectric material has been synthesized by ball milling combined with hot pressing (HP) or spark plasma sintering (SPS). Effects of ball milling time, powder to ball weight ratio and sintering method on microstructure and thermoelectric properties of SiGe are studied. The results show that longer ball milling time leads to decreased density and worse electrical properties. In the sintering process, SPS results in much larger density and better electrical properties than HP. The Si0.795Ge0.2B0.005 sample prepared by 2 h ball milling combined with SPS obtains a maximum power factor of 3.0 mW m-1 K-2 at 860 K and ZT of 0.95 at 1000 K.

  10. Electric power processing, distribution, management and energy storage

    NASA Astrophysics Data System (ADS)

    Giudici, R. J.

    1980-07-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  11. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  12. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Novák, Pavel; Průša, Filip

    2018-01-01

    The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al)2 phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS) resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm) with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C. PMID:29614046

  13. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    DTIC Science & Technology

    2014-01-13

    strength nanocrystalline Mg-alloys via cryomilling and spark - plasma - sintering , 2) demonstrate the unveil evidence of nanotwins in nanocrystalline...Christopher Melnyk, Wei H. Kao, Jenn-Ming Yang. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy, Journal of Materials...accomplished several important milestones: 1) manufacture of high strength nanocrystalline Mg-alloys via cryomilling and spark plasma sintering (SPS

  14. Safety and Liability Aspects of Solar Power Satellites

    NASA Astrophysics Data System (ADS)

    Jakhu, Ram S.; Howard, Diane

    2010-09-01

    It is an undisputed fact that the global need for energy will grow exponentially in the future and the search for alternative energy sources will intensify. One alternative source will be space based solar power(SSP), to be collected in space and transmitted to Earth by solar power satellites(SPS). As the appropriate technology becomes proven, the economic and operational viability for the launch of SPS system(s) will, to a large extent, depend upon favorable political and legal determinants. One of such determinants relates to safety risks and possible liability of the operator(s) of SPS system(s). This paper identifies safety risks of, and analyses liability for, damage caused by SPS. Issues, specifically analyzed mainly under international law, include damage caused(in outer space, in the air and on the Earth) by electronic transmission, and mechanisms to manage liability including inter alia insurance coverage, waivers of liability, and dispute settlement mechanisms. The paper contains recommendations for the concerned governments(and their respective private entities) to take regulatory precautions in order to avoid the risks of possible liability and thereby enhances the chances for launch and operation of SPS system(s).

  15. Engineering aspect of the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) with a sounding rocket

    NASA Astrophysics Data System (ADS)

    Nagatomo, M.; Kaya, N.; Matsumoto, H.

    1984-10-01

    One type of problem arising in connection with an evaluation of the feasibility of the Solar Power Satellite (SPS) and the definition of suitable SPS designs is related to environmental issues. Questions exist, for instance, regarding the interaction between microwave power and the upper atmosphere. The present investigation is concerned with the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX), which is a space plasma experiment originally devoted to the research of space plasma physics. MINIX is eventually to observe possible effects of a strong microwave field in the ionospheric environment. The scientific requirements of the MINIX are discussed, taking into account functional and experimental conditions. Attention is also given to rocket characteristics, experimental design, the payload, the inflight experiment configuration, and details concerning the conduction of the experiment.

  16. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  17. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE PAGES

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    2017-09-14

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  18. Numerical study of the process parameters in spark plasma sintering (sps)

    NASA Astrophysics Data System (ADS)

    Chowdhury, Redwan Jahid

    Spark plasma sintering (SPS) is one of the most widely used sintering techniques that utilizes pulsed direct current together with uniaxial pressure to consolidate a wide variety of materials. The unique mechanisms of SPS enable it to sinter powder compacts at a lower temperature and in a shorter time than the conventional hot pressing, hot isostatic pressing and vacuum sintering process. One of the limitations of SPS is the presence of temperature gradients inside the sample, which could result in non-uniform physical and microstructural properties. Detailed study of the temperature and current distributions inside the sintered sample is necessary to minimize the temperature gradients and achieve desired properties. In the present study, a coupled thermal-electric model was developed using finite element codes in ABAQUS software to investigate the temperature and current distributions inside the conductive and non-conductive samples. An integrated experimental-numerical methodology was implemented to determine the system contact resistances accurately. The developed sintering model was validated by a series of experiments, which showed good agreements with simulation results. The temperature distribution inside the sample depends on some process parameters such as sample and tool geometry, punch and die position, applied current and thermal insulation around the die. The role of these parameters on sample temperature distribution was systematically analyzed. The findings of this research could prove very useful for the reliable production of large size sintered samples with controlled and tailored properties.

  19. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  20. Spark plasma sintering of highly dense fine-grained mineral aggregates

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Suzuki, T. S.; Sakka, Y.; Hiraga, T.

    2017-12-01

    To obtain highly dense and fine-grained mineral aggregates, which are suitable for laboratory measurements of their physical and chemical properties, we applied spark plasma sintering (SPS) to synthetic mineral powders and powders originated from naturally derived crystals. SPS is an emerging consolidation technique which has been applied to various metals and ceramics and rarely to geomaterials (e.g., Guignard et al., 2011). The technique uses spark plasma created by a pulse direct current during heat treatment of powders in a graphite die. It has been found that the technique provides better densification with little grain growth during sintering compared to a conventional sintering technique in many materials. To obtain ideal highly dense fine-grained materials, it is essential to prepare starting powders suitable for the sintering and also to find appropriate sintering conditions of applied uniaxial pressures, pulsed current patterns and heating rates. We prepared synthetic mineral powers through solid state reaction of source powders at high temperature well developed by our group (Koizumi et al. 2010). We also used jet milling at wet condition and subsequent elutriation to prepare olivine powders with sub-micron particle size and equiaxed particle shape. At heating rate of ≦10°C/min and an achievement of highest temperature of 1150°C, Fe-free olivine aggregate with average grain size of 200 nm with porosity of 0.003% was obtained. We also could obtain olivine aggregate, which was sintered from powders of Horoman peridotite, with average grain size of 500 nm and porosity of 0.2%. We will show results of other minerals including major rock forming minerals of the Earth's crust.

  1. Ion Sources

    NASA Astrophysics Data System (ADS)

    Haseroth, Helmut; Hora, Heinrich

    1993-03-01

    Ion sources for accelerators are based on plasma configurations with an extraction system in order to gain a very high number of ions within an appropriately short pulse and of sufficiently high charge number Z for advanced research. Beginning with the duoplasmatron, all established ion sources are based on low-density plasmas, of which the electron beam ionization source (EBIS) and the electron cyclotron resonance (ECR) source are the most advanced; for example they result in pulses of nearly 6 × 108 fully stripped sulfur ions per pulse in the Super Proton Synchrotron (SPS) at CERN with energies of 200 GeV/u. As an example of a forthcoming development, we are reporting about the lead ion source for the same purpose. Contrary to these cases of low-density plasmas, where a rather long time is always necessary to generate sufficiently high charge states, the laser ion source uses very high density plasmas and therefore produced, for example in 1983, single shots of Au51+ ions of high directivity with energies above 300 MeV within 2 ns irradiation time of a gold target with a medium-to-large CO2 laser. Experiments at Dubna and Moscow, using small-size lasers, produced up to one million shots with 1 Hz sequence. After acceleration by a linac or otherwise, ion pulses of up to nearly 5 × 1010 ions of C4+ or Mg12+ with energies in the synchrotrons of up to 2 GeV/u were produced. The physics of the laser generation of the ions is most complex, as we know from laser fusion studies, including non-linear dynamic and dielectric effects, resonances, self-focusing, instabilities, double layers, and an irregular pulsation in the 20 ps range. This explains not only what difficulties are implied with the laser ion source, but also why it opens up a new direction of ion sources.

  2. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).

    PubMed

    Gu, Y W; Khor, K A; Cheang, P

    2004-08-01

    Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.

  3. A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders

    PubMed Central

    Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo

    2010-01-01

    A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases. PMID:27877354

  4. Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics

    NASA Astrophysics Data System (ADS)

    Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.

    2008-12-01

    Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.

  5. Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.

    2015-01-01

    The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed samples due to RTA in correlation with their phase composition and microstructure were analyzed and discussed.

  6. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  7. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  8. From strangeness enhancement to quark-gluon plasma discovery

    NASA Astrophysics Data System (ADS)

    Koch, Peter; Müller, Berndt; Rafelski, Johann

    2017-11-01

    This is a short survey of signatures and characteristics of the quark-gluon plasma in the light of experimental results that have been obtained over the past three decades. In particular, we present an in-depth discussion of the strangeness observable, including a chronology of the experimental effort to detect QGP at CERN-SPS, BNL-RHIC, and CERN-LHC.

  9. SPS Beam Steering for LHC Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Bartosik, Hannes; Cornelis, Karel

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towardsmore » a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.« less

  10. Power from space for use on earth: An emerging global option

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1989-01-01

    The concept of the Earth as a closed ecological system is addressed from the point of view of the availability and use of energy from space and its potential influence on the economies of both developed and developing countries. The results of past studies of the solar power satellite (SPS) are reviewed, and the current international activities exploring various aspects of an SPS are mentioned. The functions of an SPS, including collection of solar energy in orbit, conversion to an intermediate form of energy, transmission of energy from orbit to Earth, and conversion to useful energy in the most appropriate form are discussed. Directions for future developments are addressed including a suggested planning framework. Salient aspects of SPS technologies are presented, and the potential benefits of the uses of lunar materials for the SPS construction are outlined. Scenarios within the context of international participation in a global SPS system are presented. The conclusion is drawn that an SPS system is one of the few promising, globally applicable power generation options that has the potential to meet energy demands in the 21st Century and to achieve the inevitable transition to inexhaustible and renewable energy sources.

  11. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  12. Processing and Characterization of Porous Ti2AlC with Controlled Porosity and Pore Size

    DTIC Science & Technology

    2012-09-11

    fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size on the room temperature elastic moduli...pressureless- sintered without NaCl pore former, or fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size...as well as several samples sintered using spark plasma sintering (SPS). Furthermore, we demon- strate that the developed methodology can be implemented

  13. Economic and demographic issues related to deployment of the Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Baldwin, T. E.; Hill, L. G.; Santini, D. J.; Stenehjem, E. J.

    1978-01-01

    Growth in energy consumption stimulated interest in exploitation of renewable sources of electric energy. One technology that was proposed is the Satellite Power System (SPS). Before committing the U.S. to such a large program, the Department of Energy and the National Aeronautics and Space Administration are jointly participating in an SPS Concept Development and Evaluation Program. This white paper on industrial and population relocation is part of the FY 78 preliminary evaluation of related socio-economic issues. Results of four preliminary assessment activities are documented.

  14. An evaluation of UO2-CNT composites made by SPS as an accident tolerant nuclear fuel pellet and the feasibility of SPS as an economical fabrication process for the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Cartas, Andrew R.

    The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.

  15. Reduction of calcium flux from the extracellular region and endoplasmic reticulum by amorphous nano-silica particles owing to carboxy group addition on their surface.

    PubMed

    Onodera, Akira; Yayama, Katsutoshi; Morosawa, Hideto; Ishii, Yukina; Tsutsumi, Yasuo; Kawai, Yuichi

    2017-03-01

    Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.

  16. Pulsed arc plasma jet synchronized with drop-on-demand dispenser

    NASA Astrophysics Data System (ADS)

    Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.

    2017-04-01

    This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.

  17. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes tomore » be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)« less

  18. Fabrication Processes and Mechanical Behavior of CNT/Metal Nanocomposites

    DTIC Science & Technology

    2013-12-01

    process, were investigated and applied for fabrication of CNT/Cu and CNT/Ni nanocomposite powders. The spark plasma sintering process was applied... spark plasma sintering process to fabricate CNT/NiTi and CNT/Al-Cu nanocomposites. It is confirmed that the CNTs were homogeneously dispersed in NiTi...can be seen in Figure 1-1. The CNT/NiTi composite powders were consolidated by spark plasma sintering (SPS, Dr. Sinter Lab., Sumitomo). The CNT/NiTi

  19. Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi

    2017-03-01

    Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.

  20. Microstructure and Mechanical Behavior of Amorphous Al-Cu-Ti Metal Foams Synthesized by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Li, Maoyuan; Lu, Lin; Dai, Zhen; Hong, Yiqiang; Chen, Weiwei; Zhang, Yuping; Qiao, Yingjie

    Amorphous Al-Cu-Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10mm. The SPS process was conducted at the pressure of 200 and 300MPa with the temperature of 653-723K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al-Cu-Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al-Ti, Al-Cu and Al-Cu-Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.

  1. Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.

    The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less

  2. Degradation resistance of 3Y-TZP ceramics sintered using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Chintapalli, R.; Marro, F. G.; Valle, J. A.; Yan, H.; Reece, M. J.; Anglada, M.

    2009-09-01

    Commercially available tetragonal zirconia powder doped with 3 mol% of yttria has been sintered using spark plasma sintering (SPS) and has been investigated for its resistance to hydrothermal degradation. Samples were sintered at 1100, 1150, 1175 and 1600 °C at constant pressure of 100 MPa and soaking for 5 minutes, and the grain sizes obtained were 65, 90, 120 and 800 nm, respectively. Samples sintered conventionally with a grain size of 300 nm were also compared with samples sintered using SPS. Finely polished samples were subjected to artificial degradation at 131 °C for 60 hours in vapour in auto clave under a pressure of 2 bars. The XRD studies show no phase transformation in samples with low density and small grain size (<200 nm), but significant phase transformation is seen in dense samples with larger grain size (>300 nm). Results are discussed in terms of present theories of hydrothermal degradation.

  3. Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process

    DOE PAGES

    Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.

    2017-04-21

    The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less

  4. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  5. The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyoung Hun; Shim, Kwang Bo

    2003-01-15

    The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less

  6. Photovoltaic and thermal energy conversion for solar powered satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  7. Cooking behavior and starch digestibility of NUTRIOSE® (resistant starch) enriched noodles from sweet potato flour and starch.

    PubMed

    Menon, Renjusha; Padmaja, G; Sajeev, M S

    2015-09-01

    The effect of a resistant starch source, NUTRIOSE® FB06 at 10%, 15% and 20% in sweet potato flour (SPF) and 5% and 10% in sweet potato starch (SPS) in reducing the starch digestibility and glycaemic index of noodles was investigated. While NUTRIOSE (10%) significantly reduced the cooking loss in SPF noodles, this was enhanced in SPS noodles and guar gum (GG) supplementation reduced CL of both noodles. In vitro starch digestibility (IVSD) was significantly reduced in test noodles compared to 73.6g glucose/100g starch in control SPF and 65.9 g in SPS noodles. Resistant starch (RS) was 54.96% for NUTRIOSE (15%)+GG (1%) fortified SPF noodles and 53.3% for NUTRIOSE (5%)+GG (0.5%) fortified SPS noodles, as against 33.8% and 40.68%, respectively in SPF and SPS controls. Lowest glycaemic index (54.58) and the highest sensory scores (4.23) were obtained for noodles with 15% NUTRIOSE+1% GG. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanisms of Superplastic Deformation of Nanocrystalline Silicon Carbide Ceramics

    DTIC Science & Technology

    2012-08-01

    These included the following: standard hot isostatic pressing (HIP), spark plasma sintering , ultra-high pressure HIP, and a multianvil pressure...96.8 2270 Multianvil apparatus 1200 3000 94.8 1130 Note: SPS = spark plasma sintering . 2 Figure 1. Ultra-high pressure HIP; 1600 °C, 980...strain rate sensitivity and flow stress. 15. SUBJECT TERMS silicon carbide, nanostructure, sintering , hot isostatic pressing, hardness 16. SECURITY

  9. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    PubMed Central

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713

  10. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  11. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics.

    PubMed

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-06

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  12. Standard precautions and infection control, medical students' knowledge and behavior at a Saudi university: the need for change.

    PubMed

    Amin, Tarek Tawfik; Al Noaim, Khalid Ibrahim; Bu Saad, Mohammed Ahmed; Al Malhm, Turki Ahmed; Al Mulhim, Abdullah Abdulaziz; Al Awas, Marwah Abdulaziz

    2013-04-21

    No previous studies have reported the knowledge of Saudi medical students about Standard Precautions (SPs) and infection control. The objectives of this study were to assess medical students' knowledge in clinical years at King Faisal University, Saudi Arabia about SPs' and to explore their attitudes toward the current curricular/training in providing them with effective knowledge and necessary skills with regard to SPs. This cross sectional study targeted students in clinical stage at College of Medicine, King Faisal University, Saudi Arabia. A pre-tested anonymous self administered data collection form was used. Inquires about students' characteristics, general concepts of infection control/SPs, hand hygiene, personal protective equipment, sharp injuries and disposal, and care of health providers were included. The main source of information for each domain was also inquired. The second part dedicated to explore the attitudes toward the curricular and teaching relevant to SPs. A total of 251 students were included. Knowledge scores in all domains were considerably low, 67 (26.7%) students scored ? 24 (out of 41points) which was considered as an acceptable level of knowledge, 22.2% in 4th year, 20.5% in 5th year and 36.8% in 6th year. Sharp injuries, personal protective equipment and health care of the providers showed the least knowledge scores. The main sources of knowledge were self learning, and informal bed side practices The majority of students' believed that the current teaching and training are insufficient in providing them with the necessary knowledge and skills regarding SPs. The overall knowledge scores for SPs were low especially in the domains of hand hygiene, sharp management, and personal protective equipment reflecting insufficient and ineffective instructions received by medical students through the current curriculum posing them vulnerable to health facilities related infections. Proper curricular reform and training are required to protect students and their patients.

  13. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  14. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    PubMed

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Improved mechanical properties of thermoelectric (Bi 0.2Sb 0.8) 2Te 3 by nanostructuring

    DOE PAGES

    Lavrentev, M. G.; Osvenskii, V. B.; Parkhomenko, Yu. N.; ...

    2016-06-01

    Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.

  16. Improved mechanical properties of thermoelectric (Bi 0.2Sb 0.8) 2Te 3 by nanostructuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentev, M. G.; Osvenskii, V. B.; Parkhomenko, Yu. N.

    Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.

  17. New materials through a variety of sintering methods

    NASA Astrophysics Data System (ADS)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  18. A strategy to optimize the thermoelectric performance in a spark plasma sintering process

    PubMed Central

    Chiu, Wan-Ting; Chen, Cheng-Lung; Chen, Yang-Yuan

    2016-01-01

    Spark plasma sintering (SPS) is currently widely applied to existing alloys as a means of further enhancing the alloys’ figure of merit. However, the determination of the optimal sintering condition is challenging in the SPS process. This report demonstrates a systematic way to independently optimize the Seebeck coefficient S and the ratio of electrical to thermal conductivity (σ/κ) and thus achieve the maximum figure of merit zT = S2(σ/κ)T. Sb2−xInxTe3 (x = 0–0.2) were chosen as examples to validate the method. Although high sintering temperature and pressure are helpful in enhancing the compactness and electrical conductivity of pressed samples, the resultant deteriorated Seebeck coefficient and increasing thermal conductivity eventually offset the benefit. We found that the optimal sintering temperature coincides with temperatures at which the maximum Seebeck coefficient begins to degrade, whereas the optimal sintering pressure coincided with the pressure at which the σ/κ ratio reaches a maximum. Based on this principle, the optimized sintering conditions were determined, and the zT of Sb1.9In0.1Te3 is raised to 0.92 at 600 K, showing an approximately 84% enhancement. This work develops a facile strategy for selecting the optimal SPS sintering condition to further enhance the zT of bulk specimens. PMID:26975209

  19. Processing of uranium dioxide nuclear fuel pellets using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ge, Lihao

    Uranium dioxide (UO2), one of the most common nuclear fuels, has been applied in most of the nuclear plant these days for electricity generation. The main objective of this research is to introduce a novel method for UO 2 processing using spark plasma sintering technique (SPS). Firstly, an investigation into the influence of processing parameters on densification of UO2 powder during SPS is presented. A broad range of sintering temperatures, hold time and heating rates have been systematically varied to investigate their influence on the sintered pellet densification process. The results revealed that up to 96% theoretical density (TD) pellets can be obtained at a sintering temperature of 1050 °C for 30s hold time and a total run time of only 10 minutes. A systematic study is performed by varying the sintering temperature between 750°C to 1450°C and hold time between 0.5 min to 20 min to obtain UO2 pellets with a range of densities and grain sizes. The microstructure development in terms of grain size, density and porosity distribution is investigated. The Oxygen/Uranium (O/U) ratio of the resulting pellets is found to decrease after SPS. The mechanical and thermal properties of UO2 are evaluated. For comparable density and grain size, Vickers hardness and Young's modulus are in agreement with the literature value. The thermal conductivity of UO2 increases with the density but the grain size in the investigated range has no significant influence. Overall, the mechanical and thermal properties of UO2 are comparable with the one made using conventional sintering methods. Lastly, the influence of chromium dioxide (Cr2O3) and zirconium diboride (ZrB2) on the grain size of doped UO 2 fuel pellet is performed to investigate the feasibility of producing large-grain-size nuclear fuel using SPS. The benefits of using SPS over the conventional sintering of UO2 are summarized. The future work of designing macro-porous UO2 pellet and thorium dioxide (ThO 2) cored UO2 pellet is also proposed.

  20. The capabilities of monochromatic EC neutrino beams with the SPS upgrade

    NASA Astrophysics Data System (ADS)

    Espinoza, C.; Bernabéu, J.

    2008-05-01

    The goal for future neutrino facilities is the determination of the U(e3) mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We conclude that the SPS upgrade to 1000 GeV is crucial to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline. We compare the physics potential for two different configurations: I) γ = 90 and γ = 195 (maximum achievable at present SPS) to Frejus; II) γ = 195 and γ = 440 (maximum achievable at upgraded SPS) to Canfranc. The main conclusion is that, whereas the gain in the determination of U(e3) is rather modest, setup II provides much better sensitivity to CP violation.

  1. Energy dependence of CP-violation reach for monochromatic neutrino beam

    NASA Astrophysics Data System (ADS)

    Bernabéu, José; Espinoza, Catalina

    2008-06-01

    The ultimate goal of future neutrino facilities is the determination of CP violation in neutrino oscillations. Besides | U (e 3) | ≠ 0, this will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We compare the physics potential for two different configurations: (I) γ = 90 and γ = 195 (maximum achievable at present SPS) to Frejus; (II) γ = 195 and γ = 440 (maximum achievable at upgraded SPS) to Canfranc. We conclude that the SPS upgrade to 1000 GeV is important to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline.

  2. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  3. A novel in situ synthesis of SiBCN-Zr composites prepared by a sol-gel process and spark plasma sintering.

    PubMed

    Miao, Yang; Yang, Zhihua; Liang, Bin; Li, Quan; Chen, Qingqing; Jia, Dechang; Cheng, Yi-Bing; Zhou, Yu

    2016-08-09

    In the work reported here, SiBCN amorphous powders were first prepared by a mechanical alloying technique, employing cubic silicon, graphite and hexagonal boron nitride powders as raw materials. Zirconia was then introduced via sol-gel methods. The resulting powder composite was then consolidated via SPS sintering. The SPS sintering sample was evaluated using XRD, SEM and TEM. XRD reveals a chemical transformation wherein amorphous BN(C) and ZrO2 form the primary ZrC and ZrB2 phases after SPS processing along with SiC and BN(C). Thereafter ZrC reacts with BN(C) completely to form ZrB2. The reaction starts at the temperature of 1500 °C and is complete at the temperature of 1900 °C. The fracture toughness of the sintered composites reaches 4.9 ± 0.2 MPa m(1/2) due to the presence of the laminated structure of the BN(C) phase.

  4. Evaluation of consolidation method on mechanical and structural properties of ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Frelek-Kozak, M.; Kurpaska, L.; Wyszkowska, E.; Jagielski, J.; Jozwik, I.; Chmielewski, M.

    2018-07-01

    In the present work, the effects of the fabrication method on mechanical and structural properties of 12%Cr, 2%W, 0.25%Ti, 0.25%Y2O3 steels were investigated. Materials obtained by Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and Hot Extrusion (HE) methods were studied. The microstructure was characterized by using Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction analysis (EBSD). Mechanical properties of the studied samples were evaluated by using Vickers micro hardness HV0.1, Small Punch Test (SPT) and nanoindentation (NI) methods. The analysis revealed that samples manufactured via HIP and SPS processes exhibit very similar properties, whereas SPS method produces material with slightly lower hardness. In addition, significantly lower mechanical properties of the specimens after HE process were observed. The study described in this article addresses also the problems of mechanical parameters measured in micro- and nano-scale experiments and aims to identify possible pitfalls related to the use of various manufacturing technologies.

  5. 2000 NRL Review

    DTIC Science & Technology

    2000-01-01

    laser- plasma , laser-electron beam, and laser- matter interactions. The division also has an 11 m3 space chamber capable of reproducing the near- Earth ...Airborne, Real Aperture Radar M. Sletten and D.J. McLaughlin ENERGETIC PARTICLES, PLASMAS , AND BEAMS 123 Arabian Gulf Clutter Measurements with the AN/SPS...During the years since the war, the areas of study at the Laboratory have in- cluded basic research concerning the Navy’s envi- ronments of Earth , sea

  6. Spark plasma sintering synthesis of Ni1-xZnxFe2O4 ferrites: Mössbauer and catalytic study

    NASA Astrophysics Data System (ADS)

    Velinov, Nikolay; Manova, Elina; Tsoncheva, Tanya; Estournès, Claude; Paneva, Daniela; Tenchev, Krassimir; Petkova, Vilma; Koleva, Kremena; Kunev, Boris; Mitov, Ivan

    2012-08-01

    Nickel-zinc ferrite nanoparticles, Ni1-xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0) were prepared by combination of chemical precipitation and spark plasma sintering (SPS) techniques and conventional thermal treatment of the obtained precursors. The phase composition and structural properties of the obtained materials were investigated by X-ray diffraction and Mössbauer spectroscopy and their catalytic activity in methanol decomposition was tested. A strong effect of reaction medium leading to the transformation of ferrites to a complex mixture of different iron containing phases was detected. A tendency of formation of Fe-carbide was found for the samples synthesized by SPS, while predominantly iron-nickel alloys ware registered in TS obtained samples. The catalytic activity and selectivity in methanol decomposition to CO and methane depended on the current phase composition of the obtained ferrites, which was formed by the influence of the reaction medium.

  7. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. Themore » facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.« less

  8. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung

    2015-03-01

    Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.

  9. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  10. Effect of Spark Plasma Sintering on the Structure and Properties of Ti1−xZrxNiSn Half-Heusler Alloys

    PubMed Central

    Downie, Ruth A.; Popuri, Srinivas R.; Ning, Huanpo; Reece, Mike J.; Bos, Jan-Willem G.

    2014-01-01

    XNiSn (X = Ti, Zr and Hf) half-Heusler alloys have promising thermoelectric properties and are attracting enormous interest for use in waste heat recovery. In particular, multiphase behaviour has been linked to reduced lattice thermal conductivities, which enables improved energy conversion efficiencies. This manuscript describes the impact of spark plasma sintering (SPS) on the phase distributions and thermoelectric properties of Ti0.5Zr0.5NiSn based half-Heuslers. Rietveld analysis reveals small changes in composition, while measurement of the Seebeck coefficient and electrical resistivities reveals that all SPS treated samples are electron doped compared to the as-prepared samples. The lattice thermal conductivities fall between 4 W·m−1·K−1 at 350 K and 3 W·m−1·K−1 at 740 K. A maximum ZT = 0.7 at 740 K is observed in a sample with nominal Ti0.5Zr0.5NiSn composition. PMID:28788234

  11. Effect of Spark-Plasma-Sintering Conditions on Tensile Properties of Aluminum Matrix Composites Reinforced with Multiwalled Carbon Nanotubes (MWCNTs)

    NASA Astrophysics Data System (ADS)

    Chen, B.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K.

    2017-04-01

    In this study, aluminum (Al) matrix composites containing 2 wt.% multiwalled carbon nanotubes (CNTs) were fabricated by powder metallurgy using high-energy ball milling (HEBM), spark plasma sintering (SPS), and subsequent hot extrusion. The effect of SPS conditions on the tensile properties of CNT/Al composites was investigated. The results showed that composites with well-dispersed CNTs and nearly full-density CNT/Al can be obtained. During HEBM, CNTs were shortened, inserted into welded Al powder particles, bonded to Al, and still stable without CNT-Al reaction. After consolidation, Al4C3 phases formed in composites under different sintering conditions. With the increase of sintering temperature and holding time, the strength decreased. Conversely, the ductility and toughness noticeably increased. As a result, a good balance between strength (367 MPa in ultimate tensile strength) and ductility (13% in elongation) was achieved in the as-extruded CNT/Al composite sintered at 630°C with a holding time of 300 min.

  12. Patient position alters attenuation effects in multipinhole cardiac SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca

    2015-03-15

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic andmore » a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The position-dependent changes were removed with attenuation correction. Conclusions: Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing <1.5. Inhomogeneous attenuating media cause much larger changes to occur when the source is translated. Changes in SPS of up to six were seen in an anthropomorphic phantom for axial translations. Attenuation correction removes the position-dependent changes in attenuation.« less

  13. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  14. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  15. Renaissance of the ~1 TeV Fixed-Target Program

    NASA Astrophysics Data System (ADS)

    Adams, T.; Appel, J. A.; Arms, K. E.; Balantekin, A. B.; Conrad, J. M.; Cooper, P. S.; Djurcic, Z.; Dunwoodie, W.; Engelfried, J.; Fisher, P. H.; Gottschalk, E.; de Gouvea, A.; Heller, K.; Ignarra, C. M.; Karagiorgi, G.; Kwan, S.; Loinaz, W. A.; Meadows, B.; Moore, R.; Morfín, J. G.; Naples, D.; Nienaber, P.; Pate, S. F.; Papavassiliou, V.; Petrov, A. A.; Purohit, M. V.; Ray, H.; Russ, J.; Schwartz, A. J.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Spitz, J.; Syphers, M. J.; Tait, T. M. P.; Vannucci, F.

    This document describes the physics potential of a new fixed-target program based on a ~1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  16. Renaissance of the ~ 1-TeV Fixed-Target Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; /Florida State U.; Appel, J.A.

    2011-12-02

    This document describes the physics potential of a new fixed-target program based on a {approx}1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  17. The Development of a Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace and Defense Applications

    DTIC Science & Technology

    2013-03-01

    latter strategy. Mixtures of titanium powders and TiO2 particles were employed as starting materials and consolidated by spark - plasma sintering and...were consolidated in a carbon container installed in the spark - plasma sintering (SPS) equipment under vacuum condition (ɞ Pa) at a temperature of...evaluation of tensile properties of the wrought pure titanium materials consolidated by sintering and hot extrusion process, a theoretical approach using

  18. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    DTIC Science & Technology

    2015-08-17

    performance of these promising materials by 50%. Ballmilling and spark plasma sintering (SPS) processes were investigated to try to lower the thermal...samples fabricated through the spark plasma sintering ”, Mater Renew Sustain Energy, 3, 31-1 31-6 (2014). DOI: 10.1007/s40243-014-0031-8 9. O. Sologub...for doping of foreign elements (therefore no migration problems) is very striking. In further development, addition of Al as a sintering element was

  19. Physics at the SPS.

    PubMed

    Gatignon, L

    2018-05-01

    The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K + → π + νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.

  20. Physics at the SPS

    NASA Astrophysics Data System (ADS)

    Gatignon, L.

    2018-05-01

    The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K+ → π+νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.

  1. Initial technical environmental, and economic evaluation of space solar power concepts. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The SPS concepts which appear to be technically feasible are discussed in terms of the economic viability and competitive costs with other energy sources. The concepts discussed include: power station, microwave reception and conversion, space construction and maintenance, space transportation, and program costs and analysis. The conclusions presented include: (1) The maximum output of an individual microwave transmission link to earth is about 5 GW. (2) The mass of 10 GW SPS is between 47,000,000 and 124,000,00 kg. (3) The silicon solar cell arrays make up well over half the weight and cost of the satellite. (4) The SPS in equatorial orbit will be eclipsed by the earth and by other satellites.

  2. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder.

    PubMed

    Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa

    2018-05-26

    Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

  3. Advances on Propulsion Technology for High-Speed Aircraft. Volume 1

    DTIC Science & Technology

    2007-03-01

    sprayed Cu -3% Ag alloys , ITSC 2001 - Singapour - 6dit6e par C.C. Berndt - K.A. Khor et E.F. Lugscheider - ASM-TSS - Materials park - OH-USA, p.633... spraying of CuCrNb powder and a more advanced approach which combines the advantages of a high temperature, low density and porous carbon-fibre...physical vapour deposition (EB-PVD), vacuum plasma spraying (VPS) and solution plasma spraying (SPS) [38-41]. A segmented sub-scale model combustor with

  4. Cryomilled and spark plasma sintered titanium: the evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Kozlík, Jiří; Becker, Hanka; Harcuba, Petr; Stráský, Josef; Janeček, Milos

    2017-05-01

    Bulk ultra-fine grained (UFG) commercially pure Ti was prepared by cryogenic milling in liquid argon and subsequent spark plasma sintering (SPS). During cryogenic milling, individual powder particles are repetitively severely deformed by attrition forces. Powder particles were not significantly refined, but due to severe repetitive plastic deformation, ultra-fine grained microstructure emerges within each powder particle. Cryogenic milling can be therefore considered as a specific severe plastic deformation (SPD) method. Compactization of cryomilled powder by SPS technique (also referred to as field assisted sintering technique - FAST) requires significantly lower sintering temperatures and shorter sintering times for successful compaction when compared to any other sintering technique. This is crucial for maintaining the UFG microstructure due to its limited thermal stability. Several specimens were prepared by varying processing parameters, in particular the sintering temperature. The microstructure of powders and compacted samples was observed by scanning electron microscopy (SEM). Increased sintering temperature results in recrystallization and grain growth. A trade-off relationship between the density of compacted material and grain size was identified. Microhardness of the material was found to depend on residual porosity rather than grain size. This contribution presents cryogenic milling and spark plasma sintering as a viable alternative for achieving UFG microstructure in commercially pure Ti.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumurugoti, P.; Clark, B.M.; Edwards, D.J.

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffractionmore » (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.« less

  6. Precursor Routes to Complex Ternary Intermetallics: Single-Crystal and Microcrystalline Preparation of Clathrate-I Na8Al8Si38 from NaSi + NaAlSi.

    PubMed

    Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S

    2015-06-01

    Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.

  7. Comparing Strengthening Mechanisms of Vapor Grown Carbon Fiber vs. Titanium Carbide Reinforced Powder Metallurgy Titanium Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Franco, Staub; Kondoh, Katsuyoshi; Umeda, Junko; Imai, Hisashi

    In this experiment, TILOP-45 commercially pure titanium powder was mixed with vapor grown carbon fibers (VGCF) to form a 200 g 0.5 wt. % VGCF solution. After adding 0.15 grams of cle-safe oil, a rocking mill shook the sample at 60.0 Hz for 2 hours, resulting in satisfactory dispersion of VGCF on the titanium powder surface. The powder solution was compacted by spark plasma sintering (SPS) and hot extruded. The SPS temperature was set to either 800 °C or 1,000 °C and the pressure to 35 kN. Using an extrusion ratio of 13:1 and ram speed of 3 mm/s, the titanium billet, preheated to either 800 °C or 1,000 °C, was deformed to a 10 mm diameter rod. All four permutations of SPS and extrusion temperatures were tested. Microstructure, grain size, hardness, and oxygen/nitrogen/carbon content were observed. Also, a UTS experiment was done followed by SEM observations of the fractured surfaces.

  8. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.

    PubMed

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-15

    SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  9. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.

    PubMed

    Kim, Song-Yi; Lee, Gwang-Yeob; Park, Gyu-Hyeon; Kim, Hyeon-Ah; Lee, A-Young; Scudino, Sergio; Prashanth, Konda Gokuldoss; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2018-01-18

    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al 84 Ni 7 Co 3 Dy 6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

  10. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  11. Effect of Spray Distance on Microstructure and Tribological Performance of Suspension Plasma-Sprayed Hydroxyapatite-Titania Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Haifeng; Geng, Xin; Wang, Jingjing; Xiao, Jinkun; Zhu, Peizhi

    2016-10-01

    Hydroxyapatite (HA)-titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA-TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH- and CO3 2- was observed, which was favorable for the biomedical applications.

  12. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    PubMed

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014. Copyright © 2013 Wiley Periodicals, Inc.

  13. Satellite power system (SPS) financial/management scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The problems of financing and managing a large-scale, lengthy SPS program reduce to the key questions of ownership and control. Ownership (that is, the sources of capital) may be governmental, corporate, or individual; control may be exercised by a government agency, a government-sanctioned monopoly, or a competitive corporation. Since the R and D phase and the commercial implementation phase of an SPS program are qualitatively very different with respect to length of time before return-on-investment, we have considered two general categories of SPS organizations: (1) organizations capable of carrying out a complete SPS program, from R and D through commercialization;more » (2) organizations capable of carrying out commercial implementation only. Six organizational models for carrying out the complete SPS program have been examined in some detail: 1) existing government agencies (DOE, NASA, etc.); 2) a new government agency, patterned after TVA; 3) a taxpayer stock corporation, a new concept; 4) a trust fund supported by energy taxes, patterned after the financing of the Interstate Highway System; 5) a federal agency financed by bonds, patterned after the Federal National Mortgage Association; and 6) the staging company, a new concept, already in the early stages of implementation as a private venture. Four additional organizational forms have been considered for commercial implementation of SPS: 7) a government-chartered monopoly, patterned after the Communications Satellite Corporation; 8) the consortium model, already widely used for large-scale projects; 9) the corporate socialism model, patterned after such developments as the transcontinental railroad; and 10) the universal capitalism model, a concept partially implemented in the 1976 legislation creating Employee Stock Ownership Plans. A number of qualitative criteria for comparative assessment of these alternatives have been developed.« less

  14. Can we rely on simulated patients' satisfaction with their consultation for assessing medical students' communication skills? A cross-sectional study.

    PubMed

    Gude, T; Grimstad, H; Holen, A; Anvik, T; Baerheim, A; Fasmer, O B; Hjortdahl, P; Vaglum, P

    2015-12-18

    In medical education, teaching methods offering intensive practice without high utilization of faculty resources are needed. We investigated whether simulated patients' (SPs') satisfaction with a consultation could predict professional observers' assessment of young doctors' communication skills. This was a comparative cross-sectional study of 62 videotaped consultations in a general practice setting with young doctors who were finishing their internship. The SPs played a female patient who had observed blood when using the toilet, which had prompted a fear of cancer. Immediately afterwards, the SP rated her level of satisfaction with the consultation, and the scores were dichotomized into satisfaction or dissatisfaction. Professional observers viewed the videotapes and assessed the doctors' communication skills using the Arizona Communication Interview Rating Scale (ACIR). Their ratings of communication skills were dichotomized into acceptable versus unacceptable levels of competence. The SPs' satisfaction showed a predictive power of 0.74 for the observers' assessment of the young doctors and whether they reached an acceptable level of communication skills. The SPs' dissatisfaction had a predictive power of 0.71 for the observers' assessment of an unacceptable communication level. The two assessment methods differed in 26% of the consultations. When SPs felt relief about their cancer concern after the consultation, they assessed the doctors' skills as satisfactory independent of the observers' assessment. Accordance between the dichotomized SPs' satisfaction score and communication skills assessed by observers (using the ACIR) was in the acceptable range. These findings suggest that SPs' satisfaction scores may provide a reliable source for assessing communication skills in educational programs for medical trainees (students and young doctors). Awareness of the patient's concerns seems to be of vital importance to patient satisfaction.

  15. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    PubMed Central

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-01-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. PMID:26404010

  16. Study of distribution of Carbon nanotube in Al-CNT nanocomposite synthesized via Spark-Plasma sintering

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Laha, T.

    2018-03-01

    In the present study, first ever attempt has been made to develop physically functionalized multiwalled carbon nanotube (MWCNT) reinforced Al-11 5Si alloy nanocomposites synthesized via novel consolidation technique viz spark plasma sintering (SPS). There is a recent trend in employing carbon nanotubes (CNTs), an allotrope of carbon, as reinforcement for high strength structural metallic composite materials, as these cylindrical nano-fibers poses extremely unique mechanical properties such as very high elastic modulus (~ 300 GPa to 1.5 TPa) as well as tensile strength (~150 GPa). However, it has remained as an ever-existing problem to achieve a porosity-free nanocrystalline matrix with homogenously dispersed CNTs, owing to the very high coagulation tendency of CNTs. The gas-atomized, spherical Al-11.5Si alloy powders (1-8 μm) were subjected to high energy ball milling for the purpose of achieving nanocrystallinity in the powders. The improvement in MWCNT dispersion was effort by treating the MWCNTs with a physical surfactant, sodium dodecyl sulfate (SDS). The nano-grained ball-milled Al-Si powders with varying MWCNT content (0.5 and 1 wt%) were consolidated via spark plasma sintering in order to retain the nano-sized grains in the Al-Si matrix, attributed to the faster and highly effective sintering kinetics of the sintering techniques. FESEM study shows problem of MWCNT agglomeration persists by addition of non-SDS treated as pristine MWCNT in the composite. After treated with SDS, MWCNTs are well separated out from each other and as a result of that good morphological and mechanical property such as high hardness value obtained after analysis. Detailed TEM study of the 0.5wt% MWCNT reinforced SPS nanocomposite revealed that the distribution of CNTs in the matrix. Mechanical analysis study of the nanocomposite attributes higher hardness in case of SDS treated CNT reinforced nanocomposite owing to less agglomeration problem of the CNT in the matrix. Nano-tribological data attributed variation of surface roughness after consolidated by SPS.

  17. Nanoblast synthesis and consolidation of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) under Spark plasma sintering conditions.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Zhen, Yongda; Tok, Alfred

    2009-01-01

    Four-cation nanograined strontium and magnesium doped lanthanum gallate (La0.8Sr0.2) (Ga0.9Mg0.1)O(3-delta) (LSGM) and its composite with 2 wt% of ceria (LSGM-Ce) were prepared. Morphologically homogeneous nanoreactors, i.e., complex intermediate metastable aggregates of desired composition were assembled by spray atomization technique, and subsequently loaded with nanoparticles of highly energetic C3H6N6O6. Rapid nanoblast calcination technique was applied and the final composition was synthesized within the preliminary localized volumes of each single nanoreactor on the first step of spark plasma treatment. Subsequent SPS consolidations of nanostructured extremely active LSGM and LSGM-Ce powders were achieved by rapid treatment under pressures of 90-110 MPa. This technique provided the heredity of the final structure of nanosize multimetal oxide, allowed the prevention of the uncontrolled agglomeration during multicomponent aggregates assembling, subsequent nanoblast calcination, and final ultra-rapid low-temperature SPS consolidation of nanostructured ceramics. LaSrGaMgCeO(3-delta) nanocrystalline powder consisting of approximately 11 nm crystallites was consolidated to LSGM-Ce nanoceramic with average grain size of approximately 14 nm by low-temperature SPS at 1250 degrees C. Our preliminary results indicate that nanostructured samples of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) with 2 wt% of ceria composed of approximataley 14 nm grains can exhibit giant magnetoresistive effect in contrast to the usual paramagnetic properties measured on the samples with larger grain size.

  18. Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nasser, Ali; Kassem, Mohamed A.; Elsayed, Ayman; Gepreel, Mohamed A.; Moniem, Ahmed A.

    2016-11-01

    WC-W2C/ZrO2 nanocomposites were synthesized by pressure-less sintering (PS) and spark plasma sintering (SPS) of tungsten carbide/yttria-stabilized tetragonal zirconia, WC/TZ-3Y. Prior to sintering, WC/TZ-3Y powders were totally ball-milled for 20 and 120 h to obtain targeted nano (N) and nano-nano (N-N) structures, indicated by transmission electron microscopy and powder x-ray diffraction (PXRD). The milled powders were processed via PS at temperatures of 1773 and 1973 K for 70 min and SPS at 1773 K for 10 min. PXRD as well as SEM-EDS indicated the formation of WC-W2C/ZrO2 composites after sintering. The mechanical properties were characterized via Vicker microhardness and nanoindentation techniques indicating enhancements for sufficiently consolidated composites with high W2C content. The effects of reducing particle sizes on phase transformation, microstructure and mechanical properties are reported. In general, the composites based on the N structure showed higher microhardness than those for N-N structure, except for the samples PS-sintered at 1773 K. For instance, after SPS at 1773 K, the N structure showed a microhardness of 18.24 GPa. Nanoindentation measurements revealed that nanoscale hardness up to 22.33 and 25.34 GPa and modulus of elasticity up to 340 and 560 GPa can be obtained for WC-W2C/ZrO2 nanocomposites synthesized by the low-cost PS at 1973 K and by SPS at 1773 K, respectively.

  19. Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin

    NASA Astrophysics Data System (ADS)

    Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul

    2017-10-01

    Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.

  20. High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan

    2012-02-01

    Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.

  1. Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn.

    PubMed Central

    Wang, Dan; Zhao, Jietang; Hu, Bing; Li, Jiaqi; Qin, Yaqi; Chen, Linhuan; Qin, Yonghua

    2018-01-01

    Sucrose phosphate synthase (SPS, EC 2.4.1.14) is a key enzyme that regulates sucrose biosynthesis in plants. SPS is encoded by different gene families which display differential expression patterns and functional divergence. Genome-wide identification and expression analyses of SPS gene families have been performed in Arabidopsis, rice, and sugarcane, but a comprehensive analysis of the SPS gene family in Litchi chinensis Sonn. has not yet been reported. In the current study, four SPS gene (LcSPS1, LcSPS2, LcSPS3, and LcSPS4) were isolated from litchi. The genomic organization analysis indicated the four litchi SPS genes have very similar exon-intron structures. Phylogenetic tree showed LcSPS1-4 were grouped into different SPS families (LcSPS1 and LcSPS2 in A family, LcSPS3 in B family, and LcSPS4 in C family). LcSPS1 and LcSPS4 were strongly expressed in the flowers, while LcSPS3 most expressed in mature leaves. RT-qPCR results showed that LcSPS genes expressed differentially during aril development between cultivars with different hexose/sucrose ratios. A higher level of expression of LcSPS genes was detected in Wuheli, which accumulates higher sucrose in the aril at mature. The tissue- and developmental stage-specific expression of LcSPS1-4 genes uncovered in this study increase our understanding of the important roles played by these genes in litchi fruits. PMID:29473005

  2. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  3. Solvent-Based Synthesis of Nano-Bi0.85Sb0.15 for Low-Temperature Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Kaspar, K.; Fritsch, K.; Habicht, K.; Willenberg, B.; Hillebrecht, H.

    2017-01-01

    In this study we show a preparation method for nanostructured Bi0.85Sb0.15 powders via a chemical reduction route in a polyol medium, yielding material with particle sizes of 20-150 nm in scalable amounts. The powders were consolidated by spark plasma sintering (SPS) in order to maintain the nanostructure. To investigate influence of the sinter process, the powders were characterized by x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM) measurements before and after SPS. Transport properties, Seebeck effect, and thermal conductivity were determined in the low temperature range below 300 K. The samples showed excellent thermal conductivity of 2.3-2.6 W/m × K at 300 K and Seebeck coefficients from -97 μV/K to -107 μV/K at 300 K with a maximum of -141 μV/K at 110 K, thus leading to ZT values of up to 0.31 at room temperature. The results show that Bi-Sb-alloys are promising materials for low-temperature applications. Our wet chemical approach gives access to scalable amounts of nano-material with increased homogeneity and good thermoelectric properties after SPS.

  4. Searching for minimum in dependence of squared speed-of-sound on collision energy

    DOE PAGES

    Liu, Fu -Hu; Gao, Li -Na; Lacey, Roy A.

    2016-01-01

    Experimore » mental results of the rapidity distributions of negatively charged pions produced in proton-proton ( p - p ) and beryllium-beryllium (Be-Be) collisions at different beam momentums, measured by the NA61/SHINE Collaboration at the super proton synchrotron (SPS), are described by a revised (three-source) Landau hydrodynamic model. The squared speed-of-sound parameter c s 2 is then extracted from the width of rapidity distribution. There is a local minimum (knee point) which indicates a softest point in the equation of state (EoS) appearing at about 40 A  GeV/ c (or 8.8 GeV) in c s 2 excitation function (the dependence of c s 2 on incident beam momentum (or center-of-mass energy)). This knee point should be related to the searching for the onset of quark deconfinement and the critical point of quark-gluon plasma (QGP) phase transition.« less

  5. Thermal emission property of solid solution Gd{sub 1-x}Nd{sub x}B{sub 6} (x=0, 0.6, 0.8)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing Zhang, Jiu; Hong Bao, Li; Lin Zhou, Shen, E-mail: zjiuxing@bjut.edu.cn, E-mail: Baolihong_10@yahoo.com.cn, E-mail: zhoushenlin@emails.bjut.edu.cn

    2011-07-01

    In this paper, to further explore the excellent emission properties of rare earth boride cathode, herein we present the synthesis, characterization and properties of polycrystalline Nd{sub 1-x}Gd{sub x}B{sub 6} (x = 0, 0.6, 0.8) bulk via arc plasma and reactive SPS. (author)

  6. Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering.

    PubMed

    Musa, Clara; Licheri, Roberta; Orrù, Roberto; Cao, Giacomo; Sciti, Diletta; Silvestroni, Laura; Zoli, Luca; Balbo, Andrea; Mercatelli, Luca; Meucci, Marco; Sani, Elisa

    2016-06-18

    In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1-2.4) in the 1000-1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.

  7. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    PubMed

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  8. Sliding Wear Response of Nanostructured YSZ Suspension Plasma-Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Kossman, S.; Chicot, D.; Decoopman, X.; Iost, A.; van Gorp, A.; Meillot, E.; Puchi-Cabrera, E. S.; Santana, Y. Y.; Staia, M. H.

    2014-12-01

    Nanostructured yttria-stabilized zirconia coatings for applications in high-temperature environments can be deposited by suspension plasma spraying (SPS) techniques. The present research has been conducted in order to study the sliding wear response of a SPS ZrO2-8% mol. Y2O3 coating (75 μm in thickness) deposited onto a Haynes 230 substrate, using pin-on-disc tests. Some of the coated samples were subsequently heat-treated for 1 h at 300 and 600 °C. Samples characterization prior and after the wear tests was carried out by SEM, EDS, XRD and optical profilometry techniques. Instrumented indentation was employed to determine elastic modulus and hardness. The results have shown that the as-sprayed and heat-treated samples experienced severe wear (10-13 m3/Nm) and the worst wear performance corresponded to the sample heat treated at 600 °C. Such a behavior could be related to both the structural changes that took place during heat treatment and the nature and level of the residual stresses in the coatings. In general, the morphologies of the wear tracks observed by SEM have shown a smoothing of the surface, brittle fracture, smearing and grain pull-out.

  9. Tensile Properties and Fracture Characteristics of Nanostructured Copper and Cu-SiC Nanocomposite Produced by Mechanical Milling and Spark Plasma Sintering Process

    NASA Astrophysics Data System (ADS)

    Akbarpour, M. R.

    2018-03-01

    The presence of large grains within nanometric and ultrafine grain matrix is an effective method in order to enhance strength while keeping the high ductility of metals. For this purpose, in this research, spark plasma sintering (SPS) was used to consolidate milled Cu and Cu-SiC powders. In SPS process, local sparks with high temperature between particles take place and locally lead to intense grain growth, and therefore, this method has the ability to produce bimodal grain structures in copper and copper-based composites. Microstructural and mechanical studies showed ≈ 185 and ≈ 437 nm matrix grain sizes, high tensile yield strength values of ≈ 188.4 and ≈ 296.9 MPa, and fracture strain values of 15.1 and 6.7% for sintered Cu and Cu-4 vol.% SiC nanocomposite materials, respectively. The presence of nanoparticles promoted the occurrence of static recrystallization and decreased the fraction of coarse grains in microstructure. The high tensile properties of the produced materials are attributed to fine grain size, homogenous dispersion of nanoparticles and retarded grain boundary migration during sintering.

  10. Development of a TiAl Alloy by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Couret, Alain; Voisin, Thomas; Thomas, Marc; Monchoux, Jean-Philippe

    2017-12-01

    Spark plasma sintering (SPS) is a consolidated powder metallurgy process for which the powder sintering is achieved through an applied electric current. The present article aims to describe the method we employed to develop a TiAl-based alloy adjusted for this SPS process. Owing to its enhanced mechanical properties, this alloy was found to fully match the industrial specifications for the aeronautic and automotive industries, which require a high strength at high temperature and a reasonably good ductility at room temperature. A step-by-step method was followed for this alloy development. Starting from a basic study on the as-SPSed GE alloy (Ti-48Al-2Cr-2Nb) in which the influence of the microstructure was studied, the microstructure-alloy composition relationships were then investigated to increase the mechanical properties. As a result of this study, we concluded that tungsten had to be the major alloying element to improve the resistance at high temperature and a careful addition of boron would serve the properties at room temperature. Thus, we developed the IRIS alloy (Ti-48Al-2W-0.08B). Its microstructure and mechanical properties are described here.

  11. Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets

    NASA Astrophysics Data System (ADS)

    Lopes, Denise Adorno; Benarosch, Anna; Middleburgh, Simon; Johnson, Kyle D.

    2017-12-01

    U3Si2 has been considered as an alternative fuel for Light Water Reactors (LWRs) within the Accident Tolerant Fuels (ATF) initiative, begun after the Fukushima-Daiichi Nuclear accidents. Its main advantages are high thermal conductivity and high heavy metal density. Despite these benefits, U3Si2 presents an anisotropic crystallographic structure and low solubility of fission products, which can result in undesirable effects under irradiation conditions. In this paper, spark plasma sintering (SPS) of U3Si2 pellets is studied, with evaluation of the resulting microstructure. Additionally, exploiting the short sintering time in SPS, a molybdenum doped pellet was produced to investigate the early stages of the Mo-U3Si2 interaction, and analyze how this fission product is accommodated in the fuel matrix. The results show that pellets of U3Si2 with high density (>95% TD) can be obtained with SPS in the temperature range of 1200°C-1300 °C. Moreover, the short time employed in this technique was found to generate a unique microstructure for this fuel, composed mainly of closed nano-pores (<1 μm) and small average grain size (∼4.5 μm). The addition of Mo (1.5 at%) demonstrated no solubility of Mo in the U3Si2 matrix. The interaction of this fission product with the fuel matrix at 1200 °C formed, in the early stages, the stoichiometric U2Mo3Si4 ternary as well as precipitates of free uranium with small quantities of dissolved Si and Mo at the front of the reaction.

  12. Caught in the Act? Prevalence, Predictors, and Consequences of Physician Detection of Unannounced Standardized Patients

    PubMed Central

    Franz, Carol E; Epstein, Ron; Miller, Katherine N; Brown, Arthur; Song, Jun; Feldman, Mitchell; Franks, Peter; Kelly-Reif, Steven; Kravitz, Richard L

    2006-01-01

    Objective To examine the prevalence, predictors, and consequences of physician detection of unannounced standardized patients (SPs) in a study of the impact of direct-to-consumer advertising on treatment for depression. Data Sources Eighteen trained SPs were randomly assigned to conduct 298 unannounced audio-recorded visits with 152 primary care physicians in three U.S. cities between May 2003 and May 2004. Study Design Randomized controlled trial using SPs. SPs portrayed six roles, created by crossing two clinical conditions (major depression or adjustment disorder) with three medication request scripts (brand-specific request, general request for an antidepressant, or no request). Data Collection Within 2 weeks following the visit, physicians completed a form asking whether they “suspected” conducting an office visit with an SP during the past 2 weeks; 296 (99 percent) detection forms were returned. Physicians provided contextual data, a Clinician Background Questionnaire. SPs filled in a Standardized Patient Reporting Form for each visit and returned all written prescriptions and medication samples to the laboratory. Principal Findings Depending on the definition, detection rates ranged from 5 percent (unambiguous detection) to 23.6 percent (any degree of suspicion) of SP visits. In 12.8 percent of encounters, physicians accurately detected the SP before or during the visit but they only rarely believed their suspicions affected their clinical behavior. In random effects logistic regression analyses controlling for role, actor, physician, and practice factors, suspected visits occurred less frequently in HMO settings than in solo practice settings (p<.05). Physicians more frequently referred SPs to mental health professionals when visits aroused high suspicion (p<.05). Conclusions Trained actors portrayed patient roles conveying mood disorders at low levels of detection. There was some evidence for differential treatment of detected standardized patients by physicians with regard to referrals but not antidepressant prescribing or follow-up recommendations. Systematic assessment of detection is recommended when SPs are used in studies of clinical process and quality of care. PMID:17116121

  13. Caught in the act? Prevalence, predictors, and consequences of physician detection of unannounced standardized patients.

    PubMed

    Franz, Carol E; Epstein, Ron; Miller, Katherine N; Brown, Arthur; Song, Jun; Feldman, Mitchell; Franks, Peter; Kelly-Reif, Steven; Kravitz, Richard L

    2006-12-01

    Objective. To examine the prevalence, predictors, and consequences of physician detection of unannounced standardized patients (SPs) in a study of the impact of direct-to-consumer advertising on treatment for depression. Data Sources. Eighteen trained SPs were randomly assigned to conduct 298 unannounced audio-recorded visits with 152 primary care physicians in three U.S. cities between May 2003 and May 2004. Study Design. Randomized controlled trial using SPs. SPs portrayed six roles, created by crossing two clinical conditions (major depression or adjustment disorder) with three medication request scripts (brand-specific request, general request for an antidepressant, or no request). Data Collection. Within 2 weeks following the visit, physicians completed a form asking whether they "suspected" conducting an office visit with an SP during the past 2 weeks; 296 (99 percent) detection forms were returned. Physicians provided contextual data, a Clinician Background Questionnaire. SPs filled in a Standardized Patient Reporting Form for each visit and returned all written prescriptions and medication samples to the laboratory. Principal Findings. Depending on the definition, detection rates ranged from 5 percent (unambiguous detection) to 23.6 percent (any degree of suspicion) of SP visits. In 12.8 percent of encounters, physicians accurately detected the SP before or during the visit but they only rarely believed their suspicions affected their clinical behavior. In random effects logistic regression analyses controlling for role, actor, physician, and practice factors, suspected visits occurred less frequently in HMO settings than in solo practice settings (p<.05). Physicians more frequently referred SPs to mental health professionals when visits aroused high suspicion (p<.05). Conclusions. Trained actors portrayed patient roles conveying mood disorders at low levels of detection. There was some evidence for differential treatment of detected standardized patients by physicians with regard to referrals but not antidepressant prescribing or follow-up recommendations. Systematic assessment of detection is recommended when SPs are used in studies of clinical process and quality of care.

  14. Summary of LSST systems analysis and integration task for SPS flight test articles

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1981-02-01

    The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.

  15. Solar power satellites - Technical, social and political implications

    NASA Astrophysics Data System (ADS)

    Knelman, F. H.

    Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.

  16. Design of Multi-Resonant Cavities Based on Metal-Coated Dielectric Nanocylinders

    NASA Astrophysics Data System (ADS)

    Dong, Junyuan; Yu, Guanxia; Fu, Jingjing; Luo, Min; Du, Wenwen

    2018-06-01

    In this paper, the light scattering properties for multiple silver-coated dielectric nanocylinders with the symmetrical distribution were investigated. Based on the transfer matrix method, we derive the general transmission and reflection coefficient matrices for multiple dielectric nanocylinders. When the incident light frequencies are less than the plasma frequencies, the surface plasmons (SPs) appear in the interface between the silver and dielectrics. Numerical simulations show that there are three peaks of absorption cross-section (ACS) in the relationship between the ACS and the frequencies of the incident light, when the distance between the silver-coated dielectric nanocylinders is chosen properly. These SPs resonance peaks are characterised as resonances intrinsic to the cylindrically periodic system corresponding to different inner cavity structures. These multi-resonant cavities may have potential applications in integrated devices, optical sensors and optical storage devices.

  17. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    PubMed

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  18. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  19. Thermoelectric Properties of Silicon Germanium: An In-depth Study to the Reduction of Lattice Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Thompson, Daniel Ross

    The goal of this dissertation will be to demonstrate a new synthesis technique for the current state of the art thermoelectric material for high temperature power generation, silicon germanium (SiGe). This technique is referred to as the single element (SE) spark plasma sintering (SPS) technique because the single elements of silicon, germanium, and their n and p type dopants are alloyed together during the SPS consolidation process. This novel synthesis technique is two orders of magnitude faster than the original technique for alloying this material and one order of magnitude faster than the current technique used for alloying this material. In order to fully demonstrate that the SE SPS technique alloys SiGe several scientific studies and investigations are performed. First, SiGe is alloyed using the current state of the art method, mechanical alloying (MA). Powders of MA SiGe are traditionally consolidated by a conventional hot press (HP). These materials are employed by NASA for deep space power generation on radio-isotope thermoelectric generators (RTGs). Hence, there is readily available published data for MA+HP SiGe used in RTGs. The SiGe powder that is MA by the author is consolidated using the SPS process, MA+SPS. Therefore, an initial study was conducted to ensure that the SPS consolidation process was not having any adverse effects SiGe as compared to the HP technique. Essentially it will be shown that SiGe produced by the MA+HP method and the MA+SPS method are equivalent. This guarantees that the synthesis and characterization techniques used at the complex and advanced materials laboratory (CAML) by the author agree with published standards. Second, once the first study has demonstrated that no adverse effects occur by using the SPS to consolidate SiGe, a study was conducted to show that undoped single elements of silicon and germanium can be alloyed in the SPS. To confirm that undoped SiGe is truly alloyed using the SE SPS technique, the structural properties of the resulting materials were investigated. Based on the densities, x-ray diffraction patterns, derived lattice constants, and Vegard's law it will be shown that the SE SPS method does successfully alloy multiple compositions of undoped SiGe. The third and most important study demonstrated that SiGe alloyed using the SE SPS synthesis technique can be successfully doped to a n and p type thermoelectric (TE) material. This required an investigation of all of the TE transport properties of these materials. A significant investigation and commentary will be provided for the lattice thermal conductivity of SiGe. The need for this investigation arises from the difference in synthesis processes between the traditional MA and the novel SE SPS techniques. The MA powder is already alloyed into micron sized powders that are consolidated by the HP for an extended time (>1 hour), which allows for grain growth. The SE SPS method relies on diffusion being promoted by the electric field assisted sintering technique and occurs over a very short period of time (<30 minutes). Therefore it can not be assumed that grain growth is not affected by the time dependent processes of sintering and diffusion with the SE SPS process. As will be discussed grain size plays a role in the lattice thermal conductivity of SiGe. It is surprising and physically interesting that the MA+HP standards and the SE SPS samples have lattice thermal conductivities that indicate the dominant scattering mechanism is the same. The physical insight provided by the fourth study is made possible by the existence of the new SE SPS synthesis method for SiGe. The MA method is optimized by the addition of GaP to the n-type SiGe materials during processing. The explanation for this optimization is a subject of debate within the community. Although, a staunch conclusion can not be made due to the need for more samples and carrier concentration data, this initial study does indicate that one physical explanation within the debate for the improvement of n-type SiGe with GaP additions is more coherent with scientific experimentation. The fifth study is aimed to provide suggestions for future studies for improving this material. This includes brief investigations on the effects of various nano-structure inclusions on lattice thermal conductivity of SiGe alloys. The study is meant to be used as a tool for future students who wish to investigate the interesting physical properties of this system. (Abstract shortened by UMI.)

  20. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  1. Uranium migration in spark plasma sintered W/UO2 CERMETS

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn

    2018-03-01

    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.

  2. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa

    PubMed Central

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-01-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum. PMID:20421194

  3. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa.

    PubMed

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-06-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum.

  4. Processing of non-oxide ceramics from sol-gel methods

    DOEpatents

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  5. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rice, OsSPS1, shows the importance of sucrose synthesis in pollen germination.

    PubMed

    Hirose, Tatsuro; Hashida, Yoichi; Aoki, Naohiro; Okamura, Masaki; Yonekura, Madoka; Ohto, Chikara; Terao, Tomio; Ohsugi, Ryu

    2014-08-01

    The molecular function of an isoform of sucrose phosphate synthase (SPS) in rice, OsSPS1, was investigated using gene-disruption mutant lines generated by retrotransposon insertion. The progeny of the heterozygote of disrupted OsSPS1 (SPS1(+/-)) segregated into SPS1(+/+), SPS1(+/-), and SPS1(-/-) at a ratio of 1:1:0. This distorted segregation ratio, together with the expression of OsSPS1 in the developing pollen revealed by quantitative RT-PCR analysis and promoter-beta-glucuronidase (GUS) fusion assay, suggested that the disruption of OsSPS1 results in sterile pollen. This hypothesis was reinforced by reciprocal crosses of SPS1(+/-) plants with wild-type plants in which the disrupted OsSPS1 was not paternally transmitted to the progeny. While the pollen grains of SPS(+/-) plants normally accumulated starch during their development, pollen germination on the artificial media was reduced to half of that observed in the wild-type control. Overall, our data suggests that sucrose synthesis via OsSPS1 is essential in pollen germination in rice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li

    2018-03-01

    A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.

  7. The influence of sintering temperature on microstructure and mechanical properties of Ni-Al intermetallics fabricated by SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thömmes, A., E-mail: thoemmes.alexander@gmail.com; Shevtsova, L. I., E-mail: edeliya2010@mail.ru; Laptev, I. S., E-mail: ilya-laptev-nstu@mail.ru

    2015-10-27

    In the present study PN85Yu15 was used as elemental powder to produce a sintered compound with Ni3Al as main phase. The Spark Plasma Sintering (SPS) technique is used to compact the powders. The powder was sintered in a temperature range between 1000°C and 1150°C to observe the influence of the sintering temperature on the microstructure and the mechanical properties. The microstructure was observed with optical microscope (OM), the phase composition was characterized by X-ray diffraction (XRD) technique. Density and microhardness were observed and compared the values with the results of other researchers. The compressive-, density- and microhardness tests show asmore » clear result that with increasing the sintering temperature nearly all properties become better and also the microstructure studies show that porous places become less.« less

  8. Environmental effects and large space systems

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  9. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  10. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity.

    PubMed

    Zhang, L; He, Z Y; Zhang, Y Q; Jiang, Y H; Zhou, R

    2016-10-01

    In this work, interconnected porous Ti-HA biocomposites with enhanced bioactivity, high porosity and compressive strength were prepared by spark plasma sintering (SPS) and space holder method. Pore characteristics, mechanical properties, corrosion behaviors and in vitro bioactivity of the porous Ti-HA were investigated. Results showed that porous Ti-HA with 5-30wt% HA contents possessed not only low elastic modulus of 8.2-15.8GPa (close to that of human bone) but also high compressive strength (86-388MPa). Although the HA partially decomposed and formed secondary phases, the sintered porous Ti-HA can still be good bioactivity. The homogeneity and the thickness of apatite layer increased significantly with the increase of HA. But with the thickness of apatite layer increased, micro-cracks appeared on the surface of porous Ti-30%HA. A model was built to discuss the current distribution and sintering mechanism of HA on Ti matrix during SPS process. It indicated that the excessive addition of HA would deteriorate the sintering quality, thus decreasing the mechanical properties and corrosion resistance. However, the combination of interconnected pore characteristics, low elastic modulus, high compressive strength and enhanced bioactivity might make porous Ti-HA biocomposites prepared by SPS a promising candidate for hard tissue implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    NASA Astrophysics Data System (ADS)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  12. Crystal structure and oxidation behavior of Aluminum-containing stainless steel coatings produced by cryomilling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Abdulaziz, Al-Mathami

    Three austenitic 316LSS alloys containing 0, 2 and 6wt% Al were prepared by cryomilling and Spark Plasma Sintering (SPS). It was shown that aluminum influences the FCC to BCC strain induced phase transformation that occurs during milling and also the FCC recovery during heat treatment and SPS consolidation. The Al-containing SS had accelerated strain induced transformation in the early stage of milling, while the rate of transformation became similar thereafter for all systems. The degree to which the induced BCC structure reverted to FCC was found dependent upon the Al content. Complete recovery of the FCC during heat treatment was achieved between 565 to 594°C for nSS6Al and 605 to 618°C for nSS2Al, depending on the heating rate. However, heat treatment of nSS0Al up to 1000°C resulted in incomplete reversion of the strain induced structure. The SPS process was found to minimally influence the FCC recovery compared to conventional powder consolidation heat treatments. The energy supplied by the SPS process was insufficient to overcome the activation energy governing the rearrangement of dislocations required to complete the FCC recovery. The modification of the composition of 316LSS combined with a grain refinement to the nanometer level was investigated to determine the potential gain in oxidation resistance on coatings produced using the SPS technique. For the base alloy, the increased number of diffusion paths present in nanostructured materials yielded a thicker oxide scale, when compared to conventional SS, and this independently on the tested oxidation temperature (500°C, 800°C and 1000°C). For the nanostructured SS, the scale had an enriched Cr-content which improves the resistance to static and cyclic oxidation, and adherence to the substrate. Aluminum was also added at concentrations of 2 and 6 wt% to the base SS, which caused the scale composition to change to a continuous double layer consisting of an inner Al2O3 and an outer Cr2O3 for both alloys when oxidized at 1000°C and for the 6 wt% Al sample when oxidized at 800°C. The activation energy for oxidation of the nanostructured coatings was approximately half of the one for the conventional SS. The oxidation rate constant for the Al-containing SS alloys studied was found to be lower than for the Al-free grades, which is associated with the Al2O3 layer providing a diffusion barrier. However, the conventional SS had a lower oxidation rate constant than the nanostructured alloy because of the lower volume fraction of grain boundaries providing a slower diffusion of the same elements composing the scale.

  13. Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering

    PubMed Central

    Musa, Clara; Licheri, Roberta; Orrù, Roberto; Cao, Giacomo; Sciti, Diletta; Silvestroni, Laura; Zoli, Luca; Balbo, Andrea; Mercatelli, Luca; Meucci, Marco; Sani, Elisa

    2016-01-01

    In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1–2.4) in the 1000–1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers. PMID:28773611

  14. 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.

    2017-02-01

    Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.

  15. Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Liang-Liang; Qin, Xiao-Ying; Liu, Yong-Fei; Liu, Quan-Zhen

    2015-06-01

    (Sr0.95Gd0.05)TiO3 (SGTO) ceramics are successfully prepared via spark plasma sintering (SPS) respectively at 1548, 1648, and 1748 K by using submicron-sized SGTO powders synthesized from a sol-gel method. The densities, microstructures, and thermoelectric properties of the SGTO ceramics are studied. Though the Seebeck coefficient shows no obvious difference in the case that SPS temperatures range from 1548 K to 1648 K, the electrical conductivity and the thermal conductivity increase remarkably due to the increase in grain size and density. The sample has a density higher than 98% theoretical density as the sintering temperature increases up to 1648 K and shows average grain sizes increasing from ˜ 0.7 μm to 7 μm until 1748 K. As a result, the maximum of the dimensionless figure of merit of ˜ 0.24 is achieved at ˜ 1000 K for the samples sintered at 1648 K and 1748 K, which was ˜ 71% larger than that (0.14 at ˜ 1000 K) for the sample sintered at 1548 K due to the enhancement of the power factor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174292, 51101150, and 11374306).

  16. Correlation between processing conditions, microstructure and charge transport in half-Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makongo, Julien P.A.; Zhou, Xiaoyuan; Misra, Dinesh K.

    2013-05-01

    Five bulk samples of n-type Zr₀.₂₅Hf₀.₇₅NiSn₀.₉₇₅Sb₀.₀₂₅ half-Heusler (HH) alloy were fabricated by reacting elemental powders via (1) high temperature solid state (SS) reaction and (2) mechanical alloying (MA), followed by densification using spark plasma sintering (SPS) and/or hot pressing (HP). A portion of the sample obtained by SS reaction was mechanically alloyed before consolidation by hot pressing (SS–MA–HP). X-ray powder diffraction and transmission electron microscopy studies revealed that all SS specimen (SS–SPS, SS–HP, SS–MA–HP) are single phase HH alloys, whereas the MA sample (MA–SPS) contains metallic nanoprecipitates. Electronic and thermal transport measurements showed that the embedded nanoprecipitates induce a drasticmore » increase in the carrier concentration (n), a large decrease in the Seebeck coefficient (S) and a marginal decrease in the lattice thermal conductivity (κ l) of the MA–SPS sample leading to lower ZT values when compared to the SS–HP samples. Constant values of S are observed for the SS series regardless of the processing method. However, a strong dependence of the carrier mobility (μ), electrical conductivity (σ) and κ l on the processing and consolidation method is observed. For instance, mechanical alloying introduces additional structural defects which enhance electron and phonon scattering leading to moderately low values of μ and large reduction in κ l. This results in a net 20% enhancement in the figure of merit (ZT=0.6 at 775 K). HH specimen of the same nominal composition with higher ZT is anticipated from a combination of SS reaction, MA and SPS (SS–MA–SPS). - Graphical abstract: In half-Heusler alloys, thermopower values are insensitive to processing method, whereas carrier mobility (μ), electrical conductivity (σ), and κ l strongly dependent on the microstructure which in turn is altered by the synthesis, processing and consolidation method. Highlights: • Phase composition of HH alloy strongly depends on the synthesis technique. • Mechanical alloying of elements yields bulk HH alloy with metallic impurity phases. • Thermopower, carrier density, and effective mass of HHs are insensitive to processing conditions. • Mechanical alloying decreases the carrier mobility and lattice thermal conductivity of bulk HH.« less

  17. The SHiP experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; SHiP Collaboration

    2016-01-01

    SHiP is a new general purpose fixed target facility, whose Technical Proposal has been recently submitted to the CERN SPS Committee. In its initial phase, the 400GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 pot in 5years. A dedicated detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c2. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. Another dedicated detector, based on the Emulsion Cloud Chamber technology already used in the OPERA experiment, will allow to perform for the first time measurements of the tau neutrino deep inelastic scattering cross section. Tau neutrinos will be distinguished from tau anti-neutrinos, thus providing the first observation of the tau anti-neutrino.

  18. Satellite Power Systems (SPS) concept definition study. Volume 6: SPS technology requirements and verification

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    Volume 6 of the SPS Concept Definition Study is presented and also incorporates results of NASA/MSFC in-house effort. This volume includes a supporting research and technology summary. Other volumes of the final report that provide additional detail are as follows: (1) Executive Summary; (2) SPS System Requirements; (3) SPS Concept Evolution; (4) SPS Point Design Definition; (5) Transportation and Operations Analysis; and Volume 7, SPS Program Plan and Economic Analysis.

  19. Satellite power systems (SPS) concept definition study. Volume 7: SPS program plan and economic analysis, appendixes

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    Three appendixes in support of Volume 7 are contained in this document. The three appendixes are: (1) Satellite Power System Work Breakdown Structure Dictionary; (2) SPS cost Estimating Relationships; and (3) Financial and Operational Concept. Other volumes of the final report that provide additional detail are: Executive Summary; SPS Systems Requirements; SPS Concept Evolution; SPS Point Design Definition; Transportation and Operations Analysis; and SPS Technology Requirements and Verification.

  20. Cloning and characterization of the Cerasus humilis sucrose phosphate synthase gene (ChSPS1)

    PubMed Central

    Du, Junjie; Mu, Xiaopeng; Wang, Pengfei

    2017-01-01

    Sucrose is crucial to the growth and development of plants, and sucrose phosphate synthase (SPS) plays a key role in sucrose synthesis. To understand the genetic and molecular mechanisms of sucrose synthesis in Cerasus humilis, ChSPS1, a homologue of SPS, was cloned using RT-PCR. Sequence analysis showed that the open reading frame (ORF) sequence of ChSPS1 is 3174 bp in length, encoding a predicted protein of 1057 amino acids. The predicted protein showed a high degree of sequence identity with SPS homologues from other species. Real-time RT-PCR analysis showed that ChSPS1 mRNA was detected in all tissues and the transcription level was the highest in mature fruit. There is a significant positive correlation between expression of ChSPS1 and sucrose content. Prokaryotic expression of ChSPS1 indicated that ChSPS1 protein was expressed in E. coli and it had the SPS activity. Overexpression of ChSPS1 in tobacco led to upregulation of enzyme activity and increased sucrose contents in transgenic plants. Real-time RT-PCR analysis showed that the expression of ChSPS1 in transgenic tobacco was significantly higher than in wild type plants. These results suggested that ChSPS1 plays an important role in sucrose synthesis in Cerasus humilis. PMID:29036229

  1. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    PubMed

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Method to synthesize bulk iron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, Todd; Lavernia, Enrique J.; Zheng, Baolong

    Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600°C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure sparkmore » discharge sintering.« less

  3. Political and legal implications of developing and operating a satellite power system

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1977-01-01

    A number of political and legal implications of developing and operating a satellite power system (SPS) are identified and studied in this report. These include the vulnerability of SPS to actions of adversaries, communications impacts, the legality of an SPS in orbit including on-orbit military protection, alleviation of political concerns about deployment and operation of SPS, programmatic planning for SPS and the interaction of SPS with federal regulatory agencies and major departments. In comparing SPS to terrestrial power stations, it is seen that the political problems are neither clearly larger nor clearly smaller--they are clearly different and they are international in nature. If SPS is to become a reality these problems must be dealt with. Five major issues are identified. These must be resolved in order to obtain international acceptance of SPS. However, this study has found no insurmountable obstacles that would clearly prohibit the deployment, operation and protection of an SPS fleet.

  4. Social Problem-Solving in Early Childhood: Developmental Change and the Influence of Shyness

    PubMed Central

    Walker, Olga L.; Degnan, Kathryn A.; Fox, Nathan A.; Henderson, Heather A.

    2013-01-01

    The purpose of this study was to examine developmental change and the influence of shyness on social problem-solving (SPS). At 24, 36, and 48 months, children (N=570) were observed while interacting with an unfamiliar peer during an SPS task and at 24 months, maternal report of shyness was collected. Results showed that across the full sample, children displayed low but stable levels of withdrawn SPS and increasing levels of SPS competence over development. In addition, results showed that 24-month shyness was associated with high-increasing and high-decreasing withdrawn SPS trajectories compared to the low-increasing withdrawn SPS trajectory. Shyness was also associated with the low-increasing compared to the high-increasing SPS competence trajectory. Findings demonstrate the development of SPS competence over early childhood, as well as the influence of early shyness on this developmental course, with some shy children showing improvement in SPS skills and others continuing to show SPS difficulties over time. PMID:24039325

  5. Optimization of space manufacturing systems

    NASA Technical Reports Server (NTRS)

    Akin, D. L.

    1979-01-01

    Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.

  6. Short communication: A reproductive tract scoring system to manage fertility in lactating dairy cows.

    PubMed

    Young, C D; Schrick, F N; Pohler, K G; Saxton, A M; Di Croce, F A; Roper, D A; Wilkerson, J B; Edwards, J L

    2017-07-01

    We developed a reproductive tract size and position score (SPS) system as a reproductive management tool to identify lactating dairy cows with decreased fertility. This system, relying solely on transrectal palpation, considers the size (cervical and uterine) and position of the reproductive tract relative to the pelvis. Cows undergoing pre-breeding exams were identified as having reproductive tracts that were small (SPS1), medium (SPS2), or large (SPS3). Cows designated SPS1 had small and compact uterine horns that rested within the pelvic cavity; SPS2 cows had reproductive tracts that were intermediate in cervical and uterine horn diameter, with longer uterine horns resting partially outside the pelvic cavity; and SPS3 cows had reproductive tracts that were larger and rested mostly outside the pelvic cavity. Cows that were SPS1 had a higher rate of pregnancy per artificial insemination (43.3 ± 3.7%) than cows that were SPS2 (36.9 ± 3.6%) or SPS3 (27.7 ± 4.3%). The percentage of cows with an SPS2 score differed in pregnancies per artificial insemination compared with SPS3 cows. The average days in milk was similar for SPS1, SPS2, and SPS3 cows (104.3 ± 3.5, 98.4 ± 3.4, and 94.7 ± 7.7, respectively). Ultrasound measurements of the uterine horn and cervical diameter, and length measurements of the uterine horns, cervix, and vagina confirmed differences among the SPS groups derived by transrectal palpation. The ease with which transrectal palpation can be used to determine the size and position of the reproductive tract attests to the relevance and usefulness of this scoring system to identify less fertile lactating dairy cows. The ability to do so with ease provides an opportunity to make economically relevant management decisions and maximize reproductive efficiency in a given herd. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment.

    PubMed

    Xia, Xinghui; Liu, Ting; Yang, Zhifeng; Michalski, Greg; Liu, Shaoda; Jia, Zhimei; Zhang, Sibo

    2017-02-01

    Present-day estimations of global nitrogen loss (N-loss) are underestimated. Commonly, N-loss from rivers is thought to be caused by denitrification only in bed-sediments. However, coupled nitrification-denitrification occurring in overlying water with suspended sediments (SPS) where oxic and anoxic/low oxygen zones may coexist is ignored for N-loss in rivers. Here the Yellow and Yangtze Rivers were taken as examples to investigate the effect of SPS, which exists in many rivers of the world, on N loss through coupled nitrification-denitrification with nitrogen stable ( 15 N) isotopic tracer simulation experiments and in-situ investigation. The results showed even when SPS was surrounded by oxic waters, there were redox conditions that transitioned from an oxic surface layer to anoxic layer near the particle center, enabling coupled nitrification-denitrification to occur around SPS. The production rate of 15 N 2 from 15 NH 4 + -N (R 15N2-production ) increased with increasing SPS concentration ([SPS]) as a power function (R 15N2-production =a·[SPS] b ) for both the SPS-water and bed sediment-SPS-water systems. The power-functional increase of nitrifying and denitrifying bacteria population with [SPS] accounted for the enhanced coupled nitrification-denitrification rate in overlying water. SPS also accelerated denitrification in bed-sediment due to increased NO 3 - concentration caused by SPS-mediated nitrification. For these two rivers, 1gL -1 SPS will lead to N-loss enhancement by approximately 25-120%, and the enhancement increased with organic carbon content of SPS. Thus, we conclude that SPS in overlying water is a hot spot for nitrogen loss in river systems and current estimates of in-stream N-loss are underestimated without consideration of SPS; this may partially compensate for the current imbalance of global nitrogen inputs and sinks. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Senile plaques in an aged western lowland gorilla.

    PubMed

    Kimura, N; Nakamura, S; Goto, N; Narushima, E; Hara, I; Shichiri, S; Saitou, K; Nose, M; Hayashi, T; Kawamura, S; Yoshikawa, Y

    2001-01-01

    Senile plaques (SPs) were found in the cerebral cortex of a 44-year-old Western lowland gorilla (Gorilla gorilla gorilla). All the SPs were obtained as dense assemblies consisting of fibrous materials by silver impregnation, but were not detected by Congo red. More SPs were detected by immunostaining for amyloid beta protein (A beta) and a half of A beta-positive-SPs were also immunoreactive for apolipoprotein E. Moreover, all SPs were immunoreactive for A beta 42 and A beta 43, but not for A beta 40. SPs also did not contain A beta precursor protein-positive structures. These findings suggested that SPs in this case were diffuse plaques. To our knowledge, this is the first report of SPs in the gorilla.

  9. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  10. Experience of nursing students with standardized patients in simulation-based learning: Q-methodology study.

    PubMed

    Ha, Eun-Ho

    2018-04-23

    Standardized patients (SPs) boost self-confidence, improve problem solving, enhance critical thinking, and advance clinical judgment of nursing students. The aim of this study was to examine nursing students' experience with SPs in simulation-based learning. Q-methodology was used. Department of nursing in Seoul, South Korea. Fourth-year undergraduate nursing students (n = 47). A total of 47 fourth-year undergraduate nursing students ranked 42 Q statements about experiences with SPs into a normal distribution grid. The following three viewpoints were obtained: 1) SPs are helpful for patient care (patient-centered view), 2) SPs roles are important for nursing student learning (SPs roles-centered view), and 3) SPs can promote competency of nursing students (student-centered view). These results indicate that SPs may improve nursing students' confidence and nursing competency. Professors should reflect these three viewpoints in simulation-based learning to effectively engage SPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  12. Bonding of TRIP-Steel/Al2O3-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus

    PubMed Central

    Miriyev, Aslan; Grützner, Steffen; Krüger, Lutz; Kalabukhov, Sergey; Frage, Nachum

    2016-01-01

    A combination of the high damage tolerance of TRIP-steel and the extremely low thermal conductivity of partially stabilized zirconia (PSZ) can provide controlled thermal-mechanical properties to sandwich-shaped composite specimens comprising these materials. Sintering the (TRIP-steel-PSZ)/PSZ sandwich in a single step is very difficult due to differences in the sintering temperature and densification kinetics of the composite and the ceramic powders. In the present study, we successfully applied a two-step approach involving separate SPS consolidation of pure (3Y)-TZP and composites containing 20 vol % TRIP-steel, 40 vol % Al2O3 and 40 vol % (3Y)-TZP ceramic phase, and subsequent diffusion joining of both sintered components in an SPS apparatus. The microstructure and properties of the sintered and bonded specimens were characterized. No defects at the interface between the TZP and the composite after joining in the 1050–1150 °C temperature range were observed. Only limited grain growth occurred during joining, while crystallite size, hardness, shear strength and the fraction of the monoclinic phase in the TZP ceramic virtually did not change. The slight increase of the TZP layer’s fracture toughness with the joining temperature was attributed to the effect of grain size on transformation toughening. PMID:28773680

  13. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  14. Survey and documentation of emerging technologies for the Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Glaser, P.; Chapman, P.

    1981-01-01

    The genesis of the solar power satellite (SPS) concept is reviewed historically and the original assumptions and guidelines which led to development of the SPS reference system design concept are discussed. Some guidelines are applicable to almost any SPS design, but others can be changed, leading to new and perhaps preferable systems. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessing the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed.

  15. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose.

    PubMed

    Yonekura, Madoka; Aoki, Naohiro; Hirose, Tatsuro; Onai, Kiyoshi; Ishiura, Masahiro; Okamura, Masaki; Ohsugi, Ryu; Ohto, Chikara

    2013-01-01

    Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs) suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter-luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real-time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light-dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both P OsSPS1 ::LUC and P OsSPS11 ::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the two OsSPS genes.

  16. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Development and Investigation of Tungsten Copper Sintered Parts for Using in Medium and High Voltage Switching Devices

    NASA Astrophysics Data System (ADS)

    Lungu, M. V.; Lucaci, M.; Tsakiris, V.; Brătulescu, A.; Cîrstea, C. D.; Marin, M.; Pătroi, D.; Mitrea, S.; Marinescu, V.; Grigore, F.; Tălpeanu, D.; Stancu, N.; Godeanu, P.; Melnic, C.

    2017-06-01

    Abstract Tungsten-copper (W-Cu) sintered parts with 75 wt.% W, 24 wt.% Cu and 1 wt.% Ni for using as arcing contacts in medium and high voltage switching devices were developed successfully by powder metallurgy (PM) techniques. Sintered parts with diameter of 50±0.5 mm and height of 6±0.5 mm were manufactured by pressing-sintering-infiltration (P-S-I) and spark plasma sintering (SPS) at sintering temperature of 1150°C, and 1050°C, respectively. Physical, chemical, electrical, thermal and mechanical properties of the samples were investigated. Microstructure was analyzed by optical microscopy and scanning electron microscopy. Material properties were influenced by the consolidation processes. The best results were achieved by SPS process. The relative density was more than 95 %, Vickers hardness HV1/15 was over 227, elastic modulus was over 143 GPa, and homogeneous microstructure was revealed. These good properties can contribute to higher lifetime of arcing contacts under severe working conditions.

  18. Hydrodynamic Tunneling of 440 GeV SPS protons in Solid Material: Production of Warm Dense Matter at CERN HiRadMat Facility

    NASA Astrophysics Data System (ADS)

    Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto

    2013-10-01

    Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.

  19. Multiscale microstructures and improved thermoelectric performance of Mg2(Si0.4Sn0.6)Sbx solid solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Hongliang; Li, Songhao; Zhang, Feipeng; Lu, Qingmei; Li, Jingfeng

    2014-03-01

    A series of Sb-doped Mg2(Si0.4Sn0.6)Sbx (0 ≤ x ≤ 0.025) solid solutions were prepared by an induction melting, Melt Spinning (MS) and Spark Plasma Sintering (SPS) method, namely the non-equilibrium technique MS-SPS, using bulks of Magnesium, Silicon, Tin, and Antimony as raw materials. The non-equilibrium technique generates the unique multiscale microstructures of samples containing micronscale grains and nanoscale precipitates, the multiscale microstructures remarkably make the lattice thermal conductivities decreased, particularly for samples with the nanoscale precipitates having the size of 10-20 nm. Meanwhile, Sb-doping greatly increased the electrical performance of samples. Consequently, the Sb-doping combined with the multiscale microstructures strategy remarkably improves the overall thermoelectric (TE) performance of Sb doped samples, and a high dimensionless figure of merit (ZT) value of up to 1.25 at 723 K is obtained with Mg2(Si0.4Sn0.6)Sb0.02 sample in a relatively wide temperature range.

  20. Satellite power system (SPS) military implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bain, C.N.

    1978-10-01

    This study was conducted to examine military implications of the NASA Reference SPS and to identify important military related study tasks that could be completed during fiscal year 1979. Primary areas of investigation were the potential of the SPS as a weapon, for supporting U.S. military preparedness and for affecting international relations. In addition, the SPS's relative vulnerability to overt military action, terrorist attacks, and sabotage was considered. The SPS could act as an electronic warfare weapon and, with modification, as a marginally effective energy-beaming weapon. The system could support military preparedness by providing energy for a strong and stablemore » U.S. economy and by providing a powered platform for military systems, system segments, and operations. The SPS would be vulnerable to military action, terrorism and sabotage unless hardened against these attacks by design, security, and a self-defense system. Tasks identified for completion in fiscal year 1979 include (a) a detailed vulnerability study, (b) evaluation of an SPS self-defense system concept, (c) determination of the effect of SPS flexibility to deliver different sized electrical loads on the ability to gain SPS support from individual nations, and (d) investigation of the effect of SPS deployment schedule on obtaining needed agreements, providing security, and controlling risks of armed conflict. A fifth and long-term task would consist of a worldwide survey identifiying military implications of the SPS that result from the specific requirements of potential SPS power customers.« less

  1. Multi-Scale Microstructure and Mechanical Properties of High Carbon Eutectic Tantalum Carbide Reinforced with Carbon Nanotubes

    DTIC Science & Technology

    2012-07-02

    more effective grain growth inhibitors. Transverse Rupture Strength of TaC reinforced with shorter CNTs displayed highest strength/density ratio with...microstructural features. 6. Strength to density ratio of CNT reinforced TaC increased from 17 to 28, which is an increase of ~ 65%. 7. Oxidation behavior of... reinforced with carbon fibers for space applications [15,16]. In recent years, Spark Plasma Sintering (SPS) also known as Electric Field Assisted Sintering

  2. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 2: System engineering, cost and programmatics, appendixes

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Appendixes for Volume 2 (Part 2) of a seven volume Satellite (SPS) report are presented. The document contains two appendixes. The first is a SPS work breakdown structure dictionary. The second gives SPS cost estimating relationships and contains the cost analyses and a description of cost elements that comprise the SPS program.

  3. The GCKIII Kinase Sps1 and the 14-3-3 Isoforms, Bmh1 and Bmh2, Cooperate to Ensure Proper Sporulation in Saccharomyces cerevisiae

    PubMed Central

    Slubowski, Christian J.; Paulissen, Scott M.; Huang, Linda S.

    2014-01-01

    Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental program initiated in response to nutritional deprivation. Sps1, a serine/threonine kinase, is required for sporulation, but relatively little is known about the molecular mechanisms through which it regulates this process. Here we show that SPS1 encodes a bona-fide member of the GCKIII subfamily of STE20 kinases, both through phylogenetic analysis of the kinase domain and examination of its C-terminal regulatory domain. Within the regulatory domain, we find Sps1 contains an invariant ExxxPG region conserved from plant to human GCKIIIs that we call the EPG motif; we show this EPG motif is important for SPS1 function. We also find that Sps1 is phosphorylated near its N-terminus on Threonine 12, and that this phosphorylation is required for the efficient production of spores. In Sps1, Threonine 12 lies within a 14-3-3 consensus binding sequence, and we show that the S. cerevisiae 14-3-3 proteins Bmh1 and Bmh2 bind Sps1 in a Threonine 12-dependent fashion. This interaction is significant, as BMH1 and BMH2 are required during sporulation and genetically interact with SPS1 in sporulating cells. Finally, we observe that Sps1, Bmh1 and Bmh2 are present in both the nucleus and cytoplasm during sporulation. We identify a nuclear localization sequence in Sps1 at amino acids 411–415, and show that this sequence is necessary and sufficient for nuclear localization. Taken together, these data identify regions within Sps1 critical for its function and indicate that SPS1 and 14-3-3s act together to promote proper sporulation in S. cerevisiae. PMID:25409301

  4. Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes

    PubMed Central

    Porchia, Andrea C.; Salerno, Graciela L.

    1996-01-01

    Biosynthesis of sucrose-6-P catalyzed by sucrose-phosphate synthase (SPS), and the presence of sucrose-phosphate phosphatase (SPP) leading to the formation of sucrose, have both been ascertained in a prokaryotic organism: Anabaena 7119, a filamentous heterocystic cyanobacterium. Two SPS activities (SPS-I and SPS-II) were isolated by ion-exchange chromatography and partially purified. Four remarkable differences between SPSs from Anabaena and those from higher plants were shown: substrate specificity, effect of divalent cations, native molecular mass, and oligomeric composition. Both SPS-I and SPS-II accept Fru-6-P (Km for SPS-I = 0.8 ± 0.1 mM; Km for SPS-II = 0.7 ± 0.1 mM) and UDP-Glc as substrates (Km for SPS-I = 1.3 ± 0.4 mM; Km for SPS-II = 4.6 ± 0.4 mM), but unlike higher plant enzymes, they are not specific for UDP-Glc. GDP-Glc and TDP-Glc are also SPS-I substrates (Km for GDP-Glc = 1.2 ± 0.2 mM and Km for TDP-Glc = 4.0 ± 0.4 mM), and ADP-Glc is used by SPS-II (Km for ADP-Glc = 5.7 ± 0.7 mM). SPS-I has an absolute dependence toward divalent metal ions (Mg2+ or Mn2+) for catalytic activity, not found in plants. A strikingly smaller native molecular mass (between 45 and 47 kDa) was determined by gel filtration for both SPSs, which, when submitted to SDS/PAGE, showed a monomeric composition. Cyanobacteria are, as far as the authors know, the most primitive organisms that are able to biosynthesize sucrose as higher plants do. PMID:8942980

  5. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model.

    PubMed

    Knox, D; Nault, T; Henderson, C; Liberzon, I

    2012-10-25

    Single prolonged stress (SPS) is a rodent model of post traumatic stress disorder that is comprised of serial application of restraint (r), forced swim (fs), and ether (eth) followed by a 7-day quiescent period. SPS induces extinction retention deficits and it is believed that these deficits are caused by the combined stressful effect of serial exposure to r, fs, and eth. However, this hypothesis remains untested. Neurobiological mechanisms by which SPS induces extinction retention deficits are unknown, but SPS enhances glucocorticoid receptor (GR) expression in the hippocampus, which is critical for contextual modulation of extinction retrieval. Upregulation of GRs in extinction circuits may be a mechanism by which SPS induces extinction retention deficits, but this hypothesis has not been examined. In this study, we systematically altered the stressors that constitute SPS (i.e. r, fs, eth), generating a number of partial SPS (p-SPS) groups, and observed the effects SPS and p-SPSs had on extinction retention and GR levels in the hippocampus and prefrontal cortex (PFC). PFC GRs were assayed, because regions of the PFC are critical for maintaining extinction. We predicted that only exposure to full SPS would result in extinction retention deficits and enhance hippocampal and PFC GR levels. Only exposure to full SPS induced extinction retention deficits. Hippocampal and PFC GR expression was enhanced by SPS and most p-SPSs, however hippocampal GR expression was significantly larger following the full SPS exposure than all other conditions. Our findings suggest that the combined stressful effect of serial exposure to r, fs, and eth results in extinction retention deficits. The results also suggest that simple enhancements in GR expression in the hippocampus and PFC are insufficient to result in extinction retention deficits, but raise the possibility that a threshold-enhancement in hippocampal GR expression contributes to SPS-induced extinction retention deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.

    PubMed

    Hu, Yuhui; Zhao, Di; Wang, Zhenghan; Chen, Fei; Xiong, Xiang; Peng, Ruwen; Wang, Mu

    2017-05-01

    Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.

  7. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata).

    PubMed

    Sahari, J; Sapuan, S M; Zainudin, E S; Maleque, M A

    2013-02-15

    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Satellite Power Systems (SPS) concept definition study. Volume 7: SPS program plan and economic analysis

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The economic and programmatic requirements for a recommended SPS solar photovoltaic baseline concept were analyzed. Costs are determined for the DDT&E; initial capital investment (covers initial procurement and emplacement of each SPS plant and equipment); replacement capital investment (capital asset replacement over the SPS operating life); operations and maintenance (expendables, minor maintenance, repair crews); and taxes/insurance.

  9. Assessment of economic factors affecting the satellite power system. Volume 1: System cost factors

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1978-01-01

    The factors relevant to SPS costing and selection of preferred SPS satellite configurations were studied. The issues discussed are: (1) consideration of economic factors in the SPS system that relate to selection of SPS satellite configuration; (2) analysis of the proper rate of interest for use in SPS system definition studies; and (3) the impacts of differential inflation on SPS system definition costing procedures. A cost-risk comparison of the SPS satellite configurations showed a significant difference in the levelized cost of power from them. It is concluded, that this difference is the result more of differences in the procedures for assessing costs rather than in the satellite technologies required or of any advantages of one satellite configuration over the other. Analysis of the proper rate of interest for use in SPS system is 4 percent. The major item of differential inflation to be expected over this period of time is the real cost of labor. This cost is likely to double between today and the period of SPS construction.

  10. A national survey to explore the willingness of Japanese standardized patients to participate in teaching physical examination skills to undergraduate medical students.

    PubMed

    Abe, Keiko; Suzuki, Tomio; Fujisaki, Kazuhiki; Ban, Nobutaro

    2009-07-01

    Standardized patients (SPs) are an increasingly prevalent resource in medical education and evaluation. There is a variety of clinical skills training programs including courses designed to teach and assess communication skills as well as physical examination (PE) skills. In Japan, SPs have contributed enormously to help medical students improve their communication skills. However, there are few SPs who participate in physical examination training and the use of SPs for physical examination is rarely considered as a useful educational resource. The purpose is to explore SPs' perceptions about participating in PE training. A 27-item questionnaire was used to survey 532 SPs in Japan. The response rate was 62% (n = 332). The ratio of females to males was 4:1. SPs perceived PE training using SPs was effective in teaching students physical examination. Eighty percent of SPs were willing to have PE of head, arms, and legs. Twenty-five percent were willing to have PE on their chest, back, and abdomen. Willingness varied by gender and age. SPs perceived that including SPs in physical examination was valuable. Males or people over 50 years old are more willing to participate than females or people under 50. Reluctance to participate in PE may decrease through experience or improved knowledge of PE training and by beginning with examination of head, neck, and legs, then gradually moving to chest, back, and abdomen.

  11. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth

    PubMed Central

    Opoku-Acheampong, Alexander B.; Penugonda, Kavitha; Lindshield, Brian L.

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth. PMID:27272436

  12. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth.

    PubMed

    Opoku-Acheampong, Alexander B; Penugonda, Kavitha; Lindshield, Brian L

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth.

  13. Satellite Power Systems (SPS). LSST systems and integration task for SPS flight test article

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1981-01-01

    This research activity emphasizes the systems definition and resulting structural requirements for the primary structure of two potential SPS large space structure test articles. These test articles represent potential steps in the SPS research and technology development.

  14. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 2: System engineering, cost and programmatics

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 2, of a seven volume Satellite Power Systems (SPS) report is presented. Part 2 covers cost and programmatics and is divided into four sections. The first section gives illustrations of the SPS reference satellite and rectenna concept, and an overall scenario for SPS space transportation involvement. The second section presents SPS program plans for the implementation of PHASE C/D activities. These plans describe SPS program schedules and networks, critical items of systems evolution/technology development, and the natural resources analysis. The fourth section presents summary comments on the methods and rationale followed in arriving at the results documented. Suggestions are also provided in those areas where further analysis or evaluation will enhance SPS cost and programmatic definitions.

  15. Implications for the UK of solar-power satellites /s.p.s/ as an energy source

    NASA Technical Reports Server (NTRS)

    Shelton, R. M.

    1980-01-01

    The solar power satellite concept which would make the sun's radiation available on earth as a source of energy, is discussed. Attention is given to the concept currently under evaluation in the USA, and also in Europe, though to a lesser extent. The advantages and problems associated with its adoption by the UK as a major source of electrical energy are discussed. The discussion covers topics such as sizing, reference system, and construction, costs, and problem areas.

  16. Long-Term Pavement Performance Ohio SPS-1 and SPS-2 Dynamic Load Response Data Processing

    DOT National Transportation Integrated Search

    2015-03-01

    The dynamic load response (DLR) Study Team reinterpreted 4,290 Ohio Specific Pavement Studies (SPS)-1 (asphalt concrete pavements) raw traces and 9,240 Ohio SPS-2 (portland cement concrete pavements) raw traces, correcting the data issues identified ...

  17. Development of a short form Social Interaction Anxiety (SIAS) and Social Phobia Scale (SPS) using nonparametric item response theory: the SIAS-6 and the SPS-6.

    PubMed

    Peters, Lorna; Sunderland, Matthew; Andrews, Gavin; Rapee, Ronald M; Mattick, Richard P

    2012-03-01

    Shortened forms of the Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS) were developed using nonparametric item response theory methods. Using data from socially phobic participants enrolled in 5 treatment trials (N = 456), 2 six-item scales (the SIAS-6 and the SPS-6) were developed. The validity of the scores on the SIAS-6 and the SPS-6 was then tested using traditional methods for their convergent validity in an independent clinical sample and a student sample, as well as for their sensitivity to change and diagnostic sensitivity in the clinical sample. The scores on the SIAS-6 and the SPS-6 correlated as well as the scores on the original SIAS and SPS, with scores on measures of related constructs, discriminated well between those with and without a diagnosis of social phobia, providing cutoffs for diagnosis and were as sensitive to measuring change associated with treatment as were the SIAS and SPS. Together, the SIAS-6 and the SPS-6 appear to be an efficient method of measuring symptoms of social phobia and provide a brief screening tool.

  18. Pavement treatment effectiveness, 1995 SPS-3 and SPS-4 site evaluations, national report : LTPP TechBrief

    DOT National Transportation Integrated Search

    1997-06-01

    The SPS-3 and SPS-4 experiments were constructed in 1990 under the : Strategic Highway Research Program (SHRP) to evaluate the effectiveness of and to determine the optimum timing for applying preventive maintenance treatments for flexible and rigid ...

  19. Localised excitation of a single photon source by a nanowaveguide.

    PubMed

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-29

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  20. Localised excitation of a single photon source by a nanowaveguide

    PubMed Central

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999

  1. Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation

    PubMed Central

    2011-01-01

    Background There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in Drosophila. The function of SPS1, however, has not been elucidated. Results Differentially expressed genes in Drosophila SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after SPS1 knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by SPS1 knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by SPS1 knockdown and the formation of megamitochondria, the major phenotypic change observed by SPS1 knockdown. Conclusions These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities. PMID:21864351

  2. Process Skill Assessment Instrument: Innovation to measure student’s learning result holistically

    NASA Astrophysics Data System (ADS)

    Azizah, K. N.; Ibrahim, M.; Widodo, W.

    2018-01-01

    Science process skills (SPS) are very important skills for students. However, the fact that SPS is not being main concern in the primary school learning is undeniable. This research aimed to develop a valid, practical, and effective assessment instrument to measure student’s SPS. Assessment instruments comprise of worksheet and test. This development research used one group pre-test post-test design. Data were obtained with validation, observation, and test method to investigate validity, practicality, and the effectivenss of the instruments. Results showed that the validity of assessment instruments is very valid, the reliability is categorized as reliable, student SPS activities have a high percentage, and there is significant improvement on student’s SPS score. It can be concluded that assessment instruments of SPS are valid, practical, and effective to be used to measure student’s SPS result.

  3. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    NASA Astrophysics Data System (ADS)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  4. Treatment of pediatric hyperkalemia with sodium polystyrene sulfonate.

    PubMed

    Lee, Ji; Moffett, Brady S

    2016-11-01

    To describe the safety and efficacy of sodium polystyrene sulfonate (SPS) in pediatric patients with acute hyperkalemia. A retrospective chart review of all patients less than 18 years of age administered SPS for acute hyperkalemia at Texas Children's Hospital between 2011 and 2014. Our cohort consisted of 156 patients (mean age 6.8 ± 6.1 years). The peak mean potassium concentration observed was 6.5 ± 0.77 mmol/l prior to administration of SPS. The mean SPS dose was 0.64 ± 0.32 g/kg. The majority (91 %) of the SPS doses were given orally. The nadir mean potassium concentration in the 48 h post-SPS was 4.7 ± 1.2 mEq/l, which occurred at 16.7 ± 14.7 h post-dose. In the 48 h following SPS administration, 68 (43 %) patients required at least one additional intervention after SPS dose. Patients who required an additional intervention after initial SPS dose differed significantly in weight, baseline serum potassium, and were more likely to have received SPS treatment via the rectal route. A gastrointestinal adverse event was documented in 24 (15 %) patients. SPS was used effectively and safely in the majority of patients in this report. However, it may not be appropriate as a first single-line agent in patients with severe acute hyperkalemia who require a greater than 25 % reduction in serum potassium levels or those at a high risk for cardiac arrhythmias.

  5. Colon Necrosis Due to Sodium Polystyrene Sulfonate with and without Sorbitol: An Experimental Study in Rats.

    PubMed

    Ayoub, Isabelle; Oh, Man S; Gupta, Raavi; McFarlane, Michael; Babinska, Anna; Salifu, Moro O

    2015-01-01

    Based on a single rat study by Lillemoe et al, the consensus has been formed to implicate sorbitol rather than sodium polystyrene sulfonate (SPS) as the culprit for colon necrosis in humans treated with SPS and sorbitol. We tested the hypothesis that colon necrosis by sorbitol in the experiment was due to the high osmolality and volume of sorbitol rather than its chemical nature. 26 rats underwent 5/6 nephrectomy. They were divided into 6 groups and given enema solutions under anesthesia (normal saline, 33% sorbitol, 33% mannitol, SPS in 33% sorbitol, SPS in normal saline, and SPS in distilled water). They were sacrificed after 48 hours of enema administration or earlier if they were very sick. The gross appearance of the colon was visually inspected, and then sliced colon tissues were examined under light microscopy. 1 rat from the sorbitol and 1 from the mannitol group had foci of ischemic colonic changes. The rats receiving SPS enema, in sorbitol, normal saline, distilled water, had crystal deposition with colonic necrosis and mucosal erosion. All the rats not given SPS survived until sacrificed at 48 h whereas 11 of 13 rats that received SPS in sorbitol, normal saline or distilled water died or were clearly dying and sacrificed sooner. There was no difference between sorbitol and mannitol when given without SPS. In a surgical uremic rat model, SPS enema given alone or with sorbitol or mannitol seemed to cause colon necrosis and high mortality rate, whereas 33% sorbitol without SPS did not.

  6. Colon Necrosis Due to Sodium Polystyrene Sulfonate with and without Sorbitol: An Experimental Study in Rats

    PubMed Central

    Ayoub, Isabelle; Oh, Man S.; Gupta, Raavi; McFarlane, Michael; Babinska, Anna; Salifu, Moro O.

    2015-01-01

    Introduction Based on a single rat study by Lillemoe et al, the consensus has been formed to implicate sorbitol rather than sodium polystyrene sulfonate (SPS) as the culprit for colon necrosis in humans treated with SPS and sorbitol. We tested the hypothesis that colon necrosis by sorbitol in the experiment was due to the high osmolality and volume of sorbitol rather than its chemical nature. Methods 26 rats underwent 5/6 nephrectomy. They were divided into 6 groups and given enema solutions under anesthesia (normal saline, 33% sorbitol, 33% mannitol, SPS in 33% sorbitol, SPS in normal saline, and SPS in distilled water). They were sacrificed after 48 hours of enema administration or earlier if they were very sick. The gross appearance of the colon was visually inspected, and then sliced colon tissues were examined under light microscopy. Results 1 rat from the sorbitol and 1 from the mannitol group had foci of ischemic colonic changes. The rats receiving SPS enema, in sorbitol, normal saline, distilled water, had crystal deposition with colonic necrosis and mucosal erosion. All the rats not given SPS survived until sacrificed at 48 h whereas 11 of 13 rats that received SPS in sorbitol, normal saline or distilled water died or were clearly dying and sacrificed sooner. There was no difference between sorbitol and mannitol when given without SPS. Conclusions In a surgical uremic rat model, SPS enema given alone or with sorbitol or mannitol seemed to cause colon necrosis and high mortality rate, whereas 33% sorbitol without SPS did not. PMID:26413782

  7. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Khasanov, A. O.; Danchenko, V. A.; Khasanov, O. L.

    2017-12-01

    Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes (MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering temperature (1400-1600 °C) on the composites microstructure and mechanical properties was investigated. Microstructure observations of the composite shows that some CNTs site along alumina grains boundary, while others embed into the alumina grains and shows that CNTs bonded strongly with the alumina matrix contributing to fracture toughness and microhardness increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were directly observed by scanning electron microscope (SEM). For Al2O3/CNT composite sintered at 1600 °C, fracture toughness and microhardness are 4.93 MPa·m1/2 and 23.26 GPa respectively.

  8. Evaluation of an audiological rehabilitation program for spouses of people with hearing loss.

    PubMed

    Preminger, Jill E; Meeks, Suzanne

    2010-05-01

    Since the psychosocial effects of hearing loss are different in the spouse (SP) than in the person with hearing loss (PHL), it seems reasonable that rehabilitation programs designed for PHLs may need to be adapted to benefit SPs. To evaluate the effectiveness of training in communication strategies and psychosocial exercises for SPs of PHLs by determining whether SPs who completed the group class had improved mood, reduced stress, improved marital communication, and greater awareness of their partners' hearing loss-related quality of life (HL-QOL) in comparison with SPs who did not participate in a group class. Additionally, to determine whether PHLs of SPs who participated in a group audiological rehabilitation (AR) class had significantly improved mood, reduced stress, improved marital communication, and better HL-QOL scores in comparison with PHLs whose SPs did not participate in a group class. A randomized controlled study. A total of 72 individuals participated in the study, 36 PHLs and 36 SPs. The PHLs were hearing aid users or cochlear implant users; the SPs had normal or near normal hearing. PHLs in the control group participated in a traditional group AR program while their SPs received no treatment. PHLs in the experimental group also participated in a traditional group AR program while their SPs participated in a treatment program designed for SPs of PHLs. Classes consisted of 90 min sessions meeting once a week for four weeks. All participants completed questionnaires measuring HL-QOL (the SPs filled out third-party reports of HL-QOL), stress, mood (positive affect and negative affect), and communication in the marriage. Scales were completed three times: prior to the AR program, within two weeks after completing the AR program, and 6 mo later. SP awareness of their PHL's HL-QOL was measured by comparing preclass and 6 mo scores with reported critical difference values. Preclass, postclass and 6 mo data were examined with repeated measures ANOVAs. All SPs reported significant improvements in third-party HL-QOL between the preclass and postclass visit. At the 6 mo visit, these reports remained consistent in the control SPs but declined in the experimental SPs. Awareness of HL-QOL in PHLs was improved in SPs who participated in AR classes and remained consistent in SPs who did not. All SPs demonstrated a trend (moderate effect sizes) for decreased stress and decreased negative affect after they and/or their partners completed the AR program. All PHLs demonstrated significant improvements in HL-QOL, significant reductions in stress, significant decreases in negative affect, and significant improvements in marital communication. There were no differences in outcome across the experimental and control PHLs. When PHLs participate in an AR program, they receive significant improvements in QOL (quality of life). Congruence (as defined by similar scores) between SP and PHL assessments of HL-QOL improved in the experimental group, suggesting that the principal impact of the AR program on SPs was improved understanding of PHL experiences with hearing loss. American Academy of Audiology.

  9. EzGal: A Flexible Interface for Stellar Population Synthesis Models

    NASA Astrophysics Data System (ADS)

    Mancone, Conor L.; Gonzalez, Anthony H.

    2012-06-01

    We present EzGal, a flexible Python program designed to easily generate observable parameters (magnitudes, colors, and mass-to-light ratios) for arbitrary input stellar population synthesis (SPS) models. As has been demonstrated by various authors, for many applications the choice of input SPS models can be a significant source of systematic uncertainty. A key strength of EzGal is that it enables simple, direct comparison of different model sets so that the uncertainty introduced by choice of model set can be quantified. Its ability to work with new models will allow EzGal to remain useful as SPS modeling evolves to keep up with the latest research (such as varying IMFs). EzGal is also capable of generating composite stellar population models (CSPs) for arbitrary input star-formation histories and reddening laws, and it can be used to interpolate between metallicities for a given model set. To facilitate use, we have created an online interface to run EzGal and quickly generate magnitude and mass-to-light ratio predictions for a variety of star-formation histories and model sets. We make many commonly used SPS models available from the online interface, including the canonical Bruzual & Charlot models, an updated version of these models, the Maraston models, the BaSTI models, and the Flexible Stellar Population Synthesis (FSPS) models. We use EzGal to compare magnitude predictions for the model sets as a function of wavelength, age, metallicity, and star-formation history. From this comparison we quickly recover the well-known result that the models agree best in the optical for old solar-metallicity models, with differences at the level. Similarly, the most problematic regime for SPS modeling is for young ages (≲2 Gyr) and long wavelengths (λ ≳ 7500 Å), where thermally pulsating AGB stars are important and scatter between models can vary from 0.3 mag (Sloan i) to 0.7 mag (Ks). We find that these differences are not caused by one discrepant model set and should therefore be interpreted as general uncertainties in SPS modeling. Finally, we connect our results to a more physically motivated example by generating CSPs with a star-formation history matching the global star-formation history of the universe. We demonstrate that the wavelength and age dependence of SPS model uncertainty translates into a redshift-dependent model uncertainty, highlighting the importance of a quantitative understanding of model differences when comparing observations with models as a function of redshift.

  10. The SPS Intern Experience: Preparing the 2009 SPS Outreach Catalyst Kit

    NASA Astrophysics Data System (ADS)

    Watkins, Erica; Mills, Mary E.; Stacy, Scott A.; White, Gary; Rand, Kendra

    2010-02-01

    The Society of Physics Students' (SPS) Outreach Catalyst Kit -- also known as the SOCK, is a collection of exploratory physics and science activities specifically designed for SPS Chapters and collegiate physics departments to use in outreach presentations to local elementary, middle and high school students. New SOCKs have been prepared every year since 2001 by SPS national interns and office staff. This year's SOCK has a theme centered around Galileo Galilei and his experiments, in honor of 2009 being the International Year of Astronomy. The SOCK contains lessons, demonstration, and activities that span topics such as optics and the refracting telescope, inclined planes and the formation of moon craters. In this talk, I will highlight the procedure SPS uses in preparing and testing the SOCK activities at various pilot sites as well as discuss my overall experience as an SPS intern. )

  11. Impacts and Benefits of a Satellite Power System on the Electric Utility Industry

    NASA Technical Reports Server (NTRS)

    Winer, B. M.

    1977-01-01

    The purpose of this limited study was to investigate six specific issues associated with interfacing a Satellite Power System (5 GW) with large (by present standards) terrestrial power pools to a depth sufficient to determine if certain interface problems and/or benefits exist and what future studies of these problems are required. The issues investigated are as follows: (1) Stability of Power Pools Containing a 5 GWe SPS; (2) Extra Reserve Margin Required to Maintain the Reliability of Power Pools Containing a 5 GWe SPS; (3) Use of the SPS in Load Following Service (i.e. in two independent pools whose times of peak demand differ by three hours); (4) Ownership of the SPS and its effect on SPS Usage and Utility Costs; (5) Utility Sharing of SPS related RD and D Costs; (6) Utility Liability for SPS Related Hazards.

  12. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    PubMed Central

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  13. Single prolonged stress effects on sensitization to cocaine and cocaine self-administration in rats

    PubMed Central

    Eagle, Andrew L.; Singh, Robby; Kohler, Robert J.; Friedman, Amy L.; Liebowitz, Chelsea P.; Galloway, Matthew P.; Enman, Nicole M.; Jutkiewicz, Emily M.; Perrine, Shane A.

    2017-01-01

    Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague–Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0,10 or 20mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, asexpected. However, compared to control ratson Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement. PMID:25712697

  14. Single prolonged stress effects on sensitization to cocaine and cocaine self-administration in rats.

    PubMed

    Eagle, Andrew L; Singh, Robby; Kohler, Robert J; Friedman, Amy L; Liebowitz, Chelsea P; Galloway, Matthew P; Enman, Nicole M; Jutkiewicz, Emily M; Perrine, Shane A

    2015-05-01

    Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague-Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0, 10 or 20 mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, as expected. However, compared to control rats on Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement. Copyright © 2015. Published by Elsevier B.V.

  15. Glycyrrhizin Treatment Facilitates Extinction of Conditioned Fear Responses After a Single Prolonged Stress Exposure in Rats.

    PubMed

    Lai, Shuhua; Wu, Gangwei; Jiang, Zhixian

    2018-01-01

    Impaired fear memory extinction is widely considered a key mechanism of post-traumatic stress disorder (PTSD). Recent studies have suggested that neuroinflammation after a single prolonged stress (SPS) exposure may play a critical role in the impaired fear memory extinction. Studies have shown that high mobility group box chromosomal protein 1 (HMGB-1) is critically involved in neuroinflammation. However, the role of HMGB-1 underlying the development of impairment of fear memory extinction is still not known. Thus, we examined the levels of HMGB-1 in the basolateral amygdala (BLA) following SPS using Western blot and evaluated the levels of microglia and astrocytes activation in the BLA after SPS using immunohistochemical staining. We then examined the effects of pre-SPS intra-BLA administration of glycyrrhizin, an HMGB1 inhibitor, or LPS-RS, a competitive TLR4 antagonist, on subsequent post-SPS fear extinction. We found that SPS treatment prolonged the extinction of contextual fear memory after the SPS. The impairment of SPS-induced extinction of contextual fear memory was associated with increased HMGB1 and Toll-like receptor 4 (TLR4) levels in the BLA. Additionally, the impairment of SPS-induced extinction of contextual fear memory was associated with increased activation of microglia and astrocyte in the BLA. Intra-BLA administrations of glycyrrhizin (HMGB-1 inhibitor) or LPS-RS (TLR4 antagonist) can prevent the development of SPS-induced fear extinction impairment. Taken together, these results suggested that SPS treatment may not only produce short term effects on the HMGB1/TLR4-mediated pro-inflammation, but alter the response of microglia and astrocytes to the exposure to fear associated contextual stimuli. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. [Doctor-Patient Communication Training in Simulated Situations: Emotions and Perceptions of Simulated Patients during Patient-Centered Conversations].

    PubMed

    Butollo, Maria Asisa; Holzinger, Anita; Wagner-Menghin, Michaela

    2018-04-13

    The use of simulated patients (SPs) for doctor-patient communication training has been established in medical curricula as an important didactic method. The study addresses the question, if patients' emotions and perceptions are represented adequately in patient-centered communication. 22 of 37 SPs of the Medical University of Vienna (12 women, 10 men) were asked openly about their feelings after having acted as an SP in a semi-structured interview, which employed the Critical Incident Technique. The interviews were recorded, transcribed, separated into situational analysis units und analyzed deductively; we used the evidence based qualities of patient-centered communication and the "Nationaler Kompetenzbasierter Lernzielkatalog Medizin" as a guideline. Out of 192 analysis units, 67 were evaluated as positive and 125 as negative. The SPs reported positive feelings, such as perceiving "stability and trust in relationships" (22%), perception of congruence (15%), acceptance (27%) and empathy (36%). As to negative feelings, SPs reported "perceiving instability" (18%), "incongruence" (11%), "lack of acceptance" (40%) and "lack of empathy" (30%). Additionally, 50% of SPs were positively affected when observing students' learning success. When SPs perceived patient-centered communication, they reported positive emotions. A lack of patient centeredness, on the contrary, provoked negative emotions. An empathic attitude, as well as a "lack of acceptance" with contrary effects had the strongest influence on the SPs' mental state. The reaction of SPs to patient centeredness is sufficiently authentic to reach learning objectives, however it is also affected by reactions of SPs to the learning success of students, which is irrelevant for the real-life doctor-patient interaction. SP reactions are affected by students' attitudes. Students should therefore be prepared well before interacting with SPs in a roleplay setting. While SPs' behavior is authentic in patient-centered communication in general, SPs should be trained to hide their positive emotions concerning students' learning success during roleplay. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    PubMed Central

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.

    2014-01-01

    Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153

  18. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering

    PubMed Central

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day. PMID:24724100

  19. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    PubMed

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  20. Satellite Power System (SPS) military implications

    NASA Technical Reports Server (NTRS)

    Bain, C. N.

    1978-01-01

    The military implications of the reference satellite power system (SPS) were examined is well as important military related study tasks. Primary areas of investigation were the potential of the SPS as a weapon, for supporting U.S. military preparedness, and for affecting international relations. In addition, the SPS's relative vulnerability to overt military action, terrorist attacks, and sabotage was considered.

  1. Satellite Power System (SPS) societal assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Construction and operation of a 60-unit (300 GW) domestic SPS over the period 2000 to 2030 would stress many segments of U.S. society. A significant commitment of resources (land, energy, materials) would be required, and a substantial proportion of them would have to be committed prior to the production of any SPS electricity. Forty-four concerns about the SPS were identified via a public outreach experiment involving 9000 individuals from three special interest organizations. The concerns focused on environmental impacts (particularly the effects of microwave radiation) and the centralizing tendency of the SPS on society.

  2. Satellite Power Systems (SPS) concept definition study exhibit C. Volume 3: Experimental verification definition

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An environmentally oriented microwave technology exploratory research program aimed at reducing the uncertainty associated with microwave power system critical technical issues is described. Topics discussed include: (1) Solar Power Satellite System (SPS) development plan elements; (2) critical technology issues related to the SPS preliminary reference configuration; (3) pilot plant to demonstrate commercial viability of the SPS system; and (4) research areas required to demonstrate feasibility of the SPS system. Progress in the development of advanced GaAs solar cells is reported along with a power distribution subsystem.

  3. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  4. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    NASA Astrophysics Data System (ADS)

    Horvat, Stephen

    2017-04-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton

    A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature.more » Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.« less

  6. Recent progress on RE2O3-Mo/W emission materials.

    PubMed

    Wang, Jinshu; Zhang, Xizhu; Liu, Wei; Cui, Yuntao; Wang, Yiman; Zhou, Meiling

    2012-08-01

    RE2O3-Mo/W cathodes were prepared by powder metallurgy method. La2O3-Y2O3-Mo cermet cathodes prepared by traditional sintering method and spark plasma sintering (SPS) exhibit different secondary emission properties. The La2O3-Y2O3-Mo cermet cathode prepared by SPS method has smaller grain size and exhibits better secondary emission performance. Monte carlo calculation results indicate that the secondary electron emission way of the cathode correlates with the grain size. Decreasing the grain size can decrease the positive charging effect of RE2O3 and thus is favorable for the escaping of secondary electrons to vacuum. The Scandia doped tungsten matrix dispenser cathode with a sub-micrometer microstructure of matrix with uniformly distributed nanometer-particles of Scandia has good thermionic emission property. Over 100 A/cm2 full space charge limited current density can be obtained at 950Cb. The cathode surface is covered by a Ba-Sc-O active surface layer with nano-particles distributing mainly on growth steps of W grains, leads to the conspicuous emission property of the cathode.

  7. Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Vannini, M.; Ciofini, M.; Pirri, A.; Nikl, M.; Li, J.; Esposito, L.; Biasini, V.; Hostasa, J.; Goto, T.; Boulon, G.; Maksimov, R.; Gizzi, L.; Labate, L.; Toci, G.

    2017-01-01

    We report a review on our recent developments in Yttebium and Neodymium doped laser ceramics, along two main research lines. The first is the design and development of Yb:YAG ceramics with non uniform doping distribution, for the management of thermo-mechanical stresses and for the mitigation of ASE: layered structures have been produced by solid state reactive sintering, using different forming processes (spray drying and cold press of the homogenized powders, tape cast of the slurry); samples have been characterized and compared to FEM analysis. The second is the investigation of Lutetium based ceramics (such as mixed garnets LuYAG and Lu2O3); this interest is mainly motivated by the favorable thermal properties of these hosts under high doping. We recently obtained for the first time high efficiency laser emission from Yb doped LuYAG ceramics. The investigation on sesquioxides has been focused on Nddoped Lu2O3 ceramics, fabricated with the Spark Plasma Sintering method (SPS). We recently achieved the first laser emission above 1 W from Nd doped Lu2O3 ceramics fabricated by SPS.

  8. Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution

    NASA Astrophysics Data System (ADS)

    Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.

    2012-09-01

    We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.

  9. How does the World Trade Organization know? The mobilization and staging of scientific expertise in the GMO trade dispute.

    PubMed

    Bonneuil, Christophe; Levidow, Les

    2012-02-01

    The World Trade Organization (WTO) dispute settlement procedure is a key arena for establishing global legal norms for what counts as relevant knowledge. As a high-profile case, the WTO trade dispute on GMOs mobilized scientific expertise in somewhat novel ways. Early on, the Panel put the dispute under the Sanitary and Phytosanitary (SPS) Agreement through a new legal ontology; it classified transgenes as potential pests and limited all environmental issues to the 'plant and animal health' category. The selection of scientific experts sought a multi-party consensus through a fast adversarial process, reflecting a specific legal epistemology. For the SPS framing, focusing on the defendant's regulatory procedures, the Panel staged scientific expertise in specific ways that set up how experts were questioned, the answers they would give, their specific role in the legal arena, and the way their statements would complement the Panel's findings. In these ways, the dispute settlement procedure co-produced legal and scientific expertise within the Panel's SPS framework. Moreover, the Panel operated a procedural turn in WTO jurisprudence by representing its findings as a purely legal-administrative judgement on whether the EC's regulatory procedures violated the SPS Agreement, while keeping implicit its own judgements on substantive risk issues. As this case illustrates, the WTO settlement procedure mobilizes scientific expertise for sophisticated, multiple aims: it recruits a source of credibility from the scientific arena, thus reinforcing the standard narrative of 'science-based trade discipline', while also constructing new scientific expertise for the main task--namely, challenging trade restrictions for being unduly cautious.

  10. The extant shore platform stromatolite (SPS) facies association: a glimpse into the Archean?

    NASA Astrophysics Data System (ADS)

    Smith, Alan; Cooper, Andrew; Misra, Saumitra; Bharuth, Vishal; Guastella, Lisa; Botes, Riaan

    2018-04-01

    Shore platform stromatolites (SPS) were first noted at Cape Morgan on the south-east African seaboard. Since then they have been found growing discontinuously in rocky peritidal zones along the entire southern African seaboard. They have also been found on the southwest Australian coast, at Giant's Causeway in Northern Ireland, and more recently at Harris on the Scottish Hebridean Atlantic coast. In this paper SPS occurrence and SPS potential as analogues for Precambrian fossil stromatolites, as well as potential stromatolite occurrences in shore platform regions on Mars, are assessed. Sub-horizontal surfaces promote stromatolite development, while tufa develops on cliffs and steep rocky surfaces. Tufa and stromatolites are end members of a spectrum dictated by coastal topography. Extant SPS occur on well indurated shore platforms in high wave energy settings, often around or near headlands. They can be associated with boulder beaches, boulder ridges, storm swash terraces, coastal dunes, and peat bogs. In contrast to other extant stromatolites, SPS are produced primarily by mineral precipitation, although minor trapping and binding stromatolites do occur. From a geological perspective, SPS develop in mildly transgressive siliciclastic settings in various climatic and tidal regimes. We suggest that SPS could be preserved in the geological record as micritic lenses on palaeo-shore platform surfaces. SPS share many features with Precambrian stromatolites and are a valid modern analogue despite the widely different atmospheric and oceanic conditions of the Archean. We suggest that terraces associated with former oceanic or lacustrine flooding surfaces on Mars are potential targets in the search for palaeo-SPS on Mars.

  11. Neural circuits via which single prolonged stress exposure leads to fear extinction retention deficits

    PubMed Central

    Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas

    2016-01-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. PMID:27918273

  12. Satellite Power Systems (SPS): Concept development and evaluation program: Preliminary assessment

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary assessment of a potential Satellite Power System (SPS) is provided. The assessment includes discussion of technical and economic feasibility; the effects of microwave power transmission beams on biological, ecological, and electromagnetic systems; the impact of SPS construction, deployment, and operations on the biosphere and on society; and the merits of SPS compared to other future energy alternatives.

  13. Is It Social Problem Solving or Decision Making? Implications for Health Education

    ERIC Educational Resources Information Center

    Frauenknecht, Marianne; Black, David R.

    2010-01-01

    This paper makes a case that decision making (DM) is not social problem solving (SPS) and DM is subordinate and subsumed within SPS. Both terms are defined and distinguished. Confusion between SPS and DM is widespread and has occurred for at least four decades. DM, not SPS, has been established as one of the seven National Health Education…

  14. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles.

    PubMed

    Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie

    2012-01-01

    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G(1) cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.

  15. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    PubMed Central

    Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie

    2012-01-01

    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers. PMID:22359460

  16. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  17. Quality Control of an OSCE Using Generalizability Theory and Many-Faceted Rasch Measurement

    ERIC Educational Resources Information Center

    Iramaneerat, Cherdsak; Yudkowsky, Rachel; Myford, Carol M.; Downing, Steven M.

    2008-01-01

    An Objective Structured Clinical Examination (OSCE) is an effective method for evaluating competencies. However, scores obtained from an OSCE are vulnerable to many potential measurement errors that cases, items, or standardized patients (SPs) can introduce. Monitoring these sources of errors is an important quality control mechanism to ensure…

  18. Integration of SPS with utility system networks

    NASA Technical Reports Server (NTRS)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  19. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  20. Melt crystallization of bisphenol A polycarbonate in PC/zinc sulfonated polystyrene ionomer blend

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    The effects of zinc sulfonated polystyrene ionomer (ZnSPS) on the melt crystallization of bisphenol A polycarbonate (PC) were investigated. Melt crystallization of pure PC is extremely slow due to its rigid chain. In the blend of PC and ZnSPS (PC-ZnSPS), the melt crystallization rate of PC can be enhanced. DSC was used to study the crystallization kinetics of PC in PC-ZnSPS blend. The crystallization of PC at 190°C increased in both partially miscible and miscible blends with ZnSPS. For PC-ZnSPS blend with same PC composition as 80%, the crystallization rate was affected by the sulfonation level of ZnSPS. The induction time of crystallization for a partially miscible blend PC-ZnSPS9.98 (80/20) was 40 minutes, and the crystallization reaches 27% crystallinity within 14 hrs. The induction time for pure PC with the same thermal history was more than 24 hrs. The crystal structure of PC crystal formed in PC-ZnSPS blend was studied by WAXD, which showed no difference from the reported WAXD pattern for pure PC. Molecular weight change of PC was found during the thermal annealing of PC-ZnSPS blend at 190°C, but molecular weight alone cannot explain the change of crystallization rate of PC in PC-ZnSPS blend. Discussion was made to address the mechanisms that are responsible for the crystallization rate enhancement of PC in PC-ZnSPS blend. In order to understand and elucidate the reason for the molecular weight change of PC in PC-ZnSPS blend and its effect on the crystallization of PC, TG, GPC and GC-MS were used to investigate the stability of PC-ZnSPS blend and mixtures of PC with sodium tosylate (NaTS), zinc tosylate (ZnTS) and sodium benzoate (NaBZ). ZnSPS, NaTS and ZnTS undergo desulfonation of the sulfonate group at temperatures above 350°C. The desulfonation process can destabilize PC and lower the maximum mass loss rate temperature of PC for more than 70°C. NaTS, ZnTS and NaBZ have quite different effect on the thermal stability of PC at temperatures below 250°C. NaBZ can significantly degrade PC both at 190°C and 250°C. PC does not show any molecular weight (M w) change in the presence of NaTS at 250°C and 190°C for up to 1hr and 16 hrs respectively. ZnTS can also cause Mw change of PC at 250°C and 190°C, but the changing of Mw of PC in the presence of ZnTS is less than that in the presence of NaBZ. The reason for the molecular weight change of PC in PC-ZnSPS blend can be explained based on Davis's ionic ester exchange reaction mechanism.

  1. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    NASA Astrophysics Data System (ADS)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to identify and classify SPS. A worldwide network of cosmic-ray detectors could not only become a unique tool to study fundamental physics, it will also provide a number of other opportunities, including space-weather or geophysics studies. Among the latter one has to list the potential to predict earthquakes by monitoring the rate of low energy cosmic-ray events. The diversity of goals motivates us to advertise this concept across the astroparticle physics community.

  2. Association of prescription of oral sodium polystyrene sulfonate with sorbitol in an inpatient setting with colonic necrosis: a retrospective cohort study.

    PubMed

    Watson, Maura A; Baker, Thomas P; Nguyen, Annie; Sebastianelli, Mary E; Stewart, Heather L; Oliver, David K; Abbott, Kevin C; Yuan, Christina M

    2012-09-01

    Colonic necrosis has been reported after sodium polystyrene sulfonate (SPS)/sorbitol use, but the incidence and relative risk (RR) are not established. Retrospective cohort study. 123,391 adult inpatients at a tertiary medical center. Receipt of SPS prescriptions (exposed) or a prescription other than SPS (unexposed internal comparison group) between September 1, 2001, and October 31, 2010. The main outcome measure was tissue-confirmed diagnosis of colonic necrosis, considered SPS-associated if SPS was prescribed 30 or fewer days before tissue accession date. Demographics, serum chemistry test results, hospital location, and International Classification of Diseases, Ninth Revision diagnostic codes. SPS was prescribed to 2,194 inpatients. 82 inpatient colonic necrosis cases were identified. 3 received oral SPS (1 gram per 4 milliliters of 33% sorbitol) 30 or fewer days before the colonic necrosis accession date (3.7% of inpatient colonic necrosis cases). The data were linked with 123,391 individuals who received inpatient prescriptions between the same dates. Colonic necrosis incidence was 0.14% (95% CI, 0.03%-0.40%) in those prescribed SPS versus 0.07% (95% CI, 0.05-0.08%) in those not prescribed SPS (RR, 2.10; 95% CI, 0.68-6.48; P = 0.2). The number needed to harm was 1,395 (95% CI, 298-5,100). Subgroup analysis (age >65 years; estimated glomerular filtration rate, <30 mL/min/1.73 m(2), intensive care unit admission, or surgical ward status) did not show significant associations. Sample-size analysis indicated that 4,974 SPS-treated individuals older than 65 years and a comparison group 10 times larger would be required for rigorous multivariate analysis of SPS-associated colonic necrosis risk. Individuals with colonic necrosis admitted to non-Department of Defense hospitals would not have been ascertained. Only individuals who had colonic biopsy or surgical tissue submitted for pathologic review could be ascertained as having colonic necrosis. SPS-associated colonic necrosis is rare, and inpatient SPS/sorbitol prescription was not associated significantly with an increased RR of colonic necrosis in this retrospective cohort analysis. Multivariate analysis would require retrospective clinical cohorts from larger or more than one hospital system(s). Published by Elsevier Inc.

  3. "They silently live in terror…" why sleep problems and night-time related quality-of-life are missed in children with a fetal alcohol spectrum disorder.

    PubMed

    Ipsiroglu, Osman S; McKellin, William H; Carey, Norma; Loock, Christine

    2013-02-01

    Children and adolescents with a Fetal Alcohol Spectrum Disorder (FASD) are at high-risk for developing sleep problems (SPs) triggering daytime behavioral co-morbidities such as inattention, hyperactivity, and cognitive and emotional impairments. However, symptoms of sleep deprivation are solely associated with typical daytime diagnosis, such as attention deficit hyperactivity disorder (ADHD) and treated with psychotropic medications. To understand how and why SPs are missed, we conducted qualitative interviews (QIs) with six parents and seven health care professionals (HCPs), and performed comprehensive clinical sleep assessments (CCSAs) in 27 patients together with their caregivers referred to our clinic for unresolved SPs. We used narrative schema and therapeutic emplotment in conjunction with analyzes of medical records to appropriately diagnose SPs and develop treatment strategies. The research was conducted at British Columbia Children's Hospital in Vancouver (Canada) between 2008 and 2011. In the QIs, parents and HCPs exhibited awareness of the significance of SPs and the effects of an SP on the daytime behaviors of the child and the associated burdens on the parents. HCPs' systemic inattention to the sequelae of SPs and the affected family's wellbeing appears due to an insufficient understanding of the various factors that contribute to nighttime SPs and their daytime sequelae. In the CCSAs, we found that the diagnostic recognition of chronic SPs in children and adolescents was impaired by the exclusive focus on daytime presentations. Daytime behavioral and emotional problems were targets of pharmacological treatment rather than the underlying SP. Consequently, SPs were also targeted with medications, without investigating the underlying problem. Our study highlights deficits in the diagnostic recognition of chronic SPs among children with chronic neurodevelopmental disorders/disabilities and proposes a clinical practice strategy, based on therapeutic emplotment that incorporates patients and parents' contributions in recognizing SPs and related sequelae in designing appropriate treatment and care. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  5. Dropping Knowledge Like Frozen Pumpkins: Successful Physics Outreach

    NASA Astrophysics Data System (ADS)

    Hook, E. A.

    2011-12-01

    The Society of Physics Students (SPS) is a professional organization specifically designed for college students. A main purpose of SPS is to develop college students into effective members of the physics community; one of the best ways to do this is by promoting science outreach. College students are in a prime position to engage the public in outreach to increase scientific literacy: they're easier for younger, school-age students to identify with, they can reach young adults in a unique way, and they're old enough to seriously engage the general public. SPS helps hundreds of college chapters across the country engage in outreach. One such chapter is at Rhodes College in Memphis, TN. The Rhodes College SPS chapter is active both in K12 schools and on its campus. Rhodes developed a position within its SPS structure to include an officer specifically related to handling outreach. For K12 schools this involved contacting teachers, organizing lessons, and holding training sessions for the college students preparing to teach the lessons. Rhodes SPS also focuses on campus outreach and trying to disabuse students of the notion that physics is stuffy, boring, and only for geniuses. Every fall, Rhodes SPS hosts an extremely popular annual Pumpkin Drop, as well as hosting demo shows, observatory open houses, and contests throughout the year for its students. One of the best received campus outreach programs is something called 'Stall Stories,' where SPS publishes a page flyer that goes in bathrooms around campus involving fun physics, a comic, and a list of SPS events. Rhodes SPS, like the national organization, has the goal of improving physics literacy among K12 students, college students, and the general public through effective outreach.

  6. The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex.

    PubMed

    George, Sophie A; Rodriguez-Santiago, Mariana; Riley, John; Rodriguez, Elizabeth; Liberzon, Israel

    2015-01-01

    Post-traumatic stress disorder (PTSD) is a chronic, debilitating disorder. Only two pharmacological agents are approved for PTSD treatment, and they often do not address the full range of symptoms nor are they equally effective in all cases. Animal models of PTSD are critical for understanding the neurobiology involved and for identification of novel therapeutic targets. Using the rodent PTSD model, single prolonged stress (SPS), we have implicated aberrant excitatory neural transmission and glucocorticoid receptor (GR) upregulation in the medial prefrontal cortex (mPFC) and hippocampus (HPC) in fear memory abnormalities associated with PTSD. The objective of this study is to examine the potential protective effect of antiepileptic phenytoin (PHE) administration on SPS-induced extinction retention deficits and GR expression. Forty-eight SPS-treated male Sprague Dawley rats or controls were administered PHE (40, 20 mg/kg, vehicle) for 7 days following SPS stressors; then, fear conditioning, extinction, and extinction retention were tested. Fear conditioning and extinction were unaffected by SPS or PHE, but SPS impaired extinction retention, and both doses of PHE rescued this impairment. Similarly, SPS increased GR expression in the mPFC and dorsal HPC, and PHE prevented SPS-induced GR upregulation in the mPFC. These data demonstrate that PHE administration can prevent the development of extinction retention deficits and upregulation of GR. PHE exerts inhibitory effects on voltage-gated sodium channels and decreases excitatory neural transmission via glutamate antagonism. If glutamate hyperactivity in the days following SPS contributes to SPS-induced deficits, then these data may suggest that the glutamatergic system constitutes a target for secondary prevention.

  7. Sodium polystyrene sulfonate for the treatment of acute hyperkalemia: a retrospective study.

    PubMed

    Hagan, Amanda E; Farrington, Crystal A; Wall, Geoffrey C; Belz, Mark M

    2016-01-01

    Hyperkalemia is a common problem in hospitalized patients, especially those with underlying chronic kidney disease, but evidence-based guidelines for its treatment are lacking. Sodium polystyrene sulfonate (SPS), a cation exchange resin first approved by the FDA for the treatment of hyperkalemia in 1958, is frequently used alone or in conjunction with other medical therapies to lower serum potassium. Recently, the safety and efficacy of SPS have come into question based on multiple reported cases of bowel necrosis associated with SPS administration. The primary objective of this study was to evaluate the use of SPS for the treatment of hyperkalemia, at a large tertiary community teaching hospital, to determine its effectiveness and the incidence of related adverse side effects. A retrospective chart review was performed on all adult inpatients receiving single-dose SPS at a 466-bed tertiary community teaching hospital over a 3-year period. 501 patients received SPS for the treatment of hyperkalemia during their index hospital stay. Serum potassium levels decreased by 0.93 mEq/L on average at first recheck after SPS administration, with or without additional medical treatments. Our study identified 10 cases of hypernatremia (greater than 145 mEq/L), 31 cases of hypokalemia (less than 3.5 mEq/L), and 2 cases of bowel necrosis related to the administration of SPS. Our results suggest a serum potassium reduction of less than 1 mEq/L after administration of SPS for the treatment of acute hyperkalemia. Additionally, this study offers some evidence that the use of SPS may be associated with harm. We further note the need for standardized guidelines for the treatment of hyperkalemia at our institution.

  8. Methamphetamine-induced behavioral sensitization in a rodent model of posttraumatic stress disorder.

    PubMed

    Eagle, Andrew L; Perrine, Shane A

    2013-07-01

    Single prolonged stress (SPS) is a rodent model of posttraumatic stress disorder (PTSD)-like characteristics. Given that PTSD is frequently comorbid with substance abuse and dependence, including methamphetamine (METH), the current study sought to investigate the effects of SPS on METH-induced behavioral sensitization. In experiment 1, Sprague-Dawley rats were subject to SPS or control treatment and subsequently tested across four sessions of an escalating METH dosing paradigm. METH was injected (i.p.) in escalating doses (0, 0.032, 0.1, 0.32, 1.0, and 3.2mg/kg; dissolved in saline) every 15min and ambulatory activity was recorded. In experiment 2, SPS and control treated rats were injected (i.p.) with either saline or METH (5mg/kg) for five consecutive daily sessions and tested for stereotypy as well as ambulatory activity. Two days later, all animals were injected with a challenge dose of METH (2.5mg/kg) and again tested for activity. No differences in the acute response to METH were observed between SPS and controls. SPS enhanced METH induced ambulatory activity across sessions, compared to controls. METH-induced stereotypy increased across sessions, indicative of behavioral sensitization; however, SPS attenuated, not enhanced, this effect suggesting that SPS may prevent the development of stereotypy sensitization. Collectively, results show that SPS increases repeated METH-induced ambulatory activity while preventing the transition across sessions from ambulatory activity to stereotypy. These findings suggest that SPS alters drug-induced neuroplasticity associated with behavioral sensitization to METH, which may reflect an effect on the shared neurocircuitry underlying PTSD and substance dependence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Neural circuits via which single prolonged stress exposure leads to fear extinction retention deficits.

    PubMed

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; Keller, Samantha M; DePietro, Thomas

    2016-12-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. © 2016 Knox et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Innovating the Standard Procurement System Utilizing Intelligent Agent Technologies

    DTIC Science & Technology

    1999-12-01

    36 C. STANDARD PROCUREMENT SYSTEM 36 1. OVERVIEW 36 2. SPS FUNCTIONS , 37 3. SPS ADVANTAGES 39 4. SPS DISADVANTAGES 40 5. SPS SUMMARY 41 D...PROCUREMENT PROCESS INNOVATION RESULTS ’. 52 E. INTELLIGENT AGENT (IA) TECHNOLOGY 53 1. OVERVIEW 54 viii 2. ADVANTAGES 58 3. DISADVANTAGES 58 F...Electronic Mall (EMALL), GSA Advantage , etc. • Web invoicing Electronic Funds Transfer (EFT) • • International Merchant Purchase Authorization Card (IMPAC

  12. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels

    PubMed Central

    Eagle, Andrew L.; Knox, Dayan; Roberts, Megan M.; Mulo, Kostika; Liberzon, Israel; Galloway, Matthew P.; Perrine, Shane A.

    2012-01-01

    Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype. PMID:23201176

  13. SPS salvage and disposal alternatives

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A wide range of salvage options exist for the satellite power system (SPS) satellite, ranging from use in and beyond geosynchronous orbit to use in low Earth orbit to return and use on Earth. The satellite might be used intact to provide for various purposes, it might be cannibalized, or it might be melted down to supply materials for space- or ground-based products. The use of SPS beyond its nominal lifetime provides value that can be deducted from the SPS capital investment cost. It is shown that the present value of the salvage value of the SPS satellites, referenced to the system initial operation data, is likely to be on the order of five to ten percent of its on-orbit capital cost. (Given a 30 year satellite lifetime and a four percent discount rate, the theoretical maximum salvage value is 30.8 percent of the initial capital cost). The SPS demonstration satellite is available some 30 years earlier than the first full-scale SPS satellite and has a likely salvage value on the order of 80 percent of its on site capital cost. In the event that it becomes desirable to dispose of either the demonstration or full-scale SPS satellite, a number of disposal options appear to exist for which intact disposal costs are less than one percent of capital costs.

  14. Space-based power conversion and power relay systems: Preliminary analysis of alternate systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results are presented of nine months of technical study of non-photovoltaic options for the generation of electricity for terrestrial use by satellite power stations (SPS). A concept for the augmentation of ground-based solar power plants by orbital sunlight reflectors was also studied. Three SPS types having a solar energy source and two which used nuclear reactors were investigated. Data derived for each included: (1) configuration definition, including mass statement; (2) information for use in environmental impact assessment; (3) energy balance (ratio of energy produced to that required to achieve operation), and (4) development and other cost estimates. Cost estimates were dependent upon the total program (development, placement and operation of a number of satellites) which was postulated. This postulation was based upon an analysis of national power capacity trends and guidelines received from MSFC.

  15. Satellite Power System (SPS) financial/management scenarios

    NASA Technical Reports Server (NTRS)

    Vajk, J. P.

    1978-01-01

    The possible benefits of a Satellite Power System (SPS) program, both domestically and internationally, justify detailed and imaginative investigation of the issues involved in financing and managing such a large-scale program. In this study, ten possible methods of financing a SPS program are identified ranging from pure government agency to private corporations. The following were analyzed and evaluated: (1) capital requirements for SPS; (2) ownership and control; (3) management principles; (4) organizational forms for SPS; (5) criteria for evaluation; (6) detailed description and preliminary evaluation of alternatives; (7) phased approaches; and (8) comparative evaluation. Key issues and observations and recommendations for further study are also presented.

  16. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The SPS program plan is outlined. An overall review of the component systems which comprise the SPS is presented. The report is presented in the form of charts, graphs, data tables, and engineering drawings.

  17. Absence of simple partial seizure in temporal lobe epilepsy: its diagnostic and prognostic significance.

    PubMed

    Inoue, Y; Mihara, T; Matsuda, K; Tottori, T; Otsubo, T; Yagi, K

    2000-02-01

    The diagnostic and prognostic significance of the absence of simple partial seizures (SPS) immediately preceding complex partial seizures (CPS) was examined in patients with temporal lobe epilepsy. The status of self-reported SPS in 193 patients with temporal lobe epilepsy who had surgical therapy more than 2 years ago was reviewed. Before surgery, 37 patients never experienced SPS before CPS (Group A), 156 patients either always or occasionally had SPS before CPS (Group B). The frequency of mesial temporal sclerosis (MTS) was lower and the age at onset of epilepsy was higher in Group A. The seizure focus was in the language-dominant temporal lobe in 73% of the cases in Group A, compared with 40% in Group B. The surgical outcome did not differ between the two groups. The findings suggest that temporal lobe seizures without preceding SPS tend to originate in the language-dominant temporal lobe that contains a pathologic etiology other than MTS, especially in the lateral temporal lobe. The surgical outcome in patients without SPS is similar to that in patients with SPS.

  18. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  19. A study of some economic factors relating to the development and implementation of a satellite power system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Areas are examined relating to the design, development and implementation of a satellite power system (SPS): an analysis of the effect of energy R&D programs in general and SPS in particular on optimal fossil fuel consumption patterns, a study of alternative uses of SPS technologies, and a study of the electric power market penetration potential for SPS. It is shown that a credible program of R&D on long-range energy alternatives leads to lower optimal prices for fossil fuels, resulting in large short-term benefits accruing to the specific program elements. Several alternative uses of SPS technologies were identified; however the markets for these technologies are generally quite diffuse and difficult to assess. The notable exception is solar array technology which has, potentially, a very large non-SPS market. It is shown that the market for SPS units derives from two components of demand: the demand created by growth in the electrical energy demand which leads to an increased demand for baseload generating capacity, and a demand created by the need to replace retiring capacity.

  20. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    NASA Astrophysics Data System (ADS)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  1. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity hasmore » been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.« less

  2. Biomimetic synthesis of water-soluble conducting copolymers/homopolymers of pyrrole and 3,4-ethylenedioxythiophene.

    PubMed

    Bruno, Ferdinando F; Fossey, Stephen A; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant; Samuelson, Lynne A

    2006-02-01

    A novel biomimetic route for the synthesis of electrically conducting homopolymers/copolymers of pyrrole and 3,4-ethylenedioxythiophene (EDOT) in the presence of a polyelectrolyte, such as polystyrene sulfonate (SPS), is presented. A poly(ethylene glycol)-modified hematin (PEG-hematin) was used to catalyze the homopolymerization of pyrrole and EDOT as well as copolymerization of EDOT and pyrrole in the presence of SPS to yield homopolymers of polypyrrole/SPS and PEDOT/SPS as well as a polypyrrole-co-poly(3,4-ethylenedioxythiophene)/SPS complex. Spectroscopic characterization [UV-visible, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS)], thermal analysis, (TGA), and electrical conductivity studies for these complexes indicated the presence of a stable and electrically conductive form of these polymers. Furthermore, the presence of SPS that serves as a charge-compensating dopant in this complex provides a unique combination of properties such as processability and water solubility.

  3. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage

    USDA-ARS?s Scientific Manuscript database

    Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose-phosphate synthase (SPS), soluble acid (SAI) and cell-wall invertase (CWI) are importan...

  4. Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using olive-oil agroindustry wastes.

    PubMed

    Delgado-Moreno, L; Nogales, R; Romero, E

    2017-12-15

    Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Group Objective Structured Clinical Experience: building communication skills in the clinical reasoning context.

    PubMed

    Konopasek, Lyuba; Kelly, Kevin V; Bylund, Carma L; Wenderoth, Suzanne; Storey-Johnson, Carol

    2014-07-01

    Students are rarely taught communication skills in the context of clinical reasoning training. The purpose of this project was to combine the teaching of communication skills using SPs with clinical reasoning exercises in a Group Objective Structured Clinical Experience (GOSCE) to study feasibility of the approach, the effect on learners' self-efficacy and attitude toward learning communication skills, and the effect of providing multiple sources of immediate, collaborative feedback. GOSCE sessions were piloted in Pediatrics and Medicine clerkships with students assessing their own performance and receiving formative feedback on communication skills from peers, standardized patients (SPs), and faculty. The sessions were evaluated using a retrospective pre/post-training questionnaire rating changes in self-efficacy and attitudes, and the value of the feedback. Results indicate a positive impact on attitudes toward learning communication skills and self-efficacy regarding communication in the clinical setting. Also, learners considered feedback by peers, SPs, and faculty valuable in each GOSCE. The GOSCE is an efficient and learner-centered method to attend to multiple goals of teaching communication skills, clinical reasoning, self-assessment, and giving feedback in a formative setting. The GOSCE is a low-resource, feasible strategy for experiential learning in communication skills and clinical reasoning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Graphene addition to MgB{sub 2} superconductor obtained by ex-situ spark plasma sintering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldica, G.; Burdusel, M.; Popa, S.

    Highlights: • Graphene-added dense MgB{sub 2} was prepared by ex-situ spark plasma sintering. • There is a limited interaction between graphene and MgB{sub 2}. • Addition of graphene (G) shows a small enhancement of J{sub c} and μ{sub 0}H{sub irr}. • G is one of the least effective C-containing additions. - Abstract: Graphene nanopowder (G) with average thickness particle size of about 6–8 nm was added to MgB{sub 2} commercial powder. Starting composition was (MgB{sub 2}){sub (1−x)}(G){sub x}, x = 0.0125, 0.025, 0.05. Processing was performed by Spark Plasma Sintering (SPS) technique. All added samples have high density (above 95%).more » The critical temperature (T{sub c}) and the lattice parameter a (c-axis lattice parameter is constant) show a small variation suggesting that carbon substitution for boron is low. TEM observations show the presence of un-reacted graphene plates supporting the T{sub c} and structural results. It also indicates that G-addition does not modify the MgB{sub 2} microstructure. Despite this, there is an optimum doped sample (MgB{sub 2}){sub 0.9875}(G){sub 0.0125} for which the critical current density at temperatures below 25 K is slightly higher at high magnetic fields than for the pristine sample. The addition of G is found as one of the least effective C-source additions enhancing J{sub c}. We discuss results as being strongly related to variation of the residual stress.« less

  7. Pitfalls in training simulated patients to respond appropriately to questions from medical students in family history-taking activities: the current situation surrounding the training of simulated patients for learning activities at Nippon Medical School.

    PubMed

    Aso, Ryoko; Inoue, Chikako; Yoshimura, Akinobu; Shimura, Toshiro

    2013-01-01

    Our goal was to train simulated patients (SPs) to respond appropriately to questions about family history from medical students in simulated medical interviews. To this end, we carried out a survey of 91 SPs and 76 4th-year medical students to investigate their notions of what constitutes a family. All of the SPs and students surveyed deemed parents and children living together to be members of a family. In a situation where one spouse's parents live together with the basic family unit, 93% of the SPs considered them to be members of the family, whereas only 79% of the students did. Married children living apart from their parents were considered members of the family by 18% of the SPs and 39% of the students. These results indicate clear differences between the SPs and students in their notions of the family. To verify the level of understanding of the definitions of family and blood relatives in particular scenarios used in simulated medical interviews, we administered a written test to 14 SPs who were training to assist in the nationwide common achievement test in medicine, the Objective Structured Clinical Examination (OSCE). The overall score of the SPs was 93.5%; the incorrect answers were "a sibling is not a blood relative" and "a spouse is a blood relative." We analyzed the performance of these 14 SPs in medical interviews carried out after training for the OSCE, in which they were asked questions that required them to reveal their understanding of blood relatives, cohabiting relatives, and the family. All of the SPs responded appropriately to the students' questions about family history. After the OSCE, we asked the SPs to assess themselves on how well they had given their family histories and to evaluate the usefulness of the SP training they had received. Their mean self-assessment score on providing a family history was 3.6 (scale: 1-4); on the usefulness of training, it was 3.4 (scale: 1-4). In conclusion, training SPs to respond appropriately to questions about family history in medical interviews is very important. Medical students have to learn how to take family histories accurately, so SP trainers should pay attention to training SPs in giving appropriate responses to students' questions, bearing in mind the differences between family history taking and everyday conversations about the family.

  8. The Third National Telemedicine & Telehealth Service Provider Showcase Conference: Advancing Telehealth Partnerships.

    PubMed

    Alverson, Dale C; Krupinski, Elizabeth A; Erps, Kristine A; Rowe, Nancy S; Weinstein, Ronald S

    2018-05-31

    As telemedicine and telehealth services are experiencing increasing rates of adoption, industry leaders and healthcare service providers are becoming increasingly focused on human resource issues encountered in the delivery of a broad range of telehealth services. To create a forum for the discussion of many interrelated elements of telehealth service industry, a national conference entitled "Telemedicine & Telehealth Service Provider Showcase" (SPS) Conference was established in 2014, and repeated in 2016 and 2017, in Arizona. These SPS Conferences include thought leaders, telehealth service providers, government administrators, and academicians from leading programs addressing service provider workforce issues. This report summarizes the content of SPS 2017 conference, held in Phoenix, AZ, October 2-3, 2017. The topics covered at SPS 2017 include using telehealth services as a strategic asset; development of appropriate effective partnerships; direct-to-consumer initiatives; important reimbursement, legislative, and regulatory issues (i.e., Centers for Medicare & Medicaid Services [CMS] approaches, financial models, and return on investment [ROI]); marketing; evaluation and applied metrics; remote monitoring and sensors; integration with electronic health records; and overall lessons learned. The content of SPS 2017 is summarized in the body of this report. The SPS 2017 program evaluators included attendees, speakers, and exhibitors. The knowledge attendees gained at SPS 2017 was characterized, by all three groups, as forward-looking and practical. SPS 2017 succeeded in identifying, and focusing on, solutions for issues, challenges, and barriers impacting the rapidly expanding telehealth service segment of the healthcare industry. The growing interest in this annual SPS Conference series apparently reflects, in part, the program committee's successes in identifying practical issues and their potential solutions.

  9. Large-scale preparation of sulfated polysaccharides with anti-angionenic and anti-inflammatory properties from Antrodia cinnamomia.

    PubMed

    Cheng, Jing-Jy; Chao, Chi-Hsein; Lu, Mei-Kuang

    2018-07-01

    Sulfated polysaccharides (SPSs) were isolated from 0.5mM potassium-sulfate fed Antrodia cinnamomea. We investigated the chemical properties and bio-activities of the five different fractions (SPS-K1, SPS-K2, SPS-K3, SPS-K4, and SPS-K5) with molecular weights ranging from 0.51 to 523.48kDa. SPS-K3 was consisted mainly of glucose, galactose and sulfate in a molar ratio of 15:1:30 with Mn value of 6.82kDa. It showed maximal inhibition of the tumor necrosis factor (TNF-α), interleukin-1beta (IL-1β) and interleukin-6 (IL-6) on bacterial LPS-induced inflammation in RAW264.7 macrophage and the production was recorded as 26.19 and 51.06%, respectively. SPS-K2 showed inhibition of endothelial cell tube formation in an in vitro assay of angiogenesis, and IC 50 was determined to be 160.92μg/ml. Large-scale preparation of SPS was performed in the 3-L fermentation of A. cinnamomea and the yield of the SPS was 5.38%. The area percentage of high-molecular-weight SPSs (1470-1590kDa) covered almost half of the SPSs mixture characterized by size exclusion column chromatography. The SPSs from fermented A. cinnamomea had significant inhibition on TNF-α, IL-1β and IL-6 production. This study is the first report to large-scale produce SPSs and demonstrates sulfated galactoglucan with strong anti-inflammatory activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan

    2015-07-01

    Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.

  11. Spark Plasma Sintering of Load-Bearing Iron-Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications

    NASA Astrophysics Data System (ADS)

    Montufar, Edgar B.; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastián; Celko, Ladislav; Klakurková, Lenka; Spotz, Zdenek; Diéguez-Trejo, Guillermo; Fohlerová, Zdenka; Dvorak, Karel; Zikmund, Tomáš; Kaiser, Jozef

    2016-04-01

    Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. The process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron with consolidation through spark plasma sintering (SPS). The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, x-ray diffraction and diametral tensile strength tests, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although a short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion tests show that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

  12. A probabilistic verification score for contours demonstrated with idealized ice-edge forecasts

    NASA Astrophysics Data System (ADS)

    Goessling, Helge; Jung, Thomas

    2017-04-01

    We introduce a probabilistic verification score for ensemble-based forecasts of contours: the Spatial Probability Score (SPS). Defined as the spatial integral of local (Half) Brier Scores, the SPS can be considered the spatial analog of the Continuous Ranked Probability Score (CRPS). Applying the SPS to idealized seasonal ensemble forecasts of the Arctic sea-ice edge in a global coupled climate model, we demonstrate that the SPS responds properly to ensemble size, bias, and spread. When applied to individual forecasts or ensemble means (or quantiles), the SPS is reduced to the 'volume' of mismatch, in case of the ice edge corresponding to the Integrated Ice Edge Error (IIEE).

  13. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

    PubMed Central

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-01-01

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime. PMID:28796172

  14. Medial Prefrontal Cortex and HPA Axis Roles in Generation of PTSD-Like Symptoms in SPS Model

    DTIC Science & Technology

    2010-09-01

    phenytoin , 5) SPS alters locus coeruleus (LC) activity. The research conducted to date has compelled us to change some of our hypotheses and/or the...antikindling drug Phenytoin can reverse these effects. This experiment was proposed in specific aim #4 (hypothesis #4b). SPS enhanced fear renewal without...affecting fear conditioning or extinction. Systemic administration of phenytoin reversed this effect. This is shown in Figure 7. 5) SPS sensitizes LC

  15. Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.)

    PubMed Central

    Aleman, Lorenzo; Ortega, Jose Luis; Martinez-Grimes, Martha; Seger, Mark; Holguin, Francisco Omar; Uribe, Diana J.; Garcia-Ibilcieta, David

    2013-01-01

    Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in Vmax and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules. PMID:19898977

  16. Using standardized patients versus video cases for representing clinical problems in problem-based learning.

    PubMed

    Yoon, Bo Young; Choi, Ikseon; Choi, Seokjin; Kim, Tae-Hee; Roh, Hyerin; Rhee, Byoung Doo; Lee, Jong-Tae

    2016-06-01

    The quality of problem representation is critical for developing students' problem-solving abilities in problem-based learning (PBL). This study investigates preclinical students' experience with standardized patients (SPs) as a problem representation method compared to using video cases in PBL. A cohort of 99 second-year preclinical students from Inje University College of Medicine (IUCM) responded to a Likert scale questionnaire on their learning experiences after they had experienced both video cases and SPs in PBL. The questionnaire consisted of 14 items with eight subcategories: problem identification, hypothesis generation, motivation, collaborative learning, reflective thinking, authenticity, patient-doctor communication, and attitude toward patients. The results reveal that using SPs led to the preclinical students having significantly positive experiences in boosting patient-doctor communication skills; the perceived authenticity of their clinical situations; development of proper attitudes toward patients; and motivation, reflective thinking, and collaborative learning when compared to using video cases. The SPs also provided more challenges than the video cases during problem identification and hypotheses generation. SPs are more effective than video cases in delivering higher levels of authenticity in clinical problems for PBL. The interaction with SPs engages preclinical students in deeper thinking and discussion; growth of communication skills; development of proper attitudes toward patients; and motivation. Considering the higher cost of SPs compared with video cases, SPs could be used most advantageously during the preclinical period in the IUCM curriculum.

  17. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats.

    PubMed

    Dziendzikowska, K; Krawczyńska, A; Oczkowski, M; Królikowski, T; Brzóska, K; Lankoff, A; Dziendzikowski, M; Stępkowski, T; Kruszewski, M; Gromadzka-Ostrowska, J

    2016-12-15

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20nm AgNPs (groups Ag I and Ag II) and 200nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Ag I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24h, 7days and 28days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jinqiao; Zhang, Ling; Xie, Bing

    2015-09-28

    Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processesmore » are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.« less

  19. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants

    PubMed Central

    Kamel, Laurent; Tang, Nianwu; Malbreil, Mathilde; San Clemente, Hélène; Le Marquer, Morgane; Roux, Christophe; Frei dit Frey, Nicolas

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants—a monocot, a dicot and a liverwort—in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts. PMID:28223991

  20. Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch.

    PubMed

    Lv, Qing-Qing; Li, Gao-Yang; Xie, Qiu-Tao; Zhang, Bao; Li, Xiao-Min; Pan, Yi; Chen, Han-Qing

    2018-08-01

    In order to increase the degree of substitution (DS), a combination of heat-moisture treatment (HMT) and octenyl succinylation (OSA) was used to modify sweet potato starch (SPS). The content of OSA had significant influence on the DS of starch, and DS of HMT OSA-modified SPS (HOSA-SPS) was higher than that of OSA-modified SPS (OSA-SPS), indicating that prior HMT could enhance the reaction. HOSA-SPS showed higher contents of SDS and RS in comparison with OSA-SPS as OSA concentration was beyond 6%. HMT decreased swelling power of starch while OSA modification had a contrary role (p < 0.05). Scanning electron microscopy (SEM) showed starch was destroyed by OSA modification while HMT had slight effect on the structure. X-ray diffraction (XRD) indicated that crystal type of starch was transformed from C- to A-type resulted from HMT, and remained unchanged by OSA modification. The onset, peak, and conclusion gelatinization temperatures of starch increased by HMT and decreased by OSA modification (p < 0.05). Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The pillars of well-constructed simulated patient programs: A qualitative study with experienced educators.

    PubMed

    Pritchard, Shane A; Blackstock, Felicity C; Keating, Jennifer L; Nestel, Debra

    2017-11-01

    The inclusion of simulated patients (SPs) in health professional education is growing internationally. However, there is limited evidence for best practice in SP methodology. This study investigated how experienced SP educators support SPs in providing SP-based education for health professional students. Experienced SP educators were identified via relevant professional associations, peer-reviewed publications, and peer referral. Semi-structured individual interviews were conducted via telephone. Data were analyzed independently by three researchers using principles of inductive thematic analysis. Four themes were identified that represent the key structural components of SP programs considered by educators seeking to optimize learning for health professional students in SP programs: managing SPs by operationalizing an effective program, selecting SPs by rigorously screening for suitability, preparing SPs by educating for a specific scenario, and directing SPs by leading safe and meaningful interactions. Within these components, subthemes were described, with considerable variation in approaches. Key structural components to SP programs were consistently described by experienced SP educators who operationalize them. A framework has been proposed to assist educators in designing high-quality SP programs that support SPs and learners. Future research is required to evaluate and refine this framework and other evidence-based resources for SP educators.

  2. A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2017-07-01

    AlGaN/GaN heterostructures are investigated by performing complementary spectroscopic measurements under novel experimental configurations. Distinct features related to the band edge of AlGaN and GaN layers are clearly observed in surface photovoltage spectroscopy (SPS) spectra. A few more SPS features, which are associated with defects in GaN, are also identified by performing the pump-probe SPS measurements. SPS results are strongly corroborated by the complementary photoluminescence and photoluminescence excitation (PLE) measurements. A correlation between the defect assisted SPS features and yellow luminescence (YL) peak is established by performing pump-probe SPS and PLE measurements. It is found that CN-ON donor complex is responsible for the generation of YL peak in our sample. Further, the deep trap states are found to be present throughout the entire GaN epilayer. It is also noticed that the deep trap states lying at the GaN/Fe-GaN interface make a strong contribution to the YL feature. A phenomenological model is proposed to explain the intensity dependence of the YL feature and the corresponding SPS features in a pump-probe configuration, where a reasonable agreement between the numerical simulations and experimental results is achieved.

  3. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.

    PubMed

    Bongers, Gerold; Pacer, Michelle E; Geraldino, Thais H; Chen, Lili; He, Zhengxiang; Hashimoto, Daigo; Furtado, Glaucia C; Ochando, Jordi; Kelley, Kevin A; Clemente, Jose C; Merad, Miriam; van Bakel, Harm; Lira, Sergio A

    2014-03-10

    The preferential localization of some neoplasms, such as serrated polyps (SPs), in specific areas of the intestine suggests that nongenetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine but developed SPs only in the cecum. Here we show that a host-specific microbiome was associated with SPs and that alterations of the microbiota induced by antibiotic treatment or by embryo transfer rederivation markedly inhibited the formation of SPs in the cecum. Mechanistically, development of SPs was associated with a local decrease in epithelial barrier function, bacterial invasion, production of antimicrobials, and increased expression of several inflammatory factors such as IL-17, Cxcl2, Tnf-α, and IL-1. Increased numbers of neutrophils were found within the SPs, and their depletion significantly reduced polyp growth. Together these results indicate that nongenetic factors contribute to the development of SPs and suggest that the development of these intestinal neoplasms in the cecum is driven by the interplay between genetic changes in the host, an inflammatory response, and a host-specific microbiota.

  4. Performance evaluation of Arizona's LTPP SPS-6 project : strategic study of rehabilitation techniques.

    DOT National Transportation Integrated Search

    2013-10-01

    As part of the Long Term Pavement Performance (LTPP) Program, the Arizona Department of Transportation (ADOT) : constructed 19 Specific Pavement Studies 6 (SPS6) test sections on Interstate 40 near Flagstaff. The SPS6 project : studied the effe...

  5. Medial Prefrontal Cortex and HPA Axis Roles in Generation of PTSD-Like Symptoms in SPS Model

    DTIC Science & Technology

    2012-09-01

    effects on ACTH and fast feedback. Psychoneuroendocrinology, 22 , 443-453. Liberzon, I., Lopez, J.F., Flagel, S.B., Vazquez, D.M. & Young, E.A. (1999...even though SPS has no effect on baseline or stress-enhanced corticosterone levels (Liberzon et al., 1997, 1999; Stout et al., 2010), increased GR...Prolonged Stress (SPS) model to examine the effect of SPS on HPA and mPFC function and how this relates to specific PTSD symptoms. Our data suggest that

  6. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 5: Systems engineering/integration research and technology

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Guidelines and ground rules followed in the development of requirements for the SPS are presented. Development planning objectives are specified in each of these areas, and evolutionary SPS program scenarios are described for the various concepts studied during the past one year contract. Program descriptions are presented as planning packages of technical tasks, and schedule phasing. Each package identifies the ground based technology effort that will facilitate SPS definitions, designs, development, and operations.

  7. Data on the impact of increasing the W amount on the mass density and compressive properties of Ni-W alloys processed by spark plasma sintering.

    PubMed

    Sadat, T; Hocini, A; Lilensten, L; Faurie, D; Tingaud, D; Dirras, G

    2016-06-01

    Bulk Ni-W alloys having composite-like microstructures are processed by spark plasma sintering (SPS) route of Ni and W powder blends as reported in a recent study of Sadat et al. (2016) (DOI of original article: doi:10.1016/j.matdes.2015.10.083) [1]. The present dataset deals with determination of mass density and evaluation of room temperature compressive mechanical properties as function of the amount of W (%wt. basis). The presented data concern: (i) measurement of the mass of each investigated Ni-W alloy which is subsequently used to compute the mass density of the alloy and (ii) the raw (stress (MPa) and strain ([Formula: see text])) data, which can be subsequently used for stress/ strain plots.

  8. Data on the impact of increasing the W amount on the mass density and compressive properties of Ni–W alloys processed by spark plasma sintering

    PubMed Central

    Sadat, T.; Hocini, A.; Lilensten, L.; Faurie, D.; Tingaud, D.; Dirras, G.

    2016-01-01

    Bulk Ni–W alloys having composite-like microstructures are processed by spark plasma sintering (SPS) route of Ni and W powder blends as reported in a recent study of Sadat et al. (2016) (DOI of original article: doi:10.1016/j.matdes.2015.10.083) [1]. The present dataset deals with determination of mass density and evaluation of room temperature compressive mechanical properties as function of the amount of W (%wt. basis). The presented data concern: (i) measurement of the mass of each investigated Ni–W alloy which is subsequently used to compute the mass density of the alloy and (ii) the raw (stress (MPa) and strain (ΔLL0)) data, which can be subsequently used for stress/ strain plots. PMID:27158658

  9. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by "wet" chemistry to sintering ceramics by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita

    2016-05-01

    Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.

  10. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    NASA Technical Reports Server (NTRS)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  11. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia.

    PubMed

    Ryman, Sephira G; Cavanagh, James F; Wertz, Christopher J; Shaff, Nicholas A; Dodd, Andrew B; Stevens, Brigitte; Ling, Josef; Yeo, Ronald A; Hanlon, Faith M; Bustillo, Juan; Stromberg, Shannon F; Lin, Denise S; Abrams, Swala; Mayer, Andrew R

    2018-05-25

    Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Molecular features of colorectal polyps presenting Kudo’s type II mucosal crypt pattern: are they based on the same mechanism of tumorigenesis?

    PubMed Central

    Shinmura, Kensuke; Konishi, Kazuo; Yamochi, Toshiko; Kubota, Yutaro; Yano, Yuichiro; Katagiri, Atsushi; Muramoto, Takashi; Kihara, Toshihiro; Tojo, Masayuki; Konda, Kenichi; Tagawa, Teppei; Yanagisawa, Fumito; Kogo, Mari; Makino, Reiko; Takimoto, Masafumi; Yoshida, Hitoshi

    2014-01-01

    Background and study aims: The molecular features of serrated polyps (SPs) with hyperplastic crypt pattern, also called Kudo’s type II observed by chromoendoscopy, were evaluated. Methods: The clinicopathological and molecular features of 114 SPs with a hyperplastic pit pattern detected under chromoendoscopy (five dysplastic SPs, 63 sessile serrated adenoma/polyps (SSA/Ps), 36 microvesicular hyperplastic polyps (MVHPs), and 10 goblet cell-rich hyperplastic polyps (GCHPs)) were examined. The frequency of KRAS and BRAF mutations and CpG island methylator phenotype (CIMP) were investigated. Results: Dysplastic SPs and SSA/Ps were frequently located in the proximal colon compared to others (SSA/Ps vs. MVHPs or GCHPs, P < 0.0001). No significant difference was found in the frequency of BRAF mutation among SPs apart from GCHP (60 % for dysplastic SPs, 44 % for SSA/Ps, 47 % for MVHPs, and 0 % for GCHPs). The frequency of CIMP was higher in dysplastic SPs or SSA/Ps than in MVHPs or GCHPs (60 % for dysplastic SPs, 56 % for SSA/Ps, 32 % for MVHPs, and 10 % for GCHPs) (SSA/Ps vs. GCHP, P = 0.0068). When serrated neoplasias (SNs) and MVHPs were classified into proximal and distal lesions, the frequency of CIMP was significantly higher in the proximal compared to the distal SNs (64 % vs. 11 %, P = 0.0032). Finally, multivariate analysis showed that proximal location and BRAF mutation were significantly associated with an increased risk of CIMP. Conclusions: Distinct molecular features were observed between proximal and distal SPs with hyperplastic crypt pattern. Proximal MVHPs may develop more frequently through SSA/Ps to CIMP cancers than distal MVHPs. PMID:26134964

  13. Molecular features of colorectal polyps presenting Kudo's type II mucosal crypt pattern: are they based on the same mechanism of tumorigenesis?

    PubMed

    Shinmura, Kensuke; Konishi, Kazuo; Yamochi, Toshiko; Kubota, Yutaro; Yano, Yuichiro; Katagiri, Atsushi; Muramoto, Takashi; Kihara, Toshihiro; Tojo, Masayuki; Konda, Kenichi; Tagawa, Teppei; Yanagisawa, Fumito; Kogo, Mari; Makino, Reiko; Takimoto, Masafumi; Yoshida, Hitoshi

    2014-09-01

    The molecular features of serrated polyps (SPs) with hyperplastic crypt pattern, also called Kudo's type II observed by chromoendoscopy, were evaluated. The clinicopathological and molecular features of 114 SPs with a hyperplastic pit pattern detected under chromoendoscopy (five dysplastic SPs, 63 sessile serrated adenoma/polyps (SSA/Ps), 36 microvesicular hyperplastic polyps (MVHPs), and 10 goblet cell-rich hyperplastic polyps (GCHPs)) were examined. The frequency of KRAS and BRAF mutations and CpG island methylator phenotype (CIMP) were investigated. Dysplastic SPs and SSA/Ps were frequently located in the proximal colon compared to others (SSA/Ps vs. MVHPs or GCHPs, P < 0.0001). No significant difference was found in the frequency of BRAF mutation among SPs apart from GCHP (60 % for dysplastic SPs, 44 % for SSA/Ps, 47 % for MVHPs, and 0 % for GCHPs). The frequency of CIMP was higher in dysplastic SPs or SSA/Ps than in MVHPs or GCHPs (60 % for dysplastic SPs, 56 % for SSA/Ps, 32 % for MVHPs, and 10 % for GCHPs) (SSA/Ps vs. GCHP, P = 0.0068). When serrated neoplasias (SNs) and MVHPs were classified into proximal and distal lesions, the frequency of CIMP was significantly higher in the proximal compared to the distal SNs (64 % vs. 11 %, P = 0.0032). Finally, multivariate analysis showed that proximal location and BRAF mutation were significantly associated with an increased risk of CIMP. Distinct molecular features were observed between proximal and distal SPs with hyperplastic crypt pattern. Proximal MVHPs may develop more frequently through SSA/Ps to CIMP cancers than distal MVHPs.

  14. Additive Effects of Former Methylenedioxymethamphetamine and Cannabis Use on Subclinical Psychotic Symptoms.

    PubMed

    Duman, Berker; Sedes, Nilay; Baskak, Bora

    2017-03-01

    Methylenedioxymethamphetamine (MDMA) is an amphetamine-derived psychostimulant, usually known as "ecstasy." The long-term neuropsychological effects of MDMA are examined in several studies with conflicting results. The most common findings reported are depression, anxiety, and memory and attention deficits. In addition to acute psychotic reactions observed after MDMA use, serotonergic and dopaminergic toxicities may increase the psychosis risk in the long-term. Cannabis usage among MDMA users is very high. The aim of this study was, therefore, to examine the additive effects of cannabis and MDMA on subclinical psychotic symptoms (SPS). Here, 131 healthy controls (hC), 54 former cannabis and MDMA users (C&M), and 46 former cannabis users (C) were evaluated for SPS. The definition of former user was based on the Munich Composite International Diagnostic Interview. The SPS scores were assessed by using the Schizotypal Personality Questionnaire (SPQ). The relationship between substance-free periods and total MDMA exposure with SPS was also examined. The C&M group had higher levels of SPS than both C and hC groups. This is true not only for the total SPQ scores but both positive and negative schizotypy scores as well as cognitive-perceptual, disorganized, and interpersonal schizotypy scores aligned hierarchically in the 3 study groups (C&M>C>hC). The total MDMA exposure was positively correlated and MDMA-free period was negatively correlated with the SPS score. We found that the former use of cannabis and MDMA is associated with marked elevation in SPS. Moreover, the exposure amount of MDMA and MDMA-free periods are important determinants of SPS. The longer the cannabis and ecstasy free periods, the larger is the waning of SPS.

  15. Satellite Power Systems (SPS) concept definition study. Volume 4: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Transportation system elements were synthesized and evaluated on the basis of their potential to satisfy overall satellite (SPS) transportation requirements and of their sensitivities, interfaces, and impact on the SPS. Additional analyses and investigations were conducted to further define transportation system concepts that will be needed for the developmental and operational phases of an SPS program. To accomplish these objectives, transportation systems such as shuttle and its derivatives have been identified; new heavy lift launch vehicle concepts, cargo and personnel orbital transfer vehicles and intra-orbit transfer vehicle concepts have been evaluated. To a limited degree, the program implications of their operations and costs were assessed. The results of these analyses have been integrated into other elements of the overall SPS concept definition studies.

  16. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants.

    PubMed

    Liu, Jinlong; Fu, Shaomin; Yang, Lei; Luan, Mingda; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-08-02

    To survive in most soils in which inorganic phosphate (Pi) levels are limited and constantly changing, plants universally use the vacuoles as cellular Pi "sink" and "source" to maintain Pi homeostasis. However, the transporters that mediate Pi sequestration into the vacuoles remain unknown. Recently, we and other 2 groups independently identified the members of SPS-MSF family as the candidates for tonoplast Pi transporters in Arabidopsis thaliana and Oryza sativa. We and Liu et al. demonstrated that one of SPS-MSF member, VPT1 (Vacuolar Phosphate Transporter 1), also named as PHT5;1 (Phosphate Transporter 5;1), plays a predominant role in Pi sequestration of vacuoles in Arabidopsis. Here we show that vpt1 mutants and VPT1-GFP overexpressing lines displayed sensitive to Pi stress under the hydroponic system containing the medium with low iron, supporting that VPT1 is essential for Arabidopsis to adapt phosphate stress.

  17. Differentiation of neuroblastoma cell line N1E-115 involves several signaling cascades.

    PubMed

    Oh, Ji-eun; Karlmark, Karlin Raja; Shin, Joo-ho; Pollak, Arnold; Freilinger, Angelika; Hengstschläger, Markus; Lubec, Gert

    2005-03-01

    No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The NIE-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated NIE-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.

  18. Study of rubella candidate vaccine based on a structurally modified plant virus.

    PubMed

    Trifonova, Ekaterina A; Zenin, Vladimir A; Nikitin, Nikolai A; Yurkova, Maria S; Ryabchevskaya, Ekaterina M; Putlyaev, Egor V; Donchenko, Ekaterina K; Kondakova, Olga A; Fedorov, Alexey N; Atabekov, Joseph G; Karpova, Olga V

    2017-08-01

    A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Using standardized patients versus video cases for representing clinical problems in problem-based learning

    PubMed Central

    2016-01-01

    Purpose: The quality of problem representation is critical for developing students’ problem-solving abilities in problem-based learning (PBL). This study investigates preclinical students’ experience with standardized patients (SPs) as a problem representation method compared to using video cases in PBL. Methods: A cohort of 99 second-year preclinical students from Inje University College of Medicine (IUCM) responded to a Likert scale questionnaire on their learning experiences after they had experienced both video cases and SPs in PBL. The questionnaire consisted of 14 items with eight subcategories: problem identification, hypothesis generation, motivation, collaborative learning, reflective thinking, authenticity, patient-doctor communication, and attitude toward patients. Results: The results reveal that using SPs led to the preclinical students having significantly positive experiences in boosting patient-doctor communication skills; the perceived authenticity of their clinical situations; development of proper attitudes toward patients; and motivation, reflective thinking, and collaborative learning when compared to using video cases. The SPs also provided more challenges than the video cases during problem identification and hypotheses generation. Conclusion: SPs are more effective than video cases in delivering higher levels of authenticity in clinical problems for PBL. The interaction with SPs engages preclinical students in deeper thinking and discussion; growth of communication skills; development of proper attitudes toward patients; and motivation. Considering the higher cost of SPs compared with video cases, SPs could be used most advantageously during the preclinical period in the IUCM curriculum. PMID:26923094

  20. A species dependent response to the pro-epileptic drug pentylentetrazole in birds.

    PubMed

    Amin, Faiq; Dar, Asim H; Osama, Khan; Khan, Faezah; Mitha, Rida; Tharwani, Arsal; Haider, Ghulam; Chand, Prem; Arain, Fazal M

    2017-09-01

    Epilepsy is common disorder that affects over 50 million people worldwide. Birds remain a promising yet largely under-explored model of epilepsy. This study reports the comparison of the response of two species of birds, Australian Parrots (APs) and Sparrows (SPs), to a pro-epileptic drug, Pentylenetetrazole (PTZ). PTZ injections caused myoclonic jerks (MCJs) and tonic clonic seizures (TCSs) in both species. The frequency of MCJs in APs was greater at the dose of 75mg/kg compared to both 50mg/kg and 25mg/kg while it was not significantly different in SPs. The comparison of APs and SPs showed that the frequency of MCJs was greater in APs compared to SPs at 25mg/kg and 75mg/kg while its latency was reduced at 25mg/kg and 50mg/kg. Interestingly SPs had a reduced latency of TCSs compared to APs at 75mg/kg. Glutamatergic and Gabaergic cell count was conducted to determine an association with the epileptic response to PTZ. The Glutamatergic cell counts for SPs was significantly greater than APs and conversely the Gabaergic cell counts in APs was higher compared to SPs. The reason for this difference in findings needs to be further investigated. This study shows that birds, and APs and SPs in particular, are a valid, interesting and under-explored model of epilepsy that should be further explored in order to understand the mysteries of epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Optical, scintillation and dosimeter properties of MgO:Tb translucent ceramics synthesized by the SPS method

    NASA Astrophysics Data System (ADS)

    Kawano, Naoki; Kato, Takumi; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    MgO translucent ceramics doped with different concentrations of Tb (0.01, 0.05, 0.1, 0.5%) were prepared by the Spark Plasma Sintering (SPS) method. Further, the optical, scintillation, dosimeter properties of were evaluated systematically. In the photoluminescence (PL) and scintillation spectra, sharp emission peaks due to the 4f-4f transitions of Tb3+ were observed. In the PL and scintillation decay curves, the decay time constants were a few ms which were on a typical order of the 4f-4f transitions of Tb3+. The thermally-stimulated luminescence (TSL) glow curves exhibited glow peaks around 80, 160 °C after X ray irradiation of 10 mGy. The intensity of TSL peak at 160 °C exhibited a linear response against X-ray dose over a dose range of 0.1-10 mGy. The optically-stimulated luminescence (OSL) under 590 nm stimulation exhibited strong emissions due to Tb3+ around 385-550 nm after X-ray irradiation. As in TSL, the intensity of OSL peak showed a linear response to X-ray dose, and the dynamic range confirmed was 0.1-1000 mGy.

  2. Highly Enhanced Thermoelectric Properties of Bi/Bi2S3 Nanocomposites.

    PubMed

    Ge, Zhen-Hua; Qin, Peng; He, DongSheng; Chong, Xiaoyu; Feng, Dan; Ji, Yi-Hong; Feng, Jing; He, Jiaqing

    2017-02-08

    Bismuth sulfide (Bi 2 S 3 ) has been of high interest for thermoelectric applications due to the high abundance of sulfur on Earth. However, the low electrical conductivity of pristine Bi 2 S 3 results in a low figure of merit (ZT). In this work, Bi 2 S 3 @Bi core-shell nanowires with different Bi shell thicknesses were prepared by a hydrothermal method. The core-shell nanowires were densified to Bi/Bi 2 S 3 nanocomposite by spark plasma sintering (SPS), and the structure of the nanowire was maintained as the nanocomposite due to rapid SPS processing and low sintering temperature. The thermoelectric properties of bulk samples were investigated. The electrical conductivity of a bulk sample after sintering at 673 K for 5 min using Bi 2 S 3 @Bi nanowire powders prepared by treating Bi 2 S 3 nanowires in a hydrazine solution for 3 h is 3 orders of magnitude greater than that of a pristine Bi 2 S 3 sample. The nanocomposite possessed the highest ZT value of 0.36 at 623 K. This represents a new strategy for densifying core-shell powders to enhance their thermoelectric properties.

  3. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan A. Webb; Indrajit Charit; Cory Sparks

    Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with averagemore » respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.« less

  4. Improved thermoelectric performance of n-type Ca and Ca-Ce filled skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Daniel R.; Liu, Chang; Ellison, Nicole D.

    2014-12-28

    Thermoelectric (TE) technology for use in automotive waste heat recovery is being advanced by General Motors with support from the US Department of Energy. Skutterudites are a very promising material for this application of TE technology due to their superior mechanical properties and good TE performance. Double-filled Yb{sub x}Ba{sub y}Co{sub 4}Sb{sub 12} with ZT values around 1.1 at 750 K are the best performing n-type skutterudites produced on a large scale using an economically viable approach of melt spinning (MS) in conjunction with spark plasma sintering (SPS). Another economical production method on the tons scale, the melt quench annealing (MQA) technique,more » has been recently claimed by Treibacher Industrie AG, further information is available [G. Rogl et al., Acta Mater. 76, 434–448 (2014)]. A possible hurdle to commercial implementation of these materials is the use of rare earths as the fillers to reduce thermal conductivity and improve the electrical transport properties. It will be shown herein that skutterudites double-filled with Ca and Ce, both of which are lower-cost fillers, display markedly different TE properties depending on whether they are produced by MQA or MS + SPS synthesis techniques. Ca and Ce double-filled skutterudites prepared by MS + SPS have TE properties that are superior to the same compositions prepared by MQA and that are comparable to the best performing Yb and Ba filled materials. Furthermore, the results of this study suggest that the unusually poor transport properties of MQA Ca-filled skutterudites can be ascribed to deleterious secondary phases, which is contrary to reports in the literature attempting to explain these irregularities via band structure features.« less

  5. Improved thermoelectric performance of n-type Ca and Ca-Ce filled skutterudites

    DOE PAGES

    Thompson, Daniel R.; Liu, Chang; Ellison, Nicole D.; ...

    2014-12-28

    Thermoelectric (TE) technology for use in automotive waste heat recovery is being advanced by General Motors with support from the US Department of Energy. Skutterudites are a very promising material for this application of TE technology due to their superior mechanical properties and good TE performance. Double-filled Yb xBa yCo 4Sb 12 with ZT values around 1.1 at 750K are the best performing n-type skutterudites produced on a large scale using an economically viable approach of melt spinning (MS) in conjunction with spark plasma sintering (SPS). Another economical production method on the tons scale, the melt quench annealing (MQA) technique,more » has been recently claimed by Treibacher Industrie AG, further information is available [G. Rogl et al., Acta Mater. 76, 434-448 (2014)]. A possible hurdle to commercial implementation of these materials is the use of rare earths as the fillers to reduce thermal conductivity and improve the electrical transport properties. It will be shown herein that skutterudites double-filled with Ca and Ce, both of which are lower-cost fillers, display markedly different TE properties depending on whether they are produced by MQA or MS + SPS synthesis techniques. Finally, Ca and Ce double-filled skutterudites prepared by MS + SPS have TE properties that are superior to the same compositions prepared by MQA and that are comparable to the best performing Yb and Ba filled materials. Furthermore, the results of this study suggest that the unusually poor transport properties of MQA Ca-filled skutterudites can be ascribed to deleterious secondary phases, which is contrary to reports in the literature attempting to explain these irregularities via band structure features.« less

  6. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into amore » final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.« less

  7. Performance evaluation of Arizona's LTPP SPS-5 project : strategic study of rehabilitation of asphalt concrete pavements.

    DOT National Transportation Integrated Search

    2015-06-01

    As part of the Long Term Pavement Performance (LTPP) Program, the Arizona Department of Transportation : (ADOT) constructed 11 Specific Pavement Study5 (SPS5) test sections on Interstate 8 near Casa Grande. The : SPS5 project studied a varie...

  8. Continued Monitoring of Indiana's SPS9-A Site : [Technical Summary

    DOT National Transportation Integrated Search

    2012-01-01

    The Indianas SPS9-A site was initiated as a part of the : SHRPs LTPP program in 1997 to study the influence : of binder grades on mixture performance. In the earlier : phase of this study entitled Development of Indianas : SPS9-A Site, five ...

  9. SPS flexible system control assessment analysis

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1981-01-01

    Active control of the Satellite Power System (SPS0, a large mechanically flexible aerospace structure is addressed. The control algorithm is the principle component in the feedback link from sensors to actuators. An analysis of the interaction of the SPS structure and its active control system is presented.

  10. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides

    NASA Astrophysics Data System (ADS)

    Golovkina, L. S.; Orlova, A. I.; Boldin, M. S.; Sakharov, N. V.; Chuvil'deev, V. N.; Nokhrin, A. V.; Konings, R.; Staicu, D.

    2017-06-01

    Powders based on the complex garnet-type oxide Y2.5Nd0.5Al5O12 - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm3 (0%)), 97.6% (TD = 4.88 g/cm3 (10%)), 94.4% (TD = 5.06 g/cm3 (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied.

  11. Performance evaluation of Arizona's LTPP SPS-9 project : strategic study of flexible pavement binder factors.

    DOT National Transportation Integrated Search

    2015-06-01

    As part of the Long Term Pavement Performance (LTPP) Program, the Arizona Department of Transportation (ADOT) : constructed eight Specific Pavement Studies 9 (SPS9) test sections on Interstate 10 near Phoenix (04B900). SPS9A : 04B900 is an over...

  12. Performance evaluation of Arizona's LTPP SPS-1 project : strategic study of flexible pavement structural factors.

    DOT National Transportation Integrated Search

    2012-01-01

    As part of the Long Term Pavement Performance (LTPP) Program, Arizona DOT constructed 16 SPS-1 test : sections on U.S. Route 93 near Kingman. The SPS-1 study was designed to study a variety of structural : sections in new asphalt concrete constructio...

  13. The Solar Power Satellite (SPS): Progress so far

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1989-01-01

    Major developments in key Solar Power Satellite (SPS)-related technologies are outlined and the significance of these developments are evaluated considering the SPS, both as an alternate energy option for use on Earth and as a potential stimulus for space infrastructure developments and expansion of the use of extraterrestrial resources.

  14. Performance evaluation of Arizona's LTPP SPS-9 Project : strategic study of flexible pavement mix design factors.

    DOT National Transportation Integrated Search

    2016-01-01

    As part of the Long Term Pavement Performance (LTPP) Program, the Arizona Department of Transportation (ADOT) constructed five Specific Pavement Studies 9 (SPS9) test sections on U.S. Route 93 near Kingman. This project, SPS9B, studied the effe...

  15. Asphalt overlay cost-effectiveness : Manitoba TGS and Minnesota SPS-5 projects 10-year ranking of treatments (1989-1999)

    DOT National Transportation Integrated Search

    2000-10-01

    This report reviews Manitoba's and Minnesota's Specific Pavement Studies (SPS-5) projects. The studies focus on investigating the performance of hot mix asphalt (HMA) overlays on HMA pavements and involve nine core test sections. The SPS-5 design var...

  16. Medicinal benefits of sulfated polysaccharides from sea vegetables.

    PubMed

    Kim, Se-Kwon; Li, Yong-Xin

    2011-01-01

    The cell walls of sea vegetables or marine algae are rich in sulfated polysaccharides (SPs) such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae. These SPs exhibit various biological activities such as anticoagulant, antiviral, antioxidative, and anticancer activities with potential health benefits. Therefore, SPs derived from sea vegetables have great potential in further development as nutraceuticals and medicinal foods. This chapter presents an overview of biological activities and potential medicinal benefits of SPs derived from sea vegetables. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Performance analysis and simulation of the SPS reference phase control system

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Chie, C. M.

    1980-01-01

    The major elements required in the operation of an SPS which employs retrodirectivity as a means of pointing the beam to Earth include the spacetenna, the rectenna, and the pilot signal transmitter. The phase control system is faced with several problems: (1) path delay variations due to imperfect SPS circular orbits; (2) ionospheric effects; (3) initial phase beam forming; (4) beam pointing; (5) beam safing; (6) high power phase noise effects; and (7) interference. The use of SOLARISM, a computer program to select pilot signal parameters and evaluate SPS performance is described.

  18. Satellite Power System (SPS) FY 79 program summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Satellite Power System (SPS) program a joint effort to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept is discussed. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. This Program Summary not only covers FY 1979 but includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  19. Synthesis and characterization of sulfonate polystyrene-lignosulfonate-alumina (SPS-LS-Al{sub 2}O{sub 3}) polyblends as electrolyte membranes for fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com

    2015-09-30

    The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.

  20. Satellite power system salvage and disposal alternatives

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A wide range of salvage options for the SPS satellite, ranging from use in and beyond geosynchronous orbit to use in low Earth orbit in return and use on Earth are presented. The satellite can be used intact to provide power for various purposes, it can be cannibalized or it can be melted down to supply materials for space or ground based products. The use of SPS beyond its nominal lifetime provides value that can be deducted from the SPS capital investment cost. The present value of the salvage value of the SPS satellites, referenced to the system initial operation data, is on the order of five to ten percent of its on-orbit capital cost. (Given a 30 year satellite lifetime and a four percent discount rate, the theoretical maximum salvage value is 30.8 percent of the capital cost.) The SPS demonstration satellite is available some 30 years earlier than the first full scale SPS satellite and has a salvage value on the order of 80 percent of its on-orbit capital cost. In the event that it becomes desirable to dispose of either the demonstration of full scale SPS satellite, a number of disposal options is presented for which intact disposal costs are less than one percent of capital costs.

  1. Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos.

    PubMed

    Tu, Wenqing; Lu, Bin; Niu, Lili; Xu, Chao; Lin, Chunmian; Liu, Weiping

    2014-09-01

    Synthetic pyrethroids (SPs) are among the most heavily used insecticides for residential and agricultural applications. Their residues have frequently been detected in aquatic ecosystems. Despite their high aquatic toxicity, their toxicokinetics are still unclear. In this study, the kinetics of uptake and depuration of three SPs, permethrin (PM), bifenthrin (BF) and λ-cyhalothrin (λ-CH), were determined for the first time using zebrafish eleutheroembryo assays. The diastereoisomer selectivity of PM in eleutheroembryos was further examined. The results indicated that three SPs were quickly taken up by eleutheroembryos. The bioaccumulation factors of the SPs ranged from 125.4 to 708.4. The depuration of SPs in zebrafish eleutheroembryos followed the first-order process. The elimination rate constants (k2) of SPs in eleutheroembryos ranged from 0.018 h(-1) to 0.0533 h(-1). The half-lives (t1/2) were in the range 13.0-38.5h. The diastereoisomer fraction (DF) values for PM in the eleutheroembryos estimated at different uptake and depuration times were all significantly greater than the original value (DF=0.43), indicating selective enrichment and elimination of cis-PM relative to trans-PM. These results reveal a high capacity for SP bioconcentration by zebrafish eleutheroembryos, suggesting that SPs possess a highly cumulative risk to fish. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A Preliminary Case Study for Rectenna Sites in Indonesia

    NASA Astrophysics Data System (ADS)

    Purwanto, Y.; Collins, P.

    2004-12-01

    Electricity power generation using alternative energy sources in Indonesia has become an important policy. Until now, the contribution from alternative energy sources (especially from renewable energy sources) is very small, only about 1% of the total energy supply. It is expected that in the next 10 years this contribution will be raised to 20%. The development of renewable energy sources is primarily performed in remote areas, that are poor in infrastructure facilities. This is considered to be a good policy since there are many such remote areas in Indonesia that need development programs. The existence of Solar Power Satellite system will open a new horizon in alternative energy supply, including Indonesia, because of its higher efficiency compared to conventional terrestrial solar cells, with almost no influence from either climate or solar position. Like other countries in the world, Indonesia, although one of the largest mineral energy producers in the world (i.e. oil, coal, and natural gas), still gives attention to energy diversification programs, including solar energy utilization. SPS, being based on solar energy, could be a good choice. The Indonesian archipelago consists of thousands of islands (more than 13,000) and is the equatorial country with the longest equatorial extent (more than 5000 km). This condition is very good for energy reception from the SPS 2000 pilot plant since the energy transmitting system (spacetenna) will orbit above the equator. Along the equator there could be placed more than four receiving stations (rectenna), especially in remote areas. Thus, it is very important to consider the involvement of Indonesia in SPS energy reception research. This paper describes a preliminary study of the development possibilities in SPS energy reception in Indonesia. To define the rectenna sites and physical development aspect, this study considers some major aspects: environmental, technical, social, and economic aspects. Environmental aspects include the possibilities of environmental damage due to the high intensity electromagnetic energy from outer space. As is well known, most Indonesian land areas consist of tropical forest which is rich with flora and fauna; these may face risks from receiving such electromagnetic energy illumination. It is considered that rectenna location selection in the main islands (like Java, Sumatra, Kalimantan, Sulawesi, Irian, etc.) which are densely populated should be avoided. The same conditions should also be considered for the location in the forest, due to the flora and fauna damage possibilities during the physical development process. From this study it can be considered that the appropriate rectenna location should be placed on uninhabited small coral islands (atoll) sized about 5x5 km 2 , which are located along the equator. Such coral islands are vailable in the western and eastern parts of Indonesia. It is also considered that such coral islands should be located not too far from major inhabited islands, that is about 5-10 km offshore due to the convenience of physical rectenna development and electric energy distribution to the mainland. Such a coral island is to be considered to suffer minimal effects if the surface is illuminated by microwave energy. The same effect suffered by resident creatures like birds and reptiles should also be minimal. Because of the very limited infrastructure available on the mainland (and likely no facilities at all), a rectenna development study should consider all technical risks. For example, antenna installation and building of other support components should be done in such a location so that sea surface transportation can be easily performed. Communication system may be performed only by radio transceivers and satellite systems. The existence of human resources, that are needed to physically develop buildings, must be considered since the location is a remote island. There will also be no expert staff available, so that they will need to be recruited on the mainland (i.e. Java). From these considerations it can be seen that a good first rectenna location would be in North Moluccas, that is islands around Halmahera Island. As remote islands, Halmahera Island and the nearby Biang Island and Bacan Island do not have enough electric energy sources to support economic activities significantly. A rectenna site can be developed there to support SPS energy reception research and, as a benefit for the people, can support their electricity needs to improve their life quality. Educational research on SPS energy reception, as a most important aspect in this case, can be performed by local research institutions and universities in Ambon and Java in collaboration with international institutions. The previous study of SPS in Indonesia showed that many research institutions and universities in Indonesia offered their kind attention to involve their researchers in energy reception research. Furthermore, the political conditions and social safety in Indonesia now offer a conducive atmosphere for such research.

  3. Safety of zoster vaccine in elderly adults following documented herpes zoster.

    PubMed

    Morrison, Vicki A; Oxman, Michael N; Levin, Myron J; Schmader, Kenneth E; Guatelli, John C; Betts, Robert F; Gelb, Larry D; Pachucki, Constance T; Keay, Susan K; Menzies, Barbara; Griffin, Marie R; Kauffman, Carol A; Marques, Adriana R; Toney, John F; Simberkoff, Michael S; Serrao, Richard; Arbeit, Robert D; Gnann, John W; Greenberg, Richard N; Holodniy, Mark; Keitel, Wendy A; Yeh, Shingshing S; Davis, Larry E; Crawford, George E; Neuzil, Kathy M; Johnson, Gary R; Zhang, Jane H; Harbecke, Rith; Chan, Ivan S F; Keller, Paul M; Williams, Heather M; Boardman, Kathy D; Silber, Jeffrey L; Annunziato, Paula W

    2013-08-15

    After completion of the Shingles Prevention Study (SPS; Department of Veterans Affairs Cooperative Studies Program Number 403), SPS participants who had initially received placebo were offered investigational zoster vaccine without charge. This provided an opportunity to determine the relative safety of zoster vaccine in older adults following documented herpes zoster (HZ). A total of 13 681 SPS placebo recipients who elected to receive zoster vaccine were followed for serious adverse events (SAE) for 28 days after vaccination. In contrast to the SPS, a prior episode of HZ was not a contraindication to receiving zoster vaccine. The SPS placebo recipients who received zoster vaccine included 420 who had developed documented HZ during the SPS. The mean interval between the onset of HZ and the receipt of zoster vaccine in the 420 recipients with prior HZ was 3.61 years (median interval, 3.77 years [range, 3-85 months]); the interval was <5 years for approximately 80% of recipients. The proportion of vaccinated SPS placebo recipients with prior HZ who developed ≥ 1 SAE (0.95%) was not significantly different from that of vaccinated SPS placebo recipients with no prior history of HZ (0.66%), and the distribution of SAEs in the 2 groups was comparable. These results demonstrate that the general safety of zoster vaccine in older persons is not altered by a recent history of documented HZ, supporting the safety aspect of the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices recommendation to administer zoster vaccine to all persons ≥ 60 years of age with no contraindications, regardless of a prior history of HZ.

  4. Effects of medical training scenarios on heart rate variability and motivation in students and simulated patients.

    PubMed

    Rieber, Nicole; Betz, Lisa; Enck, Paul; Muth, Eric; Nikendei, Christoph; Schrauth, Markus; Werner, Anne; Kowalski, Axel; Zipfel, Stephan

    2009-06-01

    Research regarding the experience of stress during medical training scenarios using standardised patients (SPs) has been primarily qualitative and has focused on the SPs. The purpose of this study was to quantitatively evaluate stress and motivation in both students and SPs during these scenarios by measuring heart rate variability (HRV) and administering the German version of the Questionnaire on Current Motivation (QCM). A total of 44 medical students (23 women, 21 men) participated in two medical history-taking training scenarios. In one scenario the SP role-played a patient with a somatic disease; in the other the SP played a patient with a psychosomatic disease, creating easy and difficult scenarios, respectively, for the student. Each student interviewed one of 11 SPs (five women, six men), using the same SP in both scenarios. Heart rate variability was measured during baseline periods and during the training scenarios in both students and SPs. Motivation was assessed before each training scenario. Heart rate variability was lower in both students and SPs during the scenarios compared with baseline values, but did not differ by scenario type. For students, motivation increased when the first scenario involved psychosomatic illness, but decreased when the first condition was somatic. For SPs motivation was consistent over time for scenarios involving psychosomatic disease, but decreased for somatic disease-related scenarios. The training scenarios induced stress in both students and SPs, as indicated by decreased HRV. Student motivation was high, indicating that SP scenarios represent a valid teaching method. Further studies in the natural setting of SP examinations are needed.

  5. Style preference survey: a report on the psychometric properties and a cross-validation experiment.

    PubMed

    Smith, Sherri L; Ricketts, Todd; McArdle, Rachel A; Chisolm, Theresa H; Alexander, Genevieve; Bratt, Gene

    2013-02-01

    Several self-report measures exist that target different aspects of outcomes for hearing aid use. Currently, no comprehensive questionnaire specifically assesses factors that may be important for differentiating outcomes pertaining to hearing aid style. The goal of this work was to develop the Style Preference Survey (SPS), a questionnaire aimed at outcomes associated with hearing aid style differences. Two experiments were conducted. After initial item development, Experiment 1 was conducted to refine the items and to determine its psychometric properties. Experiment 2 was designed to cross-validate the findings from the initial experiment. An observational design was used in both experiments. Participants who wore traditional, custom-fitted (TC) or open-canal (OC) style hearing aids from 3 mo to 3 yr completed the initial experiment. One-hundred and eighty-four binaural hearing aid users (120 of whom wore TC hearing aids and 64 of whom wore OC hearing aids) participated. A new sample of TC and OC users (n = 185) participated in the cross-validation experiment. Currently available self-report measures were reviewed to identify items that might differentiate between hearing aid styles, particularly preference for OC versus TC hearing aid styles. A total of 15 items were selected and modified from available self-report measures. An additional 55 items were developed through consensus of six audiologists for the initial version of the SPS. In the first experiment, the initial SPS version was mailed to 550 veterans who met the inclusion criteria. A total of 184 completed the SPS. Approximately three weeks later, a subset of participants (n = 83) completed the SPS a second time. Basic analyses were conducted to evaluate the psychometric properties of the SPS including subscale structure, internal consistency, test-retest reliability, and responsiveness. Based on the results of Experiment 1, the SPS was revised. A cross-validation experiment was then conducted using the revised version of the SPS to confirm the subscale structure, internal consistency, and responsiveness of the questionnaire in a new sample of participants. The final factor analysis led to the ultimate version of the SPS, which had a total of 35 items encompassing five subscales: (1) Feedback, (2) Occlusion/Own Voice Effects, (3) Localization, (4) Fit, Comfort, and Cosmetics, and (5) Ease of Use. The internal consistency of the total SPS (Cronbach's α = .92) and of the subscales (each Cronbach's α > .75) was high. Intraclass correlations (ICCs) showed that the test-retest reliability of the total SPS (ICC = .93) and of the subscales (each ICC > .80) also was high. TC hearing aid users had significantly poorer outcomes than OC hearing aid users on 4 of the 5 subscales, suggesting that the SPS largely is responsive to factors related to style-specific differences. The results suggest that the SPS has good psychometric properties and is a valid and reliable measure of outcomes related to style-specific, hearing aid preference. American Academy of Audiology.

  6. Acting as Standardized Patients Enhances Family Medicine Residents' Self-Reported Skills in Palliative Care

    ERIC Educational Resources Information Center

    Sittikariyakul, Pat; Jaturapatporn, Darin; Kirshen, A. J.

    2015-01-01

    Recent publications have confirmed the use of standardized patients (SPs) in improving clinical skills and enhancing competency. Little research has studied the benefits residents may themselves gain in palliative care playing the role of SPs. Nineteen Family Medicine residents were recruited as standardized patients (FMR-SPs) for a mandatory…

  7. Specific SPS construction studies: Operations and maintenance

    NASA Technical Reports Server (NTRS)

    Miller, K. H.

    1980-01-01

    Surface as well as in-space operations of the solar power satellite program are addressed. The primary end products of SPS industrial enterprise are shown SPS and its ground receiving antenna every six months; and (3) construction of electric cargo orbital transfer vehicles. The production of photovoltaic cells and solar blankets is also considered.

  8. Social Problem-Solving among Disadvantaged and Non-Disadvantaged Adolescents

    ERIC Educational Resources Information Center

    Kasik, László; Balázs, Fejes József; Guti, Kornél; Gáspár, Csaba; Zsolnai, Anikó

    2018-01-01

    The study examined the differences of social problem-solving (SPS) among 12-, 14- and 16-year-old Hungarian disadvantaged and non-disadvantaged adolescents (N = 382) and investigated the relationship between SPS and family background (FB). SPS was measured through students' own and their teachers' evaluations by an adapted questionnaire (Social…

  9. SPS issues: The need to look ahead

    NASA Technical Reports Server (NTRS)

    Dybdal, K. K.

    1980-01-01

    The need for a systemic examination of SPS for the purpose of identifying potential problem areas and the issues related to those areas, is considered. The use of a systemic approach, a valuable perspective from which to evaluate SPS implementation as a reliable, safe, and cost efficient energy supply of the future, is discussed.

  10. Thoughts and sensations, twin galaxies of the inner space: The propensity to mind-wander relates to spontaneous sensations arising on the hands.

    PubMed

    Michael, George A; Tapiero, Isabelle; Gálvez-García, Germán; Jacquot, Laurence

    2017-10-01

    Sensations and thoughts have been described as potentially related to self-awareness. We therefore asked whether sensations that arise in the absence of external triggers, i.e., spontaneous sensations (SPS), which were shown to relate to interoception and perception of the self, vary as a function of the individual propensity to generate spontaneous thoughts, i.e., mind-wandering. The Mind Wandering Questionnaire (MWQ) was used as a specific tool to assess the frequency and propensity to mind-wander several weeks before completing an SPS task. Correlational analyses between the MWQ score and SPS showed that greater propensity to mind-wander coincided with widespread perception of SPS, while lesser propensity to mind-wander coincided with more spatially restricted perception of SPS. The results are interpreted in light of the role of spontaneous thoughts and sensations in self-awareness. The potential psychological processes and the way they might regulate the relation between mind-wandering and the perception of SPS are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.

    PubMed

    Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong

    2010-01-01

    The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.

  12. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies

    PubMed Central

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Kotov, Leonid N.

    2016-01-01

    Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity’s imaginary part is not a sufficient condition. The structure supports TE SPs when the core radius of waveguide is larger than the critical value Rcr. Critical radius depends on the light frequency and the difference of permittivities inside and outside the waveguide. Minimum value of Rcr is comparable with the wavelength of volume wave and corresponds to interband carriers transition in graphene. We predict that use of multilayer graphene will lead to decrease of critical radius. TE SPs speed may differ more significantly from bulk light one in case of epsilon-near-zero core and shell of the waveguide. Results may open the door for practical applications of TE SPs in optics, including telecommunications. PMID:27225745

  13. SWITCHABLE POLARITY SOLVENTS AS DRAW SOLUTES FOR FORWARD OSMOSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick F. Stewart; Mark L. Stone; Aaron D. Wilson

    2013-03-01

    Switchable polarity solvents (SPS), mixtures of carbon dioxide, water, and tertiary amines, are presented as viable forward osmosis (FO) draw solutes allowing a novel SPS FO process. In this study substantial osmotic strengths of SPS are measured with freezing point osmometry and were demonstrated to induce competitive ?uxes at high salt concentrations on a laboratory-scale FO unit utilizing a ?at sheet cellulose triacetate (CTA) membrane. Under the experimental conditions the SPS degrades the CTA membrane; however experiments with polyamide reverse osmosis (RO) membranes display stability towards SPS. Once the draw is diluted the major fraction of the switchable polarity solventmore » can be mechanically separated from the puri?ed water after polar to nonpolar phase shift induced by introduction of 1 atm carbon dioxide to 1 atm of air or nitrogen with mild heating. Trace amounts of SPS can be removed from the separated water with RO in a process that avoids solution concentration polarization. The separated nonpolar phase can be regenerated to a full strength draw and recycled with the re-addition of 1 atm of carbon dioxide.« less

  14. The trait of sensory processing sensitivity and neural responses to changes in visual scenes

    PubMed Central

    Xu, Xiaomeng; Aron, Arthur; Aron, Elaine; Cao, Guikang; Feng, Tingyong; Weng, Xuchu

    2011-01-01

    This exploratory study examined the extent to which individual differences in sensory processing sensitivity (SPS), a temperament/personality trait characterized by social, emotional and physical sensitivity, are associated with neural response in visual areas in response to subtle changes in visual scenes. Sixteen participants completed the Highly Sensitive Person questionnaire, a standard measure of SPS. Subsequently, they were tested on a change detection task while undergoing functional magnetic resonance imaging (fMRI). SPS was associated with significantly greater activation in brain areas involved in high-order visual processing (i.e. right claustrum, left occipitotemporal, bilateral temporal and medial and posterior parietal regions) as well as in the right cerebellum, when detecting minor (vs major) changes in stimuli. These findings remained strong and significant after controlling for neuroticism and introversion, traits that are often correlated with SPS. These results provide the first evidence of neural differences associated with SPS, the first direct support for the sensory aspect of this trait that has been studied primarily for its social and affective implications, and preliminary evidence for heightened sensory processing in individuals high in SPS. PMID:20203139

  15. Societal assessment overview

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.

    1980-01-01

    The decision to proceed with SPS depends on a political determination that commitment of the economic, institutional, and social energies required for its implementation is a worthwhile investment. This determination is national (and international) in scope and is based on knowledge of the environmental and societal impacts of the SPS, its projected economics and technological risks, expressed through the influence of contending segments of society. To assist the decision makers, an assessment of societal issues associated with the SPS was undertaken as part of the Concept Development and Evaluation Program. Results of the assessment are reported. The primary societal assessment objectives are to determine if the societal ramifications of an SPS might significantly impede its development, and to establish an information base regarding these issues. Estimates regarding SPS impacts commensurate with its stage of development and the needs of the decision makers are provided.

  16. The clinical impact of serrated colorectal polyps

    PubMed Central

    O’Connell, Brendon M; Crockett, Seth D

    2017-01-01

    Serrated polyps (SPs) of the colorectum pose a novel challenge to practicing gastroenterologists. Previously thought benign and unimportant, there is now compelling evidence that SPs are responsible for a significant percentage of incident colorectal cancer worldwide. In contrast to conventional adenomas, which tend to be slow growing and polypoid, SPs have unique features that undermine current screening and surveillance practices. For example, sessile serrated polyps (SSPs) are flat, predominately right-sided, and thought to have the potential for rapid growth. Moreover, SSPs are subject to wide variations in endoscopic detection and pathologic interpretation. Unfortunately, little is known about the natural history of SPs, and current guidelines are based largely on expert opinion. In this review, we outline the current taxonomy, epidemiology, and management of SPs with an emphasis on the clinical and public health impact of these lesions. PMID:28260946

  17. Orbital construction support equipment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given.

  18. The roles and functions of safety professionals in Taiwan: Comparing the perceptions of safety professionals and safety educators.

    PubMed

    Wu, Tsung-Chih

    2011-10-01

    The perspectives of both internal and external members have to be considered when developing safety curricula. This study discusses perceptional differences between safety educators (SEs) and safety professionals (SPs) regarding the function of SPs. The findings will serve as a reference framework for the establishment of core safety competencies and the development of safety curricula for SPs. 248 respondents, including both SEs and SPs, completed self-administered questionnaires, which included the 45-item safety function scale (SFS). Nine factors were extracted from the scale using exploratory factor analysis (EFA), namely inspection and research, regulatory tasks, emergency procedures and settlement of damage, management and financial affairs, culture change, problem identification and analysis, developing and implementing solutions, knowledge management, and training and communications. Descriptive statistical results indicated that SPs and SEs hold differing views on the rank of the frequency of safety functions. MANOVA results indicated that SPs' perceptions of developing and implementing solutions, training and communications, inspection and research, and management and financial affairs were significantly higher than that of SEs. On the other hand, SE's perceptions regarding participation in regulatory tasks were significantly higher than those of SPs. Based on these results, the author suggests that a clear communication channel should be established between universities and industry to reduce the gap between the perceptions of SEs and SPs. The results of the study are statistically and practically significant. In addition to serving as a reference for the development of safety curricula, the results are also conducive to the establishment of SP roles and functions. Ultimately the development of more suitable safety curricula would open up employment competition for students who graduate from safety-related programs. SPs, on the other hand, can correctly recognize their roles and functions so as to realize the safety expectations invested in them by organizations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco.

    PubMed

    Seger, Mark; Gebril, Sayed; Tabilona, Jules; Peel, Amanda; Sengupta-Gopalan, Champa

    2015-01-01

    The outcome of simultaneously increasing SPS and GS activities in transgenic tobacco, suggests that sucrose is the major determinant of growth and development, and is not affected by changes in N assimilation. Carbon (C) and nitrogen (N) are the major components required for plant growth and the metabolic pathways for C and N assimilation are very closely interlinked. Maintaining an appropriate balance or ratio of sugar to nitrogen metabolites in the cell, is important for the regulation of plant growth and development. To understand how C and N metabolism interact, we manipulated the expression of key genes in C and N metabolism individually and concurrently and checked for the repercussions. Transgenic tobacco plants with a cytosolic soybean glutamine synthetase (GS1) gene and a sucrose phosphate synthase (SPS) gene from maize, both driven by the CaMV 35S promoter were produced. Co-transformants, with both the transgenes were produced by sexual crosses. While GS is the key enzyme in N assimilation, involved in the synthesis of glutamine, SPS plays a key role in C metabolism by catalyzing the synthesis of sucrose. Moreover, to check if nitrate has any role in this interaction, the plants were grown under both low and high nitrogen. The SPS enzyme activity in the SPS and SPS/GS1 co-transformants were the same under both nitrogen regimens. However, the GS activity was lower in the co-transformants compared to the GS1 transformants, specifically under low nitrogen conditions. The GS1/SPS transformants showed a phenotype similar to the SPS transformants, suggesting that sucrose is the major determinant of growth and development in tobacco, and its effect is only marginally affected by increased N assimilation. Sucrose may be functioning in a metabolic capacity or as a signaling molecule.

  20. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    PubMed

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  1. Satellite Power System (SPS) public outreach experiment

    NASA Technical Reports Server (NTRS)

    Mcneal, S. R.

    1980-01-01

    An outreach experiment was conducted to improve the results of the satellite power system (SPS) concept development and evaluation program. The objectives of the outreach were to: (1) determine the areas of major concern relative to the SPS concept and (2) gain experience with an outreach process for use in future public involvement. The response to the outreach effort was positive, suggesting that the effort extended by the SPS project division to encourage an information exchange with the public was well received. The responses were analyzed and from them some questions and answers about the satellite power system are presented.

  2. Using tevatron magnets for HE-LHC or new ring in LHC tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; /Fermilab

    Two injector accelerator options for HE-LHC of p{sup +} - p{sup +} collisions at 33 TeV cms energy are briefly outlined. One option is based on the Super-SPS (S-SPS) accelerator in the SPS tunnel, and the other one is based on the LER (Low-Energy-Ring) accelerator in the LHC tunnel. Expectations of performance of the main arc accelerator magnets considered for the construction of the S-SPS and of the LER accelerators are used to tentatively devise some selected properties of these accelerators as potential injectors to HE-LHC.

  3. Satellite Power System (SPS) military applications

    NASA Technical Reports Server (NTRS)

    Ozeroff, M. J.

    1978-01-01

    The potential military role, both offensive and defensive, of a Satellite Power System (SPS) is examined. A number of potential military support possibilities are described. An SPS with military capabilities may have a strong negative impact on international relations if it is not internationalized. The SPS satellite would be vulnerable to military action of an enemy with good space capability, but would experience little or no threat from saboteurs or terrorists, except via the ground controls. The paper concludes with an outline of some of the key issues involved, and a number of recommendations for future study, including some areas for long term efforts.

  4. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources

    NASA Astrophysics Data System (ADS)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting

    2014-02-01

    Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.

  5. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it; Pellizzari, M.; Zadra, M.

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles.more » X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.« less

  6. Global view of the E region irregularity and convection velocities in the high-latitude Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.; Makarevich, Roman A.

    2017-02-01

    Occurrence of the E region plasma irregularities is investigated using two Super Dual Auroral Radar Network (SuperDARN) South Pole (SPS) and Zhongshan (ZHO) radars that sample the same magnetic latitude deep within the high-latitude plasma convection pattern but from two opposite directions. It is shown that the SPS and ZHO velocity distributions and their variations with the magnetic local time are different, with each distribution being asymmetric; i.e., a particular velocity polarity is predominant. This asymmetry in the E region velocity distribution is associated with the bump-on-tail of the distribution near the nominal ion acoustic speed Cs that is most likely due to the Farley-Buneman instability (FBI) echoes or an inflection point of the distribution below nominal Cs that is most likely due to the gradient drift instability echoes. In contrast, the distribution of the convection velocity component was found to be symmetric, i.e., with no bump-on-tail or an inflection point, but with a bias (i.e., uniform shift) toward a particular polarity. It is demonstrated that the asymmetry in the convection pattern between the eastward and westward zonal components is unexpectedly strong, with the westward zonal component being predominant, especially at lower latitudes, while also exhibiting a strong interplanetary magnetic field By dependence. The observations are consistent with the notion that the asymmetry in the E region velocity distribution is highly sensitive to the bias in the convection component caused by the zonal convection component asymmetry and that the bump-on-tail or inflection point features may also depend on the irregularity height and the presence of strong density gradients modifying the FBI threshold value.

  7. Rocket experiment METS Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  8. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  9. Effect of heat treatment on the optical properties of perovskite BaZr0.5Ce0.3Y0.2O3-δ ceramic prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Xing, Bohang; Cheng, Zhi; Wang, Cao; Zhao, Zhe

    2017-09-01

    The effect of heat treatment on the in-line transmittance of BaZr0.5Ce0.3Y0.2O3-δ (BZCY532) ceramics prepared by spark plasma sintering method was investigated. The loss of Ba in transparent BZCY532 ceramics is the key reason for the loss of transmittance during the annealing process. This problem can be effectively alleviated by using a powder bed of BZCY532. Heat treatment atmospheres, wet air and dry air, were also found to be critical for obtaining high quality transparent ceramics. A highly transparent BZCY532 ceramic with the in-line transmittance (Tin) of 71.4% at 2000 nm can be obtained by using SPS method followed by an annealing in powder bed at 1500 °C in wet air.

  10. Processing and Characterization of Fe-Mn-Cu-Sn-C Alloys Prepared by Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bączek, Elżbieta; Konstanty, Janusz; Romański, Andrzej; Podsiadło, Marcin; Cyboroń, Jolanta

    2018-03-01

    In this work, Fe-Mn-Cu-Sn-C alloys were prepared by means of powder metallurgy (PM). Powder mixtures were ball-milled for 8, 30 and 120 h and densified to < 1% porosity using spark plasma sintering (SPS) at 900 °C and 35 MPa. After consolidation, all samples of the Fe alloys were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), hardness and flexural strength tests. Resistance to abrasive wear was evaluated in both three-body abrasion and two-body abrasion tests. The SEM observations revealed an evident dependence of grain size and microstructural homogeneity on milling time. The XRD analysis showed a marked increase in austenite content in the as-sintered specimens with milling time. Although the proportion of deformation-induced martensite was small, the strengthening effect of abrasion on the subsurface layer of the investigated alloys was clearly indicated by Knoop hardness measurements.

  11. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  12. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo.

    PubMed

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-05-24

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.

  13. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides.

    PubMed

    Wang, Jianguo; Zhang, Yifeng; Yuan, Yahong; Yue, Tianli

    2014-06-01

    In this study, we employed a one-step method to prepare selenium nanoparticles (SeNPs) decorated by the water-soluble derivative of Ganoderma lucidum polysaccharides (SPS). The SeNPs-SPS complexes were stable, and the diameter of the SeNPs was homogeneous at around 25 nm. We investigated the anti-inflammatory activity of SeNPs-SPS against murine Raw 264.7 macrophage cells induced by LPS. SeNPs-SPS were found to significantly inhibit LPS-stimulated nitric oxide (NO) production against Raw 264.7 macrophages. RT-PCR results reveal the down-regulation of mRNA gene expressions for pro-inflammatory cytokines, including inducible NO synthase (iNOS), interleukin (IL)-1 and TNF-α in a dose-dependent manner. However, the anti-inflammation cytokine IL-10 was markedly increased. In the NF-κB signal pathway, SeNPs-SPS significantly inhibited the phosphorylation of Iκ-Bα. Similar results were observed for inhibition of the phosphorylation of JNK1/2 and p38 mitogen-activated protein kinase(MAPKs), whereas ERK1/2 MAPK was not apparently affected by SeNPs-SPS. All of these results suggest that SeNPs-SPS complexes have anti-inflammatory potential modulating pro-/anti-inflammation cytokine secretion profiles, and that the mechanism is partially due to inhibition of activations of NF-κB, JNK1/2 and p38 MAPKs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The use of video in standardized patient training to improve portrayal accuracy: A randomized post-test control group study.

    PubMed

    Schlegel, Claudia; Bonvin, Raphael; Rethans, Jan Joost; van der Vleuten, Cees

    2014-10-14

    Abstract Introduction: High-stake objective structured clinical examinations (OSCEs) with standardized patients (SPs) should offer the same conditions to all candidates throughout the exam. SP performance should therefore be as close to the original role script as possible during all encounters. In this study, we examined the impact of video in SP training on SPs' role accuracy, investigating how the use of different types of video during SP training improves the accuracy of SP portrayal. Methods: In a randomized post-test, control group design three groups of 12 SPs each with different types of video training and one control group of 12 SPs without video use in SP training were compared. The three intervention groups used role-modeling video, performance-feedback video, or a combination of both. Each SP from each group had four students encounter. Two blinded faculty members rated the 192 video-recorded encounters, using a case-specific rating instrument to assess SPs' role accuracy. Results: SPs trained by video showed significantly (p < 0.001) better role accuracy than SPs trained without video over the four sequential portrayals. There was no difference between the three types of video training. Discussion: Use of video during SP training enhances the accuracy of SP portrayal compared with no video, regardless of the type of video intervention used.

  15. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    PubMed

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  16. Polymer based plasmonic elements with dye molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Douguo; Wang, Xiangxian; Chen, Yikai; Han, Lu; Wang, Pei; Ming, Hai

    2012-11-01

    Recently, dielectric loaded surface plasmons (SPs) elements are inducing highly interesting in the field of nanooptics, which are composed of dielectric nanostructures fabricated on a metallic thin film. This configuration will provide a route to novel integrated micro-optical devices and components combining photonics and electronics on the same chip. The advantages are easy fabrication, easy integration, and also the potential to realizing active plasmonic devices. In this talk, we will present our recent work in this field. Polymer (PMMA) nano-structures are fabricated on a silver film by the electron beam lithography (EBL) and laser interference lithography. These nano-structures are used to manipulate the behaviors of the SPs, such as converging, diverging, and guiding the propagation of SPs in subwavelength scale. Except for the pure PMMA nano-structures, dye materials (Rhodamine B, RhB) doped PMMA structures are also fabricated on the silver film. The RhB molecules will work as the active medium to excite the SPs or compensation the loss of SPs wave. The dye doped PMMA nanostructure provides a choice to realize active plasmonic elements, such as SPs Bragg gratings. On the other hand, the interaction between the fluorescence molecules and SPs will give rise to some new optical phenomena, such as directional fluorescence emission, anisotropic fluorescence emission. These polymer based plasmonic structures are investigated with a home-built leakage radiation microscopy (LRM).

  17. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  18. Neural Circuits via Which Single Prolonged Stress Exposure Leads to Fear Extinction Retention Deficits

    ERIC Educational Resources Information Center

    Knox, Dayan; Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas

    2016-01-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions…

  19. Safety of Zoster Vaccine in Elderly Adults Following Documented Herpes Zoster

    PubMed Central

    Morrison, Vicki A.; Oxman, Michael N.; Levin, Myron J.; Schmader, Kenneth E.; Guatelli, John C.; Betts, Robert F.; Gelb, Larry D.; Pachucki, Constance T.; Keay, Susan K.; Menzies, Barbara; Griffin, Marie R.; Kauffman, Carol A.; Marques, Adriana R.; Toney, John F.; Simberkoff, Michael S.; Serrao, Richard; Arbeit, Robert D.; Gnann, John W.; Greenberg, Richard N.; Holodniy, Mark; Keitel, Wendy A.; Yeh, Shingshing S.; Davis, Larry E.; Crawford, George E.; Neuzil, Kathy M.; Johnson, Gary R.; Zhang, Jane H.; Harbecke, Rith; Chan, Ivan S. F.; Keller, Paul M.; Williams, Heather M.; Boardman, Kathy D.; Silber, Jeffrey L.; Annunziato, Paula W.

    2013-01-01

    Background. After completion of the Shingles Prevention Study (SPS; Department of Veterans Affairs Cooperative Studies Program Number 403), SPS participants who had initially received placebo were offered investigational zoster vaccine without charge. This provided an opportunity to determine the relative safety of zoster vaccine in older adults following documented herpes zoster (HZ). Methods. A total of 13 681 SPS placebo recipients who elected to receive zoster vaccine were followed for serious adverse events (SAE) for 28 days after vaccination. In contrast to the SPS, a prior episode of HZ was not a contraindication to receiving zoster vaccine. The SPS placebo recipients who received zoster vaccine included 420 who had developed documented HZ during the SPS. Results. The mean interval between the onset of HZ and the receipt of zoster vaccine in the 420 recipients with prior HZ was 3.61 years (median interval, 3.77 years [range, 3–85 months]); the interval was <5 years for approximately 80% of recipients. The proportion of vaccinated SPS placebo recipients with prior HZ who developed ≥1 SAE (0.95%) was not significantly different from that of vaccinated SPS placebo recipients with no prior history of HZ (0.66%), and the distribution of SAEs in the 2 groups was comparable. Conclusions. These results demonstrate that the general safety of zoster vaccine in older persons is not altered by a recent history of documented HZ, supporting the safety aspect of the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices recommendation to administer zoster vaccine to all persons ≥60 years of age with no contraindications, regardless of a prior history of HZ. PMID:23633406

  20. Identification of a novel selD homolog from Eukaryotes, Bacteria, and Archaea: Is there an autoregulatory mechanism in selenocysteine metabolism?

    PubMed Central

    Guimarães, M. Jorge; Peterson, David; Vicari, Alain; Cocks, Benjamin G.; Copeland, Neal G.; Gilbert, Debra J.; Jenkins, Nancy A.; Ferrick, David A.; Kastelein, Robert A.; Bazan, J. Fernando; Zlotnik, Albert

    1996-01-01

    Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. PMID:8986768

  1. Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions.

    PubMed

    Gebril, Sayed; Seger, Mark; Villanueva, Fabiola Muro; Ortega, Jose Luis; Bagga, Suman; Sengupta-Gopalan, Champa

    2015-10-01

    Overexpression of SPS in alfalfa is accompanied by early flowering, increased plant growth and an increase in elemental N and protein content when grown under N2-fixing conditions. Sucrose phosphate synthase (SPS; EC 2.3.1.14) is the key enzyme in the synthesis of sucrose in plants. The outcome of overexpression of SPS in different plants using transgenic approaches has been quite varied, but the general consensus is that increased SPS activity is associated with the production of new sinks and increased sink strength. In legumes, the root nodule is a strong C sink and in this study our objective was to see how increasing SPS activity in a legume would affect nodule number and function. Here we have transformed alfalfa (Medicago sativa, cv. Regen SY), with a maize SPS gene driven by the constitutive CaMV35S promoter. Our results showed that overexpression of SPS in alfalfa, is accompanied by an increase in nodule number and mass and an overall increase in nitrogenase activity at the whole plant level. The nodules exhibited an increase in the level of key enzymes contributing to N assimilation including glutamine synthetase and asparagine synthetase. Moreover, the stems of the transformants showed higher level of the transport amino acids, Asx, indicating increased export of N from the nodules. The transformants exhibited a dramatic increase in growth both of the shoots and roots, and earlier flowering time, leading to increased yields. Moreover, the transformants showed an increase in elemental N and protein content. The overall conclusion is that increased SPS activity improves the N status and plant performance, suggesting that the availability of more C in the form of sucrose enhances N acquisition and assimilation in the nodules.

  2. The effects of the court-type Thai traditional massage on anatomical relations, blood flow, and skin temperature of the neck, shoulder, and arm.

    PubMed

    Plakornkul, Vasana; Vannabhum, Manmas; Viravud, Yadaridee; Roongruangchai, Jantima; Mutirangura, Pramook; Akarasereenont, Pravit; Laohapand, Tawee

    2016-09-15

    Court-type Thai traditional massage (CTTM) has specific major signal points (MaSP) for treating musculoskeletal conditions. The objectives of this study are to investigate the anatomical surfaces and structures of MaSPs, and to examine blood flow (BF) and skin temperature (ST) changes after applying pressure on the MaSPs on neck, shoulder, and arm areas. In the anatomical study, 83 cadavers were dissected and the anatomical surfaces and structures of the 15 MaSPs recorded. In human volunteers, BF, peak systolic velocity (PS), diameter of artery (DA), and ST changes were measured at baseline and after pressure application at 0, 30, 60, 180, and 300 s. There was no statistical difference in anatomical surfaces and structures of MaSP between the left and right side of the body. The 3 MaSPs on the neck were shown to be anatomically separated from the location of the common carotid arteries. The BF of MaSPs of the neck significantly and immediately increased after pressure application for 30 s and for 60 s in the arm (p < 0.001). ST increased significantly and immediately after pressure application for 300 s (p < 0.001). There was no significant correlation between BF and ST at any of the MaSPs. This study showed that MaSP massages were mainly directed towards muscles. MaSPs can cause significant, but brief, increases in BF and ST. Further studies are suggested to identify changes in BF and ST for all of the MaSPs after actual massage treatment sessions as well as other physiological effects of massage.

  3. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  4. Satellite Power System: Concept development and evaluation program. Volume 7: Space transportation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    During the several phases of the satellite power system (SPS) concept definition study, various transportation system elements were synthesized and evaluated on the basis of their potential to satisfy overall SPS transportation requirements and their sensitivities, interfaces, and impact on the SPS. Additional analyses and investigations were conducted to further define transportation system concepts that will be needed for the developmental and operational phases of an SPS program. To accomplish these objectives, transportation systems such as the shuttle and its derivatives were identified; new heavy-lift launch vehicle (HLLV) concepts, cargo and personnel orbital transfer vehicles (COTV and POTV), and intra-orbit transfer vehicle (IOTV) concepts were evaluated; and, to a limited degree, the program implications of their operations and costs were assessed. The results of these analyses were integrated into other elements of the overall SPS concept definition studies.

  5. Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.

    2017-02-01

    The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.

  6. The SPS concept - An overview of status and outlook. [Satellite Power System

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1980-01-01

    The satellite power system (SPS) concept has been reviewed and assessed in a concept development and evaluation program. This paper presents the results of the assessment in systems definition, environmental factors, social impacts, and comparison of future energy systems. Although no insurmountable objections to SPS have been identified, there remain issues that can be resolved only through further research.

  7. Satellite Power System (SPS) environmental impacts, preliminary assessment

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    Present power plant assessment factors are used to present satellite power system (SPS) impacts. In contrast to oil, gas, nuclear and coal fueled power plants, the SPS and hydroelectric power plants produce air, water, and solid waste emissions only during the construction phase. Land use impacts result from the placement of rectennas used for microwave receiving and rectifying. Air quality impacts of the SPS resulting from the construction phase amount to 0.405 metric tons per megawatt year. Solid wastes impacts are 0.108 metric tons per year of operation. Other impacts such as those caused by heavy lift launch vehicle sites are also discussed.

  8. Selection of alternative central-station technologies for the Satellite Power System (SPS) comparative assessment

    NASA Technical Reports Server (NTRS)

    Samsa, M.

    1980-01-01

    An important effort is the Satellite Power System (SPS) comparative Assessment is the selection and characterization of alternative technologies to be compared with the SPS concept. The ground rules, criteria, and screening procedure applied in the selection of those alternative technologies are summarized. The final set of central station alternatives selected for comparison with the SPS concept includes: (1) light water reactor with improved fuel utilization, (2) conventional coal combustion with improved environmental controls, (3) open cycle gas turbine with integral low Btu gasifier, (4) terrestrial photovoltaic, (5) liquid metal fast breeder reactor, and (6) magnetic confinement fusion.

  9. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-05-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.

  10. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment.

    PubMed

    Park, YongJin; Hong, Feng; Cheon, JiHoon; Hidaka, Taira; Tsuno, Hiroshi

    2008-01-01

    Lab-scale single-phase and two-phase thermophilic methane fermentation systems (SPS and TPS, respectively) were operated and fed with artificial kitchen waste. In both SPS and TPS, the highest methane recovery ratio of 90%, in terms of chemical oxygen demand by dichromate (CODcr), was observed at an organic loading rate (OLR) of 15 gCODcr/(l.d). The ratio of particle CODcr remaining to total CODcr in the influent was 0.1 and the ratio of NH(4)-N concentration to the input total nitrogen concentration was 0.5 in both SPS and TPS. However, the propionate concentration in the SPS reactor fluctuated largely and was 2 gCODcr/l higher than that in TPS, indicating less stable digestion. Regardless, efficient kitchen waste degradation can be accomplished in both SPS and TPS at an OLR of <20 gCODcr/(l.d), even though TPS may be more stable and easier to maintain. Bacillus coagulans predominated with an occupied ratio of approximately 90% in the acid fermentation reactor of TPS, and then a richer microbial community with a higher Shannon index value was maintained in the methane fermentation reactor of TPS than in the SPS reactor.

  11. Vancomycin-resistant Enterococcus faecium bacteraemia as a complication of Kayexalate (sodium polystyrene sulfonate, SPS) in sorbitol-induced ischaemic colitis.

    PubMed

    Cerrud-Rodriguez, Roberto Christian; Alcaraz-Alvarez, Diego; Chiong, Brian Bobby; Ahmed, Abdurhman

    2017-11-09

    We present the case report of an 80-year-old woman with chronic kidney disease stage G5 admitted to the hospital with fluid overload and hyperkalaemia. Sodium polystyrene sulfonate (SPS, Kayexalate) in sorbitol suspension was given orally to treat her hyperkalaemia, which precipitated an episode of SPS in sorbitol-induced ischaemic colitis with the subsequent complication of vancomycin-resistant Enterococcus (VRE) bacteraemia. SPS (Kayexalate) in sorbitol suspension has been implicated in the development of intestinal necrosis. Sorbitol, which is added as a cathartic agent to decrease the chance of faecal impaction, may be primarily responsible through several proposed mechanisms. The gold standard of diagnosis is the presence of SPS crystals in the colon biopsy. On a MEDLINE search, no previous reports of a VRE bacteraemia as a complication of biopsy-confirmed SPS in sorbitol ischaemic colitis were found. To the best of our knowledge, ours would be the first such case ever reported. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Sizes of particles formed during municipal wastewater treatment.

    PubMed

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  13. The assessment of skin picking in adolescence: psychometric properties of the Skin Picking Scale-Revised (German version).

    PubMed

    Gallinat, Christina; Keuthen, Nancy J; Stefini, Annette; Backenstrass, Matthias

    2017-02-01

    Skin picking disorder has received growing attention since the release of DSM-5, yet there are no evidence-based assessment instruments for adolescent samples. The present study examines the psychometric properties of the Skin Picking Scale-Revised (SPS-R, German version) in adolescents. A total of 76 adolescents (96% female) completed the SPS-R, the Clinical Psychological Diagnostic System (KPD-38), and a questionnaire assessing demographics and clinical characteristics online. The SPS-R had high internal consistency (α = 0.89) and significant small-to-medium correlations with reduced competence skills, psychological impairment, general life satisfaction, social support, and social problems on the KPD-38. Similar to prior findings for adults, an exploratory factor analysis suggested a two-factor model for the SPS-R in adolescents. Group comparisons failed to show significant differences on SPS-R scores between participants with and without dermatological conditions. The current results suggest that the SPS-R can be useful in adolescent samples as a reliable and valid instrument for the assessment of skin picking severity. Future research investigating scale validity and factor structure in a clinical sample of adolescent skin pickers is warranted.

  14. Highlights of Astronomy, Vol. 15

    NASA Astrophysics Data System (ADS)

    Corbett, Ian

    2010-11-01

    Preface; Part I. Gruber Cosmology Prize Lecture; Part II. Invited Discourses; Part III. Joint Discussions: 1. Dark matter in early-type galaxies Léon V. E. Koopmans and Tommaso Treu; 2. Diffuse light in galaxy clusters Magda Arnaboldi and Ortwin Gerhard; 3. Neutron stars - timing in extreme environments Tomaso Belloni, Mariano Méndez and Chengmin Zhang; 4. Progress in understanding the physics of Ap and related stars Margarida Cunha; 5. Modelling the Milky Way in the age of Gaia Annie C. Robin; 6. Time and astronomy Pascale Defraigne; 7. Astrophysical outflows and associated accretion phenomena Elisabete M. de Gouveia Dal Pino and Alex C. Raga; 8. Hot interstellar matter in elliptical galaxies Dong-Woo Kim and Silvia Pellegrini; 9. Are the fundamental constants varying with time? Paolo Molaro and Elisabeth Vangioni; 10. 3D views on cool stellar atmospheres - theory meets observation K. N. Nagendra, P. Bonifacio and H. G. Ludwig; 11. New advances in helio- and astero-seismology; 12. The first galaxies - theoretical predictions and observational clues; 13. Eta Carinae in the context of the most massive stars Theodore R. Gull and Augusto Damineli; 14. The ISM of galaxies in the far-infrared and sub-millimetre; 15. Magnetic fields in diffuse media Elisabete M. de Gouveia Dal Pino and Alex Lazarian; 16. IHY global campaign - whole heliosphere interval; Part IV. Special Sessions: SpS 1. IR and sub-mm spectroscopy - a new tool for studying stellar evolution Glenn Wahlgren, Hans Käufl and Florian Kerber; SpS 2. The international year of astronomy Pedro Russo, Catherine Cesarsky and Lars Lindberg Christensen; SpS 3. Astronomy in Antarctica in 2009 Michael G. Burton; SpS 4. Astronomy education between past and future J. P. De Greve; SpS 5. Accelerating the rate of astronomical discovery Ray P. Norris; SpS 6. Planetary systems as potential sites for life Régis Courtin, Alan Boss and Michel Mayor; SpS 7. Young stars, brown dwarfs, and protoplanetary disks Jane Gregorio-Hetem and Silvia Alencar; SpS 8. The galactic plane N. A. Walton, A. Damineli, M. G. Hoare, J. E. Drew, Roberto D. D. Costa and Walter J. Maciel; SpS 9. Marking the 400th anniversary of Kepler's 'astronomia nova' T. J. Mahoney; SpS 10. Next generation large astronomical facilities Gerard F. Gilmore and Richard T. Schilizzi; Author index.

  15. The clinical significance and synchronous polyp burden of large (≥ 20 mm) sessile serrated polyps in patients without serrated polyposis syndrome.

    PubMed

    Desomer, Lobke; Tate, David J; Jayanna, Mahesh; Pellise, Maria; Awadie, Halim; Burgess, Nicholas G; McLeod, Duncan; Mahajan, Hema; Lee, Eric Y T; Williams, Stephen J; Bourke, Michael J

    2018-05-08

     Sessile serrated polyps (SSPs) are important precursors of colorectal carcinoma and interval cancer. Large SSPs (≥ 20 mm) outside the definition of serrated polyposis syndrome (SPS) have not been studied in comparison with SPS. We aimed to describe the characteristics of patients with large SSPs in this context.  Patients with at least one SSP (≥ 20 mm) were eligible. Data from three consecutive colonoscopies were used to compare clinical and endoscopic characteristics in three patient groups: SPS, a solitary large SSP, and patients with at least two SSPs without fulfilling the criteria for SPS (oligo-SSP). Data on the diagnostic colonoscopy were collected retrospectively, whereas the remaining data was collected prospectively.  67/146 patients (45.9 %) had SPS, 53/146 (36.3 %) had a solitary SSP, and 26/146 (17.8 %) were categorized as oligo-SSP. Personal (16.4 %, 9.4 %, and 11.5 %, respectively) and family (17.9 %, 17.0 %, and 23.1 %, respectively) history of colorectal carcinoma did not differ significantly between groups. Polyp burden was greater in SPS compared with solitary SSP but was not different from oligo-SSP (advanced adenomas: SPS 32.8 % vs. solitary SSP 9.4 % [ P  = 0.002] vs. oligo-SSP 34.6 % [ P  = 0.87]; ≥ 10 conventional adenomas: 11.9 % vs. 0 % [ P  = 0.01] vs. 3.8 % [ P  = 0.44], respectively). Dysplasia in large SSPs was frequent in all groups (41.1 % overall). SPS was recognized by referring endoscopists in only 9.0 % of cases.  Patients with oligo-SSPs have similar synchronous polyp burden and clinical characteristics as patients with SPS and may require similar surveillance. Modification of the criteria for the diagnosis of SPS to include this group seems warranted. Patients with a solitary SSP have a lower risk of synchronous polyps, including advanced adenomas. Larger studies are warranted to determine whether these patients may return to standard surveillance following complete examination and clearance of the colon. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Does patient gender impact resident physicians' approach to the cardiac exam?

    PubMed

    Chakkalakal, Rosette J; Higgins, Stacy M; Bernstein, Lisa B; Lundberg, Kristina L; Wu, Victor; Green, Jacqueline; Long, Qi; Doyle, Joyce P

    2013-04-01

    Physical examination remains an important part of the initial evaluation of patients presenting with chest pain but little is known about the effect of patient gender on physician performance of the cardiovascular exam. To determine if resident physicians are less likely to perform five key components of the cardiovascular exam on female versus male standardized patients (SPs) presenting with acute chest pain. Videotape review of SP encounters during Objective Structured Clinical Examinations (OSCEs) administered by the Emory University Internal Medicine Residency Program in 2006 and 2007. Encounters were reviewed to assess residents' performance of five cardiac exam skills: auscultation of the aortic, pulmonic, tricuspid, and mitral valve areas and palpation for the apical impulse. One hundred forty-nine incoming residents. Residents' performance for each skill was classified as correct, incorrect, or unknown. One hundred ten of 149 (74 %) of encounters were available for review. Residents were less likely to correctly perform each of the five skills on female versus male SPs. This difference was statistically significant for auscultation of the tricuspid (p = 0.004, RR = 0.62, 95 % CI 0.46-0.83) and mitral (p = 0.007, RR = 0.58, 95 % CI = 0.41-0.83) valve regions and palpation for the apical impulse (p < 0.001, RR = 0.27, 95 % CI = 0.16-0.47). Male residents were less likely than female residents to correctly perform each maneuver on female versus male SPs. The interaction of SP gender and resident gender was statistically significant for auscultation of the mitral valve region (p = 0.006) and palpation for the apical impulse (p = 0.01). We observed significant differences in the performance of key elements of the cardiac exam for female versus male SPs presenting with chest pain. This observation represents a previously unidentified but potentially important source of gender bias in the evaluation of patients presenting with cardiovascular complaints.

  17. Urbanization and Access Inequality to Collective Consumption Goods & Services related to Sanitation & Solid Waste in the cities of Sao Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Roig, C. D. A.; Feitosa, F. D. F.; Monteiro, A. M. V.

    2016-12-01

    Cities are mainly a product of collective consumption and there is a pressing need to expand and deepen the discussion about the quality of access to collective goods and services in the urban world: the availability of electricity and potable water and its interrelation with the lack of solid waste management and wastewater treatment leading to pollution of water sources.This study attempts to measure urban stratification through access conditions to collective goods in the metropolitan regions of Sao Paulo State (SPS) by contributing with a research method that incorporates collective consumption as a core component of the population-environment relationship. The use of spatial analysis allows the examination of the structure and distribution of accessibility to sanitation services and basic urban infrastructure.The water stress situation in SPS is dramatic. The average water loss within these distribution systems is 34,3% and a 39% average sewage treatment rate of all wastewater generated. The SPS also imports 60,6% of electricity from other states that use mostly hydroelectric power which imposes greater pressure on the country's water resources. The energy and water crisis has harmed a number of essential rights related mostly to resource access and service continuity as suburban residents of poor municipalities are the ones most affected by disruptions.SPS is the most populous state of Brazil and this region of study is responsible for 75% of total State population with 83% of State GDP. There has been a major increase in water use conflicts such as power generation, urban water supply (including the Rio de Janeiro water demand) and the dilution of urban sewage and solid waste disposal. These collective consumption access problems demonstrate the urgent need for better integrated metropolitan management of natural resources and the urban commons.

  18. Simulated patients' perspectives of and perceived role in medical students' professional identity development.

    PubMed

    McLean, Michelle; Johnson, Patricia; Sargeant, Sally; Green, Patricia

    2015-04-01

    Much has been written about medical students' professional identity formation, the process of "becoming" a doctor. During their training, medical students interact with a range of teachers and trainers. Among these are simulated patients (SPs) who role-play patients, assisting students with their communication, procedural, and physical examination skills. With SPs regularly interacting with students, this qualitative study explored their views of students' emerging professional identities at one Australian medical school. SPs' contributions to developing professional identities were also explored. Fourteen SPs were interviewed individually or in pairs. After template analysis of the transcripts using a priori themes, a follow-up focus group (n = 7) was arranged. Although being older (implying maturity and more life experience) and exposure to real patients and previous health care experience were identified as contributing to developing an identity as a doctor, SPs recognized that for some, an existing professional identity might impede the development of a new identity. Simulated patients were of the opinion that they contributed to students' professional identities by creating a supportive environment for honing skills, which they did by realistically role-playing patient scripts, by making their bodies available, and by providing feedback as "patients." Through their authentic portrayal of patients and through their feedback, we are of the opinion that our SPs can contribute to students' developing identities as doctors. As lay individuals who often encounter students longitudinally, we believe that SPs offer a particular lens through which to view students' emerging identities as future doctors.

  19. Simulated patient training: Using inter-rater reliability to evaluate simulated patient consistency in nursing education.

    PubMed

    MacLean, Sharon; Geddes, Fiona; Kelly, Michelle; Della, Phillip

    2018-03-01

    Simulated patients (SPs) are frequently used for training nursing students in communication skills. An acknowledged benefit of using SPs is the opportunity to provide a standardized approach by which participants can demonstrate and develop communication skills. However, relatively little evidence is available on how to best facilitate and evaluate the reliability and accuracy of SPs' performances. The aim of this study is to investigate the effectiveness of an evidenced based SP training framework to ensure standardization of SPs. The training framework was employed to improve inter-rater reliability of SPs. A quasi-experimental study was employed to assess SP post-training understanding of simulation scenario parameters using inter-rater reliability agreement indices. Two phases of data collection took place. Initially a trial phase including audio-visual (AV) recordings of two undergraduate nursing students completing a simulation scenario is rated by eight SPs using the Interpersonal Communication Assessments Scale (ICAS) and Quality of Discharge Teaching Scale (QDTS). In phase 2, eight SP raters and four nursing faculty raters independently evaluated students' (N=42) communication practices using the QDTS. Intraclass correlation coefficients (ICC) were >0.80 for both stages of the study in clinical communication skills. The results support the premise that if trained appropriately, SPs have a high degree of reliability and validity to both facilitate and evaluate student performance in nurse education. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  20. The impact of social threat cues on a card sorting task with attentional-shifting demands.

    PubMed

    Mohlman, Jan; DeVito, Alyssa

    2017-12-01

    The current study investigated social anxiety and attentional control using two versions of a task designed to tap intentional shifting of attention and set switching: the standard Wisconsin Card Sorting Test (WCST; Heaton, 1981) and a modified version that included emotionally salient pictorial stimuli, the Emotional Faces Card Sorting Test (EFCST). A Group (lower-, higher-SPS) by Condition (WCST, EFCST) by Sorting Rule (color, form, number) interaction was expected in which the higher-SPS EFCST group would have worse overall performance and make more perseverative errors than the other groups. No differences were predicted on nonperseverative errors, which are typically caused by brief attentional lapses. Participants were 80 undergraduate students who scored in the upper and lower quartile of the distribution on the Social Phobia Scale (SPS; Mattick & Clarke, 1998) were randomly assigned to complete either the WCST or EFCST. On the WCST, the higher-SPS group showed performance similar to that of the lower-SPS group. On the EFCST, the higher-SPS group evidenced more perseverative errors in the condition that depicted angry faces. Interpretations based on a non-clinical sample limit the generalisability of the conclusions. Reliability of this new measure has yet to be established. Successful completion of the WCST requires more than set-shifting processes. These results suggest that the higher-SPS group in the EFCST condition might have had trouble disengaging attention from threat-related cues, despite ongoing corrective feedback. Copyright © 2017. Published by Elsevier Ltd.

  1. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  2. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Shen, Zhijian; Yan, Haixue; Reece, Michael J.; Kan, Yanmei; Wang, Peiling

    2007-11-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi3.25La0.75Ti3O12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 °C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d33 above the permittivity peak, Tm, show that the BLT ceramic has relaxor-like behavior.

  3. An Assessment of the Subseasonal Forecast Performance in the Extended Global Ensemble Forecast System (GEFS)

    NASA Astrophysics Data System (ADS)

    Sinsky, E.; Zhu, Y.; Li, W.; Guan, H.; Melhauser, C.

    2017-12-01

    Optimal forecast quality is crucial for the preservation of life and property. Improving monthly forecast performance over both the tropics and extra-tropics requires attention to various physical aspects such as the representation of the underlying SST, model physics and the representation of the model physics uncertainty for an ensemble forecast system. This work focuses on the impact of stochastic physics, SST and the convection scheme on forecast performance for the sub-seasonal scale over the tropics and extra-tropics with emphasis on the Madden-Julian Oscillation (MJO). A 2-year period is evaluated using the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Three experiments with different configurations than the operational GEFS were performed to illustrate the impact of the stochastic physics, SST and convection scheme. These experiments are compared against a control experiment (CTL) which consists of the operational GEFS but its integration is extended from 16 to 35 days. The three configurations are: 1) SPs, which uses a Stochastically Perturbed Physics Tendencies (SPPT), Stochastic Perturbed Humidity (SHUM) and Stochastic Kinetic Energy Backscatter (SKEB); 2) SPs+SST_bc, which uses a combination of SPs and a bias-corrected forecast SST from the NCEP Climate Forecast System Version 2 (CFSv2); and 3) SPs+SST_bc+SA_CV, which combines SPs, a bias-corrected forecast SST and a scale aware convection scheme. When comparing to the CTL experiment, SPs shows substantial improvement. The MJO skill has improved by about 4 lead days during the 2-year period. Improvement is also seen over the extra-tropics due to the updated stochastic physics, where there is a 3.1% and a 4.2% improvement during weeks 3 and 4 over the northern hemisphere and southern hemisphere, respectively. Improvement is also seen when the bias-corrected CFSv2 SST is combined with SPs. Additionally, forecast performance enhances when the scale aware convection scheme (SPs+SST_bc+SA_CV) is added, especially over the tropics. Among the three experiments, the SPs+SST_bc+SA_CV is the best configuration in MJO forecast skill.

  4. Space or terrestrial energy?

    NASA Astrophysics Data System (ADS)

    Boulet, L.

    Consideration is given to the possibility of generating sufficient energy at acceptable costs on earth to offset the need to build solar power satellite systems (SPS). Electricity usage, one of the basic driving forces of developed nations, grows with the population. Currently comprising 33 pct of the total world energy used, electricity is projected to grow to a 50-55 pct share in the 21st century. Future terrestrial electrical energy sources include carbon-based fuels, nuclear (fusion or fission), and the renewable solar technologies. Carbon-based fuel supplies can last until 2030 AD, about the same as fission plants with recycled fuel. Breeder reactors would stretch the nuclear fuels to the year 3000. Solar technologies offer more immediate solutions than fusion reactors and can produce 50 pct of the power available from the construction of the maximum number of nuclear power plants. The addition of SPS would further augment the total. Combinations of all the technologies are recommended, with local research for the most appropriate technology for each nation.

  5. Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics.

    PubMed

    Tsuji, Kosuke; Han, HyukSu; Guillemet-Fritsch, Sophie; Randall, Clive A

    2017-03-28

    Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO 2 nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K. Both the activation energy and relaxation time suggested that the electronic hopping motion is the underlying mechanism responsible for the colossal dielectric permittivity (CP) and its relaxation, instead of the internal barrier layer effect or a dipolar relaxation. With Havriliak-Negami (H-N) fitting, a relaxation time with a large distribution of dielectric relaxations was revealed. The broad distributed relaxation phenomena indicated that Nb and In were involved, controlling the dielectric relaxation by modifying the polarization mechanism and localized states. The associated distribution function is calculated and presented. The frequency-dependent a.c. conductance is successfully explained by a hopping conduction model of the localized electrons with the distribution function. It is demonstrated that the dielectric relaxation is strongly correlated with the hopping electrons in the localized states. The CP in SPS n-NITO is then ascribed to a hopping polarization.

  6. Satellite Power System (SPS): an Overview of Prospective Organizational Structures in the Solar Satellite Field

    NASA Technical Reports Server (NTRS)

    Edler, H. G.

    1978-01-01

    A literature survey, interviews with acknowledged experts in the fields of organizational entities, space, solar energy, and the SPS concept, and an analysis of these inputs to identify the organizational alternatives and make judgments as to their feasibility to serve as patterns for a future SPS entity are presented. Selection and evaluation criteria were determined to include timeliness, reliability, and adequacy to contribute meaningfully to the U.S. supply; political feasibility (both national and international) and cost-effectiveness (including environmental and other external costs). Based on these criteria, four organizational alternatives are discussed which offer reasonable promise as potential options for SPS. These included three domestic alternatives and one international alternative.

  7. Operation Program for the Spatially Phase-Shifted Digital Speckle Pattern Interferometer - SPS-DSPI

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Jones, Joycelyn T.; Hostetter, Carl F.; Greenfield, Perry; Miller, Todd

    2010-01-01

    SPS-DSPI software has been revised so that Goddard optical engineers can operate the instrument, instead of data programmers. The user interface has been improved to view the data collected by the SPS-DSPI, with a real-time mode and a play-back mode. The SPS-DSPI has been developed by NASA/GSFC to measure the temperature distortions of the primary-mirror backplane structure for the James Webb Space Telescope. It requires a team of computer specialists to run successfully, because, at the time of this reporting, it just finished the prototype stage. This software improvement will transition the instrument to become available for use by many programs that measure distortion

  8. Apollo 16 mission report. Supplement 2: Service Propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Wood, S. C.

    1974-01-01

    The Apollo 16 Mission was the sixteenth in a series of flights using Apollo flight hardware and included the fifth lunar landing of the Apollo Program. The Apollo 16 Mission utilized CSM 113 which was equipped with SPS Engine S/N 66 (Injector S/N 137). The engine configuration and expected performance characteristics are presented. Since previous flight results of the SPS have consistently shown the existence of a negative mixture ratio shift, SPS Engine S/N 66 was reorificed to increase the mixture ratio for this mission. The propellant unbalance for the two major engine firings is compared with the predicted unbalance. Although the unbalance at the end of the TEI burn is significantly different than the predicted unbalance, the propellant mixture ratio was well within limits. The SPS performed six burns during the mission, with a total burn duration of 575.3 seconds. The ignition time, burn duration and velocity gain for each of the six SPS burns are reported.

  9. Role of autobiographical memory in social problem solving and depression.

    PubMed

    Goddard, L; Dritschel, B; Burton, A

    1996-11-01

    Depressed patients frequently exhibit deficiencies in social problem solving (SPS). A possible cause of this deficit is an impairment in patients' ability to retrieve specific autobiographical memories. A clinically depressed group and a hospital control group performed the Means-End Problem-Solving (MEPS; J. J. Platt & G. Spivack, 1975a) task, during which they were required to attend to the memories retrieved during solution generation. Memories were categorized according to whether they were specific, categoric, or extended and whether the valence of the memories was positive or negative. Results support the general hypothesis that SPS skill is a function of autobiographical memory retrieval as measured by a cuing task and by the types of memories retrieved during the MEPS. However, the dysfunctional nature of categoric memories in SPS, rather than the importance of specific memories, was highlighted in the depressed group. Valence proved to be an unimportant variable in SPS ability. The cyclical links among autobiographical memory retrieval, SPS skills, and depression are discussed.

  10. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    NASA Astrophysics Data System (ADS)

    Uemura, Eiichiro; Yoshioka, Yasuo; Hirai, Toshiro; Handa, Takayuki; Nagano, Kazuya; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-06-01

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10-1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  11. Satellite Power Systems /SPS/ - Overview of system studies and critical technology

    NASA Technical Reports Server (NTRS)

    Manson, S. V.

    1980-01-01

    Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.

  12. β-structure of the coat protein subunits in spherical particles generated by tobacco mosaic virus thermal denaturation.

    PubMed

    Dobrov, Evgeny N; Nikitin, Nikolai A; Trifonova, Ekaterina A; Parshina, Evgenia Yu; Makarov, Valentin V; Maksimov, George V; Karpova, Olga V; Atabekov, Joseph G

    2014-01-01

    Conversion of the rod-like tobacco mosaic virus (TMV) virions into "ball-like particles" by thermal denaturation at 90-98 °C had been described by R.G. Hart in 1956. We have reported recently that spherical particles (SPs) generated by thermal denaturation of TMV at 94-98 °C were highly stable, RNA-free, and water-insoluble. The SPs were uniform in shape but varied widely in size (53-800 nm), which depended on the virus concentration. Here, we describe some structural characteristics of SPs using circular dichroism, fluorescence spectroscopy, and Raman spectroscopy. It was found that the structure of SPs protein differs strongly from that of the native TMV and is characterized by coat protein subunits transition from mainly (about 50%) α-helical structure to a structure with low content of α-helices and a significant fraction of β-sheets. The SPs demonstrate strong reaction with thioflavin T suggesting the formation of amyloid-like structures.

  13. Double-parton scattering effects in associated production of charm mesons and dijets at the LHC

    NASA Astrophysics Data System (ADS)

    Maciuła, Rafał; Szczurek, Antoni

    2017-10-01

    We calculate several differential distributions for the production of charm and dijets. Both single-parton scattering (SPS) and double-parton scattering (DPS) contributions are calculated in the kT-factorization approach. The Kimber-Martin-Ryskin unintegrated parton distributions are used in our calculations. Relatively low cuts on jet transverse momenta are imposed to enhance the double-parton scattering mechanism contribution. We find dominance of the DPS contribution over the SPS one. We have found regions of the phase space where the SPS contribution is negligible compared to the DPS contribution. The distribution in transverse momentum of charm quark/antiquark or charmed mesons can be used to observe transition from the dominance of DPS at low transvsverse momenta to the dominance of SPS at large transverse momenta. Very distinct azimuthal correlation patterns (for c c ¯, c -jet , jet-jet, D0-jet , D0D0 ¯ ) are predicted as a result of the competition of the SPS and DPS mechanisms.

  14. Shielding design of an underground experimental area at point 5 of the CERN Super Proton Synchrotron (SPS).

    PubMed

    Mueller, Mario J; Stevenson, Graham R

    2005-01-01

    Increasing projected values of the circulating beam intensity in the Super Proton Synchrotron (SPS) and decreasing limits to radiation exposure, taken with the increasing non-acceptance of unjustified and unoptimised radiation exposures, have led to the need to re-assess the shielding between the ECX and ECA5 underground experimental areas of the SPS. Twenty years ago, these experimental areas at SPS-Point 5 housed the UA1 experiment, where Carlo Rubbia and his team verified the existence of W and Z bosons. The study reported here describes such a re-assessment based on simulations using the multi-purpose FLUKA radiation transport code. This study concludes that while the main shield which is made of concrete blocks and is 4.8 m thick satisfactorily meets the current design limits even at the highest intensities presently planned for the SPS, dose rates calculated for liaison areas on both sides of the main shield significantly exceed the design limits. Possible ways of improving the shielding situation are discussed.

  15. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response.

    PubMed

    Aron, Arthur; Ketay, Sarah; Hedden, Trey; Aron, Elaine N; Rose Markus, Hazel; Gabrieli, John D E

    2010-06-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies-observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences.

  16. The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores

    PubMed Central

    Cangiano, Giuseppina; Sirec, Teja; Panarella, Cristina; Isticato, Rachele; Baccigalupi, Loredana; De Felice, Maurilio

    2014-01-01

    The multilayered surface of the Bacillus subtilis spore is composed of proteins and glycans. While over 70 different proteins have been identified as surface components, carbohydrates associated with the spore surface have not been characterized in detail yet. Bioinformatic data suggest that the 11 products of the sps operon are involved in the synthesis of polysaccharides present on the spore surface, but an experimental validation is available only for the four distal genes of the operon. Here, we report a transcriptional analysis of the sps operon and a functional study performed by constructing and analyzing two null mutants lacking either all or only the promoter-proximal gene of the operon. Our results show that both sps mutant spores apparently have normal coat and crust but have a small germination defect and are more hydrophobic than wild-type spores. We also show that spores lacking all Sps proteins are highly adhesive and form extensive clumps. In addition, sps mutant spores have an increased efficiency in adsorbing a heterologous enzyme, suggesting that hydrophobic force is a major determinant of spore adsorption and indicating that a deep understanding of the surface properties of the spore is essential for its full development as a surface display platform. PMID:25239894

  17. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response

    PubMed Central

    Ketay, Sarah; Hedden, Trey; Aron, Elaine N.; Rose Markus, Hazel; Gabrieli, John D. E.

    2010-01-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies—observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences. PMID:20388694

  18. Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells

    PubMed Central

    Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44high (2.8-fold) and CD24low (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 103, whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted. PMID:24058587

  19. Long-term Persistence of Zoster Vaccine Efficacy

    PubMed Central

    Morrison, Vicki A.; Johnson, Gary R.; Schmader, Kenneth E.; Levin, Myron J.; Zhang, Jane H.; Looney, David J.; Betts, Robert; Gelb, Larry; Guatelli, John C.; Harbecke, Ruth; Pachucki, Connie; Keay, Susan; Menzies, Barbara; Griffin, Marie R.; Kauffman, Carol A.; Marques, Adriana; Toney, John; Boardman, Kathy; Su, Shu-Chih; Li, Xiaoming; Chan, Ivan S. F.; Parrino, Janie; Annunziato, Paula; Oxman, Michael N.; Davis, LE.; Kauffman, CA; Keay, SK; Straus, SE; Marques, AR; Soto, NE; Brunell, P; Gnann, JW; Serrao, R; Cotton, DJ; Goodman, RP; Arbeit, RD; Pachucki, CT; Levin, MJ; Schmader, KE; Keitel, WA; Greenberg, RN; Morrison, VA; Wright, PF; Griffin, MR; Simberkoff, MS; Yeh, SS; Lobo, Z; Holodniy, M; Loutit, J; Betts, RF; Gelb, LD; Crawford, GE; Guatelli, J; Brooks, PA; Looney, DJ; Neuzil, KM; Toney, JF; Kauffman, CA; Keay, SK; Marques, AR; Pachucki, CT; Levin, MJ; Schmader, KE; Morrison, VA; Wright, PF; Griffin, MR; Betts, RF; Gelb, LD; Guatelli, JC; Looney, DJ; Neuzil, KM; Menzies, B; Toney, JF

    2015-01-01

    Background. The Shingles Prevention Study (SPS) demonstrated zoster vaccine efficacy through 4 years postvaccination. A Short-Term Persistence Substudy (STPS) demonstrated persistence of vaccine efficacy for at least 5 years. A Long-Term Persistence Substudy (LTPS) was undertaken to further assess vaccine efficacy in SPS vaccine recipients followed for up to 11 years postvaccination. Study outcomes were assessed for the entire LTPS period and for each year from 7 to 11 years postvaccination. Methods. Surveillance, case determination, and follow-up were comparable to those in SPS and STPS. Because SPS placebo recipients were offered zoster vaccine before the LTPS began, there were no unvaccinated controls. Instead, SPS and STPS placebo results were used to model reference placebo groups. Results. The LTPS enrolled 6867 SPS vaccine recipients. Compared to SPS, estimated vaccine efficacy in LTPS decreased from 61.1% to 37.3% for the herpes zoster (HZ) burden of illness (BOI), from 66.5% to 35.4% for incidence of postherpetic neuralgia, and from 51.3% to 21.1% for incidence of HZ, and declined for all 3 outcome measures from 7 through 11 years postvaccination. Vaccine efficacy for the HZ BOI was significantly greater than zero through year 10 postvaccination, whereas vaccine efficacy for incidence of HZ was significantly greater than zero only through year 8. Conclusions. Estimates of vaccine efficacy decreased over time in the LTPS population compared with modeled control estimates. Statistically significant vaccine efficacy for HZ BOI persisted into year 10 postvaccination, whereas statistically significant vaccine efficacy for incidence of HZ persisted only through year 8. PMID:25416754

  20. Predicting suicide with the SAD PERSONS scale.

    PubMed

    Katz, Cara; Randall, Jason R; Sareen, Jitender; Chateau, Dan; Walld, Randy; Leslie, William D; Wang, JianLi; Bolton, James M

    2017-09-01

    Suicide is a major public health issue, and a priority requirement is accurately identifying high-risk individuals. The SAD PERSONS suicide risk assessment scale is widely implemented in clinical settings despite limited supporting evidence. This article aims to determine the ability of the SAD PERSONS scale (SPS) to predict future suicide in the emergency department. Five thousand four hundred sixty-two consecutive adults were seen by psychiatry consultation teams in two tertiary emergency departments with linkage to population-based administrative data to determine suicide deaths within 6 months, 1, and 5 years. Seventy-seven (1.4%) individuals died by suicide during the study period. When predicting suicide at 12 months, medium- and high-risk scores on SPS had a sensitivity of 49% and a specificity of 60%; the positive and negative predictive values were 0.9 and 99%, respectively. Half of the suicides at both 6- and 12-month intervals were classified as low risk by SPS at index visit. The area under the curve at 12 months for the Modified SPS was 0.59 (95% confidence interval [CI] range 0.51-0.67). High-risk scores (compared to low risk) were significantly associated with death by suicide over the 5-year study period using the SPS (hazard ratio 2.49; 95% CI 1.34-4.61) and modified version (hazard ratio 2.29; 95% CI 1.24-2.29). Although widely used in educational and clinical settings, these findings do not support the use of the SPS and Modified SPS to predict suicide in adults seen by psychiatric services in the emergency department. © 2017 Wiley Periodicals, Inc.

  1. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions.

    PubMed

    Li, Yinhui; Duan, Yu; Zheng, Jing; Li, Jishan; Zhao, Wenjie; Yang, Sheng; Yang, Ronghua

    2013-12-03

    Fluoride ion (F(-)), the smallest anion, exhibits considerable significance in a wide range of environmental and biochemical processes. To address the two fundamental and unsolved issues of current F(-) sensors based on the specific chemical reaction (i.e., the long response time and low sensitivity) and as a part of our ongoing interest in the spiropyran sensor design, we reported here a new F(-) sensing approach that, via assembly of a F(-)-specific silyl-appended spiropyran dye with graphene oxide (GO), allows rapid and sensitive detection of F(-) in aqueous solution. 6-(tert-Butyldimethylsilyloxy)-1',3',3'-trimethylspiro [chromene- 2,2'-indoline] (SPS), a spiropyran-based silylated dye with a unique reaction activity for F(-), was designed and synthesized. The nucleophilic substitution reaction between SPS and F(-) triggers cleavage of the Si-O bond to promote the closed spiropyran to convert to its opened merocyanine form, leading to the color changing from colorless to orange-yellow with good selectivity over other anions. With the aid of GO, the response time of SPS for F(-) was shortened from 180 to 30 min, and the detection limit was lowered more than 1 order of magnitude compared to the free SPS. Furthermore, due to the protective effect of nanomaterials, the SPS/GO nanocomposite can function in a complex biological environment. The SPS/GO nanocomposite was characterized by XPS and AFM, etc., and the mechanism for sensing F(-) was studied by (1)H NMR and ESI-MS. Finally, this SPS/GO nanocomposite was successfully applied to monitoring F(-) in the serum.

  2. Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves.

    PubMed

    Toroser, D; Huber, S C

    1997-07-01

    Experiments were performed to investigated the mechanism of sucrose-phosphate synthase (SPS) activation by osmotic stress in darkened spinach (Spinacia oleracea L.) leaves. The activation was stable through immunopurification and was not the result of an increased SPS protein level. The previously described Ca(2+)-independent peak III kinase, obtained by ion-exchange chromatography, is confirmed to be the predominant enzyme catalyzing phosphorylation and inactivation of dephosphoserine-158-SPS. A new, Ca(2+)-dependent SPS-protein kinase activity (peak IV kinase) was also resolved and shown to phosphorylate and activate phosphoserine-158-SPS in vitro. The peak IV kinase also phosphorylated a synthetic peptide (SP29) based on the amino acid sequence surrounding serine-424, which also contains the motif described for the serine-158 regulatory phosphorylation site; i.e. basic residues at P-3 and P-6 and a hydrophobic residue at P-5. Peak IV kinase had a native molecular weight of approximately 150,000 as shown by gel filtration. The SP29 peptide was not phosphorylated by the inactivating peak III kinase. Osmotically stressed leaves showed increased peak IV kinase activity with the SP29 peptide as a substrate. Tryptic 32P-phosphopeptide analysis of SPS from excised spinach leaves fed [32P]inorganic P showed increased phosphorylation of the tryptic peptide containing serine-424. Therefore, at least part of the osmotic stress activation of SPS in dark leaves results from phosphorylation of serine-424 catalyzed by a Ca(2+)-dependent, 150-kD protein kinase.

  3. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis

    PubMed Central

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M.; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-01-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter–reporter gene analyses and quantitative real-time reverse transcription–PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period. PMID:24994761

  4. Risk of Metachronous High-Risk Adenomas and Large Serrated Polyps in Individuals With Serrated Polyps on Index Colonoscopy: Data From the New Hampshire Colonoscopy Registry.

    PubMed

    Anderson, Joseph C; Butterly, Lynn F; Robinson, Christina M; Weiss, Julia E; Amos, Christopher; Srivastava, Amitabh

    2018-01-01

    Surveillance guidelines for serrated polyps (SPs) are based on limited data on longitudinal outcomes of patients. We used the New Hampshire Colonoscopy Registry to evaluate risk of clinically important metachronous lesions associated with SPs detected during index colonoscopies. We collected data from a population-based colonoscopy registry that has been collecting and analyzing data on colonoscopies across the state of New Hampshire since 2004, including rates of adenoma and SP detection. Patients completed a questionnaire to determine demographic characteristics, health history, and risk factors for colorectal cancer, and were followed from index colonoscopy through all subsequent surveillance colonoscopies. Our analyses included 5433 participants (median age, 61 years; 49.7% male) with 2 colonoscopies (median time to surveillance, 4.9 years). We used multivariable logistic regression models to assess effects of index SPs (n = 1016), high-risk adenomas (HRA, n = 817), low-risk adenomas (n = 1418), and no adenomas (n = 3198) on subsequent HRA or large SPs (>1 cm) on surveillance colonoscopy (metachronous lesions). Synchronous SPs, within each index risk group, were assessed for size and by histology. SPs comprise hyperplastic polyps, sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas. In this study, SSA/Ps and traditional serrated adenomas are referred to collectively as STSAs. HRA and synchronous large SP (odds ratio [OR], 5.61; 95% confidence interval [CI], 1.72-18.28), HRA with synchronous STSA (OR, 16.04; 95% CI, 6.95-37.00), and HRA alone (OR, 3.86; 95% CI, 2.77-5.39) at index colonoscopy significantly increased the risk of metachronous HRA compared to the reference group (no index adenomas or SPs). Large index SPs alone (OR, 14.34; 95% CI, 5.03-40.86) or index STSA alone (OR, 9.70; 95% CI, 3.63-25.92) significantly increased the risk of a large metachronous SP. In an analysis of data from a population-based colonoscopy registry, we found index large SP or index STSA with no index HRA increased risk of metachronous large SPs but not metachronous HRA. HRA and synchronous SPs at index colonoscopy significantly increased risk of metachronous HRA. Individuals with HRA and synchronous large SP or any STSA could therefore benefit from close surveillance. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Solar power satellite system definition study. Volume 4: Solid State SPS Analysis, Phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 2500 megawatt solid ground output Solar Power Satellite (SPS) of conventional configuration was designed and analyzed. Because the power per receiving antenna is halved, as compared with the klystron reference, twice the number of receiving antennas are needed to deliver the same total power. The solid state approach appears feasible with a slightly greater specific mass and slightly higher cost than the klystron SPS design.

  6. Assessment of economic factors affecting the satellite power system. Volume 2: The systems implications of rectenna siting issues

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Bugos, B. J.; Csigi, K. I.; Glaser, P. E.; Schimke, G. R.; Thomas, R. G.

    1979-01-01

    The feasibility was evaluated of finding potential sites for Solar Power Satellite (SPS) receiving antennas (rectennas) in the continental United States, in sufficient numbers to permit the SPS to make a major contribution to U.S. generating facilities, and to give statistical validity to an assessment of the characteristics of such sites and their implications for the design of the SPS system. It is found that the cost-optimum power output of the SPS does not depend on the particular value assigned to the cost per unit area of a rectenna and its site, as long as it is independent of rectenna area. Many characteristics of the sites chosen affect the optimum design of the rectenna itself.

  7. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    PubMed Central

    2017-01-01

    The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059

  8. Mutation of the OsSAC1 Gene, which Encodes an Endoplasmic Reticulum Protein with an Unknown Function, Causes Sugar Accumulation in Rice Leaves.

    PubMed

    Zhu, Xiaoyan; Shen, Wenqiang; Huang, Junyang; Zhang, Tianquan; Zhang, Xiaobo; Cui, Yuanjiang; Sang, Xianchun; Ling, Yinghua; Li, Yunfeng; Wang, Nan; Zhao, Fangmin; Zhang, Changwei; Yang, Zhenglin; He, Guanghua

    2018-03-01

    Sugars are the most abundant organic compounds produced by plants, and can be used to build carbon skeletons and generate energy. The sugar accumulation 1 (OsSAC1) gene encodes a protein with an unknown function that exhibits four N-terminal transmembrane regions and two conserved domains of unknown function, DUF4220 and DUF594. OsSAC1 was found to be poorly and specifically expressed at the bottoms of young leaves and in the developing leaf sheaths. Subcellular location results showed that OsSAC1 was co-localized with ER:mCherry and targeted the endoplasmic reticulum (ER). OsSAC1 has been found to affect sugar partitioning in rice (Oryza sativa). I2/KI starch staining, ultrastructure observations and starch content measurements indicated that more and larger starch granules accumulated in ossac1 source leaves than in wild-type (WT) source leaves. Additionally, higher sucrose and glucose concentrations accumulated in the ossac1 source leaves than in WT source leaves, whereas lower sucrose and glucose concentrations were observed in the ossac1 young leaves and developing leaf sheaths than in those of the WT. Much greater expression of OsAGPL1 and OsAGPS1 (responsible for starch synthesis) and significantly less expression of OscFBP1, OscFBP2, OsSPS1 and OsSPS11 (responsible for sucrose synthesis) and OsSWEET11, OsSWEET14 and OsSUT1 (responsible for sucrose loading) occurred in ossac1 source leaves than in WT source leaves. A greater amount of the rice plasmodesmatal negative regulator OsGSD1 was detected in ossac1 young leaves and developing leaf sheaths than in those of the WT. These results suggest that ER-targeted OsSAC1 may indirectly regulate sugar partitioning in carbon-demanding young leaves and developing leaf sheaths.

  9. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    NASA Astrophysics Data System (ADS)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  10. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    PubMed

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A prospective, randomized, controlled study of a suspension positioning system used with elderly bedridden patients with neurogenic fecal incontinence.

    PubMed

    Su, Mei-Yin; Lin, Shi-Quan; zhou, Ye-Wen; Zhou, Ye-Wen; Liu, Si-Ya; Lin, Ai; Lin, Xi-Rong

    2015-01-01

    Elderly patients with acute neurological impairment are prone to severe disability, fecal incontinence (FI), and resultant complications. A suspension positioning system (SPS), based on the orthopedic suspension traction system commonly used for conservative treatment of pediatric femoral fracture and uncomplicated adult pelvic fracture, was developed to facilitate FI management in patients immobilized secondary to an acute neurological condition. To evaluate the effectiveness and safety of the system, a prospective, randomized, controlled study was conducted between October 2009 and July 2012. Two hundred (200) elderly, bedridden, hospitalized patients with acute, nonchronic neurological impairment were randomly assigned to receive routine FI nursing care (ie, individualized dietary modification, psychological support, health education, and social support for caregivers and family members [control group]) or routine incontinence care plus the SPS (experimental group) during the day. Rates of perianal fecal contamination, skin breakdown, incontinence associated dermatitis, pressure ulcer development, and lower urinary tract infection (LUTI) were significantly lower in the SPS than in the control group (P <0.05). Length of hospitalization and costs of care were also lower in the SPS group (P <0.05). Patient quality-of-life (QoL) and FI QoL scores were similar at baseline but significantly higher (better) at the 6-month follow-up interview in the SPS than in the control group (P <0.05). In this study, the rate of FI-associated morbidities was lower and 6-month patient QoL scores were higher in the SPS than in the control group. No adverse events were observed, and all patients completed the study. Further clinical studies are needed to examine the long-term effects of SPS use among neurologically impaired FI patients.

  12. Pretreatment of enteral nutrition with sodium polystyrene sulfonate: effective, but beware the high prevalence of electrolyte derangements in clinical practice.

    PubMed

    Le Palma, Krisha; Pavlick, Elisha Rampolla; Copelovitch, Lawrence

    2018-04-01

    Current treatment options for chronic hyperkalemia in children with chronic kidney disease include dietary restrictions or enteral sodium polystyrene sulfonate (SPS); however, dietary restrictions may compromise adequate nutrition and enteral SPS may be limited by palatability, adverse effects and feeding tube obstruction. A potentially safer alternative is to pretreat enteral nutrition (EN) with SPS prior to consumption. The purpose of this study was to evaluate the efficacy and safety of pretreating EN with SPS in pediatric patients with hyperkalemia. We performed a retrospective cohort study between September 2012 and May 2016 at the Children's Hospital of Philadelphia. In all, 14 patients (age range 0.5-53.2 months) who received 19 courses of SPS pretreatment of EN were evaluated. Serum electrolytes were evaluated at baseline and within 1 week of initiating therapy. The primary endpoint was mean change in potassium at 7 days. Secondary endpoints included the mean change in serum sodium, chloride, bicarbonate, calcium, phosphorous and magnesium, as well as the percentage of patients who developed electrolyte abnormalities within the first week of treatment. Serum potassium levels decreased from 6.0 to 4.4 mmol/L (P < 0.001) and serum sodium levels increased from 135.8 to 141.3 mmol/L (P = 0.008) 1 week after initiating SPS pretreatment. No significant differences in mean serum calcium or magnesium levels were noted. Nevertheless, more than half of the courses resulted in at least one electrolyte abnormality, with hypokalemia (31.6%), hypernatremia (26.3%) and hypocalcemia (21.1%) occurring most frequently. Pretreatment of EN with SPS is an effective method for treating chronic hyperkalemia in pediatric patients; however, close monitoring of electrolytes is warranted.

  13. The case of "Miss Jacobs": adolescent simulated patients and the quality of their role playing, feedback, and personal impact.

    PubMed

    Bokken, Lonneke; van Dalen, Jan; Rethans, Jan-Joost

    2010-12-01

    Adolescents as standardized patients are relatively new in medical education. Studies have mostly explored the impact of role playing on adolescents trained to perform standardized patient roles for assessment purposes. No studies were found with regard to the quality of adolescents' role playing. We evaluated the effects of performing a patient role on adolescents trained as simulated patients (SPs) for teaching purposes (in contrast to standardized patients) and evaluated the quality of adolescent SPs' role playing and feedback. Nine young women, aged 16 to 18 years, were trained to portray roles of adolescents asking their general practitioner for an oral contraceptive. Three adolescent men were trained to portray roles of some of the girls' boyfriends. Each role was developed in consultation with the individual adolescent and was largely based on her own personal experience. Students rated the quality of the adolescent SP's role playing and feedback after each SP encounter on a previously validated questionnaire (the Maastricht Assessment of Simulated Patients). Both the adolescent SPs and faculty teachers both completed questionnaires on their experiences. Three hundred forty-one students rated the quality of the SPs' role playing and feedback with a mean score of 7.5 of 10. The faculty teachers were also generally positive about the role playing and feedback. Nevertheless, there were some concerns about the quality of the feedback. Adolescent SPs reported no negative effects because of their performance. Generally, students and teachers were satisfied with the quality of the role playing and feedback provided by the adolescent SPs. The adolescent SPs experienced no negative effects related to their performance, which confirms earlier findings among adolescent standardized patients.

  14. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.

    PubMed

    Han, Fang; Xiao, Bing; Wen, Lili; Shi, Yuxiu

    2015-05-30

    Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle after exposure to a single prolonged stress (SPS), an animal model of PTSD. In vivo proton magnetic resonance spectroscopy ((1)H-MRS) was performed -1, 1, 4, 7 and 14 days after SPS to examine the effects of fluoxetine on neurometabolite changes in amygdala, hippocampus and thalamus. SPS increased the N-acetylaspartate (NAA)/creatine (Cr) and choline moieties (Cho)/Cr ratios in the bilateral amygdala on day 4, decreased the NAA/Cr ratio in the left hippocampus on day 1, and increased both ratios in the right hippocampus on day 14. But no significant change was found in the thalamus. Fluoxetine treatment corrected the SPS increases in the NAA/Cr and Cho/Cr levels in the amygdala on day 4 and in the hippocampus on day 14, but it failed to normalise SPS-associated decreases in NAA/Cr levels in the left hippocampus on day 1. These results suggested that metabolic abnormalities in the amygdala and the hippocampus were involved in SPS, and different effects of fluoxetine in correcting SPS-induced neurometabolite changes among the three areas. These findings have implications for fluoxetine treatment in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Using Electronic Data Interchange to Report Product Quality

    DTIC Science & Technology

    1993-03-01

    Numbers 0 31.1 S........................ . . . . ........... .... . .--- . ... N/U 140 SPS Sampling Parameters for Summary Statistics 0 1 N/U 150 REF...DTM Date/Time Reference 0 1 N/U 190 REF Reference Numbers 021 .................................. .......... .. ... NAU 200 STA Statistics 0 1 N/U 210...Measurements 0 1 N/U 120 DTM Date/Time Reference 0 >1 N/U 130 REF Reference Numbers 0 >1 :LOOIV f-SPS N/U 140 SPS Sampling Parameters for Summary Statistics 0 1

  16. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice.

    PubMed

    Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing

    2009-05-13

    One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.

  17. A study of the effect of polystyrene sulfonation on the performance of terephthaloyl chloride-dihydroxydiphenyl sulfone copolymer/polystyrene system

    NASA Astrophysics Data System (ADS)

    Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.

    1998-12-01

    Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.

  18. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags.

    PubMed

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech; Korpys, Paulina; Nicaud, Jean-Marc

    2018-06-01

    Upon expression of a given protein in an expression host, its secretion into the culture medium or cell-surface display is frequently advantageous in both research and industrial contexts. Hence, engineering strategies targeting folding, trafficking, and secretion of the proteins gain considerable interest. Yarrowia lipolytica has emerged as an efficient protein expression platform, repeatedly proved to be a competitive secretor of proteins. Although the key role of signal peptides (SPs) in secretory overexpression of proteins and their direct effect on the final protein titers are widely known, the number of reports on manipulation with SPs in Y. lipolytica is rather scattered. In this study, we assessed the potential of ten different SPs for secretion of two heterologous proteins in Y. lipolytica. Genomic and transcriptomic data mining allowed us to select five novel, previously undescribed SPs for recombinant protein secretion in Y. lipolytica. Their secretory potential was assessed in comparison with known, widely exploited SPs. We took advantage of Golden Gate approach, for construction of expression cassettes, and micro-volume enzymatic assays, for functional screening of large libraries of recombinant strains. Based on the adopted strategy, we identified novel secretory tags, characterized their secretory capacity, indicated the most potent SPs, and suggested a consensus sequence of a potentially robust synthetic SP to expand the molecular toolbox for engineering Y. lipolytica.

  19. Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.

  20. Formation of trans-2-[4-(Dimethylamino)Styryl]-3-Ethyl-1,3-Benzothiazolium Perchlorate Dimers in the Presence of Sodium Polystyrene Sulfonate

    NASA Astrophysics Data System (ADS)

    Lavysh, A. V.; Maskevich, A. A.; Lugovskii, A. A.; Voropai, E. S.; Sulatskaya, A. I.; Kuznetsova, I. M.; Turoverov, K. K.

    2017-01-01

    The spectral properties of a novel thioflavin T derivative, trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate (DMASEBT), were studied in aqueous solutions in the presence of sodium polystyrene sulfonate (SPS). It was shown that SPS either could interact with dye monomers or initiate the formation of non-fluorescent dye dimers depending on the concentration ratio of dye and polyelectrolyte. DMASEBT dimer formation in the presence of SPS produced a hypsochromic shift by 40 nm in the absorption spectrum and quenched fluorescence. A bathochromic shift of the absorption spectrum and an increase of the fluorescence intensity by an order of magnitude were observed if DMASEBT monomers interacted with SPS. Quantum-chemical analysis found that sandwich dimers (H-aggregates) were most stable. A comparison of DMASEBT spectra in the presence of SPS and amyloid fibrils showed that DMASEBT molecules were incorporated into amyloid fibrils as monomers. The spectral changes associated with this incorporation could not be explained by the formation of dye aggregates.

  1. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  2. The SPS interference problem-electronic system effects and mitigation techniques

    NASA Technical Reports Server (NTRS)

    Juroshek, J. R.

    1980-01-01

    The potential for interference between solar power satellites (SPS) and other Earth satellite operations was examined along with interference problems involving specific electronic devices. Conclusions indicate that interference is likely in the 2500 MHz to 2690 MHz direct broadcast satellite band adjacent to SPS. Estimates of the adjacent channel noise from SPS in this band are as high as -124 dBc/4 kHz and -100 dBc/MHz, where dBc represents decibels relative to the total power in the fundamental. A second potential problem is the 7350 MHz, 3d harmonic from SPS that falls within the 7300 MHz to 7450 MHz space to Earth, government, satellite assignment. Catastrophic failures can be produced in integrated circuits when the microwave power levels coupled into inputs and power leads reach 1 to 100 watts. The failures are typically due to bonding wire melting, metallization failures, and junction shorting. Nondestructive interaction or interference, however, generally occurs with coupled power levels of the order of 10 milliwatts. This integration is due to the rectification of microwave energy by the numerous pn junctions within these circuits.

  3. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.

  4. Safety-pin ingestion in children: a cultural fact.

    PubMed

    Gün, Feryal; Salman, Tansu; Abbasoglu, Latif; Celik, Rüya; Celik, Alaaddin

    2003-08-01

    Pediatric foreign-body (FB) ingestion is a common problem. Many of these FBs are sharp objects such as needles, toothpicks and safety pins (SP). This report reviews the management of SP ingestion in children. During a 16-year period, we recorded 49 pediatric cases of witnessed SP ingestion. In all children, SPs were used to attach the blue beads to the child's suits with the belief of averting the evil eye. The mean age was 8 months ranging from 4 months to 2 years, and 30 patients were males and 19 were females. SPs were most commonly sited in esophagus (37%) and stomach (37%). In the remainder, the SPs have already reached the duodenum and intestine. In this series, 20 (41%) children passed SPs spontaneously, 14 (28.5%) required endoscopic removal and 15 (30.5%) underwent surgery. The outcome of all patients was uneventful. All of the esophageal SPs require endoscopic intervention, however, after passing into stomach the patients can be observed with keeping the surgical intervention in mind if the SP displays a fixed position for more than three days.

  5. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 7: System/subsystem requirements data book

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 7 of the Satellite Power Systems (SPS) Concept Definition Study final report summarizes the basic requirements used as a guide to systems analysis and is a basis for the selection of candidate SPS point design(s). Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The identified subsystem/systems requirements are defined, and where appropriate, recommendations for alternate approaches which may represent improved design features are presented. A more detailed discussion of the selected point design(s) will be found in Volume 2 of this report.

  6. Spark plasma sintering and porosity studies of uranium nitride

    NASA Astrophysics Data System (ADS)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  7. Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by Spark Plasma Sintering

    PubMed Central

    Yang, Shuang; Chen, Fei; Shen, Qiang; Lavernia, Enrique J.; Zhang, Lianmeng

    2016-01-01

    In this study we report on the sintering behavior, microstructure and electrical properties of Al-doped ZnO ceramics containing 0–0.2 wt. % graphene sheets (AZO-GNSs) and processed using spark plasma sintering (SPS). Our results show that the addition of <0.25 wt. % GNSs enhances both the relative density and the electrical resistivity of AZO ceramics. In terms of the microstructure, the GNSs are distributed at grain boundaries. In addition, the GNSs are also present between ZnO and secondary phases (e.g., ZnAl2O4) and likely contribute to the measured enhancement of Hall mobility (up to 105.1 cm2·V−1·s−1) in these AZO ceramics. The minimum resistivity of the AZO-GNS composite ceramics is 3.1 × 10−4 Ω·cm which compares favorably to the value of AZO ceramics which typically have a resistivity of 1.7 × 10−3 Ω·cm. PMID:28773759

  8. Effects of intergranular phase on the coercivity for MnBi magnets prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Cao, J.; Huang, Y. L.; Hou, Y. H.; Zhang, G. Q.; Shi, Z. Q.; Zhong, Z. C.; Liu, Z. W.

    2018-05-01

    MnBi magnets with a high content of low temperature phase (LTP) and excellent magnetic properties were prepared by spark plasma sintering (SPS) using ball milling powders as precursors without magnetic purification. A complicated intergranular phase, which contains Mn phase, Bi phase, MnO phase, and even amorphous phase in MnBi magnets, was characterized and reported systematically. It was found that the formation of intergranular phase which was contributed by ball milling precursors and sintering mechanism, jointly, had important influence on the magnetic properties. The appropriate content of intergranular phase was beneficial in improving the coercivity due to the strong magnetic isolation effects. The optimum magnetic properties with Mr=26.0 emu/g, Hci= 7.11 kOe and (BH)max=1.53 MGOe at room temperature, and a maximum value Hci= 25.37 kOe at 550 K can be obtained. Strongly favorable magnetic properties make SPSed MnBi magnets an attractive candidate material for small permanent magnets used in high-temperature applications.

  9. Current-Assisted Diffusion Bonding of Extruded Ti-22Al-25Nb Alloy by Spark Plasma Sintering: Interfacial Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Yang, Jianlei; Wang, Guofeng; Jiao, Xueyan; Gu, Yibin; Liu, Qing; Li, You

    2018-05-01

    Spark plasma sintering (SPS) technology was used to current-assisted bond extruded Ti-22Al-25Nb alloy. The effects of bonding temperature (920-980 °C) and bonding time (10-30 min) on the microstructure evolution and shear strength of this alloy were investigated systematically. The temperature distribution in the specimen during the current-assisted bonding process was also analyzed by numerical simulation. It is noted that the highest temperature was obtained at the bonding interface. As the bonding temperature and bonding time increased, the voids in the interface shrank increasingly until they vanished. A complete metallurgical bonding interface could be produced at 960 °C/20 min/10 MPa, exhibiting the highest shear strength of 269.3 MPa. In addition, the shear strength of the bonded specimen depended on its interfacial microstructure. With increased bonding temperature, the fracture mode transformed from the intergranular fracture at the bonding interface to the cleavage fracture in the substrate.

  10. Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrman, Muriel; Ahmim, Smail; Pasko, Alexandre; Etgens, Victor; Mazaleyrat, Frédéric; Quetel-Weben, Simon; Perrière, Loïc; Guillot, Ivan

    2018-05-01

    The metastable τ-phase of MnAl equi-atomic compound belongs to a family of ferromagnetic alloys with L10 crystal structure. Stabilization of the phase by adding 2 at. % using manganese carbide (Mn23C6) enhances the magnetization in relation with the increase in lattice volume. It is thus a promising candidate for rare-earth-free permanent magnets. Coercivity of Mn-Al-C alloys being still weak, there is an interest to see to which extend sintering/transformation of the ɛ-phase by Spark Plasma Sintering (SPS) can increase the coercivity and the anisotropy. The structural and the magnetic properties were studied for samples sintered at 550 °C under uniaxial pressure of 100, 200, 300 and 400 MPa. Coercivity, remanence and anistotropy appears with the sintering pressure. The high pressure applied while sintering produces preferential orientation of the flake-shaped grains which influences the remanence.

  11. \\psi (2S) enhancement in p-Pb collision as an indication of quark-gluon plasma formation at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ganesh, S.; Singh, R., Captain; Mishra, M.

    2018-03-01

    Proton-nucleus collisions serve as an important baseline for the understanding and interpretation of the nucleus-nucleus collisions. These collisions have been employed to characterize the cold nuclear matter effects at SPS and Relativistic Heavy-Ion Collider energies for the past several years, as it was thought that quark-gluon plasma (QGP) is not formed in such collisions. However, at the Large Hadron Collider (LHC), there seems a possibility that QGP is formed during proton-lead (p-Pb) collisions. In this work, we have derived an expression for gluon induced excitation of J/\\psi to \\psi (2S), using pNRQCD, and show that the relative enhancement of \\psi (2S) vis-à-vis J/\\psi , especially at high p T , gives further indication that the QGP is indeed formed in p-Pb collisions at the most central collisions at LHC energy. J/\\psi and \\psi (2S) suppression effects seen at ALICE are also qualitatively explained.

  12. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    PubMed Central

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-01-01

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles. PMID:28773603

  13. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    PubMed

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  14. Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang

    2013-05-01

    Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.

  15. Instabilities and Turbulence Generation by Pick-Up Ion Distributions in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Weichman, K.; Roytershteyn, V.; Delzanno, G. L.; Pogorelov, N.

    2017-12-01

    Pick-up ions (PUIs) play a significant role in the dynamics of the heliosphere. One problem that has attracted significant attention is the stability of ring-like distributions of PUIs and the electromagnetic fluctuations that could be generated by PUI distributions. For example, PUI stability is relevant to theories attempting to identify the origins of the IBEX ribbon. PUIs have previously been investigated by linear stability analysis of model (e.g. Gaussian) rings and corresponding computer simulations. The majority of these simulations utilized particle-in-cell methods which suffer from accuracy limitations imposed by the statistical noise associated with representing the plasma by a relatively small number of computational particles. In this work, we utilize highly accurate spectral Vlasov simulations conducted using the fully kinetic implicit code SPS (Spectral Plasma Solver) to investigate the PUI distributions inferred from a global heliospheric model (Heerikhuisen et al., 2016). Results are compared with those obtained by hybrid and fully kinetic particle-in-cell methods.

  16. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    NASA Astrophysics Data System (ADS)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  17. Satellite Power System (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    The data base was extended with respect to the magnetron directional amplifier and its operating parameters that are pertinent to its application in the solar power satellite. On the basis of the resulting extended data base the design of a magnetron was outlined that would meet the requirements of the SPS application and a technology program was designed that would result in its development. The proposed magnetron design for the SPS is a close scale of the microwave oven magnetron, and resembles it closely physically and electrically.

  18. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  19. Measurement system of correlation functions of microwave single photon source in real time

    NASA Astrophysics Data System (ADS)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  20. SU-F-I-68: Longitudinal Neurochemical Changes On Rat Prefrontal Cortex of Single Prolonged Stress Model by Using Proton Magnetic Resonance Spectroscopy at 9.4T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, S-I; Yoo, C-H; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul

    Purpose: Single prolonged stress (SPS) is an animal model of posttraumatic stress disorder (PTSD). However, it has not been known how PTSD develops from the first exposure to traumatic events and neurochemical differences between acute/single stress and PTSD-triggering stress. Therefore, the object of this study is to determine time-dependent neurochemical changes in prefrontal cortex (PFC) of rats using in vivo proton magnetic resonance spectroscopy (1H-MRS). Methods: Male Sprague-Dawley rats (n=14; body weight=200–220g) were used. The SPS protocol was used in this study. Rats were restrained for 2h and then immediately forced to swim for 20min in water (20–24 Celsius). Aftermore » a 15-min recuperation period, rats were exposed to ether (using a desiccator) until general anesthesia occurred (<5min). In vivo proton MRS was performed 30min before the SPS (Base), approximately 10min after the SPS (D+0), 3 (D+3) and 7 (D+7) days after SPS to investigate time-dependent changes on metabolites levels in the PFC. Acquisition of in vivo MRS spectra and MRI was conducted at the four time points using 9.4 T Agilent Scanner. Concentration of metabolites was quantified by LCModel. Results: Statistical significance was analyzed using one-way ANOVA with post hoc Tukey HSD tests to assess the metabolite changes in the PFC. The SPS resulted in significant stress-induced differences for 7 days in glutamine (F(3,52)=6.750, P=0.001), choline-containing compounds (F(3,52)=16.442, P=0.000), glutamine/glutamate concentrations (F(3,52)=7.352, P=0.000). Conclusion: PTSD in human is associated with decreased neuronal activity in the PFC. In this study, SPS altered total choline, glutamine levels but not NAA levels in the PFC of the rats. Therefore, for the three stressors and quiescent period of seven days, SPS attenuated excitatory tone and membrane turnover but did not affect neural integrity in the PFC.« less

Top