Special issue on transient plasmas
NASA Astrophysics Data System (ADS)
Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki
2015-11-01
This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is dedicated to the "spectroscopy of transient plasmas" covering plasma conditions produced by a range of pulsed laboratory sources including short and long pulse lasers, pulsed power devices, and free electron lasers (FELs). The full range of plasma spectroscopy up to high energy bremsstrahlung radiation, including line broadening analysis for application to data recorded with the ChemCam instrument on the Mars Science Laboratory rover Curiosity, is covered. This issue is timely as advances in optical lasers and x-ray FELs (XFEL) are enabling transient plasma to be probed at higher energies and shorter durations than ever before. New XFEL facilities being commissioned in Europe and Asia are adding to those operating in the US and Japan and the ELI high power laser project in Europe, due to open this year, will provide short pulse lasers of unprecedented power. This special issue represents a snapshot of the theoretical and experimental research in dense plasmas, electron kinetics, laser-induced breakdown spectroscopy of low temperature plasmas, inertial confinement fusion and non-equilibrium atomic physics using spectroscopy to diagnose plasmas produced by optical lasers, XFELs and pulsed-power machines.
Thermal conductivity calculation of complex (dusty) plasmas
Shahzad, Aamir; He Maogang
2012-08-15
The thermal conductivity of three-dimensional (3D) strongly coupled complex (dusty) plasmas has been calculated through the improved Evan-Gillan nonequilibrium molecular dynamics (NEMD) algorithm. The extensive NEMD simulations are performed to study the performance of the algorithm and compared the results determined for perturbed heat energy current to the results obtained by equilibrium molecular dynamics (EMD) simulations. The calculations show that the present algorithm gives accurate results with fast convergence and small size effects over a wide range of plasma coupling and screening parameters. The present simulation results are in agreement with part of others NEMD and EMD data in the literature with simulation values generally overpredicting the thermal conductivity by 3%-20%, depending on plasma parameters. It is shown that the homogenous perturbed method can be employed to estimate the thermal conductivity and to understand the fundamental behaviors in 3D complex Yukawa liquids.
Plasma Physics Calculations on a Parallel Macintosh Cluster
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Dauger, Dean; Kokelaar, Pieter
2000-03-01
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 MFlops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.
Plasma Physics Calculations on a Parallel Macintosh Cluster
NASA Astrophysics Data System (ADS)
Decyk, Viktor K.; Dauger, Dean E.; Kokelaar, Pieter R.
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 Mflops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.
The calculation of thermophysical properties of nickel plasma
Apfelbaum, E. M.
2015-09-15
The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data of measurements.
Calculation of tin atomic data and plasma properties.
Morozov, V.; Tolkach, V.; Hassanein, A.
2005-08-26
This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.
Calculation of fusion product angular correlation coefficients for fusion plasmas
Murphy, T.J.
1987-08-01
The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.
Representation of the Geosynchronous Plasma Environment in Spacecraft Charging Calculations
NASA Technical Reports Server (NTRS)
Davis, V. A.; Mandell, M. J.; Thomsen, M. F.
2006-01-01
Historically, our ability to predict and postdict spacecraft surface charging has been limited by the characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These measured fluxes have been corrected for the difference between the measured and calculated potential. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the incident electron flux distribution function and a Maxwellian function fit to the incident ion flux distribution function agree with measured potentials nearly as well as do potentials calculated using the measured fluxes. Alternative spectral representations gave less accurate estimates of potential. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the high energy flux alone.
Representation of the Geosynchronous Plasma Environment for Spacecraft Charging Calculations
NASA Technical Reports Server (NTRS)
Davis, V. A.; Mandell, M. J.; Thomsen, M. F.
2004-01-01
Historically, our ability to predict and postdict surface charging has suffered from both a lack of reliable secondary emission and backscattered electron yields and poor characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. For 13 years Los Alamos National Laboratory (LANL) has been accumulating measurements of electron and proton spectra from Magnetospheric Plasma Analyzer (MPA) instruments aboard a series of geosynchronous satellites. These data provide both a plasma characterization and the potential of the instrument ground. We use electron and ion flux spectra measured by the LANL MPA to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These flux measurements and fits have been corrected for the difference between the measured and calculated potential. The potentials computed using the measured fluxes, the best available material properties of graphite carbon, and a secondary electron escape fraction of 81%, are within a factor of three of the measured potential for nearly all the data. Using a Kappa fit to the electron distribution function and a Maxwellian fit to the ion distribution function gives agreement similar to the calculations using the actual data. Alternative spectral representations, including Maxwellian and double Maxwellian for both species, lead to less satisfactory agreement between predicted and measured potentials.
Representation of the Geosynchronous Plasma Environment for Spacecraft Charging Calculations
NASA Astrophysics Data System (ADS)
Davis, V. A.; Mandell, M. J.; Thomsen, M. F.
2002-12-01
We are using the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) dataset to determine the best spectral representation of the charged particle environment for calculating spacecraft potential during magnetospheric substorms. For 12 years LANL has been accumulating measurements of electron and proton spectra from MPA instruments aboard a series of geosynchronous satellites. These data provide both a plasma characterization and the potential of the instrument ground. Here we focus on data during eclipse periods in Sept. 2001, containing 970 measurements of charging to potentials ranging from 3 V to nearly 10 kV. Our ability to predict and "postdict" charging has suffered from both a lack of reliable secondary emission and backscattered electron yields and poor characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. The net current to the spacecraft is the sum of the incident electron and ion fluxes, secondary and backscattered electron fluxes, and photoelectron flux. The integral of the incident spectrum against the yield functions gives the secondary and backscattered fluxes. At equilibrium, the net current is zero. We calculate the spacecraft potential using the measured fluxes, either directly or through a fit, with appropriate correction for the difference between the measured and postulated potential. The ratio of the calculated to the measured potential tests the accuracy of the net flux calculation. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for nearly all the data. Using a Kappa function fit to the electron distribution and a Maxwellian function fit to the ion distribution gives similar
Iterative Calculation of Plasma Density from a Cylindrical Probe Characteristic
NASA Astrophysics Data System (ADS)
Xu, Zhenfeng; Lu, Wenqi
2013-08-01
A novel method is proposed for treating cylindrical probe characteristics to obtain plasma density. The method consists of exponential extrapolation of the transitional part of the I-V curve to the floating potential for the ion saturation current, other than the existing theories which use the ion branch, and an iterative sheath thickness correction procedure for improved accuracy. The method was tested by treating Langmuir probe I-V characteristics obtained from inductively coupled Ar discharges at various pressures, and comparing the present results with those deduced by existing theories. It was shown that the plasma densities obtained by the present method are in good agreement with those calculated by the Allen-Boyd-Reynolds (ABR) theory, suggesting the effectiveness of the proposed method. Without need of manual setting and adjustment of fitting parameters, the method may be suitable for automatic and real time processing of probe characteristics.
Errors in calculated oncotic pressure of dog plasma.
Gabel, J C; Scott, R L; Adair, T H; Drake, R E; Traber, D L
1980-12-01
Several equations to calculate plasma oncotic pressure (pi) from the total protein concentration (C) have been previously described. These equations were derived empirically from samples with a wide range of C obtained by diluting or concentrating normal plasma samples. To test these equations over a range of naturally occurring C, we measured C and pi of plasma samples from 40 dogs. C ranged from 5.3 to 8.7 g/dl and averaged 6.5 +/- 0.1 (mean +/- SE) and pi averaged 17.9 +/- 0.3 mmHg. The regression equation was pi = 78.14 + 1.67 C (r = 0.74). pi increased with C much less than predicted with the commonly used equations. The albumin-to-globulin concentration ratios (A/G), determined in 27 of the dogs, decreased with increasing C (A/G = 1.56-0.128 C, r = 0.62). The lower A/G at the higher C's could cause the lower than predicted increase in pi with C, because the equations were developed from data in which A/G was constant. PMID:7446756
40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...
40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...
40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...
40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...
40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...
Equilibrium calculations for plasma control in CIT (Compact Ignition Tokamak)
Strickler, D.J.; Peng, Y-K.M. . Fusion Engineering Design Center); Pomphrey, N.; Jardin, S.C. . Plasma Physics Lab.)
1990-01-01
The free-boundary equilibrium code VEQ provides equilibrium data that are used by the Tokamak Simulation Code (TSC) in design and analysis of the poloidal field (PF) system for the Compact Ignition Tokamak (CIT). VEQ serves as an important design tool for locating the PF coils and defining coil current trajectories and control systems for TSC. In this report, VEQ and its role in the TSC analysis of the CIT PF system are described. Equilibrium and coil current calculations are discussed, an overview of the CIT PF system is presented, a set of reference equilibria for modeling a complete discharge in CIT is described, and the concept of a plasma shape control matrix is introduced. 9 refs., 8 figs., 7 tabs.
A simple theoretical approach to calculate the electrical conductivity of nonideal copper plasma
Zaghloul, Mofreh R.
2008-04-15
A simple theoretical approach to calculate the electrical conductivity of partially ionized nonideal copper plasma is introduced. The densities of plasma species are calculated, to machine accuracy, including electronic excitation and allowing for high ionization states up to the atomic number of the element. Depression of ionization energies is taken into account using an interpolation formula that is valid over a wide range of densities. The formula yields the results of the Debye-Hueckel and the ion-sphere models at the limiting boundaries of low and high densities, respectively. The nonideal Coulomb logarithm is represented by an analytic wide-range formula supplemented by a specially tailored cutoff parameter. Effects of excluding excited and high ionization states on the calculation of ionization equilibrium and electrical conductivity of copper are investigated and assessed. Computational results of the electrical conductivity are compared with results from other theoretical models and available experimental measurements and showed reasonable agreement. A discussion about the choice of the ion-sphere radius is included and concerns about thermodynamic inconsistency when using the modified nonideal Saha equations are discussed and cleared.
29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., calculation of leave. 825.802 Section 825.802 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Special Rules Applicable..., calculation of leave. (a) Amount of leave. (1) An eligible airline flight crew......
29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., calculation of leave. 825.802 Section 825.802 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Special Rules Applicable..., calculation of leave. (a) Amount of leave. (1) An eligible airline flight crew......
Preface to Special Topic: Plasmas for Medical Applications
NASA Astrophysics Data System (ADS)
Keidar, Michael; Robert, Eric
2015-12-01
Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.
Preface to Special Topic: Plasmas for Medical Applications
Keidar, Michael; Robert, Eric
2015-12-15
Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.
NASA Astrophysics Data System (ADS)
Kim, N. E.; Griffin, J. H.
1994-02-01
An approach is presented that may be used to calculate the natural frequencies and loss factors of composite sandwich beams or beams containing adhesively bonded joints. The approach uses special finite elements to represent either composite or joint elements and the modal strain energy method to calculate the loss factor for each vibratory mode of interest. The special element represents a section of the composite beam or the overlap joint as an element with four nodes. Its properties are calculated by using a generalization of the shape function concept from finite elements in which the shape function (displacement fields) in the special elements are determined by performing static stress analysis on the special element's substructure. The resulting special element has only a small number of degrees of freedom and, yet, accurately represents the geometrically complex substructure. Results obtained using this approach on sandwich beams compare well with an analytical solution published in the literature. In addition, it correlates reasonably well with data taken from tests on adhesively bonded beams.
The Martian Plasma Environment: Model Calculations and Observations
NASA Astrophysics Data System (ADS)
Lichtenegger, H. I. M.; Dubinin, E.; Schwingenschuh, K.; Riedler, W.
Based on a modified version of the model of an induced martian magnetosphere developed by Luhmann (1990), the dynamics and spatial distribution of different planetary ion species is examined. Three main regions are identified: A cloud of ions travelling along cycloidal trajectories, a plasma mantle and a plasma sheet. The latter predominantly consists of oxygen ions of ionospheric origin with minor portions of light particles. Comparison of model results with Phobos-2 observations shows reasonable agreement.
Ab initio calculation of the non-relativistic free-free Gaunt factor incorporating plasma screening
NASA Astrophysics Data System (ADS)
Armstrong, G. S. J.; Colgan, J.; Kilcrease, D. P.; Magee, N. H.
2014-03-01
We present calculations of Gaunt factors for free-free absorption over a wide range of temperatures and densities. The calculations employ a partial wave expansion approach, which is able to account for plasma screening within the calculation of the free-free Gaunt factor. Much of the existing Gaunt factor data pertains to hydrogenic systems, and plasma screening is often incorporated in opacity calculations using approximate methods. The use of a more accurate method allows us to determine the accuracy of such approximations in calculations of the free-free monochromatic and mean opacities.
Variational calculations for resonance oscillations of inhomogeneous plasmas
NASA Technical Reports Server (NTRS)
Peng, Y. K. M.; Crawford, F. W.
1973-01-01
The electrostatic resonance properties of an inhomogeneous plasma column are reported by application of the Rayleigh-Ritz method. A description of the rf equation of motion and pressure term that expresses the system of equations in Euler-Lagrange form is presented. The Rayleigh-Ritz procedure is applied to the corresponding Lagrangian to obtain approximate resonance frequencies and eigenfunctions. An appropriate set of trial coordinate functions is defined, which leads to frequency and eigenfunction estimates.
Plasma-Jet Magneto-Inertial Fusion Burn Calculations
NASA Astrophysics Data System (ADS)
Santarius, John
2010-11-01
Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.
Iterative methods for plasma sheath calculations: Application to spherical probe
NASA Technical Reports Server (NTRS)
Parker, L. W.; Sullivan, E. C.
1973-01-01
The computer cost of a Poisson-Vlasov iteration procedure for the numerical solution of a steady-state collisionless plasma-sheath problem depends on: (1) the nature of the chosen iterative algorithm, (2) the position of the outer boundary of the grid, and (3) the nature of the boundary condition applied to simulate a condition at infinity (as in three-dimensional probe or satellite-wake problems). Two iterative algorithms, in conjunction with three types of boundary conditions, are analyzed theoretically and applied to the computation of current-voltage characteristics of a spherical electrostatic probe. The first algorithm was commonly used by physicists, and its computer costs depend primarily on the boundary conditions and are only slightly affected by the mesh interval. The second algorithm is not commonly used, and its costs depend primarily on the mesh interval and slightly on the boundary conditions.
Analytic calculation of physiological acid-base parameters in plasma.
Wooten, E W
1999-01-01
Analytic expressions for plasma total titratable base, base excess (DeltaCB), strong-ion difference, change in strong-ion difference (DeltaSID), change in Van Slyke standard bicarbonate (DeltaVSSB), anion gap, and change in anion gap are derived as a function of pH, total buffer ion concentration, and conditional molar equilibrium constants. The behavior of these various parameters under respiratory and metabolic acid-base disturbances for constant and variable buffer ion concentrations is considered. For constant noncarbonate buffer concentrations, DeltaSID = DeltaCB = DeltaVSSB, whereas these equalities no longer hold under changes in noncarbonate buffer concentration. The equivalence is restored if the reference state is changed to include the new buffer concentrations.
An Exact Calculation of Electron-Ion Energy Splitting in a Hot Plasma
Singleton, Robert L
2012-09-10
In this brief report, I summarize the rather involved recent work of Brown, Preston, and Singleton (BPS). In Refs. [2] and [3], BPS calculate the energy partition into ions and electrons as a charged particle traverses a non-equilibrium two-temperature plasma. These results are exact to leading and next-to-leading order in the plasma coupling g, and are therefore extremely accurate in a weakly coupled plasma. The new BPS calculations are compared with the more standard work of Fraley et al. [12]. The results differ substantially at higher temperature when T{sub I} {ne} T{sub e}.
Systematic methods for calculation of the dielectric properties of arbitrary plasmas
NASA Technical Reports Server (NTRS)
Robinson, P. A.
1990-01-01
In the novel approach presented for calculating the dispersion integrals needed for determining plasma dielectric properties, the dispersion integrals for an arbitrary distortion function with a continuous derivative are systematically expanded in terms of a set of orthogonal functions whose corresponding dispersion functions are already known. This general approach is, on the one hand, implemented for unmagnetized plasmas, and on the other generalized to treat relativistic and magnetized plasmas. The method allows the systematic and efficient calculation of dispersion integrals, for the cases of either real or complex arguments.
A simplified approach to calculate atomic partition functions in plasmas
D'Ammando, Giuliano; Colonna, Gianpiero
2013-03-15
A simplified method to calculate the electronic partition functions and the corresponding thermodynamic properties of atomic species is presented and applied to C(I) up to C(VI) ions. The method consists in reducing the complex structure of an atom to three lumped levels. The ground level of the lumped model describes the ground term of the real atom, while the second lumped level represents the low lying states and the last one groups all the other atomic levels. It is also shown that for the purpose of thermodynamic function calculation, the energy and the statistical weight of the upper lumped level, describing high-lying excited atomic states, can be satisfactorily approximated by an analytic hydrogenlike formula. The results of the simplified method are in good agreement with those obtained by direct summation over a complete set (i.e., including all possible terms and configurations below a given cutoff energy) of atomic energy levels. The method can be generalized to include more lumped levels in order to improve the accuracy.
Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment
Bhattacharyya, S.; Saha, J. K.; Mukherjee, T. K.
2015-04-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended basis inside a finite domain is presented here. The present values of electron densities corresponding to the disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective ground states inside the ion spheres is also reported.
Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction
Feng Yan; Goree, J.; Liu Bin
2011-05-15
A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity {eta} and the wave-number-dependent viscosity {eta}(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity {eta}(k) is validated by comparing the results of {eta}(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity {eta} in the presence of a modest level of friction as in dusty plasma experiments.
CHEMEOS: a new chemical-picture-based model for plasma equation-of-state calculations
Hakel, P.; Kilcrease, D. P.
2004-01-01
We present the results of a new plasma equation-of-state (EOS) model currently under development at the Atomic and Optical Theory Group (T-4) in Los Alamos. This model is based on the chemical picture of the plasma and uses the free-energy-minimization technique and the occupation-probability formalism. The model is constructed as a combination of ideal and non-ideal contributions to the total Helmholtz free energy of the plasma including the effects of plasma microfields, strong coupling, and the hard-sphere description of the finite sizes of atomic species with bound electrons. These types of models have been recognized as a convenient and computationally inexpensive tool for modeling of local-thermal-equilibrium (LIE) plasmas for a broad range of temperatures and densities. We calculate the thermodynamic characteristics of the plasma (such as pressure and internal energy), and populations and occupation probabilities of atomic bound states. In addition to a smooth truncation of partition functions necessary for extracting ion populations from the system of Saha-type equations, the occupation probabilities can also be used for the merging of Rydberg line series into their associated bound-free edges. In the low-density, high-temperature regimes the plasma effects are adequately described by the Debye-Huckel model and its corresponding contribution to the total Helmholtz free energy of the plasma. In strongly-coupled plasmas, however, the Debye-Huckel approximation is no longer appropriate. In order to extend the validity of our EOS model to strongly-coupled plasmas while maintaining the analytic nature of our model, we adopt fits to the plasma free energy based on hypernetted-chain and Monte Carlo simulations. Our results for hydrogen are compared to other theoretical models. Hydrogen has been selected as a test-case on which improvements in EOS physics are benchmarked before analogous upgrades are included for any element in the EOS part of the new Los Alamos
Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas
NASA Astrophysics Data System (ADS)
Son, Sang-Kil; Thiele, Robert; Jurek, Zoltan; Ziaja, Beata; Santra, Robin
2014-07-01
The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.
NASA Astrophysics Data System (ADS)
Isham, B.; Kunhardt, E.
2012-12-01
Recent advances in terawatt laser technology have made it possible to ionize the troposphere in long (centimeters to kilometers), narrow (less than 1 mm), wire-like plasma filaments. These filaments emit high-power stimulated electromagnetic emissions (SEE) in the terahertz (submillimeter) radio band, a frontier in the electromagnetic spectrum lying between the microwave and far infrared. Using an accepted model for the plasma oscillations in the filament, and a thin-wire approximation, we have calculated the current density and the resulting pattern of terahertz radiation emitted from the filament. The conical shape and opening angle match match those of recent measurements. Plans for future experiments and modeling include measurements of the radiation pattern and frequency spectrum for comparison with detailed calculations of filament plasma processes. Potential applications include safe high-resolution imaging and remote spectroscopic identification of chemical substances.
NASA Astrophysics Data System (ADS)
Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei
2014-10-01
Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.
Calculation of the surface tension of liquid metals using a one-component-plasma reference system
NASA Technical Reports Server (NTRS)
Zeng, X. C.; Stroud, D.
1987-01-01
The one-component-plasma (OCP) model is used as a reference system instead of the traditional hard-sphere fluid to calculate the liquid-vapor interfacial surface tension of liquid metals within the density functional formalism. The calculated surface tensions of the alkali metals are in excellent agreement with experiment. For the polyvalent metal Al, the result obtained is larger than experimental measurements. It is concluded that the OCP system is not suitable to describe the liquid-vapor phase transition in simple metals which have a nominal plasma parameter larger than the usual freezing value of about 178. The calculated interfacial widths in all cases are narrower than the expected experimental values.
Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma
NASA Technical Reports Server (NTRS)
Parker, L. W.
1977-01-01
A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.
Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas
Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.
2014-06-15
It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of
Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio
2014-06-01
It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the
Chrystal, C.; Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.; Grierson, B. A.
2012-10-15
To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.
Radiative Power Loss Calculations for Krypton and Argon in Intermediate-to-High Density Plasmas
Fournier, K B; Chung, H-K; Lee, R W
2001-12-01
The scope of work for this subcontract requires that state-of-the-art, detailed atomic kinetics calculations be applied to compute the total radiative cooling rates for Ar and Kr in high density plasmas. This is in support of the Defense Threat Reduction Agency's program of development of simulators with high-fluence radiation and spectral fidelity. Using collisional-radiative modeling codes and unique expertise at Lawrence Livermore National Laboratory (LLNL), the total radiative yields from Ar and Kr, integrated over all photon energies, have been computed. Spectrally resolved yields from K-shell Ar and K- and L-shell Kr have also been tabulated. The present calculations show that high electron density in the plasma sources is essential to maximize the fraction of power output in various x-ray bands.
Multi-CPU plasma fluid turbulence calculations on a CRAY Y-MP C90
Lynch, V.E.; Carreras, B.A.; Leboeuf, J.N.; Curtis, B.C.; Troutman, R.L.
1993-06-01
Significant improvements in real-time efficiency have been obtained for plasma fluid turbulence calculations by microtasking the nonlinear fluid code KITE in which they are implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer Center (NERSC). The number of processors accessed concurrently scales linearly with problem size. Close to six concurrent processors have so far been obtained with a three-dimensional nonlinear production calculation at the currently allowed memory size of 80 Mword. With a calculation size corresponding to the maximum allowed memory of 200 Mword in the next system configuration, we expect to be able to access close to nine processors of the C90 concurrently with a commensurate improvement in real-time efficiency. These improvements in performance are comparable to those expected from a massively parallel implementation of the same calculations on the Intel Paragon.
Calculation of a plasma HgDyI{sub 3} transport coefficients
Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.
2015-05-15
This work is devoted to the calculation of the chemical composition and transport coefficients of HgDyI{sub 3} plasmas in thermal equilibrium. These calculations are performed for pressures equal to 2MP and for temperatures varying from 1000 to 10 000 K. The thermal and electrical conductivity as well as viscosity have been computed as a function of temperature at different atomic ratios. The computational method proposed by Devoto from the classical formalism described by Hirschfelder et al. [Molecular Theory of Gases and Liquids (John Wiley and Sons, New York, 1954)] is used.
Calculation of a plasma HgDyI3 transport coefficients
NASA Astrophysics Data System (ADS)
Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.
2015-05-01
This work is devoted to the calculation of the chemical composition and transport coefficients of HgDyI3 plasmas in thermal equilibrium. These calculations are performed for pressures equal to 2MP and for temperatures varying from 1000 to 10 000 K. The thermal and electrical conductivity as well as viscosity have been computed as a function of temperature at different atomic ratios. The computational method proposed by Devoto from the classical formalism described by Hirschfelder et al. [Molecular Theory of Gases and Liquids (John Wiley and Sons, New York, 1954)] is used.
Time-dependent calculations of hydrogen spectral line shapes in dense plasmas
NASA Astrophysics Data System (ADS)
Olchawa, Wiesław
2001-04-01
A new formalism has been elaborated for calculations of hydrogen line profiles emitted by dense plasmas. Calculated line shapes are broadened, shifted and asymmetrical. The formalism is very general and yields full line shapes, shifts and widths at relatively small number of assumptions. For this purpose a new basis of the appropriate subspace of the Hilbert space has been built. This basis gives an accurate description of the quadratic Stark effect and the interaction of the emitter with field gradients. A computer simulation has been used to determine the emitter perturbations by electrons and ions. Final results have been compared with experimental and theoretical findings of other authors.
Multi-Center Electronic Structure Calculations for Plasma Equation of State
Wilson, B G; Johnson, D D; Alam, A
2010-12-14
We report on an approach for computing electronic structure utilizing solid-state multi-center scattering techniques, but generalized to finite temperatures to model plasmas. This approach has the advantage of handling mixtures at a fundamental level without the imposition of ad hoc continuum lowering models, and incorporates bonding and charge exchange, as well as multi-center effects in the calculation of the continuum density of states.
NASA Astrophysics Data System (ADS)
Zhang, X. N.; Li, H. P.; Murphy, A. B.; Xia, W. D.
2015-06-01
Two main methods have been used to calculate the transport properties of two-temperature (2-T) plasmas in local chemical equilibrium: the method of Devoto (method B), in which coupling between electrons and heavy species is neglected, and the method of Rat et al (method C), in which coupling is included at the cost of a considerable increase in complexity. A new method (method A) has recently been developed, based on the modified Chapman-Enskog solution of the species Boltzmann equations. This method retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. In this paper, the properties of 2-T argon plasmas calculated using the three methods are compared. The viscosity, electrical conductivity and translational thermal conductivity obtained using all three methods are very similar. method B does not allow a complete set of species diffusion coefficient to be obtained. It is shown that such a set can be calculated using method A without any significant loss of accuracy. Finally, it is important to note that, by using the physical fact that the mass of heavy particles is much larger than that of electrons (i.e. me << mh), the complexity of calculations using method A is not increased compared with method B; that is to say, the calculation procedure is much simpler than with method C.
Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method
NASA Astrophysics Data System (ADS)
Rasouli, C.; Abbasi Davani, F.; Rokrok, B.
2016-08-01
Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.
NASA Astrophysics Data System (ADS)
Walsh, Daniel K.; Dubin, Daniel H. E.
2015-11-01
This poster presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on FLR effects to propagate radially across the column until they are reflected when their frequency matches the local upper hybrid frequency, setting up an internal normal mode on the column, and also mode-coupling to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, will be presented and compared to an analytic WKB theory. A previous version of the theory expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently its frequency predictions are shifted with respect to the numerical results. A new version of the WKB theory uses the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The eventual goal is to compare the theory to recent experiments that have observed these waves in pure electron and pure ion plasmas. Supported by National Science Foundation Grant PHY-1414570.
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
NASA Technical Reports Server (NTRS)
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
Zheng, Kai; Li, Huan; Yang, Li-Jun; Gu, Xiao-Yan; Gao, Ying
2013-04-01
The plasma radiation of laser-double wire hybrid welding was collected by using fiber spectrometer, the coupling mechanism of arc with laser was studied through high-speed photography during welding process, and the temperature of hybrid plasma was calculated by using the method of Boltzmann plot. The results indicated that with laser hybrid, luminance was enhanced; radiation intensity became stronger; arc was attracted to the laser point; cross section contracted and arc was more stable. The laser power, welding current and arc-arc distance are important factors that have great influence on electron temperature. Increase in the laser power, amplification of welding current and reduction of arc-arc distance can all result in the rise of temperature. PMID:23841392
NASA Astrophysics Data System (ADS)
Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander
2016-05-01
We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.
MCDHF calculations and study of plasma parameters for Li-like ions
NASA Astrophysics Data System (ADS)
Khatri, Indu; Goyal, Arun; Aggarwal, Sunny; Singh, A. K.; Man Mohan
2016-06-01
Extensive configuration interaction calculations for several Li-like ions (Z=32, 36, 42, 46, 50, 54 and 56) are performed using the code GRASP2K based on the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Breit interaction and leading quantum electrodynamical (QED) effects are also included by applying active-space techniques to enlarge the configuration set. Results for fine-structure energy levels for 1s22p, 1s23s, 1s23p and 1s23d configurations with relative to ground states 1s22s are presented. The wavelengths, transition rates and oscillator strengths for the 1s22s 2S1/2-1s22p 1/2,3/2,0 2P, 1s22p 1/2,3/2,0,2P - -1s23s 2S1/2, 1s22p calculated results are in good agreement with previous theoretical results and compiled values of the National Institute for Standards and Technology (NIST). We have also provided the line intensity ratios and plasma parameters for optically thin plasma. Our calculated data may be useful for experimentalists in identifying the fine-structure levels, for plasma modeling, astrophysical research applications.
Yamamoto, K.; Mizuno, Y.; Hibino, S.; Inuzuka, H.; Cao, Y.; Liu, Y.; Yazawa, K.
2006-01-15
Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{sup 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.
Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment
NASA Astrophysics Data System (ADS)
Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.
2010-12-01
We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.
Hatta, T; Ikeda, K
1988-01-01
Hemispheric specialization for mental calculation and verbal tasks in abacus (Soroban in Japanese) experts and control subjects was tested using time-sharing tasks. In Experiment 1, the effects of auditorily presented mental calculation and news-listening tasks on sequential finger tappings were examined. The results revealed that in the mental calculation condition, abacus experts showed greater interference effects on left hand tapping, whereas control subjects showed greater interference effects on right hand tapping (as compared to left hand). In the news-listening condition, abacus experts showed no hand difference while the controls showed greater interference effects on the right hand. In Experiment 2, the effects of visually presented mental calculation and word-reading tasks on sequential finger tapping were examined. The results revealed that in the mental calculation condition, abacus experts showed a non-significant tendency towards greater interference in the left hand whereas the controls showed no hand difference. In the word-reading condition, both abacus experts and controls showed greater interference in the right hand than in the left hand. In Experiment 3, intermediate and upper-rank abacus experts performed a similar task to Experiment 1 under two instruction conditions. The results of this control experiment confirmed that a greater left hand reduction in calculation of abacus experts is not due to subject's cognitive mode but due to the amount of abacus learning experience. These data suggest that (1) learning experiences can affect the pattern of cerebral specialization through the change of approaches to perform cognitive tasks, and (2) the right hemisphere engages in mental calculation for the abacus experts whereas the left hemisphere contributes to mental calculation in ordinary people having no experience of abacus learning.
Special methods for aerodynamic-moment calculations from parachute FSI modeling
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth
2015-06-01
The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.
Kokkoris, George; Boudouvis, Andreas G.; Gogolides, Evangelos
2006-11-15
An integrated framework for the neutral flux calculation inside trenches and holes during plasma etching is described, and a comparison between the two types of structure in a number of applications is presented. First, a detailed and functional set of equations for the neutral and ion flux calculations inside long trenches and holes with cylindrical symmetry is explicitly formulated. This set is based on early works [T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990); V. K. Singh et al., J. Vac. Sci. Technol. B 10, 1091 (1992)], and includes new equations for the case of holes with cylindrical symmetry. Second, a method for the solution of the respective numerical task, i.e., one or a set of linear or nonlinear integral equations, is described. This method includes a coupling algorithm with a surface chemistry model and resolves the singularity problem of the integral equations. Third, the fluxes inside trenches and holes are compared. The flux from reemission is the major portion of the local flux at the bottom of both types of structure. The framework is applied in SiO{sub 2} etching by fluorocarbon plasmas to predict the increased intensity of reactive ion etching lag in SiO{sub 2} holes compared to trenches. It is also applied in deep Si etching: By calculating the flux of F atoms at the bottom of very high aspect ratio (up to 150) Si trenches and holes during the gas chopping process, the aspect ratio at which the flux of F atoms is eliminated and etching practically stops is estimated.
Numerical methods for the calculation of special functions of wave catastrophes
NASA Astrophysics Data System (ADS)
Ipatov, E. B.; Lukin, D. S.; Palkin, E. A.
1985-02-01
The paper investigates the properties of special functions which are used for the asymptotic description of the structure of wave fields near various types of focusings. These functions are realized in software packages for the BESM-6 computer using FORTRAN. The canonical equations and basic properties of these functions are examined along with the development of numerical algorithms for their computation. These functions may be applied in the study of various types of wave problems, including: (1) radio wave propagation in the ionosphere and ionospheric waveguide channels; (2) the fine structure of sound fields in an acoustic duct; and (3) the focusing of laser radiation reflected from a rough surface.
Seitz, Rainer; Haase, M
2008-07-01
The process of reviewing the European pharmaceutical legislation resulted in a codex, which contains two new instruments related to marketing authorisation of biological medicines: Plasma Master File (PMF) and Vaccine Antigen Master File (VAMF). In the manufacture of plasma derivatives (e. g. coagulation factors, albumin, immunoglobulins), usually the same starting material, i. e. a plasma pool, is used for several products. In the case of vaccines, the same active substance, i.e. vaccine antigen, may be included in several combination vaccine products. The intention behind the introduction of PMF and VAMF was to avoid unnecessary and redundant documentation, and to improve and harmonise assessment by means of procedures for certification of master files on the community level.
NASA Astrophysics Data System (ADS)
Pitchford, L. C.; Kang, J.; Punset, C.; Boeuf, J. P.
2002-12-01
Although alternating-current plasma display panels (ac PDPs) are now produced by several companies, improvements are still necessary. In particular, the overall efficiency of the discharge in the standard configuration is low, on the order of 1 lm/W i.e., about 0.5% of the power dissipated in the discharge is transformed into useful visible photons. One way to substantially improve the efficiency of PDPs is to use radio-frequency (rf) excitation because, when compared to ac PDPs, less of the electrical energy input is dissipated by ions in the sheath and relatively more power is deposited in excitation of the xenon, which produces the ultraviolet photons used to excite the phosphors. In this article, we show calculated discharge characteristics for typical rf PDP conditions and pay particular attention to the role of the xenon metastable atoms in the ionization balance. Our discussion is limited to the sustaining regime, the "on-state," of a PDP cell.
Neoclassical orbit calculations with a full-f code for tokamak edge plasmas
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Xu, X. Q.; Collela, P.; Martin, D.
2008-11-01
Ion distribution function modifications are considered for the case of neoclassical orbit widths comparable to plasma radial-gradient scale-lengths. Implementation of proper boundary conditions at divertor plates in the continuum TEMPEST code, including the effect of drifts in determining the direction of total flow, enables such calculations in single-null divertor geometry, with and without an electrostatic potential. The resultant poloidal asymmetries in densities, temperatures, and flows are discussed. For long-time simulations, a slow numerical instability develops, even in simplified (circular) geometry with no endloss, which aids identification of the mixed treatment of parallel and radial convection terms as the cause. The new Edge Simulation Laboratory code, expected to be operational, has algorithmic refinements that should address the instability. We will present any available results from the new code on this problem as well as geodesic acoustic mode tests.
Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C. Rosa, M. I. de la
2014-10-07
We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Plasma sources for spacecraft neutralization
NASA Technical Reports Server (NTRS)
Davis, V. A.; Katz, I.; Mandell, M. J.
1990-01-01
The principles of the operation of plasma sources for the neutralization of the surface of a spacecraft traveling in the presence of hot plasma are discussed with special attention given to the hollow-cathode-based plasma contactors. Techiques are developed that allow the calculation of the potentials and particle densities in the near environment of a hollow cathode plasma contactor in both the test tank and the LEO environment. The techniques and codes were validated by comparison of calculated and measured results.
NASA Astrophysics Data System (ADS)
Bruggeman, Peter; Degrez, Gérard; Delplancke, Marie-Paule; Gleizes, Alain
2011-05-01
The 11th High-Tech Plasma Processes Conference (HTPP) was held in Brussels, Belgium, 27 June-2 July, 2010. HTPP started as a thermal plasma conference and gradually expanded to include low-temperature plasmas. The conference was founded by Jacques Amouroux and Pierre Fauchais, and aims to bring together different scientific communities to facilitate contacts between science, technology and industry, providing a platform for the exploration of elementary processes and applications in and by plasmas. The first HTPP was held in Odeillo, France, in 1990. Since then it has been held every other year in different European cities: Paris, Aachen, Athens, Strasbourg, Saint-Petersburg, Patras and Brussels. The 11th HTPP conference was attended by 125 participants from 19 countries. The program involved 14 invited talks, 34 contributed talks, 72 posters and a software demonstration and hands-on session for plasma modelling. The 12th HTPP conference will be held 24-28 June 2012, in Bologna, Italy. A larger part of the contributions to the 11th HTPP has been published in the Journal of Physics: Conference Series (JPCS) volume 275, 2011. All invited speakers and other contributors, as selected by the Steering, Scientific and Organizing Committee, were invited to submit a paper based on their contributions for this special issue which is peer reviewed by the journal. Both this special issue and the JPCS volume aim to bring the 11th HTPP to a wider audience. The publications are a nice example of the broad topic range of the conference. The JPCS volume contains papers covering fundamental aspects on radiative processes of thermal plasmas, modelling of thermal arcs and non-thermal RF plasma jets, plasma diagnostics including flow and heat flux measurements of thermal plasmas, radical density measurements and laser-induced breakdown spectroscopy. The applications-oriented contributions of the JPCS volume include plasma spraying, synthesis of (nano-sized) materials, surface
Calculation of the Non-Inductive Current Profile in High-Performance NSTX Plasmas
Gerhardt, S P; Gates, D; Kaye, S; Menard, J; Bell, M G; Bell, R E; Le Blanc, B P; Kugel, H; Sabbagh, S A
2011-02-09
The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX [M. Ono, et al., Nuclear Fusion 40, 557 (2000)]; these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β, or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven, and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfven eigenmode avalanches or coupled m/n=1/1+2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast ion diffusivity of ~0.5-1 m2/sec is found in “MHD-free” discharges, based on the neutron emission, time rate of change of the neutron signal when a neutral beam is stepped, and reconstructed on-axis current density.
Calculation of the non-inductive current profile in high-performance NSTX plasmas
NASA Astrophysics Data System (ADS)
Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.
2011-03-01
The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.
NASA Astrophysics Data System (ADS)
Ghorbanzadeh, Atamalek; Pakmanesh, Nahid; Rastegari, Ali; Abdolghader, Pedram; Feizollah, Peyman; Siadati, Neda
2016-04-01
The performance of an atmospheric pressure pulsed carbon dioxide laser employing surface plasma preionization, produced on a specially patterned printed circuit board (PCB), is reported. The surface plasma is formed due to many tiny plasma channels produced in millimeter sized open circular gaps, made by lithography on one side of PCB. The preionizing plasma is mostly consisted of corona or glow stage and transition to spark one hardly occurs. This type of preionization allows a maximum of 220 J/l energy deposition into the main plasma, while up scaling is yet possible by more optimization of PCB and the pattern. The laser output energy of 1.2 J per pulse with overall efficiency of 7% has been obtained with gas mixture of He:CO2:N2=3:1:1. This type of surface plasma preionization is specifically appropriate for very large volumes and high pressures, where the conventional UV emitting preionizations like spark arrays or corona are not effective.
NASA Technical Reports Server (NTRS)
Fralick, G. C.
1975-01-01
A procedure is described for calculating the current collected by a pinhole defect in the insulation covering a high voltage surface. The results apply to a satellite at geosynchronous altitude where the effects of satellite motion and collective plasma effects on the collected current may be ignored.
Wave Normal and Poynting Vector Calculations using the Cassini Radio and Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Hospodarsky, G. B.; Averkamp, T. F.; Kurth, W. S.; Gurnett, D. A.; Dougherty, M.; Inan, Umran; Wood, Troy
2001-01-01
Wave normal and Poynting vector measurements from the Cassini radio and plasma wave instrument (RPWS) are used to examine the propagation characteristics of various plasma waves during the Earth flyby on August 18, 1999. Using the five-channel waveform receiver (WFR), the wave normal vector is determined using the Means method for a lightning-induced whistler, equatorial chorus, and a series of low-frequency emissions observed while Cassini was in the magnetosheath. The Poynting vector for these emissions is also calculated from the five components measured by the WFR. The propagation characteristics of the lightning-induced whistler were found to be consistent with the whistler wave mode of propagation, with propagation antiparallel to the magnetic field (southward) at Cassini. The sferic associated with this whistler was observed by both Cassini and the Stanford VLF group at the Palmer Station in Antarctica. Analysis of the arrival direction of the sferic at the Palmer Station suggests that the lightning stroke is in the same sector as Cassini. Chorus was observed very close (within a few degrees) to the magnetic equator during the flyby. The chorus was found to propagate primarily away from the magnetic equator and was observed to change direction as Cassini crossed the magnetic equator. This suggests that the source region of the chorus is very near the magnetic equator. The low-frequency emission in the magnetosheath has many of the characteristics of lion roars. The average value of the angle between the wave normal vector and the local magnetic field was found to be 16 degrees, and the emissions ranged in frequency from 0. 19 to 0.75 f(sub ce), where f(sub ce) is the electron cyclotron frequency. The wave normal vectors of these waves were primarily in one direction for each individual burst (either parallel or antiparallel to the local field) but varied in direction throughout the magnetosheath. This suggests that the sources of the emissions are far from
Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang
2012-10-15
Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.
Kim, Kihong; Lee, Dong-Hun
2005-06-15
This is the first of a series of papers devoted to the development of the invariant imbedding theory of mode conversion in inhomogeneous plasmas. A new version of the invariant imbedding theory of wave propagation in inhomogeneous media allows one to solve a wide variety of coupled wave equations exactly and efficiently, even in the cases where the material parameters change discontinuously at the boundaries and inside the inhomogeneous medium. In this paper, the invariant imbedding method is applied to the mode conversion of the simplest kind, that is, the conversion of p-polarized electromagnetic waves into electrostatic modes in cold, unmagnetized plasmas. The mode conversion coefficient and the field distribution are calculated exactly for linear and parabolic plasma density profiles and compared quantitatively with previous results.
NASA Astrophysics Data System (ADS)
Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao
2016-10-01
As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.
NASA Astrophysics Data System (ADS)
Rubiano, J. G.; Rodríguez, R.; Gil, J. M.; Martel, P.; Mínguez, E.
2002-01-01
In this work, the Saha equation is solved using atomic data provided by means of a new relativistic-screened hydrogenic model based on analytical potentials to calculate the ionization state and ion abundance for LTE iron plasmas. The plasma effects on the atomic structure are taken into account by including the classical continuum lowering correction of Stewart and Pyatt. For high density, the Saha equation is modified to consider the degeneration of free electrons using the Fermi Dirac statistics instead of the Maxwellian distribution commonly used. The results are compared with more sophisticated self-consistent codes.
NASA Astrophysics Data System (ADS)
Niu, Chunping; Chen, Zhexin; Rong, Mingzhe; Wang, Chunlin; Wu, Yi; Yang, Fei; Wang, Xiaohua; Pang, Qingping
2016-10-01
The transport coefficients, namely thermal conductivity, viscosity and electrical conductivity, of CO2-CH4 mixture in and out of LTE are calculated in this paper. The calculation was based on local chemical equilibrium (LCE) and local phase equilibrium assumption. The 2-temperature composition results obtained with consideration of condensed phase in the previous paper (Part I) of this series were used in this calculation. The transport coefficients were calculated by classical Chapman-Enskog method simplified by Devoto. The results are presented for different temperatures (300-30 000 K), pressures (0.1-10 atm), non-equilibrium degrees (1-5), and CH4 molar proportions (0-100%). The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the composition and thermodynamic properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.
NASA Astrophysics Data System (ADS)
Green, D. L.; Berry, L. A.; Jaeger, E. F.; Choi, M.
2008-11-01
In burning plasma experiments, the combination of neutral beam injection, high power electromagnetic heating and fusion products give rise to significant non-thermal ion populations. The resulting non-Maxwellian plasma affects ICRF wave propagation and heating. Self-consistent simulation of these effects has been achieved by an iterative coupling of a full-wave electromagnetic solver with a bounce-averaged Fokker-Planck (F-P) code under the zero banana width approximation. Investigating the effects of finite width particle orbits is possible by iterating with a Monte-Carlo calculation of the ion distribution function in place of the F-P code. Here we present progress towards coupling the all-orders global wave solver AORSA with the ORBIT-RF Monte-Carlo code. ORBIT-RF solves the Hamiltonian guiding center equations under coulomb collisions and ICRF quasi-linear (QL) heating taking the QL diffusion coefficients calculated from the AORSA wave fields as inputs. However, completing the self-consistent, time dependent calculation requires adapting the resulting Monte-Carlo particle list to a distribution function suitable for input to AORSA. Issues associated with calculating the differentiable bounce-averaged distribution function from discrete particle data will be discussed. E. F. Jaeger, et al., Phys. of Plasmas, 13, 056101-1, 2006
Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Turner, W.C.
1982-08-10
Several types of radiation measurements were performed on the Beta II compact forms experiment. Among these are time integrated spectra ranging in wavelength from the vuv to the uv, time resolved bolometer measurements of radiation from the x-ray to the infrared, and time and wavelength resolved measurements of certain spectral lines. It is difficult to relate any one of these measurements to plasma parameters of interest such as temperature, density, or impurity content. In this report we compare the results of these, and other measurements with two simple models of the power balance in the plasma in order to estimate the effect of carbon and oxygen impurities on plasma lifetime.
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Rahmonov, I. R.; Gaafar, M. A.
2012-11-01
We perform a precise numerical study of phase dynamics in high-temperature superconductors under electromagnetic radiation. We observe the charging of superconducting layers in the bias current interval corresponding to the Shapiro step. A remarkable change in the longitudinal plasma wavelength at parametric resonance is shown. Double resonance of the Josephson oscillations with radiation and plasma frequencies leads to additional parametric resonances and the non-Bessel Shapiro step.
NASA Astrophysics Data System (ADS)
Vinko, Sam
2014-10-01
An accurate description of the ionization potential depression (IPD) of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here I present the first experimental investigation of the IPD as a function of ionic charge state in a range of dense Mg, Al and Si plasmas, using the Linac Coherent Light Source X-ray free-electron laser. The measurements show significantly larger IPDs than are predicted by the most commonly used models, such as that of Stewart-Pyatt, or the ion-sphere model of Zimmerman-More. Instead, plasma simulations using finite-temperature density functional theory with excited-state projector augmented-wave potentials show excellent agreement with the experimental results and explain the stronger-than-expected continuum lowering through the electronic structure of the valence states in these strong-coupling conditions, which retain much of their atomic characteristics close to the ion core regions. These results have a profound impact on the understanding and modelling of plasmas over a wide range of warm- and hot-dense matter conditions.
Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions
NASA Astrophysics Data System (ADS)
Li, X. F.; Yu, Q.; Gu, Y. J.; Qu, J. F.; Ma, Y. Y.; Kong, Q.; Kawata, S.
2016-03-01
In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser-plasma interaction by using the Lienard-Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser-plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.
Calculation of the dynamics of a shaped liner for quasispherical plasma compression
NASA Astrophysics Data System (ADS)
Kozlov, N. P.; Kurtmullaev, R. K.; Semenov, V. N.; Khvesyuk, V. I.; Yaminskii, A. V.
Thermonuclear synthesis is initiated by a method which utilizes compression and retention of plasma in a magnetic field with the aid of a heavy metal liner. Megagauss magnetic fields and plasma pressures of ten billion to one hundred billion N/sqm can be achieved in doing so. The versions include an approach based on the idea of quasispherical compression of a compact toroidal structure with closed magnetic field by a liner. The plasma toroid with closed field is injected from a formation chamber into the cavity of a liner which is initially cylindrical. In the general case, a central conductor is positioned on the axis of the system in order to create a stabilizing toroidal field when a Tokomak type of toroid structure is used.
Radiation cooling and gain calculation for C VI 182 A line in C/Se plasma
Nam, C.H.; Valeo, E.; Suckewer, S.; Feldman, U.
1986-04-01
A model is developed which is capable of describing the evolution of gain resulting from both rapid radiative and expansion cooling of a recombining, freely expanding plasma. It is demonstrated for the particular case of a carbon/selenium plasma that the cooling rate which leads to optimal gain can be achieved by adjusting the admixture of an efficiently radiating material (selenium) in the gain medium (carbon). Comparison is made to a recent observation of gain in a recent NRL/Rochester experiment with carbon/selenium plasma for the n = 3 ..-->.. 2 transition in C VI occurring at 182 A. The predicted maximum gain is approx.10 cm/sup -1/, as compared to observation of 2 to 3 cm/sup -1/.
NASA Astrophysics Data System (ADS)
Raizer, Iu. P.; Silant'ev, A. Iu.; Surzhikov, S. T.
1987-06-01
Two-dimensional gasdynamic processes in a continuous optical discharge in subsonic flow of atmospheric air are simulated numerically with allowance for distortions of the light channel due to laser beam refraction in the generated plasma, radiative energy losses, and radiant heat transfer. It is found that instabilities and vortex structures are formed in the hot jet behind the energy release region; flow in this region is nonstationary but periodic. These effects are not observed in the main part of the discharge, which is quite stable. Depending on flow velocity, diffraction in the plasma may lead to both defocusing and focusing of the beam.
Special Features of the Structure of Copper-containing Products of Plasma Dynamic Synthesis
NASA Astrophysics Data System (ADS)
Ivashutenko, A. S.; Nazarenko, O. B.; Sivkov, A. A.; Saigash, A. S.; Stepanov, K. I.
2015-03-01
Results of investigation of the dispersed, phase, and chemical compositions of products of plasma dynamic synthesis in a high-speed pulsed jet of copper-containing electroerosive plasma flowing into a closed volume with the air atmosphere are presented. Products of synthesis are investigated by the methods of x-ray phase and thermal analyses, electron microscopy, and IR spectroscopy. The structure of the synthesized powder includes metal copper, Cu2O and CuO copper oxides, and hydrated copper hydroxide Cu(OH)2·N2O. Results of investigations of structural changes of the synthesized products during heating in vacuum and air are presented.
Calculation of Moments from Measurements by the Los Alamos Magnetospheric Plasma Analyzer
M. F. Thomsen; E. Noveroske; J. E. Borovsky; D. J. McComas
1999-05-01
The various steps involved in computing the moments (density, velocity, and temperature) of the ion and electron distributions measured with the Los Alamos Magnetospheric Plasma Analyzer (MPA) are described. The assumptions, constants, and algorithms contained in the FORTRAN code are presented, as well as the output parameters produced by the code.
UAH mathematical model of the variable polarity plasma ARC welding system calculation
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
Significant advantages of Variable Polarity Plasma Arc (VPPA) welding process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. A mathematical model is presented to analyze the VPPA welding process. Results of the mathematical model were compared with the experimental observation accomplished by the GDI team.
NASA Astrophysics Data System (ADS)
Coates, A. J.; Wellbrock, A.; Yamauchi, M.
2015-12-01
Within our solar system, the planets, moons, comets and asteroids all have plasma interactions. The interaction depends on the nature of the object, particularly the presence of an atmosphere and a magnetic field. Even the size of the object matters through the finite gyroradius effect and the scale height of cold ions of exospheric origin. It also depends on the upstream conditions, including position within the solar wind or the presence within a planetary magnetosphere. Soon after ESA's Rosetta reached comet Churyumov-Gerasimenko, NASA's Maven and ISRO's Mars Orbiter Mission (MOM) reached Mars, and ESA's Venus Express mission was completed, this issue explores our understanding of plasma interactions with comets, Mars, Venus, and moons in the solar system. We explore the processes which characterise the interactions, such as ion pickup and field draping, and their effects such as plasma escape. Papers are based on data from current and recent space missions, modelling and theory, as we explore our local part of the 'plasma universe'.
Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor
2010-11-15
Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe the plasma screening effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is increased. Excitation cross sections for the 1s{yields}2s,2p,3s,3p,3d and 2s{yields}2p,3s,3p,3d transitions and total and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.
First-Principles Equation of State Calculations of First- and Second-Row Plasmas
NASA Astrophysics Data System (ADS)
Driver, K. P.; Soubiran, F.; Zhang, S.; Militzer, B.
2015-12-01
Theoretical studies of high energy density matter are a key component to improving our knowledge related to interiors of giant planets and stars, astrophysical processes, and new plasma energy technologies, such as inertial confined fusion. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) are simulation methods that provide consistent, first-principles descriptions of warm, dense matter and plasmas over a wide range of density and temperature conditions. Here, we report simulation results using these two methods for a number of first- and second-row elements. DFT-MD algorithms are well-suited for low temperatures, while PIMC has been restricted to relatively high temperatures due to the free-particle approximation of the nodal surface. For first-row elements, we find that the free-particle approximation is sufficient as long as the temperature is high enough to sufficiently ionize the second electronic shell of the atoms. For heavier, second-row elements, we have developed a new, localized nodal surface, which allows us to treat bound states within the PIMC formalism. By combining PIMC and DFT-MD pressures and internal energies, we produce a coherent, first-principles equation of state, bridging the entire warm dense matter regime. Pair-correlation functions and the density of electronic states reveal an evolving plasma structure. The degree of ionization is affected by both temperature and density. Finally, shock Hugoniot curves show an increase in compression as the first and second shells are ionized.
Calculation of two-dimensional plasma sheath with application to radial dust oscillations
Sheridan, T.E.
2005-07-15
Dust particles are often confined radially in a plasma potential well above a cylindrical depression in an otherwise flat electrode. The structure of the two-dimensional, time-independent sheath is computed for this geometry using cold, collisionless ions and Boltzmann electrons. A depression with a radius of 16 Debye lengths and a depth of 2 Debye lengths is modeled for negative electrode biases from 6 to 32 times the electron temperature. The normalized radial oscillation frequency for a dust particle in the well is computed from the sheath potential structure. The model results agree qualitatively with the experimental measurements.
TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode
Campbell, R.B.
1983-08-30
The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated.
Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.
Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping
2015-09-01
The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}<10^{-2}) and strong (Γ_{ee}>1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}<Γ_{ee}<1). We find that with increasing density of Be, the Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma. PMID:26465571
Stenbøg, Poul; Busk, Troels; Larsen, Fin Stolze
2013-06-01
Severe liver injury result in development of hepatic encephalopathy (HE) and often also in brain edema that is a potentially fatal complication. HE and brain edema are correlated to the level and persistence of hyperammonemia and the presence of systemic inflammation. Treatment of HE and brain edema is based on restoring and keeping normal physiological variables including tonicity, blood gasses, lactate, temperature and vascular resistance by a wide variety of interventions. In addition liver support devices improve the stage of HE, cerebral metabolic rate for oxygen and glucose, and are used either as a bridge to liver transplantation or liver recovery in patients with fulminant hepatic failure and in patients with acute-on-chronic liver failure. This short review will mainly focus on the management and efficacy of doing plasma exchange on HE in patients with acute HE. PMID:23572273
Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli
2014-03-15
The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model.
13 CFR 134.608 - What are the special rules for calculating net worth and number of employees?
Code of Federal Regulations, 2010 CFR
2010-01-01
... unincorporated business, or a partnership, corporation, association, organization, or unit of local government... or other business entities which directly or indirectly own or control a majority of the voting... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What are the special rules...
NASA Astrophysics Data System (ADS)
Lyons, B. C.; Jardin, S. C.; Ramos, J. J.
2012-08-01
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which ψ defines a flux surface, θ is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ. The Rosenbluth potentials, Φ and Ψ, which define the integral part of the collision operator, are expanded in Legendre series in cosχ, where χ is the pitch angle, Fourier series in cosθ, and finite elements in v. At each ψ, we solve a block tridiagonal system for hi (independent of fe), then solve another block tridiagonal system for he (dependent on fi). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D -C1 [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).
B.C. Lyons, S.C. Jardin, and J.J. Ramos
2012-06-28
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).
Lyons, B. C.; Jardin, S. C.; Ramos, J. J.
2012-08-15
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which {psi} defines a flux surface, {theta} is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and {lambda} is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and {lambda}. The Rosenbluth potentials, {Phi} and {Psi}, which define the integral part of the collision operator, are expanded in Legendre series in cos{chi}, where {chi} is the pitch angle, Fourier series in cos{theta}, and finite elements in v. At each {psi}, we solve a block tridiagonal system for h{sub i} (independent of f{sub e}), then solve another block tridiagonal system for h{sub e} (dependent on f{sub i}). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C{sup 1}[S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).
NASA Astrophysics Data System (ADS)
Mandrekas, John
2004-08-01
GTNEUT is a two-dimensional code for the calculation of the transport of neutral particles in fusion plasmas. It is based on the Transmission and Escape Probabilities (TEP) method and can be considered a computationally efficient alternative to traditional Monte Carlo methods. The code has been benchmarked extensively against Monte Carlo and has been used to model the distribution of neutrals in fusion experiments. Program summaryTitle of program: GTNEUT Catalogue identifier: ADTX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTX Computer for which the program is designed and others on which it has been tested: The program was developed on a SUN Ultra 10 workstation and has been tested on other Unix workstations and PCs. Operating systems or monitors under which the program has been tested: Solaris 8, 9, HP-UX 11i, Linux Red Hat v8.0, Windows NT/2000/XP. Programming language used: Fortran 77 Memory required to execute with typical data: 6 219 388 bytes No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.: 300 709 No. of lines in distributed program, including test data, etc.: 17 365 Distribution format: compressed tar gzip file Keywords: Neutral transport in plasmas, Escape probability methods Nature of physical problem: This code calculates the transport of neutral particles in thermonuclear plasmas in two-dimensional geometric configurations. Method of solution: The code is based on the Transmission and Escape Probability (TEP) methodology [1], which is part of the family of integral transport methods for neutral particles and neutrons. The resulting linear system of equations is solved by standard direct linear system solvers (sparse and non-sparse versions are included). Restrictions on the complexity of the problem: The current version of the code can
Kluy, N.; Angioni, C.; Camenen, Y.; Peeters, A. G.
2009-12-15
The toroidal momentum transport in the presence of trapped electron mode microinstabilities in tokamak plasmas is studied by means of quasilinear gyrokinetic calculations. In particular, the role of the Coriolis drift in producing an inward convection of toroidal momentum is investigated. The Coriolis drift term has been implemented in the gyrokinetic code GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] specifically for the completion of this work. A benchmark between the GS2 implementation of the Coriolis drift and the implementations included in two other gyrokinetic codes is presented. The numerical calculations show that in the presence of trapped electron modes, despite of a weaker symmetry breaking of the eigenfunctions with respect to the case of ion temperature gradient modes, a pinch of toroidal momentum is produced in most conditions. The toroidal momentum viscosity is also computed, and found to be small as compared with the electron heat conductivity, but significantly larger than the ion heat conductivity. In addition, interesting differences are found in the dependence of the toroidal momentum pinch as a function of collisionality between trapped electron modes and ion temperature gradient modes. The results identify also parameter domains in which the pinch is predicted to be small, which are also of interest for comparisons with the experiments.
NASA Astrophysics Data System (ADS)
Bareev, D. D.; Gavrilenko, V. G.; Grach, S. M.; Sergeev, E. N.
2016-02-01
It is shown experimentally that the relaxation time of the stimulated electromagnetic emission (SEE) after the pump wave turn off decreases when frequency of the electromagnetic wave, responsible for the SEE generation (pump wave f0 or diagnostic wave fdw) approaches 4th harmonic of the electron cyclotron frequency fce . Since the SEE relaxation is determined by the damping rate of plasma waves with the same frequency, responsible for the SEE generation, we calculated damping rates of plasma waves with ω ∼ωuh (ω is the plasma wave frequency, ωuh is the upper hybrid frequency) for frequencies close to and distant from the double resonance where ωuh ∼ 4ωce (ωce = 2 πfce). The calculations were performed numerically on the base of linear plasma wave dispersion relation at arbitrary ratio between | Δ | = ω - 4ωce and |k‖ |VTe (VTe is the electron thermal speed and k‖ is the projection of the wave vector onto the magnetic field direction. A comparison of calculation and experimental results has shown that obtained frequency dependence of the SEE decay rate is similar to the damping rate frequency dependence for plasma waves with wave vectors directed at the angles 60-70° to the magnetic field, and gives a strong hint that oblique upper hybrid plasma waves should be responsible for the SEE generation.
Steinbach, Sarah M L; Sturgess, Christopher P; Dunning, Mark D; Neiger, Reto
2015-06-01
Assessment of renal function by means of plasma clearance of a suitable marker has become standard procedure for estimation of glomerular filtration rate (GFR). Sinistrin, a polyfructan solely cleared by the kidney, is often used for this purpose. Pharmacokinetic modeling using adequate software is necessary to calculate disappearance rate and half-life of sinistrin. The purpose of this study was to describe the use of a Microsoft excel based add-in program to calculate plasma sinistrin clearance, as well as additional pharmacokinetic parameters such as transfer rates (k), half-life (t1/2) and volume of distribution (Vss) for sinistrin in dogs with varying degrees of renal function.
Kaplan, D
2005-08-31
The purpose of this document is to provide a technically defensible list of distribution coefficients, or Kd values, for use in performance assessment (PA) and special analysis (SA) calculations on the SRS. Only Kd values for radionuclides that have new information related to them or that have recently been recognized as being important are discussed in this report. Some 150 Kd values are provided in this report for various waste-disposal or tank-closure environments: soil, corrosion in grout, oxidizing grout waste, gravel, clay, and reducing concrete environments. Documentation and justification for the selection of each Kd value is provided.
Andrews, G S
1979-04-01
The levels of plasma zinc, copper, caeruloplasmin, and growth hormone were determined in a group of normal people and in four groups of patients who were suffering from carcinoma of the bronchus, other forms of malignancy, chest illnesses, and diseases other than chest illness or malignancy. The plasma zinc was higher, and the plasma copper lower, in people without malignancy below the age of 30 years than they were in other age groups.It was confirmed that about 66% of patients with carcinoma of the bronchus had plasma zinc levels less than 11.5 mumol/l but low levels were also found in 23% of other cases of malignancy and in 9% of the other patients. In carcinoma of the bronchus the low plasma zinc was found to be associated with epidermoid and anaplastic tumours and was to some extent related to the duration of the disease. In carcinoma of the bronchus the plasma copper was found to be higher than in all other groups, and values higher than 26.5 mumol/l were considered to support a diagnosis of carcinoma of the bronchus. There was, however, no relationship between the increase in the plasma copper and the decrease in the plasma zinc.Raised caeruloplasmin levels above 420 mg/l were found in 65% of cases of carcinoma of the bronchus, and these high levels were usually associated with raised plasma copper. Growth hormone was normal in all groups except six patients with carcinoma of the bronchus with secondary carcinoma of the liver, in whom it was raised. Surgical operations lowered plasma zinc and raised growth hormone but did not affect plasma copper.A plasma zinc below 11.5 mumol/l is helpful in the diagnosis of carcinoma of the bronchus, but by itself it is not sufficiently specific to be considered diagnostic or to form a reliable screening test. A raised plasma copper and a raised plasma caeruloplasmin were useful supportive findings.
Deuschle, M; Weber, B; Colla, M; Depner, M; Heuser, I
1998-12-01
Depression, aging and female gender are associated with increased diurnal concentrations of total plasma cortisol. For the physical effects of hypercortisolemia, however, it is generally assumed that free rather than total plasma cortisol concentrations are of importance. Herein, we report a mathematical approach to determine free plasma cortisol concentrations on the basis of total cortisol, corticosteroid binding-globulin (CBG) and albumin plasma concentrations. This approach was used to re-evaluate two sets of data in order to estimate the effect of depression as well as the effect of aging and gender upon free plasma cortisol concentrations. Comparing male depressed patients with healthy controls, we found 24-hour free cortisol minima (MIN: 4.1 +/- 1.8 vs. 1.6 +/- 1.1 nmol/l, p < 0.0001), mean (MEAN: 25.5 +/- 6.7 vs. 10.4 +/- 2.7 nmol/l, p < 0.0001) and maximal (MAX: 85.3 +/- 23.3 vs. 45.2 +/- 15. 8 nmol/l, p < 0.0001) concentrations to be significantly increased in depressed patients. In general, the impact of depression upon total plasma cortisol were not only maintained, but stronger regarding free plasma cortisol. Also, age was associated with free plasma cortisol MIN (F1,30= 10.8, p < 0.003) and free plasma cortisol MEAN (F1,30 = 8.9, p < 0.006). All effects of age upon total plasma cortisol were generally also found in free plasma cortisol, though with less impact. No effect of gender upon any of the given free plasma cortisol outcome variables was found. Taken together, our re-evaluation clearly shows not only depression but also aging to be associated with increases in free plasma cortisol concentrations. This finding is in line with the observation that in both conditions medical problems triggered and/or maintained by glucocorticoids (e.g. osteoporosis) are frequently seen.
NASA Astrophysics Data System (ADS)
Borodkina, I. E.; Komm, M.; Tsvetkov, I. V.
2015-08-01
Simple analytical formulas are derived for calculation of the electric field potential distribution in the magnetic pre-layer and the Debye layer near the plasma facing surfaces. It is shown that the calculated potential profiles are in good agreement with the dependences of the potential distribution on the magnetic field inclination obtained by solving the magnetic hydrodynamic (MHD) equations and modeling using the PIC code SPICE2. Dependences of the angular distribution of ions incident on the surface of plasma facing elements on the magnetic field inclination are obtained. Results of calculations demonstrate that the surface areas, on which the magnetic field is incident at sliding angles, are critical from the viewpoint of the increase of sputtering.
NASA Astrophysics Data System (ADS)
Habib, A. A. M.
2014-06-01
The mean probability of photon capture for the resonance lines emitted by a neutral fluorine atom is calculated assuming a Voigt line shape. The calculations allow a quantitative estimate of the self-absorption effect of spectral lines of neutral fluorine atoms occurring far below the ultraviolet (UV) spectral range. The calculations are made for the bound-bound resonance lines emitted at 95.48, 77.81, 95.85, 79.44 and 77.94 nm in the case of SF6-N2 thermal plasma mixture. The dependence of the mean probability of photon capture on the Doppler and collision (Stark, resonance and van der Waals) broadening mechanisms is considered. The same method is equally applied to free-bound transitions of the recombination continuum. The variation of the mean probability of photon capture with the temperature, the SF6 proportions and the size of the plasma are considered. The results obtained may be of practical importance in plasma modeling and plasma diagnostics. In view of its simplicity, the method may also be applied to laser-induced breakdown spectroscopy (LIBS) spectral analysis.
Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto
2016-03-01
The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma. PMID:27078472
Florido, R.; Rodriguez, R.; Gil, J. M.; Rubiano, J. G.; Martel, P.; Minguez, E.; Sauvan, R.; Mancini, R.
2008-10-22
This work describes ABAKO/RAPCAL, a flexible computational package for the study of population kinetics and radiative properties of non-equilibrium plasmas in a wide range of physical conditions. The code was developed looking for an optimal compromise between accuracy and computational cost. ABAKO/RAPCAL assembles a set of simple analytical models which yield substantial savings of computer resources, but yet still providing good comparisons with more elaborated codes and experimental data. Here we present some results to show the ABAKO/RAPCAL capabilities to calculate the charge distribution and radiative properties of both low- and high-Z plasmas. Finally, an application for K-shell spectroscopic determination of the electron temperature and density of laser-produced plasmas is also shown.
NASA Astrophysics Data System (ADS)
Colgan, J.; Abdallah, J., Jr.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Flora, F.; Francucci, M.; Martellucci, S.
2010-09-01
The Los Alamos suite of atomic codes is used to model several high-resolution spectral measurements from recent laser-produced plasma experiments involving barium fluoride targets. The spectral range of observation is from 7.8 to 9.5 Å and the observed lines correspond to 3-5, 3-6, 3-7 and 3-8 transitions of principal quantum number, for Ga-like through Co-like barium ions. The observed spectra are complicated because of many overlapping lines from the various ion stages in a small wavelength region. A MUTA model that includes many configurations is compared to a detailed level-to-level collisional-radiative model that includes fewer configurations. Spectra are calculated to show the sensitivity to plasma temperature, density and size. The contributions to the spectra for the individual ion stages are also presented. The model calculations are in reasonable agreement with experiment.
NASA Astrophysics Data System (ADS)
Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol
2016-11-01
The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.
NASA Astrophysics Data System (ADS)
Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Pritula, A. G.; Chekmezov, A. N.; Yakovlenko, Sergei I.
1990-08-01
Calculations are reported of the gain due to the 3-2 transition in the C VI ion in an expanding plasma cylinder or a cylindrical layer. Under the conditions in the experiments at the Rutherford Appleton Laboratory (Chilton, England) amplification was observed as a result of evaporation of a fairly thin (~ 0.1 μm) cylindrical layer. A peak of the gain was reached in a relatively short time (~ 0.1 ns).
NASA Astrophysics Data System (ADS)
Hey, J. D.
2015-09-01
On the basis of the original definition and analysis of the vector operator by Pauli (1926 Z. Phys. 36 336-63), and further developments by Flamand (1966 J. Math. Phys. 7 1924-31), and by Becker and Bleuler (1976 Z. Naturforsch. 31a 517-23), we consider the action of the operator on both spherical polar and parabolic basis state wave functions, both with and without direct use of Pauli’s identity (Valent 2003 Am. J. Phys. 71 171-75). Comparison of the results, with the aid of two earlier papers (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641-64, Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077-96), yields a convenient ladder technique in the form of a recurrence relation for calculating the transformation coefficients between the two sets of basis states, without explicit use of generalized hypergeometric functions. This result is therefore very useful for application to Stark effect and impact broadening calculations applied to high-n radio recombination lines from tenuous space plasmas. We also demonstrate the versatility of the Runge-Lenz-Pauli vector operator as a means of obtaining recurrence relations between expectation values of successive powers of quantum mechanical operators, by using it to provide, as an example, a derivation of the Kramers-Pasternack relation. It is suggested that this operator, whose potential use in Stark- and Zeeman-effect calculations for magnetically confined fusion edge plasmas (Rosato, Marandet and Stamm 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105702) and tenuous space plasmas ( H II regions) has not been fully explored and exploited, may yet be found to yield a number of valuable results for applications to plasma diagnostic techniques based upon rate calculations of atomic processes.
NASA Technical Reports Server (NTRS)
Oya, H.
1971-01-01
The dispersion curves have been computed for a wide range of wavelengths from electromagnetic waves to electrostatic waves in a magnetoactive warm plasma with a Maxwellian velocity distribution function. The computation was carried out mainly for the perpendicular propagation mode. The upper hybrid resonance is the connection point of the electrostatic waves and the electromagnetic waves. The electrostatic waves not associated with the upper hybrid resonance are subjected to electron cyclotron damping when the wavelength becomes long. Oblique propagation is allowed for the electrostatic waves in a frequency range from the plasma frequency to the upper hybrid resonance frequency in the long-wavelength region where Landau damping can be neglected and where the electrostatic mode smoothly connects to the electromagnetic X-mode. In a slightly inhomogeneous plasma, the Bernstein-mode electrostatic wave can escape by being converted into the O-mode electromagnetic wave; two reflections take place during this escape process.
NASA Astrophysics Data System (ADS)
Silin, I.; Toffoletto, F.; Wolf, R.; Sazykin, S. Y.
2013-12-01
We present a finite-volume MHD code for simulations of magnetospheric dynamics of the plasma sheet and the inner magnetosphere. The code uses staggered non-uniform Cartesian grids to preserve the divergence-free magnetic fields, along with various numerical approximations and flux limiters for the plasma variables. The code can be initialized with empirical magnetic field models, such as the Tsyganenko models along with pressure information from either the Tsyganenko-Mukai models, or observational data, such as DMSP pressure maps. Artificial "friction term" can be added to the momentum equation, which turns the MHD code into "magnetofriction" code which can be used to construct approximate equilibrium solutions. We demonstrate some applications for our code, in both the "magnetofriction" and MHD mode, including relaxation of the empirical models to equilibrium and the evolution of a plasma bubble in the near magnetotail. The latter MHD simulation results exhibit oscillations about their equilibrium position in agreement with recent observations.
Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; Castor, John I.; Randles, Amanda; Glosli, James N.; Richards, David F.; Desjarlais, Michael P.; Graziani, Frank R.
2015-12-04
Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.
NASA Technical Reports Server (NTRS)
Bathke, C. G.
1976-01-01
Electron energy distribution functions were calculated in a U235 plasma at 1 atmosphere for various plasma temperatures and neutron fluxes. The distributions are assumed to be a summation of a high energy tail and a Maxwellian distribution. The sources of energetic electrons considered are the fission-fragment induced ionization of uranium and the electron induced ionization of uranium. The calculation of the high energy tail is reduced to an electron slowing down calculation, from the most energetic source to the energy where the electron is assumed to be incorporated into the Maxwellian distribution. The pertinent collisional processes are electron-electron scattering and electron induced ionization and excitation of uranium. Two distinct methods were employed in the calculation of the distributions. One method is based upon the assumption of continuous slowing and yields a distribution inversely proportional to the stopping power. An iteration scheme is utilized to include the secondary electron avalanche. In the other method, a governing equation is derived without assuming continuous electron slowing. This equation is solved by a Monte Carlo technique.
Berezhkovskiy, Leonid M
2016-08-01
An uncommon innovative consideration of the well-stirred linear physiologically based pharmacokinetic model and the drug plasma concentration-time profile, which is measured in routine intravenous bolus pharmacokinetic study, was applied for the calculation of the drug time course in human tissues. This cannot be obtained in the in vivo pharmacokinetic study. The physiological parameters of the organ such as organ tissue volume, organ blood flow rate, and its vascular volume were used in the calculation. The considered method was applied to calculate the time course of midazolam, alprazolam, quinidine, and diclofenac in human organs or tissues. The suggested method might be applied for the prediction of drug concentration-time profile in tissues and consequently the drug concentration level in the targeted tissue, as well as the possible undesirable toxic levels in other tissues. PMID:27290628
NASA Astrophysics Data System (ADS)
Amarante-Segundo, G.; Elfimov, A. G.; Galvão, R. M. O.; Ross, D. W.; Nascimento, I. C.
2001-01-01
The current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code in the Alfvén range of frequencies. The rf (radio frequency) ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation (electron Landau damping and transit time magnetic pumping). Finally, the rf force is balanced by the viscous force in the fluid momentum response to the rf fields in the plasma. The relative magnitudes of the different forces for kinetic and global Alfvén waves with low phase velocities are explicitly calculated. It is shown that, dissipating in electrons, Alfvén waves can drive ion flow via the gradient force, which is dominated in m=0-sideband harmonic resonance induced by toroidal mode coupling. Estimates of power requirements to drive substantial poloidal flow in the Tokamak Chauffage Alfvén wave heating experiment in Brazil (TCABR) [L. Ruchko, M. C. Andrade, R. M. O. Galvão, Nucl. Fusion 30, 503 (1996)] are made.
Malik, Hitendra K.
2008-09-01
Analytical expressions are obtained for the longitudinal field (wake field), density perturbation, and the potential behind microwave pulse propagating in a plasma filled rectangular waveguide with the pulse duration half of the electron plasma period. A feasibility study on wake field is carried out with rectangular pulse and its combination with Gaussian and triangular pulses under the effects of microwave pulse parameters and waveguide dimensions. It is inferred that the wake field in the waveguide cannot be attained when the length of rectangular microwave pulse is exactly equal to the plasma wavelength. A 1 ns short rectangular pulse with intensity of 250 kW/cm{sup 2} at the frequency of 5.03 GHz can excite the wake field of 1.0 MV/m in a waveguide with width of 6 cm and height of 4 cm. However, enhanced field is obtained when rectangular-triangular pulse (combination of rectangular and triangular pulses) is used. The field of wake gets weakened at higher microwave frequency and larger dimensions of the waveguide for other fixed parameters. However, a larger field is achieved when the pulse length of the microwave pulses is made shorter and/or intensity of the pulses is increased. A comparative study of the pulses shows that better results can be obtained with rectangular pulse (rectangular-Gaussian pulse: combination of rectangular and Gaussian pulses) if the microwave of shorter pulse duration (higher intensity) is available.
NASA Astrophysics Data System (ADS)
Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Anstey, Chris M
2005-06-01
Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 < or = Pco(2) < or = 135 Torr. The predictive equations for each model were iteratively solved for pH at each Pco(2) step, and the results were plotted as a series of log(Pco(2))-pH titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 < or = pH < or = 7.8, and no significant difference between the curve predictions under metabolic stress. The curves were statistically collinear. Ultimately, their clinical utility will be determined both by acceptance of the strong ion framework for describing acid-base physiology and by the ease of measurement of the independent model parameters.
Rudenko, V. V.
2010-12-15
The problem of laser deposition with allowance for thermal radiation transport inside and outside the laser torch is considered in a multigroup approximation. The energy fluxes of laser torch thermal radiation onto a target in the far and near zones are calculated as functions of time and the character of the exposure. It is shown that absorption of thermal fluxes in the substrate and target in the course of laser deposition results in their substantial heating. The possibility of diagnosing thermal radiation fluxes from the laser torch by using photodetectors is demonstrated.
NASA Astrophysics Data System (ADS)
Lugovtsov, A. E.; Nikitin, S. Yu; Priezzhev, A. V.
2008-06-01
A theoretical model is developed and an algorithm is proposed for calculating far-field light scattering by a transparent dielectric particle significantly larger than a wavelength. The accuracy of this algorithm is close to that of the discrete dipole approximation. The calculation time for this algorithm in the case of particles with the size parameter higher than 50 is much lower than that for the discrete dipole approximation. Scattering diagrams for spheroidal particles of different sizes, orientations and refractive indices are calculated. The proposed algorithm has a great potential for quick calculations of parameters of light scattering by large biological particles such as erythrocytes and their aggregates, bacteria, etc.
NASA Astrophysics Data System (ADS)
Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.
2016-11-01
External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.
Ivanov, A. A. Martynov, A. A. Medvedev, S. Yu. Poshekhonov, Yu. Yu.
2015-03-15
In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (with arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.
NASA Technical Reports Server (NTRS)
Jones, Alun R.
1940-01-01
This report has been prepare in response to a request for information from an aircraft company. A typical example was selected for the presentation of an approximate method of calculation of the relative humidity required to prevent frosting on the inside of a plastic window in a pressure type cabin on a high speed airplane. The results of the study are reviewed.
Bao, Junwei Lucas; Truhlar, Donald G
2016-04-21
The growth of anionic silicon hydride clusters is a critically important process in nanodusty plasmas. In the current study, we focus on the formation of homologs of silylene (Sin+1H2n+2(-), n = 3, 4) and silyl (SinH2n+1(-), n = 4, 5) anions via anion-neutral reaction pathways. Species like silyl or silylene anions and their related elementary reactions, which are involved in the formation of silicon hydride clusters, were not used in developing exchange-correlation (xc) density functionals (i.e., they were not included in the training set of semiempirical density functionals); therefore, we explored the accuracy of various widely used xc density functionals based on reaction energies and barrier heights. Among the 21 density functionals we tested, M06-2X has the best performance for a hybrid functional, and MN15-L has the best performance for a local functional. Thermal rate constants of the elementary reactions involved in the reaction mechanism are calculated using M06-2X and multistructural canonical variational transition state theory with the small-curvature tunneling approximation (MS-CVT/SCT). The pressure dependence of unimolecular isomerization reactions is treated with system-specific quantum RRK theory (SS-QRRK) and the Lindemann-Hinshelwood mechanism.
Molecular dynamic study of pressure fluctuations spectrum in plasma
NASA Astrophysics Data System (ADS)
Bystryi, R. G.
2015-11-01
Pressure of plasma is calculated by using classical molecular dynamics method. The formula based on virial theorem was used. Spectrum pressure's fluctuations of singly ionized non-ideal plasma are studied. 1/f-like spectrum behavior is observed. In other words, flicker noise is observed in fluctuations of pressure equilibrium non-ideal plasma. Relations between the obtained result and pressure fluctuations within the Gibbs and Einstein approaches are discussed. Special attention is paid to features of calculating the pressure in strongly coupled systems.
Slater, C.O.
1992-01-01
The DRC2 code, which couples MASH or MASHX adjoint leakages with DORT 2-D discrete ordinates forward directional fluences, is described. The forward fluences are allowed to vary both axially and radially over the coupling surface, as opposed to the strictly axial variation allowed by the predecessor DRC code. Input instructions are presented along with descriptions and results from several sample problems. Results from the sample problems are used to compare DRC2 with DRC, DRC2 with DORT, and DRC2 with itself for the case of x-y dependence versus no x-y dependence of the forward fluence. The test problems demonstrate that for small systems DRC and DRC2 give essentially the same results. Some significant differences are noted for larger systems. Additionally, DRC2 results with no x-y dependence of the forward directional fluences are practically the same as those calculated by DRC.
NASA Astrophysics Data System (ADS)
Joglekar, Archis; Thomas, Alec
2013-10-01
Here, we present 2D numerical modeling of near critical density plasma using a fully implicit Vlasov-Fokker-Planck code, IMPACTA, which includes self-consistent magnetic fields as well as anisotropic electron pressure terms in the expansion of the distribution function, as well as an implementation of the Boris CYLRAD algorithm through a ray tracing add-on package. This allows to model inverse brehmsstrahlung heating as a laser travels through a plasma by solving the ray tracing equations. Generated magnetic fields (eg. the Biermann battery effect) as well as field advection through heat fluxes from the laser heating is shown. Additionally, perturbations in the plasma density profile arise as a result of the high pressures and flows in the plasma. These perturbations in the plasma density affect the path of the laser traveling through the plasma and modify the heating profile accordingly. The interplay between these effects is discussed in this study.
NASA Astrophysics Data System (ADS)
Bradshaw, S. J.
2009-07-01
Context: The effects of non-equilibrium processes on the ionisation state of strongly emitting elements in the solar corona can be extremely difficult to assess and yet they are critically important. For example, there is much interest in dynamic heating events localised in the solar corona because they are believed to be responsible for its high temperature and yet recent work has shown that the hottest (≥107 K) emission predicted to be associated with these events can be observationally elusive due to the difficulty of creating the highly ionised states from which the expected emission arises. This leads to the possibility of observing instruments missing such heating events entirely. Aims: The equations describing the evolution of the ionisaton state are a very stiff system of coupled, partial differential equations whose solution can be numerically challenging and time-consuming. Without access to specialised codes and significant computational resources it is extremely difficult to avoid the assumption of an equilibrium ionisation state even when it clearly cannot be justified. The aim of the current work is to develop a computational tool to allow straightforward calculation of the time-dependent ionisation state for a wide variety of physical circumstances. Methods: A numerical model comprising the system of time-dependent ionisation equations for a particular element and tabulated values of plasma temperature as a function of time is developed. The tabulated values can be the solutions of an analytical model, the output from a numerical code or a set of observational measurements. An efficient numerical method to solve the ionisation equations is implemented. Results: A suite of tests is designed and run to demonstrate that the code provides reliable and accurate solutions for a number of scenarios including equilibration of the ion population and rapid heating followed by thermal conductive cooling. It is found that the solver can evolve the ionisation
Wang, Changguang; Williams, Noelle S.
2012-01-01
The aim of this study is to further validate the use of ultrafiltration (UF) as a method for determining plasma protein binding (PPB) by demonstrating that non-specific binding (NSB) is not a limitation, even for highly lipophilic compounds, because NSB sites on the apparatus are passivated in the presence of plasma. Mass balance theory was used to calculate recovery of 20 commercial and seven investigational compounds during ultrafiltration in the presence and absence of plasma. PPB was also measured using this mass balance approach for comparison to PPB determined by rapid equilibrium dialysis (RED) and as found in the literature. Compound recovery during UF was dramatically different in the presence and absence of plasma for compounds with high NSB in PBS only. A comparison of PPB calculated by ultrafiltration with literature values or calculated by RED gave concordant results. Discrepancies could be explained by changes in pH, insufficient time to equilibrium, or compound instability during RED, problems which were circumvented by ultrafiltration. Therefore, NSB, as measured by the traditional incubation of compound in PBS, need not be an issue when choosing UF as a PPB assay method. It is more appropriate to calculate compound recovery from the device in plasma as measured by mass balance to determine the suitability of the method for an individual compound. The speed with which UF can be conducted additionally avoids changes in pH or compound loss that can occur with other methods. The mass balance approach to UF is thus a preferred method for rapid determination of PPB. PMID:23312388
NASA Astrophysics Data System (ADS)
Brualla, L.; Mayorga, P. A.; Flühs, A.; Lallena, A. M.; Sempau, J.; Sauerwein, W.
2012-11-01
Retinoblastoma is the most common eye tumour in childhood. According to the available long-term data, the best outcome regarding tumour control and visual function has been reached by external beam radiotherapy. The benefits of the treatment are, however, jeopardized by a high incidence of radiation-induced secondary malignancies and the fact that irradiated bones grow asymmetrically. In order to better exploit the advantages of external beam radiotherapy, it is necessary to improve current techniques by reducing the irradiated volume and minimizing the dose to the facial bones. To this end, dose measurements and simulated data in a water phantom are essential. A Varian Clinac 2100 C/D operating at 6 MV is used in conjunction with a dedicated collimator for the retinoblastoma treatment. This collimator conforms a ‘D’-shaped off-axis field whose irradiated area can be either 5.2 or 3.1 cm2. Depth dose distributions and lateral profiles were experimentally measured. Experimental results were compared with Monte Carlo simulations’ run with the penelope code and with calculations performed with the analytical anisotropic algorithm implemented in the Eclipse treatment planning system using the gamma test. penelope simulations agree reasonably well with the experimental data with discrepancies in the dose profiles less than 3 mm of distance to agreement and 3% of dose. Discrepancies between the results found with the analytical anisotropic algorithm and the experimental data reach 3 mm and 6%. Although the discrepancies between the results obtained with the analytical anisotropic algorithm and the experimental data are notable, it is possible to consider this algorithm for routine treatment planning of retinoblastoma patients, provided the limitations of the algorithm are known and taken into account by the medical physicist and the clinician. Monte Carlo simulation is essential for knowing these limitations. Monte Carlo simulation is required for optimizing the
ERIC Educational Resources Information Center
Clarke, Jacqueline
2001-01-01
Presents unique ways to create special rituals that recognize individual students' achievements and milestones. Ideas include throwing a send-off party for a student who is moving; holding monthly birthday luncheons; choosing an ambassador to accompany new students around school; and making a lost tooth container that students can use to safely…
Relativistic Thomson Scatter from Factor Calculation
2009-11-01
The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.
NASA Astrophysics Data System (ADS)
Skiff, Fred; Davidson, Ronald C.
2013-05-01
Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvén wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.
Calcul et mesure de la température d'un plasma à l'aide des raies d'émission du cuivre
NASA Astrophysics Data System (ADS)
Sassi, M.; Pierre, L.; Bénard, J.; Cahen, C.
1994-01-01
The use of copper emission lines for temperature measurement in plasma environments is presented. The article features the problems encountered with such a measurement method when used in a stationnary and a non-stationnary plasma. In the first case, we were concerned with the temperature measurements in the jet of a 2MW industrial plasma torche. The plasma was stationnary and the measurement geometry allowed the use of the Abel inversion method to recover the temperature profiles in the plasma jet. The limitations of the measurement method on the jet boundaries as well as the cooling of the plasma by entrainement of cold air are discussed. In the second case, a non-stationnary plasma in a 1.4 MW electric furnace was studied. This study allowed to feature the role of the detector dynamics as related to the dynamics of the observed medium. The obtained measurements show only a probable temperature in the immediate proximity of the arc. Finally, we conclude on the validity of copper as a tracer and the use of spontaneous emission spectroscopy, an easy method to implement, compared to other sophisticated temperature measurement methods. L'utilisation des raies d'émission du cuivre pour la mesure de la température dans les plasmas est présentée. Cet article expose les problèmes posés par l'étude des températures dans les plasmas stationnaires et instationnaires. Dans le premier cas, on a été concerné par la mesure de la température dans le jet d'une torche à plasma industrielle (2 MW). Le plasma est stationnaire et la géométrie de la mesure permet l'inversion d'Abel pour remonter aux profils de température dans le jet. Les limitations de la méthode de mesure sur les bords du jet ainsi que le refroidissement du plasma par bouffées d'air froid sont discutés. Dans le second cas, un plasma instationnaire d'un four à arc (1,4 MW) a été étudié. Cette étude nous a permis de mettre en relief le rôle de la dynamique du détecteur et la façon de l
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Current collection from an unmagnetized plasma: A tutorial
NASA Technical Reports Server (NTRS)
Whipple, Elden C.
1990-01-01
The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.
Meyerhofer, D. D.; Mauel, M. E.
2016-05-18
The 57th annual meeting of the APS Division of Plasma Physics (DPP) was held November 16–20, 2015 in Savannah, Georgia. The meeting brings together researchers (undergraduate students through retirees) from all areas of plasma physics. 1887 abstracts were included in the program, approximately 200 more than the previous year. The presentations included five invited review talks, 97 invited talks, three invited postdeadline talks, and four tutorials. Furthermore, there were approximately 1780 contributed presentations, with about 40% oral and 60% poster. Three mini-conferences were held concurrently.
Stability of Alfven oscillations in a plane plasma slab
Patudin, V.M.; Sagalakov, A.M.
1983-05-01
The stability of the natural Alfven oscillations of a plane slab of a collisional, slightly nonequilibrium plasma in a uniform magnetic field is studied. An effective numerical method, a special version of the differential sweepout method, is proposed. A calculation procedure has been developed. The small-oscillation spectrum is analyzed for parabolic plasma density profiles, and neutral curves are plotted. The growth rates and critical parameters are determined. At a high plasma conductivity, both strongly and weakly localized perturbations near the axis can go unstable. For a density profile with an inflection point, weakly damped oscillations are observed near the inflection point. These oscillations can also be excited by an ion beam.
NASA Technical Reports Server (NTRS)
Alfven, H.
1986-01-01
Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.
NASA Astrophysics Data System (ADS)
Livadiotis, George
2015-03-01
Empirical kappa distributions provide a straightforward replacement of the Maxwell distribution for systems out of thermal equilibrium such as space plasmas. Kappa distributions have become increasingly widespread across space physics with the number of relevant publications following, remarkably, an exponential growth rate. However, a breakthrough in the field came with the connection of kappa distributions with the framework of nonextensive statistical mechanics. This introductory paper clarifies fundamental physical concepts and provides mathematical formulations of the theory of kappa distributions, which are a consequence of the connection of kappa distributions with a solid statistical background. Among others, the paper presents the existence of a consistent definition of temperature in systems out of thermal equilibrium described by kappa distributions, the physical meaning of the kappa index, and the formulation of the kappa distribution of a Hamiltonian. In addition, the paper examines the most frequent values of kappa indices in space plasmas. Statistical analysis reveals trends between the characteristic values of density, temperature, and kappa index of space plasmas. Finally, understanding the kinetic interpretation of the temperature as the mean kinetic energy, and of the kappa index as the correlation of kinetic energies, helps to develop all the possible formulations of isotropic/anisotropic kappa distributions.
Manheimer, Wallace; Colombant, Denis; Schmitt, Andrew J.
2012-05-15
This paper extends the velocity dependent Krook (VDK) model, developed at NRL over the last 4 years, to two dimensions and presents a variety of calculations. One dimensional spherical calculations presented here investigate shock ignition. Comparing VDK calculations to a flux limit calculation shows that the laser profile has to be retuned and some gain is sacrificed due to preheat of the fuel. However, preheat is by no means a show stopper for laser fusion. The recent foil acceleration experiments at the University of Rochester Laboratory for Laser Energetics are modeled with two-dimensional simulations. The radial loss is very important to consider in modeling the foil acceleration. Once this is done, the VDK model gives the best agreement with the experiment.
NASA Astrophysics Data System (ADS)
Punkevich, B. S.; Stal, N. L.; Stepanov, B. M.; Khokhlov, V. D.
The possibility of using the multigroup method to determine the physical properties of a beam plasma is substantiated, and the effectiveness of the application of this method is analyzed. The results obtained are compared with solutions of rigorous steady-state kinetic equations and approximate equations corresponding to a model of continuous slowdown and its variants. It is shown that, in the case of the complete slowdown of a fast electron and all the secondary electrons produced by it in He, 51 percent of the primary-electron energy is expended on the ionization of helium atoms, 16 percent is converted into atom thermal energy, and 33 percent is expended on atom excitation. Of this latter 33 percent, 21 percent is expended on the excitation of energy levels corresponding to optically allowed transitions.
Wang, Jie; Ouyang, Jingping; Liu, Youping; Jia, Xian; You, Song; He, Xin; Di, Xin
2014-07-01
The ex vivo instability of bilobalide containing three γ-lactone rings has been paid less attention by researchers who developed bioanalytical methods for bilobalide. In the present study, a sensitive LC-MS/MS method for the determination of bilobalide in rat plasma was developed with special consideration of ex vivo bilobalide stability. Several important factors affecting the stability of bilobalide in sampling and handling procedures were investigated. To prevent the ex vivo degradation of bilobalide, EDTA instead of heparin was used as an anticoagulant as well as an esterase inhibitor for blood collection and the separation of plasma was performed at 4 °C. 20 μL of plasma sample was acidified with 0.1 M hydrochloric acid, and then extracted with ethyl ether-methylene chloride (2:1, v/v). The extract was chromatographed on a Thermo Hypersil GOLD (100 mm × 2.1 mm, 5 μm) column using acetonitrile-10mM ammonium acetate-formic acid (90:10:0.4, v/v/v) as the mobile phase. The analyte and the internal standard (ginkgolide B) were detected by selected reaction monitoring mode via negative electrospray ionization. The method was fully validated and proved to be linear over a concentration range of 5.0-5000 ng/mL. The intra- and inter-day precisions were less than 5.2% and the accuracy was within 92.5-101%. The extraction recoveries ranged from 80.7% to 86.7%. The proposed method was successfully applied to a preclinical pharmacokinetic study of bilobalide in rats after intragastric administration of a single dose of bilobalide at 7, 14 and 28 mg/kg. PMID:24704454
Hur, M.; Kang, K.D.; Hong, S.H.
1997-12-31
In this study, the plasma characteristics of a high power nontransferred plasma torch with hollow electrodes are investigated in the atmospheric condition by analyzing the distributions of plasma temperature, velocity and current density. Typical assumptions of steady state, axisymmetry, local thermodynamic equilibrium (LTE) and optically thin plasma are adopted in a two-dimensional magnetohydrodynamic (MHD) modeling of thermal plasma with a special treatment of arc spot positions. A control volume method and the modified SIMPLER algorithm are used for solving the governing equations numerically, i.e., conservation equations of mass, momentum, and energy along with the equations describing the {Kappa}-{var_epsilon} model for turbulence and the current continuity for arc discharge. The distributions of plasma temperature, velocity, and current density are calculated in various operation conditions such as gas species, gas flowrate, input current, and electrode geometry. The calculated results of plasma characteristics in various operations can be useful to determine the design parameters of the high power plasma torch of hollow electrode type for incinerating the hospital and municipal solid wastes.
Fang, Ferric C.
2014-01-01
As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049
Casadevall, Arturo; Fang, Ferric C
2014-04-01
As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049
ERIC Educational Resources Information Center
Braswell, Ray, Ed.
This document contains the following papers on special needs instruction and technology: (1) "Hawaii Special Education Teacher Induction" (Kalena Oliva and Quinn Avery); (2) "The Impact of Group v Individual Use of Hypermedia-Based Instruction" (Lewis R. Johnson, Louis P. Semrau, and Gail E. Fitzgerald); (3) "Assistive Technology Meets…
Electrostatic ion thruster optics calculations
NASA Technical Reports Server (NTRS)
Whealton, John H.; Kirkman, David A.; Raridon, R. J.
1992-01-01
Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.
ERIC Educational Resources Information Center
Ayoub, Ayoub B.
2006-01-01
In this article, the author takes up the special trinomial (1 + x + x[squared])[superscript n] and shows that the coefficients of its expansion are entries of a Pascal-like triangle. He also shows how to calculate these entries recursively and explicitly. This article could be used in the classroom for enrichment. (Contains 1 table.)
Sun, Yu; Liu, Yanan; Li, Rui; Xue, Gang; Ognier, Stéphanie
2016-07-01
This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82.
Sun, Yu; Liu, Yanan; Li, Rui; Xue, Gang; Ognier, Stéphanie
2016-07-01
This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82. PMID:27124311
ERIC Educational Resources Information Center
Zimmer, Phil
1986-01-01
Specialized publications such as "Opera News,""Gourmet," and "Forbes" can bring an institution's story to targeted audiences. The experiences of Chautauqua Institution are described. Some of the benefits of marketing articles to these publications are discussed. (MLW)
Raballand, V.; Cartry, G.; Cardinaud, C.
2007-09-15
In a previous paper we showed that selective etching of porous SiOCH with respect to SiO{sub 2} and SiCH is clearly enhanced when using a pulsed bias in inductively coupled fluorocarbon plasma. To understand this pulsed process, a model for etch rate calculation is developed in the present paper. This model explains the etching/deposition threshold shift toward higher bias voltage in pulsed conditions. Rather good confidence is obtained with experimental SiO{sub 2}, Si, SiOCH and SiCH etch rates. Porous SiOCH etching is found to behave slightly differently compared to SiO{sub 2} or SiCH; its chemical etching is assumed to occur even during the beginning of off period. This point could explain why good selectivities between porous SiOCH and SiO{sub 2} and SiCH are obtained.
Piron, R.; Blenski, T.
2011-02-15
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Piron, R; Blenski, T
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included. PMID:21405914
Piron, R; Blenski, T
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Fermionic collective modes of an anisotropic quark-gluon plasma
Schenke, Bjoern; Strickland, Michael
2006-09-15
We determine the fermionic collective modes of a quark-gluon plasma which is anisotropic in momentum space. We calculate the fermion self-energy in both the imaginary- and real-time formalisms and find that numerically and analytically (for two special cases) there are no unstable fermionic modes. In addition we demonstrate that in the hard-loop limit the Kubo-Martin-Schwinger condition, which relates the off-diagonal components of the real-time fermion self-energy, holds even for the anisotropic, and therefore nonequilibrium, quark-gluon plasma considered here. The results obtained here set the stage for the calculation of the nonequilibrium photon production rate from an anisotropic quark-gluon plasma.
Analysis of Power Model for Linear Plasma Device
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun
2016-08-01
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α-2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)
Analysis of Power Model for Linear Plasma Device
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun
2016-08-01
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α‑2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)
Plasma heating power dissipation in low temperature hydrogen plasmas
Komppula, J. Tarvainen, O.
2015-10-15
A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.
Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying
NASA Astrophysics Data System (ADS)
Bobzin, Kirsten; Bagcivan, Nazlim; Zhao, Lidong; Petkovic, Ivica; Schein, Jochen; Hartz-Behrend, Karsten; Kirner, Stefan; Marqués, José-Luis; Forster, Günter
2011-09-01
Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.
High-performance simulations for atmospheric pressure plasma reactor
NASA Astrophysics Data System (ADS)
Chugunov, Svyatoslav
Plasma-assisted processing and deposition of materials is an important component of modern industrial applications, with plasma reactors sharing 30% to 40% of manufacturing steps in microelectronics production. Development of new flexible electronics increases demands for efficient high-throughput deposition methods and roll-to-roll processing of materials. The current work represents an attempt of practical design and numerical modeling of a plasma enhanced chemical vapor deposition system. The system utilizes plasma at standard pressure and temperature to activate a chemical precursor for protective coatings. A specially designed linear plasma head, that consists of two parallel plates with electrodes placed in the parallel arrangement, is used to resolve clogging issues of currently available commercial plasma heads, as well as to increase the flow-rate of the processed chemicals and to enhance the uniformity of the deposition. A test system is build and discussed in this work. In order to improve operating conditions of the setup and quality of the deposited material, we perform numerical modeling of the plasma system. The theoretical and numerical models presented in this work comprehensively describe plasma generation, recombination, and advection in a channel of arbitrary geometry. Number density of plasma species, their energy content, electric field, and rate parameters are accurately calculated and analyzed in this work. Some interesting engineering outcomes are discussed with a connection to the proposed setup. The numerical model is implemented with the help of high-performance parallel technique and evaluated at a cluster for parallel calculations. A typical performance increase, calculation speed-up, parallel fraction of the code and overall efficiency of the parallel implementation are discussed in details.
ERIC Educational Resources Information Center
Vander Weele, Maribeth
1992-01-01
Thomas Hehir, special education chief of Chicago Public Schools, is evangelist of integrating children with disabilities into regular classrooms. By completely reorganizing department viewed as political patronage dumping ground, Hehir has made remarkable progress in handling large number of children awaiting evaluation and placement in special…
National Institute of Standards and Technology Data Gateway
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
ERIC Educational Resources Information Center
Chenery, Gordon
1991-01-01
Uses chaos theory to investigate the nonlinear phenomenon of population growth fluctuation. Illustrates the use of computers and computer programs to make calculations in a nonlinear difference equation system. (MDH)
Albers, R.C.; Gubernatis, J.E.
1981-01-01
The efficiency of four different Brillouin-zone integration schemes including the uniform mesh, special point method, special directions method, and Holas method are compared for calculating moments of the harmonic phonon frequencies of the solid one-component plasma. Very accurate values for the moments are also presented. The Holas method for which weights and integration points can easily be generated has roughly the same efficiency as the special directions method, which is much superior to the uniform mesh and special point methods for this problem.
10 CFR 766.102 - Calculation methodology.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology....
10 CFR 766.102 - Calculation methodology.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology....
10 CFR 766.102 - Calculation methodology.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology....
10 CFR 766.102 - Calculation methodology.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology....
Arc plasma jets of a nontransferred plasma torch
Kang, K.D.; Hong, S.H.
1996-02-01
The dc plasma torches have been widely used as clean plasma sources for plasma processings such as plasma spraying and synthesis. The plasma flow of a nontransferred plasma torch used for thermal plasma processings is produced by the arc-gas interactions between a cathode tip and an anode nozzle and expands as a jet through the nozzle. In this work, numerically calculated images of the arc plasma characteristics are found over the entire plasma region, including both an arc-gas interacting region inside the torch and a jet expanding region outside the torch. A numerical model used assumes a local thermodynamic equilibrium (LTE) with near-electrode phenomena and compressible flow effects. The computational system is described by a two-dimensional (2-D) axisymmetric model which is solved for plasma temperature and velocity by a control volume approach with the modified SIMPLER algorithm in a real torch geometry.
How to Patch Active Plasma and Collisionless Sheath: Practical Guide
Kaganovich, Igor D.
2002-08-22
Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition for calculation of plasma profiles. To calculate sheath properties, a value of electric field at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy are reported.
NASA Astrophysics Data System (ADS)
von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.
2013-09-01
Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous
The plasma environment of comets
Gombosi, T.I. )
1991-01-01
U.S. research activities in the area of cometary plasma physics during 1987-1990 are reviewed. Consideration is given to mass loading and its consequences in the upstream region, the cometary shock, the cometosheath, the diamagnetic cavity boundary and the inner shock, and the plasma tail. Special attention is given to models and observations that have modified the pre-encounter understanding of cometary plasma environments. 211 refs.
Hunter, Charles H.
2000-05-22
This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.
2000-05-22
This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less
Decimals, Denominators, Demons, Calculators, and Connections
ERIC Educational Resources Information Center
Sparrow, Len; Swan, Paul
2005-01-01
The authors provide activities for overcoming some fraction misconceptions using calculators specially designed for learners in primary years. The writers advocate use of the calculator as a way to engage children in thinking about mathematics. By engaging with a calculator as part of mathematics learning, children are learning about and using the…
Propagation of an atmospheric pressure plasma plume
Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.
2009-02-15
The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.
Horton, W.; Hu, G.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M
2015-11-01
The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.
Interaction of Intense Lasers with Plasmas
NASA Astrophysics Data System (ADS)
Shvets, Gennady
1995-01-01
This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that a<<1, where a=eA/mc^2 is a dimensionless vector potential. This formalism borrows the diagrammatic techniques from quantum field theory, yet remains classical. This classical field theory, which treats cold plasma as a relativistic field interacting with the electromagnetic fields, introduces an artificial length scale which is smaller than any physically relevant spatial scale. By adopting a special (Arnowitt -Fickler) gauge, electromagnetic waves in a cold relativistic plasma are separated into "photons" and "plasmons" which are the relativistic extensions of electrostatic and electromagnetic waves in a cold stationary plasma. The field-theoretical formalism is applied to a variety of nonlinear problems including harmonic generation, parametric instabilities, and nonlinear corrections to the index of refraction. For the first time the rate of the second harmonic emission from a homogeneous plasma is calculated and its dependence on the polarization of the incident radiation is studied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field
NASA Astrophysics Data System (ADS)
Sosedkin, A. P.; Lotov, K. V.
2016-09-01
LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.
Foster, J.S. Jr.
1958-03-11
This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.
EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets
NASA Astrophysics Data System (ADS)
Kong, M. G.; Ganguly, B. N.; Hicks, R. F.
2012-06-01
-mentioned early studies has witnessed a considerable and exciting growth in terms of new phenomena observed, new physics and chemistry uncovered, new plasma jet sources conceived, and new applications developed. Examples include the observations of plasma bullets on a nanosecond scale [16], the similarity of plasma bullets to streamers [17], arrays of plasma jets as metamaterials [18], and a rapid increase of applications in biomedicine [19]. However the considerable growth in the research of plasma jets has not been adequately supported, so far, by a sound fundamental underpinning, partly resulting from a somewhat underdevelopment of effective diagnostics and modelling tools. Recognizing the critical importance of basic science for future growth of low-temperature plasma jet technology, this special issue on plasma jets and bullets aims to address some of the most important fundamental questions. Many of the special issue papers continue the established line of investigation to characterize the formation of plasma bullets, using typically ultrafast imaging, electrical detection including electric field and plasma conductivity measurement, and optical emission spectrometry [20]-[26]. These offer strong experimental evidence for the well-known hypothesis that a plasma jet is a form of streamer, and that the ionization wave plays a critical role in their formation. The interaction of two parallel plasma jets [27] and manipulation of plasma jet characteristics [28, 29] are also reported using a similar combination of experimental techniques. Some of the common characteristics of plasma jets are summarized in a review paper in this special issue [30]. A somewhat different line of investigation is employed in a detailed experimental characterization of deterministic chaos in atmospheric plasma jets [31], one of the few non-bullet modes of plasma jets. Although chaos in ionized gases have been observed in other types of discharge plasmas, their applications have not so far been linked
Wakes in Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ellis, Ian Norman
Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC
Calculators to Motivate Infinite Composition of Functions.
ERIC Educational Resources Information Center
McCune, E. D.; And Others
1980-01-01
This paper demonstrates how calculators may be used to motivate a concept called infinite composition of functions. Several mathematical topics, such as continued square roots, continued fractions, and infinite products are treated and discussed as special cases. (Author/MK)
NASA Astrophysics Data System (ADS)
Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.
2012-05-01
Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.
The temperature and pressure in the plasma parallel plate accelerator
NASA Astrophysics Data System (ADS)
Koníček, P.; Maloch, J.
1993-06-01
This paper presents the results of plasma temperature and pressure calculations in the parallel plate accelerator during the accelerating process. The plasma pressure is calculated by means in Dalton's law.
Nuclear Material Variance Calculation
1995-01-01
MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less
Quantitative diagnostics of reactive, multicomponent low-temperature plasmas
NASA Astrophysics Data System (ADS)
Schwarz-Selinger, Thomas
2013-09-01
The special emphasis in this work is put on the quantitative determination of the plasma composition of an inductively coupled low temperature plasma (ICP). Several standard plasma diagnostic techniques were applied. As a test case for a multi-component low-temperature plasma argon-hydrogen as well as argon-hydrogen-nitrogen mixed plasmas were investigated. For steady-state plasma operation the ion density and electron temperature were determined with a single tip Langmuir probe. A multi-grid miniature retarding-field analyzer was used to measure the mass integrated ion flux. An energy-dispersive mass spectrometer - a so-called plasma monitor (PM) - was applied to sample ions from the plasma to derive the ion composition. The degree of dissociation of hydrogen and the gas temperature were derived from optical emission spectroscopy. The gas temperature was estimated by the rotational distribution of the Q-branch lines of the hydrogen Fulcher- α diagonal band for the argon-hydrogen mixed plasmas and from the second positive system of N2 in argon-hydrogen-nitrogen mixed plasmas. The degree of dissociation of hydrogen was measured by actinometry. The influence of the substrate material of the counter electrode (stainless steel, copper, tungsten, Macor, and aluminium) on the atomic hydrogen concentration was investigated by OES. In addition, ionization-threshold mass spectrometry (ITMS) was used to determine the densities of atomic nitrogen (N) and atomic hydrogen (H and D). Pulsed plasma operation was applied to directly measure the loss rate of H, D and N in the afterglow from the temporal decay of the ITMS signal. From these data the wall loss probability of atomic hydrogen was determined. Furthermore, a zero-dimensional rate equation model was devised to explain the ion composition in these mixed plasmas with different admixture ratios. In addition to the experimental data on electron density, gas temperature, total pressure, atomic hydrogen density, and Ar, H2
NASA Technical Reports Server (NTRS)
Harries, W. L.
1977-01-01
The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.
NASA Astrophysics Data System (ADS)
Polomarov, Oleg; Theodosiou, Constantine; Kaganovich, Igor
2003-10-01
A self-consistent system of equations for the kinetic description of non-local, non-uniform, nearly collisionless plasmas of low-pressure discharges is presented. The system consists of a non-local conductivity operator, and a kinetic equation for the electron distribution function (EEDF) averaged over fast electron bounce motions. A Fast Fourier Transform (FFT) method was applied to speed up the numerical simulations. The importance of accounting for the non-uniform plasma density profile in computing the current density profile and the EEDF is demonstrated. Effects of plasma non-uniformity on electron heating in rf electric field have also been studied. An enhancement of the electron heating due to the bounce resonance between the electron bounce motion and the rf electric field has been observed. Additional information on the subject is posted in http://www.pppl.gov/pub_report/2003/PPPL-3814-abs.html and in http://arxiv.org/abs/physics/0211009
Plasma generating apparatus for large area plasma processing
Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.
1991-01-01
A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.
Plasma generating apparatus for large area plasma processing
Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.
1991-07-16
A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.
Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators
Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.
2010-05-17
Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.
NASA Astrophysics Data System (ADS)
Dubin, D. H. E.
This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.
Madison Plasma Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kostadinova, Evdokiya; Forest, C.; Cooper, C.; Coquerel, M.
2014-01-01
The Madison Plasma Dynamo Experiment (MPDX) is investigating the self-generation of magnetic fields and related processes in a large, weakly magnetized, fast flowing, and hot (conducting) plasma. The dynamo re-creates conditions highly similar to many astrophysical plasmas. Stars and other planets have dynamos, and so do galaxies and clusters of galaxies, which makes it extremely crucial for researchers in the field to carry out experiments in this previously uninvestigated plasma regime, which will help for the development of a comprehensive theory of how magnetic fields are generated in planets, the Sun and other stars. MPDX is a laboratory astrophysical experiment where 200,000-degree Fahrenheit plasma is confined within a three-meter diameter spherical aluminum vacuum chamber with the help of multiple tracks of cusp magnets covering the inside shell. The dynamo utilizes six robotic insertion sweep probes that are programmed to find any point inside the sphere by given radial and angular coordinates. This innovative mechanical system allows us to take measurements of the state variables in key points in the plasma flow and to better investigate its cosmic-like plasma behavior. The probes are able to autonomously calculate coordinate transformations, move in a two dimensional plane, and return information about their relative position. This makes them an extremely useful, highly accurate, and easily controlled tool for plasma analysis.
A new small microwave plasma torch
NASA Astrophysics Data System (ADS)
Stonies, Robert; Schermer, Susanne; Voges, Edgar; Broekaert, José A. C.
2004-11-01
The development of a new, very small coaxial plasma source based on the microwave plasma torch (MPT) is described. It generates a plasma jet up to 4 mm long and can be operated with a argon gas flow rate less than 70 ml per min at down to 2 W microwave power (2.45 GHz) at atmospheric pressure. It also works well with helium and does not show any wear during a test period of 30 h of operation with argon. It is, in particular, thought to be a source for the atomic spectroscopy of gaseous species. The excitation temperature is found to be ~4700 K for this device operating with helium and 17 W microwave power. A detection limit for an example application in which Cl is detected from HCCl3 is found to be below 66 ppb. For the first time, to our knowledge, microstrip circuits are used to match the small MPT to the generator's 50 OHgr impedance. The design considerations for the microstrip circuits are discussed and an approximated calculation for the layout is presented. With the introduced procedure it is possible to design even smaller MPTs for special applications.
Felten, T.; Schlickeiser, R.; Yoon, P. H.; Lazar, M.
2013-05-15
General expressions for the electromagnetic fluctuation spectra in unmagnetized plasmas are derived using fully relativistic dispersion functions and form factors for the important class of isotropic plasma particle distribution functions including in particular relativistic Maxwellian distributions. In order to obtain fluctuation spectra valid in the entire complex frequency plane, the proper analytical continuations of the unmagnetized form factors and dispersion functions are presented. The results are illustrated for the important special case of isotropic Maxwellian particle distribution functions providing in particular the thermal fluctuations of aperiodic modes. No restriction to the plasma temperature value is made, and the electromagnetic fluctuation spectra of ultrarelativistic thermal plasmas are calculated. The fully relativistic calculations also provide more general results in the limit of nonrelativistic plasma temperatures being valid in the entire complex frequency plane. They complement our earlier results in paper I and III of this series for negative values of the imaginary part of the frequency. A new collective, transverse, damped aperiodic mode with the damping rate γ∝−k{sup −5/3} is discovered in an isotropic thermal electron-proton plasma with nonrelativistic temperatures.
Modelling the Plasma Jet in Multi-Arc Plasma Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.
2016-08-01
Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.
Conductivity of a relativistic plasma
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.
46 CFR 174.360 - Calculations.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., as amended, chapter II-1, part B-1. 46 CFR Ch. I (10-1-10 Edition) Coast Guard, DHS ... 46 Shipping 7 2010-10-01 2010-10-01 false Calculations. 174.360 Section 174.360 Shipping COAST... SPECIFIC VESSEL TYPES Special Rules Pertaining to Dry Cargo Ships § 174.360 Calculations. Each ship...
ERIC Educational Resources Information Center
Kim, Byung Ha, Ed.; Yeo, Kwang Eung
The text on special education in Korea is divided into four major sections--a brief history of special education in Korea, the present status of special education in Korea, the special education plan of the Young Kwang Educational Foundation, and directory of schools and classes for the exceptional in Korea. Topics covered include the following:…
NASA Astrophysics Data System (ADS)
Samukawa, Seiji; Hori, Masaru; Rauf, Shahid; Tachibana, Kunihide; Bruggeman, Peter; Kroesen, Gerrit; Whitehead, J. Christopher; Murphy, Anthony B.; Gutsol, Alexander F.; Starikovskaia, Svetlana; Kortshagen, Uwe; Boeuf, Jean-Pierre; Sommerer, Timothy J.; Kushner, Mark J.; Czarnetzki, Uwe; Mason, Nigel
2012-06-01
Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap. Although roadmaps are common in the microelectronic industry and other fields of research and development, constructing a roadmap for the field of low-temperature plasmas is perhaps a unique undertaking. Realizing the difficulty of this task for any individual, the plasma section of the Journal of Physics D Board decided to meet the challenge of developing a roadmap through an unusual and novel concept. The roadmap was divided into 16 formalized short subsections each addressing a particular key topic. For each topic a renowned expert in the sub-field was invited to express his/her individual visions on the status, current and future challenges, and to identify advances in science and technology required to meet these challenges. Together these contributions form a detailed snapshot of the current state of the art which clearly shows the lifelines of the field and the challenges ahead. Novel technologies, fresh ideas and concepts, and new applications discussed by our authors demonstrate that the road to the future is wide and far reaching. We hope that this special plasma science and technology roadmap will provide guidance for colleagues, funding agencies and government institutions. If successful in doing so, the roadmap will be periodically updated to continue to help in guiding the field.
Plasma stabilization experiment
NASA Astrophysics Data System (ADS)
Sziklas, E. A.; Fader, W. J.; Jong, R. A.; Stufflebeam, J. H.
1980-07-01
The plasma stabilization experiment is an effort to enhance stability in a mirror-confined plasma by trapping cold ions with rf fields applied near the mirror throats. Nagoya Type 3 antennas, coupled to a 60 kW rf power supply are mounted in the throats of the UTRC baseball magnet. An external washer gun provides a source of plasma for both streaming and confined plasma tests. Results show a strong stoppering effect on streaming plasmas and a marginal effect on confined plasmas. Theoretical calculations provide an explanation for the experimental observations. The field generates a ponderomotive force acting on the electrons. The resultant improvement in electron confinement changes the ambipolar potential and inhibits the flow of ions through the mirror throat. Criteria are derived for the validity of this trapping concept. The requisite field strengths are significantly lower than those required to trap ions directly. Scaling laws are developed for application of cold ion trapping to large mirror devices containing dense plasmas. The use of slow-wave antenna structures operated at frequencies above the lower hybrid frequency is recommended for these applications.
Mississippi Special Olympics: Special Events Manual.
ERIC Educational Resources Information Center
Heinze, Toni; Cooper, Walter E.
Provided in the manual are organizational guidelines and suggested activities for a Special Evants segment of the Mississippi Special Olympics Program to encourage participation by low motor functioning, multihandicapped, mentally retarded persons. Information is provided concerning objectives, organizational set-up, guidelines, communication…
SPECIAL CLASSES FOR STUDENTS WITH SPECIAL NEEDS.
ERIC Educational Resources Information Center
DOWELL, G.L.
A SPECIAL 3-YEAR TRAINING PROGRAM IN FARM POWER AND MACHINERY WAS DEVELOPED TO PROVIDE FOR DIFFERENT LEVELS OF STUDENT ACHIEVEMENT AND TO HELP MEET THE NEED FOR SKILLED WORKERS IN THE MISSISSIPPI DELTA AREA. CHANGES IN THE LEARNING ENVIRONMENT OF STUDENTS TRANSFERRED FROM REGULAR VOCATIONAL AGRICULTURE CLASSES TO THE SPECIAL CLASSES PROVIDE A MORE…
Mathematical and computational models of plasma flows
NASA Astrophysics Data System (ADS)
Brushlinsky, K. V.
Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.
Optimal use of fresh frozen plasma.
DomBourian, Melkon; Holland, Lorne
2012-01-01
Fresh frozen plasma contains a number of therapeutically useful substances, most notably coagulation factors. As with any transfusion, there are risks associated with plasma transfusion. Ironically, the risk of viral transmission (human immunodeficiency virus or hepatitis), although widely publicized, is extremely small. On the other hand, less well-known, noninfectious complications are common. Indeed, these noninfectious complications are the most significant cause of morbidity and mortality following transfusion. Although certain patients undeniably benefit from plasma transfusion, the benefit for many patients is less clear. This review will discuss indications for plasma transfusion, the associated risks, and special considerations for plasma administration.
Lysakowski, A; Figueras, H; Price, S D; Peng, Y Y
1999-01-18
To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in bullfrog sympathetic ganglia. On average, each bouton had three active zones, 214 DCVs, 26 SER fragments (SERFs), and eight mitochondria. DCVs, SERFs and mitochondria were located, on average, 690, 624, and 526 nm, respectively, away from active zones. Virtually no DCVs were within "docking" (i.e., < or = 50 nm) distances of the active zones. Thus, it is unlikely that DCV exocytosis occurs at active zones via mechanisms similar to those for exocytosis of synaptic vesicles. Because there were virtually no SERFs or mitochondria within 50 nm of any active zone, Ca2+ modulation by these organelles is unlikely to affect ACh release evoked by a single action potential. In contrast, 30% of DCVs and 40% of SERFs were located within 50 nm of the nonspecialized regions of the plasma membrane. Because each bouton had at least one SERF within 50 nm of the plasma membrane and most of these SERFs had DCVs, but not mitochondria, near them, it is possible for Ca2+ release from the SER to provide the Ca2+ necessary for DCV exocytosis. The fact that 60% of the mitochondria had some part within 50 nm of the plasma membrane means that it is possible for mitochondrial Ca2+ buffering to affect DCV exocytosis.
Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.
1996-05-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.
Theory and observation of a dynamically evolving negative ion plasma. [in F region
NASA Technical Reports Server (NTRS)
Mendillo, M.; Forbes, J.
1982-01-01
The study described here examines the full range of negative-ion chemistry in the upper ionosphere by using current reaction rate data to investigate the many chemical paths SF6-type injections might take in an F region environment. Special attention is given to the conditions required to create heavy negative ions that persist long enough to affect the dynamical properties of the F region. The ambipolar diffusion characteristics of a three-component plasma are described, and estimates are given of the incoherent scatter spectra obtained from such a plasma. Model calculations using a first-order chemical code are defined and tested in order to investigate the actual types of negative-ion plasma capable of being created under nighttime conditions.
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas
NASA Astrophysics Data System (ADS)
Weltmann, Klaus-Dieter
2015-09-01
Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use
2008-01-25
BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less
Special issue: diagnostics of atmospheric pressure microplasmas
NASA Astrophysics Data System (ADS)
Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide
2013-11-01
In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of
Coating of plasma polymerized film
NASA Technical Reports Server (NTRS)
Morita, S.; Ishibashi, S.
1980-01-01
Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.
Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.
2015-07-01
Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.
Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna
NASA Astrophysics Data System (ADS)
Choe, Yun-Sik; Hao, Zuoqiang; Lin, Jingquan
2015-06-01
A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg, and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.
Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna
Choe, Yun-Sik; Hao, Zuoqiang; Lin, Jingquan
2015-06-15
A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg, and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.
ERIC Educational Resources Information Center
Helge, Doris, Ed.
1984-01-01
This special issue of the journal Exceptional Children has the theme "Rural Special Education." Nine articles deal with this theme as follows: (1) "The State of the Art of Rural Special Education" (by D. Helge), looks at recent improvements, remaining challenges, and current functioning; policy recommendations are offered for national and state…
Mentorship of Special Educators
ERIC Educational Resources Information Center
Madigan, Jennifer Booker; Schroth-Cavataio, Georganne
2012-01-01
The national shortage and exceptionally high attrition rate of special education teachers are impediments to serving students with special needs. Given that only 64 percent of special education teachers have access to a mentor compared with 86 percent of general education teachers, this book meets an essential need for attracting, retaining, and…
Devaney, J.J.
1982-04-01
The importance of single, large-angle, nuclear-coulombic, nuclear-hadronic, hadronic-coulombic interference, and multiple nuclear-coulombic scattering is investigated for tritons incident on deuterium, iron, and plutonium for very high temperatures and densities and for ordinary liquid and solid densities at low temperature. Depending on the accuracy desired, we conclude that for 10-keV-temperature DT plasmas it is not necessary to include elastic scattering deflection in reaction-in-flight calculations. For higher temperatures or where angular accuracies greater than 10/sup 0/ are significant or for higher Z targets or for other special circumstances, one must include elastic scattering from coulomb forces.
Bohn, H.; Giesen, B.; Belov, A.
1996-07-01
The TEXTOR vacuum vessel represents a steel torus shell with numerous radial and vertical ports. The induced eddy currents as well as electromagnetic forces in the vessel during plasma disruption have been calculated using the TYPHOON code. For the purposes of the stress analysis the vessel shells are modeled with shell elements. The bellows and flanges are built with 3D anisotropic solid elements. To apply the calculated electromagnetic forces to this model a special interface code has been developed. Stress analysis has been performed in two steps of loading in reference to symmetry and antisymmetry boundary conditions and the results have been superimposed.
General very special relativity in Finsler cosmology
Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.
2009-05-15
General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.
[IOL calculation for high ametropia].
Haigis, W
2008-11-01
Long and short eyes are connected with high ametropia and constitute special problems for biometry and IOL calculations. Ultrasound measurements on these eyes, which often have altered geometries, are frequently more difficult than in normal eyes. This holds especially for long eyes, which significantly benefit from optical biometry. Measurement errors, IOL manufacturing tolerances and uncertainties regarding the effective lens position affect short eyes much more than normal eyes. The selection of a suitable IOL formula is of special importance for the refractive outcome. For short eyes, Holladay-2, HofferQ and Haigis are recommended, for long eyes Holladay-1, Holladay-2 and Haigis. In each case, optimized IOL constants must be used. If minus lenses for extremely long eyes are calculated with the same constants as plus lenses, a hyperopic refractive error is created, which can be avoided by a separate set of constants for minus lenses. For extremely short eyes the commonly used approximation of thinner lenses fails necessitating a thick lens calculation or raytracing. PMID:18998145
Optical properties of fast-diffusing solid-state plasmas
Forchel, A.; Schweizer, H.; Mahler, G.
1983-08-08
Transmission and emission spectra of fast-diffusing nonequilibrium electron-hole plasmas in semiconductors are calculated with use of displaced Fermi distributions. The carrier drift significantly alters the plasma spectra and removes previously reported incomprehensible discrepancies between experimental and theoretical plasma parameters, indicating the necessity to reinterpret entirely the spectroscopic data from nonequilibrium plasmas.
TOPICAL REVIEW: Thermal plasmas in gas mixtures
NASA Astrophysics Data System (ADS)
Murphy, A. B.
2001-10-01
The calculation and measurement of the properties of thermal plasmas in mixtures of different gases are reviewed. The calculation of composition, thermodynamic properties and transport coefficients is described. Particular attention is given to the calculation of diffusion coefficients, which is a significant problem in mixed-gas plasmas. The combined diffusion coefficient formulation is shown to be a useful method for the treatment of diffusion. Computational fluid dynamic modelling of thermal plasmas in gas mixtures is considered, using the examples of demixing in welding arcs, the turbulent mixing of atmospheric air into a plasma jet and a plasma waste destruction process. Diagnostic techniques for mixed-gas plasmas, in particular emission spectroscopy, laser scattering and laser-induced fluorescence, are discussed.
Hershcovitch, Ady; Sharma, Sushil; Noonan, John; Rotela, Elbio; Khounsary, Ali
2003-01-01
A plasma valve includes a confinement channel and primary anode and cathode disposed therein. An ignition cathode is disposed adjacent the primary cathode. Power supplies are joined to the cathodes and anode for rapidly igniting and maintaining a plasma in the channel for preventing leakage of atmospheric pressure through the channel.
Wang, Zhehui; Barnes, Cris W.
2002-01-01
There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.
Filamentary magnetohydrodynamic plasmas
Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.
1993-05-01
A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.
Revisiting the plasma sheath—dust in plasma sheath
NASA Astrophysics Data System (ADS)
Das, G. C.; Deka, R.; Bora, M. P.
2016-04-01
In this work, we have considered the formation of warm plasma sheath in the vicinity of a wall in a plasma with considerable presence of dust particles. As an example, we have used the parameters relevant in case of plasma sheath formed around surfaces of various solid bodies in space, though the results obtained in this work can be applied to any other physical situation such as laboratory plasma. In the ion-acoustic time scale, we neglect the dust dynamics. The dust particles affect the sheath dynamics by affecting the Poisson equation which determines the plasma potential in the sheath region. It is important to note that our calculations are valid only when the amount of dust particles is not sufficient so as to affect the plasma dynamics in the dust-acoustic time scale, but enough to affect the plasma sheath. We have assumed the current to a dust particle to be balanced throughout the analysis. This makes the grain potential dependent on plasma potential, which is then incorporated into the Poisson equation. The resultant numerical model becomes an initial value problem, which is described by a 1-D integro-differential equation, which is then solved self-consistently by incorporating the change in plasma potential caused by inclusion of the dust potential in the Poisson equation.
Furth, H.P.; Chambers, E.S.
1962-03-01
BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)
Baker, W.R.
1961-08-22
A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)
Calculator program speeds rod pump design
Engineer, R.; Davis, C.L.
1984-02-01
Matching sucker rod pump characteristics to a specific application is greatly simplified with this program, intended for use with an HP-41CV hand-held computer. The user inputs application data and the program calculates all necessary design criteria, including Mill's acceleration factor, peak and minimum polish rod loads and horsepower required. Sample calculations are provided, together with a thorough discussion of special design considerations involved in huff-and-puff applications.
Distillation Calculations with a Programmable Calculator.
ERIC Educational Resources Information Center
Walker, Charles A.; Halpern, Bret L.
1983-01-01
Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…
Surface plasma source with anode layer plasma accelerator
Dudnikov, Vadim
2012-02-15
Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.
Special issue: diagnostics of atmospheric pressure microplasmas
NASA Astrophysics Data System (ADS)
Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide
2013-11-01
In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of
ITER Port Interspace Pressure Calculations
Carbajo, Juan J; Van Hove, Walter A
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
46 CFR 172.165 - Intact stability calculations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability calculations. 172.165 Section 172.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.165 Intact stability calculations. (a) Design calculations...
46 CFR 172.165 - Intact stability calculations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability calculations. 172.165 Section 172.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.165 Intact stability calculations. (a) Design calculations...
Thomson scattering from laser plasmas
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; Alley, W. E.; Estabrook, K. G.; de Groot, J. S.; Haines, M. G.; Hammer, J. H.; Jadaud, J.-P.; MacGowan, B. J.; Moody, J. D.; Rozmus, W.; Suter, L. J.; Weiland, T. L.; Williams, E. A.
1999-05-01
Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acoustic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4ω probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In particular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calculations which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.
Autistic Savant Calendar Calculators.
ERIC Educational Resources Information Center
Patti, Paul J.
This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…
ERIC Educational Resources Information Center
Abu-Hamour, Bashir; Al-Hmouz, Hanan
2014-01-01
The purpose of this article is to provide a brief background about special education system in Jordan and particularly describes the present types of programmes and legislation provided within the country to students with special needs, as well as integration movement. Jordan has historically provided a limited number of educational opportunities…
ERIC Educational Resources Information Center
Gartner, Alan; Lipsky, Dorothy Kerzner
Faults of special education include its medical view of disability, its arbitrary division of students into handicapped and nonhandicapped, and the resultant separation between general and special education. Disabled adults are becoming less tolerant of an educational system that fails to recognize the capabilities of handicapped students.…
ERIC Educational Resources Information Center
Neff, Bonita Dostal
Special events defined as being "newsworthy events" are becoming a way of American life. They are also a means for making a lot of money. Examples of special events that are cited most frequently are often the most minor of events; e.g., the open house, the new business opening day gala, or a celebration of some event in an organization. Little…
Hemispheric specialization for language.
Josse, Goulven; Tzourio-Mazoyer, Nathalie
2004-01-01
Hemispheric specialization for language is one of the most robust findings of cognitive neuroscience. In this review, we first present the main hypotheses about the origins of this important aspect of brain organization. These theories are based in part on the main approaches to hemispheric specialization: studies of aphasia, anatomical asymmetries and, nowadays, neuroimaging. All these approaches uncovered a large inter-individual variability which became the bulk of research on hemispheric specialization. This is why, in a second part of the review, we present the main facts about inter-individual variability, trying to relate findings to the theories presented in the first part. This review focuses on neuroimaging as it has recently given important results, thanks to investigations of both anatomical and functional asymmetries in healthy subjects. Such investigations have confirmed that left-handers, especially "familial left-handers", are more likely to have an atypical pattern of hemispheric specialization for language. Differences between men and women seem less evident although a less marked hemispheric specialization for language was depicted in women. As for the supposed relationship between anatomical and functional asymmetries, it has been shown that the size of the left (not the right) planum temporale could explain part of the variability of left hemispheric specialization for language comprehension. Taken as a whole, findings seem to vary with language tasks and brain regions, therefore showing that hemispheric specialization for language is multi-dimensional. This is not accounted for in the existing models of hemispheric specialization. PMID:14739000
Challenges Facing Special Education.
ERIC Educational Resources Information Center
Meyen, Edward L., Ed.; And Others
This book presents 17 selected papers from recent issues of the journal, "Focus on Exceptional Children," concerning current and emerging challenges facing the field of special education. The book is organized in two parts. Part 1, "Contemporary Challenges," includes the following articles: "Transitions in Early Childhood Special Education: Issues…
Handbook of Special Education.
ERIC Educational Resources Information Center
Kauffman, James M., Ed.; Hallahan, Daniel P., Ed.
Intended to serve as a basic reference work for students and professionals in special education, the book contains 34 author contributed chapters concerned with the conceptual foundations of special education, service delivery systems, curriculum and methods, and child and child/environmental management. Chapters have the following titles and…
Evaluating Special Education Facilities.
ERIC Educational Resources Information Center
Elkins, John
1987-01-01
The paper discusses early research on evaluating services for Australian disabled persons, the Schonell Evaluation Procedure (SEP) developed for use in Activity Therapy Centres (adult continuing education programs), the modification of SEP for use in special schools for children, and emergent and unmet needs for evaluating adult special education…
Special Education Teacher Persistence
ERIC Educational Resources Information Center
Thorp, Sally A.
2013-01-01
The focus of this study was special education teachers, who remained in the teaching field 5 or more years. Through the use of qualitative mixed-methods study, variables contributing to their longevity were explored. Research indicates that 50% of special education teachers leave the field within five years of employment (Alliance for Education,…
Technology Transfer Automated Retrieval System (TEKTRAN)
This special issue is published for the International Society of Biocatalysis and Biotechnology (ISBB). The ISBB special issue is devoted to all areas of biocatalysis and agricultural biotechnology in which biological systems are developed and/or used for the provision of commercial goods or serv...
7 CFR 760.506 - Payment calculations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or rehabilitating trees, bushes, or vines damaged or lost due to a natural disaster, in excess of 15 percent...
7 CFR 760.506 - Payment calculations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or rehabilitating trees, bushes, or vines damaged or lost due to a natural disaster, in excess of 15 percent...
7 CFR 760.506 - Payment calculations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or rehabilitating trees, bushes, or vines damaged or lost due to a natural disaster, in excess of 15 percent...
7 CFR 760.506 - Payment calculations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or rehabilitating trees, bushes, or vines damaged or lost due to a natural disaster, in excess of 15 percent...
7 CFR 760.909 - Payment calculation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS 2005-2007 Livestock Indemnity Program § 760.909.... Payments for the 2005-2007 LIP are calculated by multiplying the national payment rate for each livestock...) and (e) of this section. (b) The 2005-2007 LIP national payment rate for eligible livestock owners...
Special Libraries and the Corporate Political Process.
ERIC Educational Resources Information Center
White, Herbert S.
1984-01-01
This examination of the position of the special library and its services in the corporate setting highlights reasons why libraries are often taken for granted, library's role in corporate financial calculations, generalizations concerning librarian characteristics, and situations that may indicate trouble for a library that is not serving its…
NASA Technical Reports Server (NTRS)
Hintze, Paul E.
2016-01-01
NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.
NASA Astrophysics Data System (ADS)
Kristiansen, M.; Guenther, A. H.
Plasmas have numerous applications for civilian as well as defense purposes. However, technical development is still in its infancy. Many new important applications depend only upon the imagination of engineers and scientists. In contrast to other develping technologies, applications from the fields of plasma science and engineering can only evolve through a multidisciplinary synergism. Research in plasma chemistry and physics together with gaseous electronics, fluid dynamics and thermodynamics, particularly mass and heat transfer, must be coupled with electro-chemistry and material science research particularly those aspects dealing with surfaces. In this paper we attempt to evaluate the importance of plasma applications. Obviously, it is impossible to do justice to all the important areas. The selection of topics is, therefore, influenced by the authors' interests and background. We will outline most of the applications rather briefly and concentrate in some detail on those areas in which we are interested.
On April 19, 2010 AIA observed one of the largest prominence eruptions in years. The huge structure erupts, but a great deal of the plasma (hundreds of millions of tons) is unable to escape the gra...
Plasma formation and expansion in an electrothermal plasma injector
Hurley, J.D.; Bourham, M.A.; Gilligan, J.G.
1994-12-31
The experimental device SIRENS has been used to conduct studies on plasma formation and expansion in electrothermal launchers. The 1-D, time-dependent fluid dynamics code, ODIN, models the energy transport, particle transport, plasma resistivity, plasma viscosity, and the equation-of-state of the source and barrel of the SIRENS experiment. Because electrothermal plasmas are highly collisional (high-density, low-temperature), the plasma is modeled as a viscous fluid, assuming local thermodynamic equilibrium for each cell. The viscous drag forces were varied according to the Reynolds number of each cell. As the Reynolds number increases the modeled drag forces change accordingly, going from laminar to smooth turbulent to rough turbulent. The measured mass loss of the ablating liner (Lexan) in the source section is in good agreement with that predicted by the code. Comparisons between the measured and predicted pressures inside the barrel are in good agreement. The pressure reaches its maximum inside the source at approximately 45 {mu}s, then decreases steadily due to the drop in temperature and density. The plasma flows into the barrel and the pressure profile begins to flatten out and drop as the plasma exits the barrel. The variation of the plasma parameters as a function of the energy input to the source have also been calculated and will be discussed.
The plasma focus as a tool for plasma-wall-interaction studies
NASA Astrophysics Data System (ADS)
Ramos, G.; Martinez, M.; Herrera, J. J. E.; Castillo, F.
2015-03-01
The study of the interaction of magnetized plasmas with candidate materials for fusion reactors, as for example tungsten, is a main topic in fusion research. Many studies simulate the plasma wall interaction using ion beams, while only a few use plasma simulators. Plasma foci can produce dense magnetized plasmas of deuterium and helium among other species. We used the plasma focus Fuego-Nuevo II, to expose tungsten samples to deuterium and helium plasmas. The samples were analysed by means of SEM, RBS and NRA, evidencing surface erosion, surface melting and retention of deuterium in a shallow surface layer of 250 nm amounting 6.5·1016 D/cm2. The plasma temperature has been measured at the position of the samples using a triple Langmuir probe and compared to calculations of a snowplow model. The modelling of the electrode to reach desired plasma parameters is discussed.
Trapping and dark current in plasma-based accelerators
Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.
2004-06-01
The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.
Warm wavebreaking of nonlinear plasma waves with arbitrary phasevelocities
Schroeder, C.B.; Esarey, E.; Shadwick, B.A.
2004-11-12
A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators.
NASA Astrophysics Data System (ADS)
Nunes, I.; JET Contributors
2016-01-01
Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is
Features of spherical torus plasmas
Peng, Y.K.M.; Strickler, D.J.
1985-12-01
The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seen at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.
Validation of plasma shape reconstruction by Cauchy condition surface method in KSTAR
Miyata, Y.; Suzuki, T.; Ide, S.; Hahn, S. H.; Chung, J.; Bak, J. G.; Ko, W. H.
2014-03-15
Cauchy Condition Surface (CCS) method is a numerical approach to reconstruct the plasma boundary and calculate the quantities related to plasma shape using the magnetic diagnostics in real time. It has been applied to the KSTAR plasma in order to establish the plasma shape reconstruction with the high elongation of plasma shape and the large effect of eddy currents flowing in the tokamak structures for the first time. For applying the CCS calculation to the KSTAR plasma, the effects by the eddy currents and the ferromagnetic materials on the plasma shape reconstruction are studied. The CCS calculation includes the effect of eddy currents and excludes the magnetic diagnostics, which is expected to be influenced largely by ferromagnetic materials. Calculations have been performed to validate the plasma shape reconstruction in 2012 KSTAR experimental campaign. Comparison between the CCS calculation and non-magnetic measurements revealed that the CCS calculation can reconstruct the accurate plasma shape even with a small I{sub P}.
Radially inhomogeneous bounded plasmas
NASA Astrophysics Data System (ADS)
Zakeri-Khatir, H.; Aghamir, F. M.
2016-07-01
On the basis of kinetic theory along with self-consistent field equations, the expressions for dielectric tensor of radially inhomogeneous magnetized plasma columns are obtained. The study of dielectric tensor characteristics allows the accurate analysis of the inhomogeneous properties, beyond limitations that exist in the conventional method. Through the Bessel-Fourier transformation, the localized form of material equations in a radially inhomogeneous medium are obtained. In order to verify the integrity of the model and reveal the effect of inhomogeneity, a special case of a cylindrical plasma waveguide completely filled with inhomogeneous magnetized cold plasma was considered. The dispersion relation curves for four families of electromagnetic (EH and HE) and electrostatic (SC and C) modes are obtained and compared with the findings of the conventional model. The numerical analysis indicates that the inhomogeneity effect leads to coupling of electromagnetic and electrostatic modes each having different radial eigen numbers. The study also reveals that the electrostatic modes are more sensitive to inhomogeneous effects than the electromagnetic modes.
Radially inhomogeneous bounded plasmas
NASA Astrophysics Data System (ADS)
Zakeri-Khatir, H.; Aghamir, F. M.
2016-07-01
On the basis of kinetic theory along with self-consistent field equations, the expressions for dielectric tensor of radially inhomogeneous magnetized plasma columns are obtained. The study of dielectric tensor characteristics allows the accurate analysis of the inhomogeneous properties, beyond limitations that exist in the conventional method. Through the Bessel–Fourier transformation, the localized form of material equations in a radially inhomogeneous medium are obtained. In order to verify the integrity of the model and reveal the effect of inhomogeneity, a special case of a cylindrical plasma waveguide completely filled with inhomogeneous magnetized cold plasma was considered. The dispersion relation curves for four families of electromagnetic (EH and HE) and electrostatic (SC and C) modes are obtained and compared with the findings of the conventional model. The numerical analysis indicates that the inhomogeneity effect leads to coupling of electromagnetic and electrostatic modes each having different radial eigen numbers. The study also reveals that the electrostatic modes are more sensitive to inhomogeneous effects than the electromagnetic modes.
Simple optics description of the plasma sheath and plasma electrode region
Fink, C.L.; Curry, B.P.
1992-12-01
A simple model of the optics of an ion source has been developed and compared with the exact Poisson solution calculated by computer code SNOW. The model replaces the Poisson potential by a Laplacian potential that is calculated by replacing the plasma and plasma sheath by a planar plate. This Laplacian potential is then used with and without a linear space-charge correction to calculate particle trajectories. In this model the only free parameter is the distance between the planar plate and the plasma electrode. In general, there is good agreement between emittance curves calculated by the model and the SNOW results even when no space-charge correction is used. This implies for the geometry we studied, that the effects of the plasma sheath and non-linear space-charge forces are small compared to aberrations introduced by the plasma aperture.
Simple optics description of the plasma sheath and plasma electrode region
Fink, C.L.; Curry, B.P.
1992-01-01
A simple model of the optics of an ion source has been developed and compared with the exact Poisson solution calculated by computer code SNOW. The model replaces the Poisson potential by a Laplacian potential that is calculated by replacing the plasma and plasma sheath by a planar plate. This Laplacian potential is then used with and without a linear space-charge correction to calculate particle trajectories. In this model the only free parameter is the distance between the planar plate and the plasma electrode. In general, there is good agreement between emittance curves calculated by the model and the SNOW results even when no space-charge correction is used. This implies for the geometry we studied, that the effects of the plasma sheath and non-linear space-charge forces are small compared to aberrations introduced by the plasma aperture.
Studies on plasma processing of blue dust
NASA Astrophysics Data System (ADS)
Samal, S. K.; P, Sindhoora L.; Mishra, S. C.; Mishra, B.
2015-02-01
Plasma smelting was carried out using blue dust and petroleum coke mixtures for five different compositions. By altering percentage of reductant and type of plasma forming gas, recovery rate and degree of metallization were calculated in order to examine the extent of reduction of blue dust. The products were characterized by XRD and optical microscopy techniques. The results of these investigations exhibited that highest degree of metallization and recovery rate of about 98% and 86% respectively, were achieved for nitrogen plasma smelted products.
Emission current formation in plasma electron emitters
Gruzdev, V. A.; Zalesski, V. G.
2010-12-15
A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.
2016-09-01
Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351
ERIC Educational Resources Information Center
Foster, Barbara
1974-01-01
Israel is sprinkled with a noteworthy representation of special libraries which run the gamut from modest kibbutz efforts to highly technical scientific and humanities libraries. A few examples are discussed here. (Author/CH)
ERIC Educational Resources Information Center
Jones, Hilda B.
1973-01-01
Granite School District, a suburb of Salt Lake City, Utah, has a staff of 349 teachers and other professional personnel who provide career education and job experience for more than 5,000 special children. (DS)
Special parallel processing workshop
1994-12-01
This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.
Online Learning: Special Report.
ERIC Educational Resources Information Center
Training, 1999
1999-01-01
This special section includes "The View from the Middle" (Dick Schaaf); "Crossing the Channel" (Dawn Garrett); and "Bandwidth Basics" (Dick Schaaf). Sidebars look at bandwidth and management issues as well as courseware development. (JOW)
Trajectory structures in turbulent plasmas
Vlad, Madalina; Spineanu, Florin
2006-11-03
Particle stochastic advection in two dimensional divergence free velocity fields is studied. The special statistical properties of this process (non-Gaussian distribution, memory effects and quasi-coherent behavior) are determined using a new approach, the nested subensemble method. The effect of the statistics of trajectories on the evolution of drift turbulence in magnetized plasmas is studied. It essentialy consists in the tendency of structure formation.
ERIC Educational Resources Information Center
Crow, Tracy, Ed.; Harris, Julia, Ed.
1997-01-01
This journal contains brief descriptions of calculator-active materials that were found using Resource Finder, the searchable online catalog of curriculum resources from the Eisenhower National Clearinghouse (ENC). It features both the calculators themselves and the activity books that are used with them. Among the calculators included are those…
ERIC Educational Resources Information Center
Threlfall, John
2002-01-01
Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…
Stark broadening data for stellar plasma research.
NASA Astrophysics Data System (ADS)
Dimitrijević, M. S.
Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.
Baker, W.R.; Brathenahl, A.; Furth, H.P.
1962-04-10
A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)
NASA Technical Reports Server (NTRS)
Armstrong, J. W.
1983-01-01
Radio communication with space probes requires sending signals through the Earth's ionosphere and usually the solar wind. During planetary flybys, the signal may also pass through the ionosphere of another planet. These ionized media can perturb the radio signal in a variety of ways. Examples of these perturbations are variations in the electrical length between the spacecraft and the ground station, Faraday rotation of linearly polarized signals, amplitude and phase scintillations, and spectral and angular broadening. These plasma effects can have undesirable influences on telemetry performance and thus need to be understood from a communications engineering viewpoint. The plasma effects are, however, useful from a scientific viewpoint, since the effects on the communications link can often be inverted to estimate the physical conditions in the plasma.
Gow, J.D.; Wilcox, J.M.
1961-12-26
A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)
Myer, Gregory D.; Jayanthi, Neeru; Difiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.
2015-01-01
Context: There is increased growth in sports participation across the globe. Sports specialization patterns, which include year-round training, participation on multiple teams of the same sport, and focused participation in a single sport at a young age, are at high levels. The need for this type of early specialized training in young athletes is currently under debate. Evidence Acquisition: Nonsystematic review. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Sports specialization is defined as year-round training (greater than 8 months per year), choosing a single main sport, and/or quitting all other sports to focus on 1 sport. Specialized training in young athletes has risks of injury and burnout, while the degree of specialization is positively correlated with increased serious overuse injury risk. Risk factors for injury in young athletes who specialize in a single sport include year-round single-sport training, participation in more competition, decreased age-appropriate play, and involvement in individual sports that require the early development of technical skills. Adults involved in instruction of youth sports may also put young athletes at risk for injury by encouraging increased intensity in organized practices and competition rather than self-directed unstructured free play. Strength-of-Recommendation Taxonomy (SORT): C. PMID:26502420
Ribiere, M.; Cheron, B. G.; Karabourniotis, D.
2009-04-15
During the relaxation of the plasma plume generated by laser ablation of an aluminum target, a pronounced intensity enhancement is observed at the central wavelength of the 396.15 nm self-reversed resonant line. This spectral special feature is analyzed and related to the interaction of the plasma edge with the background air excited by the shockwave, prompt electrons, and extreme ultraviolet radiation produced at the earliest times of the ablation. In this article, the electron density, the aluminum ground state, and resonant level populations are determined from the fitting of the 396.15 nm calculated line profile to the experimental one at two background pressures (100 and 1000 Pa). The evolution of these densities is derived from experiments performed at delays, after the laser pulse arrival, ranging from 120 to 180 ns.
End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode
NASA Astrophysics Data System (ADS)
Griswold, M. E.; Korepanov, S.; Thompson, M. C.
2016-11-01
An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.
Current in wave driven plasmas
Karney, C.F.F.; Fisch, N.J.
1985-06-01
A theory for the generation of current in a toroidal plasma by radio-frequency waves is presented. The effect of an opposing electric field is included, allowing the case of time varying currents to be studied. The key quantities that characterize this regime are identified and numerically calculated. Circuit equations suitable for use in ray-tracing and transport codes are given.
Plasma in the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1975-01-01
It is shown that the plasma in Jupiter's ionosphere is collisionless above a certain level. In the outer magnetosphere, where the rotational force dominates the gravitational force, the collisionless plasma has a beam-like distribution and gives rise to a two-stream instability. This leads to trapping of plasma in the centrifugally dominated region of the magnetosphere. Plasma is lost by recombination. Equilibrium-trapped particle densities are calculated by requiring a balance between trapping by wave-particle interaction and loss by recombination. The results are compared with recent observations from Pioneer 10. It is suggested that the observations require an unexplained ion-heating mechanism. Some consequences of the model are discussed.
Evaluation of Special Education Teachers.
ERIC Educational Resources Information Center
Moya, Sally A.; Gay, Glenda
1982-01-01
A survey of 190 California directors of special education was conducted to investigate procedures used for evaluating special education teachers. In summary, a few districts had established distinct guidelines for the evaluation of special education teachers. (SB)
Beam-plasma amplifiers based on nonhomogeneous plasma-cavity slow-wave structure
Perevodchikov, V.I.; Mitin, L.A.; Shapiro, A.L.; Zavjalov, M.A.
1995-11-01
The investigation of interaction of E-beam with hybrid waves of nonhomogeneous plasma-cavity slow-wave structure have been carried out. It`s shown that depression of external magnetic field at out-put part of plasma-cavity structure may be used for decreasing of phase velocity of active waves and phase space synchronization ones with space charge fields, induced in plasma. This mode of operation of plasma TWT was calculated. The investigations carried out theoretically has been supported by experiments with plasma TWT.
NASA Technical Reports Server (NTRS)
Steurer, Wolfgang
1992-01-01
This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Gyrokinetic Transport Stiffness Calculations on Stellarator Geometries
NASA Astrophysics Data System (ADS)
Faber, B. J.; Mynick, H.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.
2012-10-01
A significant, unanswered question in plasma physics is the difference in transport ``stiffness'' between tokamaks and stellarators. In an effort to shed light on this issue, presented are nonlinear gyrokinetic calculations on various machine geometries: the Helically Symmetric Experiment, the National Compact Stellarator Experiment and an equivalent tokamak configuration. Nonlinear gyrokinetic fluxes have been compared directly to experimental fluxes observed in HSX power modulation experiments. Linear calculations on HSX reveal large growth rates due to both ion temperature gradient and trapped electron turbulence, necessitating a kinetic treatment of electrons; one of the first calculations of its kind for stellarators. A comparison of transport stiffness profiles computed through nonlinear gyrokinetic calculations of ion temperature gradient turbulence for the different machine configurations will be presented.
Double layer formation at the interface of complex plasmas
Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.
2008-08-15
Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.
Electronic Broadening operator for relativistic plasmas
Meftah, M. T.; Naam, A.
2008-10-22
In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion lines in relativistic plasma. Mainly we focuss our work on the collision operator for relativistic electrons. In this case, the electron trajectory around a positive charge in the plasma differs drastically from those known earlier as hyperbolic. The effect of this difference on the collision operator is discussed with respect the various plasma conditions. Some theoretical and practical aspects of lines -shape calculations are discussed. Detailed calculations are performed for the collision operator in the semiclassical (dipole) impact approximation.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Waste Package Lifting Calculation
H. Marr
2000-05-11
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.
75 FR 57859 - Specially Adapted Housing and Special Home Adaptation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
..., 2009, (74 FR 67145), VA proposed to amend its regulations pertaining to eligibility for specially... AFFAIRS 38 CFR Part 3 RIN 2900-AN21 Specially Adapted Housing and Special Home Adaptation AGENCY... housing and special home adaptation grants. This final rule incorporates certain provisions from...
Electrostatic analysis of the tokamak edge plasma
Motley, R.W.
1981-07-01
The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.
Special Issue: "Functional Dendrimers".
Tomalia, Donald A
2016-01-01
This special issue entitled "Functional Dendrimers" focuses on the manipulation of at least six "critical nanoscale design parameters" (CNDPs) of dendrimers including: size, shape, surface chemistry, flexibility/rigidity, architecture and elemental composition. These CNDPs collectively define properties of all "functional dendrimers". This special issue contains many interesting examples describing the manipulation of certain dendrimer CNDPs to create new emerging properties and, in some cases, predictive nanoperiodic property patterns (i.e., dendritic effects). The systematic engineering of CNDPs provides a valuable strategy for optimizing functional dendrimer properties for use in specific applications. PMID:27517890
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma
NASA Astrophysics Data System (ADS)
Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.
2004-09-01
ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.
Rapidity: The Special Relativity Work of Dr. Vladimir Karapetoff
NASA Astrophysics Data System (ADS)
Carter, Hamilton
2014-03-01
Between 1924 and 1944 Dr. Vladimir Karapetoff, a professor in the electrical engineering department of Cornell University, authored 11 papers on the topic of special relativity. While his initial papers focused on the then popular oblique angle treatment of special relativity, he soon became a vocal proponent of performing special relativistic calculations using rapidity, a technique that emphasizes the hyperbolic geometric nature of Minkowski space-time. While rapidity has fallen out of usage with the exception of a specialized dialect within particle physics, it offers interesting technical and pedagogical perspectives on the geometrical nature of space-time not evident in the present day relativistic parlance.
Laser-driven Acceleration in Clustered Plasmas
Gao, X.; Wang, X.; Shim, B.; Downer, M. C.
2009-01-22
We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.
Plasma Instabilities in Heavy Ion Collisions
Attems, M.; Rebhan, A.; Strickland, M.
2011-05-23
Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly coupled quark-gluon plasma. The Chromo-Weibel instabilities have been proposed as a possible mechanism for the fast apparent thermalization of the quark-gluon plasma and have been extensively studied in stationary anisotropic plasmas using the so-called hard-loop approximation. The generalization to the hard-expanding-loop (HEL) formalism allows the (numerical) calculation of the time evolution of gluonic mean fields in the more realistic dynamical case of anisotropic expansion.
Axisymmetric plasma equilibrium in gravitational and magnetic fields
Krasheninnikov, S. I.; Catto, P. J.
2015-12-15
Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.
Low voltage operation of plasma focus.
Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A
2010-08-01
Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar. PMID:20815602
Low voltage operation of plasma focus
Shukla, Rohit; Sharma, S. K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B. K.; Adhikary, B.; Shyam, A.
2010-08-15
Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 {mu}F capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.
Wilcox, J.M.; Baker, W.R.
1963-09-17
This invention is a magnetohydrodynamic device for generating a highly ionized ion-electron plasma at a region remote from electrodes and structural members, thus avoiding contamination of the plasma. The apparatus utilizes a closed, gas-filled, cylindrical housing in which an axially directed magnetic field is provided. At one end of the housing, a short cylindrical electrode is disposed coaxially around a short axial inner electrode. A radial electrical discharge is caused to occur between the inner and outer electrodes, creating a rotating hydromagnetic ionization wave that propagates aiong the magnetic field lines toward the opposite end of the housing. A shorting switch connected between the electrodes prevents the wave from striking the opposite end of the housing. (AEC)
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.
A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.
Calculators and Polynomial Evaluation.
ERIC Educational Resources Information Center
Weaver, J. F.
The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…
ERIC Educational Resources Information Center
Phillips-Bey, Carol K.
2004-01-01
This article describes TI-73 calculator activities appropriate for middle school students. It was found that the use of the calculator allowed for higher-level thinking and a richer exploration of mathematical ideas by students. [Included with this article are "Dice Roll Worksheet" and "Transforming Tree Worksheet".] (Contains 9 figures.)
Spotlight on Special Education
ERIC Educational Resources Information Center
Karge, Belinda Dunnick; Lasky, Beth
2009-01-01
With the everyday juggling act principals perform, they have a daunting challenge to keep up the latest research in education. At the same time, the literature documents an intensive need for increased professional development of principals in special education (Goar, Schwenn, & Boyer, 1997; Lasky & Karge, 2006; McLaughlin & Nolet, 2004). To…
Columbia Quincentenary. Special Issue.
ERIC Educational Resources Information Center
Foard, Douglas, Ed.; Regoli, Michael, Ed.
1991-01-01
This special theme issue of the OAH Magazine of History contains articles that present a variety of perspectives on the Columbian Quincentenary--the 500th anniversary of Christopher Columbus's voyages of discovery. The articles include: "Exploring the Columbian Quincentenary through Historiography" (John Hebert); "Science, Religion, and Columbus's…
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.
This is a descriptive listing of periodicals available in special media to blind and physically handicapped persons throughout the country. Part 1 lists all magazines produced by the National Library Service for the Blind and Physically Handicapped (NLS) for its free reading program. Magazines listed in Part 1 are available at no charge through…
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.
This catalog lists periodicals available in special media to blind and physically handicapped persons throughout the United States. Part 1 lists and describes all magazines produced by the National Library Service for the Blind and Physically Handicapped (NLS) of the Library of Congress for its free reading program. These magazines are available…
Alexander, D.J.; Nanstad, R.K.; Sokolov, M.A.
1995-10-01
The purpose of this task is to perform various special analytical and experimental investigations to support the NRC in resolving regulatory research issues related to irradiation effects on materials. This task currently addresses two major areas: (1) providing technical expertise and assistance in the review of national codes and standards and (2) experimental evaluations of test specimens and practices and material properties.
Mainstreaming Special Education.
ERIC Educational Resources Information Center
Insights Into Open Education, 1976
1976-01-01
This issue of "Insights Into Open Education" investigates various aspects of the problems and potential of mainstreaming handicapped children into the regular school program. Brekke, in an article entitled "How Can Teachers Begin to Meet the Special Needs of Mainstreamed Children in the Regular Classroom?" asserts that teachers must concentrate on…
ERIC Educational Resources Information Center
Degi, Bruce J.
1999-01-01
Offers a reflection on the shootings at Columbine High School in Littleton, Colorado, on April 20, 1999. Notes how every special-interest group has used the tragedy to support its own point of view, and concludes that teachers have become bystanders in the education of America's children. (SR)
ERIC Educational Resources Information Center
US Department of Agriculture, 2009
2009-01-01
The Special Milk Program provides milk to children in schools, child care institutions and eligible camps that do not participate in other Federal child nutrition meal service programs. The program reimburses schools and institutions for the milk they serve. In 2008, 4,676 schools and residential child care institutions participated, along with…
ERIC Educational Resources Information Center
Michayluk, J. O.; Saklofske, D. H.
1988-01-01
The article examines the current status of the LOGO programming language and LOGO research within special education. Efficacy conclusions include LOGO's strengths: (1) as a socializing agent; (2) in maintaining the attention of hyperactive children; (3) in improving academic performance; and (4) in increasing self esteem. (Author/DB)
ERIC Educational Resources Information Center
Los Angeles City Schools, CA.
A total of eight specially funded programs designed to improve social and human conditions are described. These programs are Adult Basic Education (ABE), Adult Personal Traffic Safety (APTS), Emergency Employment Act (EEA), Industry Sponsored Programs (ISP), Manpower Development Training Act (MDTA), Model Cities Projects, Work Incentive Program…
ERIC Educational Resources Information Center
TESOL Adult Education and Refugee Concerns Interest Sections Newsletter, 1990
1990-01-01
This special issue of the newsletter of the Adult Education Interest Section (AEIS) of the Teachers of English to Speakers of Other Languages (TESOL), prepared in cooperation with TESOL's refugee concerns interest section, concerns the response of the English-as-a-Second-Language teaching profession to Immigration and Naturalization Service…
ERIC Educational Resources Information Center
Clark, Johnnie Ruth
1976-01-01
To provide community services to special target groups (senior citizens, veterans, minorities, etc.) the community college must design and conduct effective needs assessment, create procedures for recruitment, provide counseling and guidance, design appropriate academic activities, and develop staff. (Author/NHM)
ERIC Educational Resources Information Center
Kauffman, James M., Ed.; Hallahan, Daniel P., Ed.
2011-01-01
Special education is now an established part of public education in the United States--by law and by custom. However, it is still widely misunderstood and continues to be dogged by controversies related to such things as categorization, grouping, assessment, placement, funding, instruction, and a variety of legal issues. The purpose of this…
Special Education Microteaching.
ERIC Educational Resources Information Center
Southern Illinois Univ., Edwardsville.
Presented is a manual on special education microteaching, an approach to training teachers of handicapped children in which the student teacher teaches a lesson, is critiqued and shown a videotape, then reteaches the lesson. In Chapter 1, several characteristics of microteaching which facilitate the training program's effectiveness and efficiency…
ERIC Educational Resources Information Center
deLisle, Lee
2009-01-01
"Creating Special Events" is organized as a systematic approach to festivals and events for students who seek a career in event management. This book looks at the evolution and history of festivals and events and proceeds to the nuts and bolts of event management. The book presents event management as the means of planning, organizing, directing,…
Online Learning. Special Report.
ERIC Educational Resources Information Center
Training, 1998
1998-01-01
Special section includes "World Wide Weeds" (Ann M. Bauer), about trainers as webmasters; "Get the Picture?" (Frank Jossi)--the role of digital video in computer-based training; and "The Reluctant Executive" (Anne K. Fredrickson), how to get administrators into the information age. (JOW)
Mentoring Special Youth Populations
ERIC Educational Resources Information Center
Britner, Preston A.; Balcazar, Fabricio E.; Blechman, Elaine A.; Blinn-Pike, Lynn; Larose, Simon
2006-01-01
Whereas mentoring programs are well received as support services, very little empirical research has been conducted to assess the effectiveness of these programs to meet the diverse needs of different special populations of youth. Potentially useful theoretical orientations (attachment, parental acceptance-rejection, social support, adult…
ERIC Educational Resources Information Center
Career Planning and Adult Development Journal, 2002
2002-01-01
Includes "Writing Effective Resumes" (Kursmark); "Writing Cover Letters with Credibility" (Davis); "Career Portfolios" (Miller); "Writing a Top-Flight Vitae" (Orlando); "Converting a Curriculum Vitae to a Resume" (Katz, Morahan); "Special Reports" (Chapman); "Every Job Searcher Needs an e-Resume" (Dixson); "Military Value" (Burns); "Key Words"…
Assertiveness with 'Special' Children.
ERIC Educational Resources Information Center
Rosenberg, Shelley K.; Stillman-Powell, Patricia
The author examines issues related to adult assertiveness in controlling and setting limits for handicapped children. Reasons for adults not wishing to be in charge include feelings of guilt, lack of consistency in enforcing rules, and a sense of sympathy for special children. Assertiveness is distinguished from aggressiveness, and suggestions for…
ERIC Educational Resources Information Center
Bureau of Indian Affairs (Dept. of Interior), Albuquerque, NM.
Provided are special education guidelines (revised 1974) for exceptional (handicapped or gifted) American Indian and Alaskan Native children from birth through age 25 years in schools operated by the Bureau of Indian Affairs (BIA). Reviewed are broad philosophical guidelines emphasizing individualized instruction, objectives such as decreasing…
Spanish Special Purpose Dictionaries.
ERIC Educational Resources Information Center
Champion, James J.
1982-01-01
A variety of special purpose Spanish dictionaries available for students of Spanish are described, including dictionaries of groupings of associated words, technical language, regional and slang language, single authors' usage, historical periods, etymology, frequency, and reverse organization. Several illustrations of dictionary organization are…
Telecommunications in Special Education.
ERIC Educational Resources Information Center
Education Turnkey Systems, Inc., Falls Church, VA.
One of four reports designed to assess the current state of new technologies, the document reviews the present and future 5-year status of telecommunication technologies in regular and special education. Briefly described are technological and economic aspects of videotex/teletext, subscription services, satellite broadcasting, cable television,…
ERIC Educational Resources Information Center
Randal, Judith
1978-01-01
The "Getaway Special" is NASA's semiofficial program for low-budget researchers, who can arrange bookings for their own space experiments on regular flights of the space shuttle. Information about arranging for NASA to take individual experiment packages is presented. (LBH)
NASA Astrophysics Data System (ADS)
Akdim, Mohamed Reda
2003-09-01
Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is
34 CFR Appendix B to Part 300 - Proportionate Share Calculation
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true Proportionate Share Calculation B Appendix B to Part 300... CHILDREN WITH DISABILITIES Pt. 300, App. B Appendix B to Part 300—Proportionate Share Calculation Each LEA... special education and related services under Part B, as compared with the total number of...
34 CFR Appendix B to Part 300 - Proportionate Share Calculation
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false Proportionate Share Calculation B Appendix B to Part... CHILDREN WITH DISABILITIES Pt. 300, App. B Appendix B to Part 300—Proportionate Share Calculation Each LEA... special education and related services under Part B, as compared with the total number of...
7 CFR 760.210 - Honeybee payment calculations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Honeybee payment calculations. 760.210 Section 760.210... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Emergency Assistance for Livestock, Honeybees, and Farm-Raised Fish Program § 760.210 Honeybee payment calculations. (a) An eligible honeybee producer...
7 CFR 760.210 - Honeybee payment calculations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Honeybee payment calculations. 760.210 Section 760.210... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Emergency Assistance for Livestock, Honeybees, and Farm-Raised Fish Program § 760.210 Honeybee payment calculations. (a) An eligible honeybee producer...
7 CFR 760.210 - Honeybee payment calculations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Honeybee payment calculations. 760.210 Section 760.210... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Emergency Assistance for Livestock, Honeybees, and Farm-Raised Fish Program § 760.210 Honeybee payment calculations. (a) An eligible honeybee producer...
7 CFR 760.210 - Honeybee payment calculations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Honeybee payment calculations. 760.210 Section 760.210... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Emergency Assistance for Livestock, Honeybees, and Farm-Raised Fish Program § 760.210 Honeybee payment calculations. (a) An eligible honeybee producer...
46 CFR 172.170 - Damage stability calculations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...
46 CFR 172.170 - Damage stability calculations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...
46 CFR 172.170 - Damage stability calculations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...
46 CFR 172.170 - Damage stability calculations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...
46 CFR 172.170 - Damage stability calculations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...
Relativistic shell model calculations
NASA Astrophysics Data System (ADS)
Furnstahl, R. J.
1986-06-01
Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.
Promoting Positive Special Education Practices
ERIC Educational Resources Information Center
Conderman, Greg; Pedersen, Theresa
2005-01-01
Special education is defined as specialized instruction for students with disabilities. Sometimes, however, legal requirements as well as the day-to-day demands of teaching secondary students with disabilities cloud the real intent of special education. This article acknowledges some poor practices occurring in secondary special education and…
Dusty Plasma Technology of DCM with Nanostructure Surface Layer Production
Gavrikov, A. V.; Ivanov, A. S.; Petrov, O. F.; Shulga, Yu. M.; Starostin, A. N.; Fortov, V. E.
2008-09-07
The technique of disperse composite material (DCM) production was developed. The technique based on using special dusty plasma trap in RF plasma, in which fine particles levitate and are exposed by the atomic beam. The two types of covering were obtained: ''cauliflower'' or smooth, depending on process condition.
Modeling electronegative plasma discharge
Lichtenberg, A.J.; Lieberman, M.A.
1995-12-31
Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.
Stennis hosts 2010 Special Olympics
NASA Technical Reports Server (NTRS)
2010-01-01
B.J. Matherne, 27, of Gulfport, scores a soccer goal during one of the 2010 Special Olympic games at NASA's John C. Stennis Space Center on March 27. Stennis serves as an annual host for the special needs event. Each year, local, regional and national Special Olympics events are hosted in more than 150 countries for persons with special needs. An international Special Olympics competition is held every two years.
Metastable states of plasma particles close to a charged surface
Shavlov, A. V.; Dzhumandzhi, V. A.
2015-09-15
The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.
Plasma convection in Neptune's magnetosphere
NASA Technical Reports Server (NTRS)
Selesnick, R. S.
1990-01-01
The magnetosphere of Neptune changes its magnetic configuration continuously as the planet rotates, leading to a strong modulation of the convection electric field. Even though the corotation speed is considerably larger, the modulation causes the small convection speed to have a cumulative effect, much like the acceleration of particles in a cyclotron. A model calculation shows that plasma on one side of the planet convects out of the magnetosphere in a few planetary rotations, while on the other side it convects slowly planetward. The observation of nitrogen ions from a Triton plasma torus may provide a critical test of the model.
Neoclassical diffusion of heavy impurities in a rotating tokamak plasma
Wong, K.L.; Cheng, C.Z.
1987-08-01
Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle simulation is carried out and the results offer a qualitative explanation for some experimental data from the Tokamak Test Reactor (TFTR). 13 refs., 2 figs.
Time-Dependence of the Survival Probability of Quarkonia in Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Mah Hussin, Noor Sabrina; Shalaby, Asmaa; Petridis, Athanasios
2015-10-01
The time-dependent Schrödinger equation is used to study the formation of quarkonia and their propagation in Quark-Gluon Plasma (QGP). The initial bound (ground) state is computed using imaginary-time propagation in a confining potential. The QGP is simulated with a confining potential of an extended asymptotic freedom region. The interior of the QGP potential may correspond to a vacuum that differs from that of the exterior region. The initial state propagates through this potential in real time. The survival probability is calculated versus time for various potential parameters and relative momenta of the quarkonium by projecting the interacting wavefunction onto its freely-propagating counterpart. In these calculations the staggered-leap frog method is used with special attention paid to the issue of stability. It is found that quarkonium decay is typically non-exponential. Fast moving states decay faster. Connection with experimental results is done by means of cross-section ratios.
1997-06-10
VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less
ERIC Educational Resources Information Center
Rhim, Lauren Morando; Kowal, Julie
2008-01-01
This special report is a supplement to a series of special education primers created to inform state officials, authorizers and charter school operators about special education in the charter sector. The primer series also provides tools to help these stakeholders build charter school capacity to provide special education and related services. In…
NASA Technical Reports Server (NTRS)
Mallavarpu, R.; Roth, J. R.
1978-01-01
Microwave emission near the electron plasma frequency of the NASA Lewis Bumpy Torus plasma has been observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50-ohm miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 20 billion to 800 billion per cu cm. A linear relation was observed between the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.
Tong Huifeng; Yuan Hong; Tang Zhiping
2013-01-28
When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.
NASA Astrophysics Data System (ADS)
Tong, Huifeng; Yuan, Hong; Tang, Zhiping
2013-01-01
When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.
Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma
Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson
2004-04-15
Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.
... My Saved Articles » My ACS » + - Text Size Target Heart Rate Calculator Compute your best workout Enter your age ... is your age? years. How to Check Your Heart Rate Right after you stop exercising, take your pulse: ...
The CIPW Normative Calculation.
ERIC Educational Resources Information Center
Bickel, Charles
1979-01-01
The author has rewritten rules for CIPW norm calculation and has written FORTRAN IV programs to assist the student in this procedure. Includes a set of problems utilizing the CIPW norm to illustrate principles of chemical petrology. (MA)
... Alcohol Calorie Calculator Find out the number of beer and hard alcohol calories you are consuming. Simply ... calories) Average Drinks Per Week Monthly Subtotal Calories Beer Regular 12 149 Regular Beer Light 12 110 ...
PHYSICOCHEMICAL PROPERTY CALCULATIONS
Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...
More Experiments and Calculations.
ERIC Educational Resources Information Center
Siddons, J. C.
1984-01-01
Describes two experiments that illustrate basic ideas but would be difficult to carry out. Also presents activities and experiments on rainbow cups, electrical charges, electrophorus calculation, pulse electrometer, a skidding car, and on the Oersted effect. (JN)
CALCULATION OF STOPPING POWER VALUES AND RANGES OF FAST IONS.
2003-03-18
STOPOW calculates a set of stopping power values and ranges of fast ions in matter for any materials. Furthermore STOPOW can calculate a set of values for one special auxiliary function (e.g. kinematic factors, track structure parameters, time of flight or correction factors in the stopping function) . The user chooses the physical units for stopping powers and ranges and the energy range for calculations.
Cohen, Andrew G; Glashow, Sheldon L
2006-07-14
By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincaré group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K(x) + J(y) and K(y)- J(x). We find that VSR implies special relativity (SR) in the context of local quantum field theory or of conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitive searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable. PMID:16907430
Specialized progenitors and regeneration
Reddien, Peter W.
2013-01-01
Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells. PMID:23404104
Cohen, Andrew G; Glashow, Sheldon L
2006-07-14
By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincaré group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K(x) + J(y) and K(y)- J(x). We find that VSR implies special relativity (SR) in the context of local quantum field theory or of conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitive searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)
1997-01-01
The current methods of quantum chemical calculations will be reviewed. The accent will be on the accuracy that can be achieved with these methods. The basis set requirements and computer resources for the various methods will be discussed. The utility of the methods will be illustrated with some examples, which include the calculation of accurate bond energies for SiF$_n$ and SiF$_n^+$ and the modeling of chemical data storage.
Source and replica calculations
Whalen, P.P.
1994-02-01
The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.
Systematics and limit calculations
Fisher, Wade; /Fermilab
2006-12-01
This note discusses the estimation of systematic uncertainties and their incorporation into upper limit calculations. Two different approaches to reducing systematics and their degrading impact on upper limits are introduced. An improved {chi}{sup 2} function is defined which is useful in comparing Poisson distributed data with models marginalized by systematic uncertainties. Also, a technique using profile likelihoods is introduced which provides a means of constraining the degrading impact of systematic uncertainties on limit calculations.
Calculating scattering amplitudes efficiently
Dixon, L.
1996-01-01
We review techniques for more efficient computation of perturbative scattering amplitudes in gauge theory, in particular tree and one- loop multi-parton amplitudes in QCD. We emphasize the advantages of (1) using color and helicity information to decompose amplitudes into smaller gauge-invariant pieces, and (2) exploiting the analytic properties of these pieces, namely their cuts and poles. Other useful tools include recursion relations, special gauges and supersymmetric rearrangements. 46 refs., 11 figs.
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
ON-LINE CALCULATOR: FORWARD CALCULATION JOHNSON ETTINGER MODEL
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Calculations of heavy ion charge state distributions for nonequilibrium conditions
NASA Technical Reports Server (NTRS)
Luhn, A.; Hovestadt, D.
1985-01-01
Numerical calculations of the charge state distributions of test ions in a hot plasma under nonequilibrium conditions are presented. The mean ionic charges of heavy ions for finite residence times in an instantaneously heated plasma and for a non-Maxwellian electron distribution function are derived. The results are compared with measurements of the charge states of solar energetic particles, and it is found that neither of the two simple cases considered can explain the observations.
The analysis of thermoplastic characteristics of special polymer sulfur composite
NASA Astrophysics Data System (ADS)
Książek, Mariusz
2016-07-01
Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.
Microwave Excitation In ECRIS plasmas
Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.
2007-09-28
A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma.
Full-wave calculations in flux coordinates for toroidal geometry
Carreras, B.A.; Lynch, V.E.; Jaeger, E.F.; Batchelor, D.B.
1988-01-01
A new 2-D full-wave code, HYPERION, employing a poloidal and toroidal mode expansion and including the toroidal terms arising in the wave equation has been developed. It is based on the existing modules developed for the MHD stability codes and uses as input the tokamak equilibria calculated with the RSTEQ code. At present the plasma response is described by the collisionally broadened cold plasma conductivity. However, the code is written in straight field line coordinates, this permits the accurate representation of k /sub /parallel// and as a consequence allows the incorporation of the plasma Z functions. This code also retains the E/sub /parallel// component of the electric field which will allow the study of the low density region of the plasma. We have done detailed benchmarking of the HYPERION code in the cold plasma limit with the existing finite difference ORION full-wave code. The agreement is very good.
NASA Astrophysics Data System (ADS)
Leutenegger, Marcel; Geissbuehler, Matthias; Märki, Iwan; Leitgeb, Rainer A.; Lasser, Theo
2008-02-01
We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.
FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Das, A. K.
2010-01-01
The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development
Food Predictors of Plasma Carotenoids
Hendrickson, Sara J.; Willett, Walter C.; Rosner, Bernard A.; Eliassen, A. Heather
2013-01-01
Empirical prediction models that weight food frequency questionnaire (FFQ) food items by their relation to nutrient biomarker concentrations may estimate nutrient exposure better than nutrient intakes derived from food composition databases. Carotenoids may especially benefit because contributing foods vary in bioavailability and assessment validity. Our objective was to develop empirical prediction models for the major plasma carotenoids and total carotenoids and evaluate their validity compared with dietary intakes calculated from standard food composition tables. 4180 nonsmoking women in the Nurses’ Health Study (NHS) blood subcohort with previously measured plasma carotenoids were randomly divided into training (n = 2787) and testing (n = 1393) subsets. Empirical prediction models were developed in the training subset by stepwise selection from foods contributing ≥0.5% to intake of the relevant carotenoid. Spearman correlations between predicted and measured plasma concentrations were compared to Spearman correlations between dietary intake and measured plasma concentrations for each carotenoid. Three to 12 foods were selected for the α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, lycopene, and total carotenoids prediction models. In the testing subset, Spearman correlations with measured plasma concentrations for the calculated dietary intakes and predicted plasma concentrations, respectively, were 0.31 and 0.37 for α-carotene, 0.29 and 0.31 for β-carotene, 0.36 and 0.41 for β-cryptoxanthin, 0.28 and 0.31 for lutein/zeaxanthin, 0.22 and 0.23 for lycopene, and 0.22 and 0.27 for total carotenoids. Empirical prediction models may modestly improve assessment of some carotenoids, particularly α-carotene and β-cryptoxanthin. PMID:24152746
PREFACE: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Mago, V. K.; Ananthapadmanabhan, P. V.; Patil, D. S.; Das, A. K.
2010-01-01
It is our pleasure to present the proceedings of the 23rd National Symposium on Plasma Science and Technology (PLASMA-2008) held at Bhabha Atomic Research Center, Mumbai, 10- December 2008 in association with the Plasma Science Society of India. The Plasma Science Society of India has been holding regular symposia on general topics related to Plasma. The symposium was designed to provide a forum for young researchers in Plasma Science and Technology to interact with eminent plasma scientists from India and abroad and to present their work. The scope of the symposium included frontline research in Basic Plasma Physics as well as significant advances in Plasma Technology. In view of the ever-growing importance of Plasma Science and Technology to India's Nuclear Energy program, the focal theme of the symposium was chosen as 'Plasmas in Nuclear Fuel Cycle'. The scientific program of this four day symposium consisted of review talks, invited topical lectures, contributed oral and poster presentations in the following areas of Plasma Science & Technology. Basic Plasma Physics, simulations and modeling (BP) Nuclear fusion and Technology (NF) Space & Astrophysical Plasma(SA) Exotic Plasmas, Non-linear Dynamics(EP) Laser Plasma Interaction and Beam Physics (LP) Industrial applications of plasmas (IP) Plasma Diagnostics(PD) Plasmas and clean environment(PC) There was also a Special Session devoted to the focal theme Plasmas in Nuclear Fuel Cycle (PANFC) Applications in Nuclear Fusion Technology (ANFT) Physics and technology of Processing Plasmas in Nuclear Fuel Cycle (PPNFC). Plasma Technology finds wide applications not only in nuclear, space and defense-related industries but also in medical, nano-technology and semiconductor industries. Plasma technologies have distinguished themselves in terms of compactness, process efficiency, techno economics and innovative possibilities. As we advance into the new technology era, there is a need for evolving strategies to apply the
Calculations for waste characterization
Hemmer, R.J.
1994-09-01
Measurements are the first step in the characterization of waste forms. The results are used to determine the types and amounts of radioactive material present. From this data, several characteristics are calculated which are used to satisfy site, Department of Energy (DOE), and Waste Isolation Pilot Plant (WIPP) requirements. How well these calculations are made becomes important to the waste characterization program. Several sources are available to obtain the required values needed to calculate these characteristics. To ensure consistency among all sites within the DOE complex, a standardized program for all necessary data needs to be established. The effects of several of the inconsistencies are presented along with a recommended list of criteria to be used.
Hydrogen moderator performance calculations
Picton, D. J.; Beynon, T. D.; Broome, T. A.
1997-09-01
A comparison was made between MCNP calculations and experimental measurements of the neutron spectrum from the liquid hydrogen moderator on ISIS. The calculations were performed for varying ortho/para concentrations, and demonstrated a best fit for 100% para-hydrogen. The agreement between the measured and calculated results was good below 2Å (i.e. for energies above 20 meV) but significant deviations were seen for longer wavelengths. A second study used the MCNP code for a detailed comparison of the time distributions and neutron spectra from poisoned liquid hydrogen and liquid methane moderators. The results indicate that the replacement of a liquid methane moderator with liquid hydrogen, in order to eliminate radiation damage effects, is an option which can be seriously considered. (auth)
Some Speculations about Special Education.
ERIC Educational Resources Information Center
Hope, Mary
1982-01-01
Discusses the possible impact of microelectronics/microtechnology in the special education setting, including availability of hardware and Microelectronics Education Programme involvement in determining the best use of microcomputers with special education students. (Author/JN)
NASA Astrophysics Data System (ADS)
Suksila, Thada
interface between the plasma and the cathode regions. This sheath model [3] has been fully combined in the 1D simulation. That is, the sheath model calculates the heat flux and the sheath voltage by giving the temperature and the current density. This sheath model must be included in the simulation, as the sheath region is treated differently from the main plasma region. For our 2D cylindrical symmetry simulation, the dimensions of the cathode, the anode, the total current, the pressure, the type of gases, the work function can be changed in the input process as needed for particular interested. Also, the sheath model is still included and fully integrated in this 2D cylindrical symmetry simulation at the cathode surface grids. In addition, the focus of the 2D cylindrical symmetry simulation is to connect the properties on the plasma and the cathode regions on the cathode surface until the MPD thruster reach steady state and estimate the plasma arc attachement edge, electroarc edge, on the cathode surface. Finally, we can understand more about the behavior of an MPD thruster under many different conditions of 2D cylindrical symmetry MPD thruster simulations.
Graphing Calculator Mini Course
NASA Technical Reports Server (NTRS)
Karnawat, Sunil R.
1996-01-01
The "Graphing Calculator Mini Course" project provided a mathematically-intensive technologically-based summer enrichment workshop for teachers of American Indian students on the Turtle Mountain Indian Reservation. Eleven such teachers participated in the six-day workshop in summer of 1996 and three Sunday workshops in the academic year. The project aimed to improve science and mathematics education on the reservation by showing teachers effective ways to use high-end graphing calculators as teaching and learning tools in science and mathematics courses at all levels. In particular, the workshop concentrated on applying TI-82's user-friendly features to understand the various mathematical and scientific concepts.
Confidence Calculation with AMV+
Fossum, A.F.
1999-02-19
The iterative advanced mean value algorithm (AMV+), introduced nearly ten years ago, is now widely used as a cost-effective probabilistic structural analysis tool when the use of sampling methods is cost prohibitive (Wu et al., 1990). The need to establish confidence bounds on calculated probabilities arises because of the presence of uncertainties in measured means and variances of input random variables. In this paper an algorithm is proposed that makes use of the AMV+ procedure and analytically derived probability sensitivities to determine confidence bounds on calculated probabilities.
Three recent TDHF calculations
Weiss, M.S.
1981-05-01
Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision /sup 40/Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for /sup 16/O + /sup 24/Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of /sup 86/Kr + /sup 139/La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed.
Spin resonance strength calculations
Courant,E.D.
2008-10-06
In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.
Geothermal Life Cycle Calculator
Sullivan, John
2014-03-11
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
PREFACE: 12th International Congress on Plasma Physics
NASA Astrophysics Data System (ADS)
Chatelier, Michel
2005-05-01
This special issue presents a collection of refereed plenary and review papers presented at the 12th International Congress on Plasma Physics held in Nice, France, 25 29 October, 2004 (ICPP2004). The primary aims of ICPPs are: To advance all fields of plasma physics worldwide. To promote strong linkage with other areas of science in order to highlight the interdisciplinary character of the field. To strongly encourage participation by all members of the plasma physics community, in particular by young plasma physicists, women plasma physicists and plasma physicists from developing countries. The 12th ICPP was organized on behalf of the International Advisory Committee (IAC). About 330 papers (invited and contributed) were presented. These papers covered the four topics: Plasma applications Space and astrophysical plasmas Fundamental plasma physics Fusion plasmas Most of the contributions are available online at the following address: http://hal.ccsd.cnrs.fr/ICPP2004/en/. The Congress was underwritten by the Association Euratom CEA. The organizers wish to thank the main sponsors: the International Union of Pure and Applied Physics (IUPAP), the Commissariat à l'Energie Atomique, the Region Provence Alpes Côtes d'Azur, the city of Nice and the French Ministry of Foreign Affairs. For this special issue, the Programme Committee selected 41 speakers from about 100 proposals received from the IAC, to present invited talks. Some of them provided a written paper. Refereeing of these papers was conducted by the guest editors, following the normal refereeing standards of the journal.
[Plasma aminogram in critical patients].
Martínez, M J; Giráldez, J
1993-02-01
This study of the plasma aminogram was done on 35 patients with a moderate to high level of stress and/or sepsis. For the criteria of illness, the SAPS (Simplified Acute Physiological Score) was used on their admission to the intensive Care Unit, and the diagnosis of sepsis was established according to the criteria of Jacobs and Boone. The stress level was calculated according to Bistrian. The plasma aminogram was determined with High Resolution Liquid Chromatography. The plasma samples were taken while nutrient units containing what is considered a standard solution of amino acids were infused. The eight essential amino acids (EAA) and 10 non-essential were quantified. The ratio of ramified to aromatic amino acids (RAA/AAA) was calculated by Fisher's criteria. An increase in AAA (phenylalanine, p < 0.001, and tyrosine, NS) and sulphur containing amino acids (methionine, p < 0.001) was found. The RAA were within normal ranges (valine) or increased (leucine, p < 0.001 and isoleucine, p < 0.001). The RAA/AAA ratio was reduced, p < 0.0001. Glycine was increased, p < 0.0001 and alanine reduced, p < 0.05. Glutamine and glutamic acid were reduced, p < 0.0001 and p < 0.01 as was arginine, p < 0.001. No difference was found in the total concentration of AA. The results confirm the standard plasma aminogram described in situations of metabolic stress and/or sepsis.
Analysis and experiments of a whistler-wave plasma thruster
Hooper, E.B.; Ferguson, S.W.; Makowski, M.A.; Stallard, B.W.; Power, J.L.
1993-08-06
A plasma thruster operating at high specific impulse ({ge} 3500 s) has been proposed to be based on electron-cyclotron resonance heating of whistler waves propagating on a plasma column on a magnetic hill. Calculations using a particle-in-cell code demonstrate that the distortion of the electron velocity distribution by the heating significantly reduces the flow of plasma up the field, greatly improving efficiency and reducing material interactions relative to a thermal plasma. These and other calculations are presented together with initial experiments on the plasma generated in the proposed device. The experiments are conducted in a magnetic field (3.3 {times} 10{sup {minus}2} T at resonance) and a magnetic mirror ratio of 5. Microwaves (0.915 GHz, <20 kW) are coupled to the plasma with a helical antenna. Vacuum field measurements are in good agreement with prediction. The desired plasma spatial distribution has not yet been achieved.
Systems special investigation group
NASA Technical Reports Server (NTRS)
1991-01-01
An interim report concerning the Long Duration Exposure Facility (LDEF) is presented by a Boeing Systems special investigation group (SIG). The SIG activities were divided into five engineering disciplines: electrical, mechanical, optics, thermal, and batteries/solar cells. The responsibilities of the SIG included the following areas: support de-integration at Kennedy Space Center (KSC); testing of hardware at Boeing; review of principal investigator (PI) test plans and test results; support of test activities at PI labs; and collation of all test results into the SIG database.
Special SLC linac developments
Seeman, J.T.; Sheppard, J.C.
1986-04-01
The linac of the SLAC Linear Collider (SLC) is required to accelerate several intense electron and positron bunches to high energy while maintaining their small transverse dimensions and energy spectra. Many of the linac systems have been upgraded to the new stringent SLC design criteria. The remaining systems will be completed in the summer of 1986. Special instruments and controls have been developed to monitor and manipulate these small but potent beams. A brief review of the SLC requirements is given. A broad survey of the recent development is made encompassing longitudinal and transverse wakefield reductions, Landau damping, energy and position feedback systems, beam diagnostic and beam current fluctuations.
VACUUM calculation in azimuthally symmetric geometry
Chance, M.S.
1996-11-01
A robustly accurate and effective method is presented to solve Laplace`s equation in general azimuthally symmetric geometry for the magnetic scalar potential in the region surrounding a plasma discharge which may or may not contain external conducting shells. These shells can be topologically toroidal or spherical, and may have toroidal gaps in them. The solution is incorporated into the various MHD stability codes either through the volume integrated perturbed magnetic energy in the vacuum region or through the continuity requirements for the normal component of the perturbed magnetic field and the total perturbed pressure across the unperturbed plasma-vacuum boundary. The method is based upon using Green`s second identity and the method of collocation. As useful byproducts, the eddy currents and the simulation of Mirnov loop measurements are calculated.
NASA Technical Reports Server (NTRS)
Cheng, D. Y.
1971-01-01
Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.
... limited. Home Visit Global Sites Search Help? Plasma Free Metanephrines Share this page: Was this page helpful? ... known as: Plasma Metanephrines Formal name: Fractionated Plasma Free Metanephrines (Metanephrine and Normetanephrine) Related tests: Catecholamines ; Urine ...
Desperately Seeking Special Ed Teachers
ERIC Educational Resources Information Center
Butler, Kevin
2008-01-01
It's no secret that the dearth of special education teachers has created huge headaches for district human resources departments, especially in suburban and rural areas. In addition to insufficient numbers of candidates applying for special education jobs, retention of special education teachers is an ever-greater problem, as research indicates…
Manual for Special Education Nurses.
ERIC Educational Resources Information Center
Schnetter, Vicki A., Ed.
This manual aims (1) to provide a standard, well-referenced resource for Iowa special education nurses and (2) to provide direction and continuity for health services to pupils with special needs. The first chapter provides an overview of the special education nurse's role, including philosophy, definitions of assignments, levels of service, and…
The ARL Special Collections Initiative.
ERIC Educational Resources Information Center
Hewitt, Joe A.; Panitch, Judith M.
2003-01-01
Reviews the Association of Research Libraries (ARL) activities regarding special collections. Highlights include local and collaborative approaches; budget pressures; access to special collections; digitization programs; recruiting qualified staff; results of a survey of ARL special collections; and the need for ongoing statistics for special…
The Practice of Special Education.
ERIC Educational Resources Information Center
Swann, Will, Ed.
Intended for use with an Open University (England) course, the book contains 27 papers on issues affecting handicapped students in special education. Topics considered include the individual and his/her relationship to the environment; the history of special education in the United Kingdom; varieties of special programs; relationships among…
Replication Research and Special Education
ERIC Educational Resources Information Center
Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.
2016-01-01
Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…
Trends in Special Library Buildings.
ERIC Educational Resources Information Center
Cohen, Elaine; Cohen, Aaron
1987-01-01
Examines special library facilities, noting impact of organizational structure, and discusses the concept of information resources management in this context. Development of online and telecommunications systems, corporate and government campuses, and special library systems are identified as reasons for growth of special libraries. Furniture and…
The Special Student in Science.
ERIC Educational Resources Information Center
Simons, Grace H.; Hepner, Nancy
1992-01-01
Article offers some adaptations the authors used to help integrate special education students in regular classrooms. Authors believe that productivity is achieved by having the special education teacher work directly with the classroom teacher in a two-teacher partnership situation. Provides lists of strategies to help special education students…
Special Education and Student Services.
ERIC Educational Resources Information Center
Brazeau, Karen; And Others
This report examines the current status and plans for special education, student services, and special projects and studies in Oregon. The first section offers an overview of special education long-range planning in secondary and transition programs, the student population with severe emotional disturbance, low incidence populations, families, the…
Comparative Studies in Special Education.
ERIC Educational Resources Information Center
Mazurek, Kas, Ed.; Winzer, Margret A., Ed.
This text presents 26 case studies which examine special education provisions for children in the world today. The reports focus on the current state of special education in selected nations and major issues and controversies in the field of special education within those nations. Each case study addresses the following themes: (1) prevalence of…
The charge imbalance in ultracold plasmas
NASA Astrophysics Data System (ADS)
Chen, Tianxing; Lu, Ronghua; Guo, Li; Han, Shensheng
2016-09-01
Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperature are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.
Pallagi, E; Vass, K; Pintye-Hódi, K; Kása, P; Falkay, G; Eros, I; Szabó-Révész, P
2004-03-01
Iron(II) sulfate-containing lipophilic matrices were developed by a special hot-melt technology (melt solidification in drops), using stearin, white wax and their mixture as conventional bed materials. The special technology resulted in spherical particles which can be filled directly into capsules; these store iron as a depot and ensure a slow and uniform release, whereby the irritation of the gastric mucosa by the iron can be decreased. The rates of dissolution of the iron(II) sulfate from the various lipophilic matrices were different, but fundamentally low. Kinetic calculations demonstrated that the rate of dissolution of the iron(II) sulfate was of approximately zero kinetic order. The results of in vivo experiments on rabbits correlated well with the in vitro data. The plasma curves for the animals treated with the iron(II) sulfate preparations varied with the excipients in the depot products. The properties and ratio of the bed materials influenced the release of the iron(II) sulfate. In all probability, the release of the active agent can be regulated through the use of a melt of stearin and white wax in different ratios. The development products functioned as a sustained-release system and ensured elimination of the irritation of the gastric mucosa. At the same time, the results justified the applicability of the special hot-melt technology in the development of the solid dosage form. PMID:15018986
Calculation of enviromental indices
1995-10-01
This portion of the Energy Vision 2020 draft report discusses the development of environmental indices. These indices were developed to be a quantitative measure of characterizing how TVA power system operations and alternative energy strategies might affect the environment. All indices were calculated relative to the reference strategy, and for the environmental review, the reference strategy was `no action`.
Moran, B.; Attia, A.
1995-07-01
When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.
Curvature calculations with GEOCALC
Moussiaux, A.; Tombal, P.
1987-04-01
A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.
Calculation of magnetostriction constants
NASA Astrophysics Data System (ADS)
Tatebayashi, T.; Ohtsuka, S.; Ukai, T.; Mori, N.
1986-02-01
The magnetostriction constants h1 and h2 for Ni and Fe metals and the anisotropy constants K1 and K2 for Fe metal are calculated on the basis of the approximate d bands obtained by Deegan's prescription, by using Gilat-Raubenheimer's method. The obtained results are compared with the experimental ones.
ERIC Educational Resources Information Center
Brown, Francis J.
The Gunning Fog Index of readability indicates both the average length of words and the difficult words (three or more syllables) in written material. This document describes a business communication course at Wayne State University in which students calculate the Gunning Fog Index of two of their writing assignments with the aid of the…
A Specific Calculating Ability.
ERIC Educational Resources Information Center
Anderson, Mike; O'Connor, Neil; Hermelin, Beate
1998-01-01
Studied the calculating ability used by a low IQ savant to identify prime numbers in two experiments comparing him to control subjects, one involving reaction time and the other involving inspection time. Concludes that this individual uses a complex computational algorithm to identify primes and discusses the apparent contradiction of his low IQ.…
Calendrical Calculation and Intelligence.
ERIC Educational Resources Information Center
O'Connor, Neil; Cowan, Richard; Samella, Katerina
2000-01-01
Studied the ability to name the days of the week for dates in the past and future (calendrical calculation) of 10 calendrical savants with Wechlser Adult Intelligence Scale scores from 50 to 97. Results suggest that although low intelligence does not prevent the development of this skill, the talent depends on general intelligence. (SLD)
ERIC Educational Resources Information Center
Mazria, Edward; Winitsky, David
This guide provides users with a basic understanding of where and how the sun works in relation to a building and site and provides a simplified method of calculating sun angles and the available heat energy from the sun on vertical and horizontal surfaces. (Author/IRT)
Airborne antenna pattern calculations
NASA Technical Reports Server (NTRS)
Bagherian, A. B.; Mielke, R. R.
1983-01-01
Use of calculation program START and modeling program P 3D to produce radiation patterns of antennas mounted on a space station is discussed. Basic components of two space stations in the early design stage are simulated and radiation patterns for antennas mounted on the modules are presented.
Plutonium 239 Equivalency Calculations
Wen, J
2011-05-31
This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.
Vortex Stabilized Compressed Fusion Grade Plasma
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2015-03-01
Inertial confinement fusion schemes comprise of highly compressed dense plasmas. Some involve short pulses of powerful beams (lasers, particles) applied to solid pellets, while others utilize plasma focus to obtain dense pinch plasmas. Although compression factor >1000 has been achieved for starting pressures in the Torr range, the latter is limited by instabilities for initial gas density above 10 Torr. One alternative approach could be shooting electron beams through very dense, atmospheric pressure, vortex stabilized plasma. Large azimuthal magnetic generated by an electron beam can compress and heat the plasma to fusion viable parameters. This configuration is stable against sausage, kink, or beam - plasma instabilities. Based on experimental evidence beam propagation through the plasma is not be an issue. A second possibility is to tangentially squeeze a quasi-neutral plasma focus flow by a surrounding gas vortex. Based on currently available electron beams, the first scheme viability as an electrical power generating reactor does not seem to be promising. But using a plasma cathode electron beam that was developed a while ago, for which DOE has a patent U.S. Patent 4,942,339, could result in net generation of electricity. Calculations will be presented. Work supported by Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy.
Diagnosing temperature change inside sonoluminescing bubbles by calculating line spectra.
An, Yu; Li, Chaohui
2009-10-01
With the numerical calculation of the spectrum of single bubble sonoluminescence, we find that when the maximum temperature inside a dimly luminescing bubble is relatively low, the spectral lines are prominent. As the maximum temperature of the bubble increases, the line spectrum from the bright bubble weakens or even fades away relative to the background continuum. The calculations in this paper effectively interpret the observed phenomena, indicating that the calculated results, which are closely related to the spectrum profile, such as temperature and pressure, should be reliable. The present calculation tends to negate the existence of a hot plasma core inside a sonoluminescing bubble.
Plasma flow switch experiment on Procyon
Benage, J.F. Jr.; Bowers, R.; Peterson, D.
1995-09-01
This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.
Plasma flow switch experiment on Procyon
NASA Astrophysics Data System (ADS)
Benage, J. F., Jr.; Bowers, R.; Peterson, D.
This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.
EDITORIAL: Gas plasmas in biology and medicine
NASA Astrophysics Data System (ADS)
Stoffels, Eva
2006-08-01
It is my great pleasure to introduce this special cluster devoted to recent developments in biomedical plasma technology. It is an even greater pleasure to behold the enormous progress which has been made in this area over the last five years. Research on biomedical plasma applications proceeds hand in hand with the development of new material processing technologies, based on atmospheric plasma sources. In the beginning, major research effort was invested in the development and control of new plasma sources—in this laborious process, novel devices were constructed and characterized, and also new plasma physical phenomena were discovered. Self-constriction of micro-plasmas, pattern formation, filamentation of glow discharges and various mode transitions are just a few examples. It is a real challenge for theorists to gain an understanding of these complex phenomena. Later, the devices had to be thoroughly tested and automated, and various safety issues had to be addressed. At present, many atmospheric plasma sources are ready to use, but not all fundamental and technical problems have been resolved by far. There is still plenty of room for improvement, as in any dynamic area of research. The recent trends are clear: the application area of plasmas expands into processing of unconventional materials such as biological scaffolds, and eventually living human, animal and plant tissues. The gentle, precise and versatile character of cold plasmas simply invites this new application. Firstly, non-living surfaces have been plasma-treated to attain desired effects in biomedical research; tissue engineering will soon fully profit from this powerful technique. Furthermore, studies on cultured plant and animal cells have provided many findings, which are both fundamentally interesting and potentially applicable in health care, veterinary medicine and agriculture. The most important and hitherto unique property of plasma treatment is that it can evade accidental cell death
Preface to advances in numerical simulation of plasmas
NASA Astrophysics Data System (ADS)
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Mechanisms of Interaction of Cold Plasma with Bacteria
Laroussi, Mounir
2008-09-07
In this paper, evaluation of the bacterial inactivation kinetics and the roles of the various plasma agents in the inactivation process will be outlined. In particular, measurements of the plasma temperature, the UV emission, and concentrations of various reactive species (O{sub 3}, O, OH...) for the special case of air plasma are presented. In addition, the effects of charged particles on bacterial cells are discussed. In this case the cells are modeled as dielectric dust-like particles the surface of which is charged when in contact with the plasma. This charging effect was found to have the potential of causing cell disruption in gram-negative bacteria.
The general dielectric tensor for bi-kappa magnetized plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.; Ziebell, L. F.; Meneses, A. R.
2016-06-01
In this paper, we derive the dielectric tensor for a plasma containing particles described by an anisotropic superthermal (bi-kappa) velocity distribution function. The tensor components are written in terms of the two-variables kappa plasma special functions, recently defined by Gaelzer and Ziebell [Phys. Plasmas 23, 022110 (2016)]. We also obtain various new mathematical properties for these functions, which are useful for the analytical treatment, numerical implementation, and evaluation of the functions and, consequently, of the dielectric tensor. The formalism developed here and in the previous paper provides a mathematical framework for the study of electromagnetic waves propagating at arbitrary angles and polarizations in a superthermal plasma.
Magnetospheric space plasma investigations
NASA Technical Reports Server (NTRS)
Comfort, Richard H.; Horwitz, James L.
1994-01-01
A time dependent semi-kinetic model that includes self collisions and ion-neutral collisions and chemistry was developed. Light ion outflow in the polar cap transition region was modeled and compared with data results. A model study of wave heating of O+ ions in the topside transition region was carried out using a code which does local calculations that include ion-neutral and Coulomb self collisions as well as production and loss of O+. Another project is a statistical study of hydrogen spin curve characteristics in the polar cap. A statistical study of the latitudinal distribution of core plasmas along the L=4.6 field line using DE-1/RIMS data was completed. A short paper on dual spacecraft estimates of ion temperature profiles and heat flows in the plasmasphere ionosphere system was prepared. An automated processing code was used to process RIMS data from 1981 to 1984.
NASA Technical Reports Server (NTRS)
Mallavarpu, R.; Roth, J. R.
1978-01-01
Microwave emission near the electron plasma frequency was observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50 omega miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 10 million/cu cm to 8 hundred million/cu cm. A linear relation was observed betweeen the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.
Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device
Popovich, P.; Carter, T. A.; Friedman, B.; Umansky, M. V.
2010-10-15
The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the three-dimensional fluid code BOUT[M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves and the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For Large Plasma Device relevant profiles including strongly driven flows, it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.
Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet
Kumar, S. Selvarajan, V
2008-06-15
In this paper, the results of plasma spheroidization of iron powders using a DC non-transferred plasma spray torch are presented. The morphology of the processed powders was characterized through scanning electron microscopy (SEM) and optical microscopy (OM). The percentages of spheroidized powders were calculated by the shape factors such as the Irregularity Parameter (IP) and Roundness (RN). A maximum of 83% of spheroidization can be achieved. The spheroidization results are compared with the theoretical estimation and they are found to be in good agreement. The phase composition of the spheroidized powder was analyzed by XRD. The effect of plasma jet temperature and plasma gas flow rate on spheroidization is discussed. At low plasma gas flow rates and at high plasma jet temperatures, the percentage of spheroidization is high.
Bodies in flowing plasmas - Laboratory studies
NASA Technical Reports Server (NTRS)
Stone, N. H.; Samir, U.
1981-01-01
A brief review of early rudimentary laboratory studies of bodies in flowing, rarefied plasmas is presented (e.g., Birkeland, 1908), along with a discussion of more recent parametric studies conducted in steady plasma wind tunnels, which includes the study by Hall et al. (1964), in which a strong ion density enhancement in the center of the ion void created downstream from the body was observed. Good agreement was found between the experimental results and theoretical calculations which omit ion thermal motion. Examples in which in situ data on the interaction between satellites and the ionospheric plasma have been elucidated by the laboratory results are presented, and include evidence for a midwake axial ion peak, and ion current density in the near-wake region. The application of the ionospheric laboratory to basic space plasma physics is discussed, and its application to some types of solar system plasma phenomena is illustrated.
A tunable microwave plasma photonic crystal filter
Wang, B.; Cappelli, M. A.
2015-10-26
The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.
Modeling combined collisional/collisionless plasma interpenetration
Thomas, V.A.
1997-04-01
This paper describes one technique by which multifluid modeling capability can be achieved within the context of a Lagrangean single-fluid model. This technique is applied to the interpenetration of laser-produced, substantially collisionless plasmas. A single-fluid model by itself cannot simulate the interpenetration of a collisionless plasma correctly, but must be augmented with some other tool. One tool that can calculate collisionless plasma interpenetration correctly is ISIS, a particle code for plasma simulations which includes appropriate collision models. However, ISIS does not have the necessary physics to do the laser deposition, the atomic physics, the radiation transport, and does not possess a realistic electron temperature model. With appropriate integration of the single-fluid code and ISIS, a new capability is achieved which allows simulation of the colliding plasma problem, a problem that neither code can properly simulate individually.
NASA Technical Reports Server (NTRS)
Harries, W. L.; Shiu, Y. J.
1979-01-01
The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2011-04-01
The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.
Thermodynamic properties of hydrogen-helium plasmas
NASA Technical Reports Server (NTRS)
Nelson, H. F.
1971-01-01
The thermodynamic properties of an atomic hydrogen-helium plasma are calculated and tabulated for temperatures from 10,000 to 100,000 K as a function of the mass fraction ratio of atomic hydrogen. The tabulation is for densities from 10 to the minus 10th power to 10 to the minus 6th power gm/cu cm and for hydrogen mass fraction ratios of 0, 0.333, 0.600, 0.800, and 1.0, which correspond to pure helium, 50 percent hydrogen per unit volume, 75 percent hydrogen per unit volume, 89 percent hydrogen per unit volume, and pure hydrogen plasmas, respectively. From an appended computer program, calculations can be made at other densities and mass fractions. The program output agrees well with previous thermodynamic property calculations for limiting cases of pure hydrogen and pure helium plasmas.
Characterization of plasma in magnetic multidipole discharges
NASA Astrophysics Data System (ADS)
Guimaraesferreira, Julio
1988-09-01
A characterization of the discharge of the quiescent plasma machine of INPE, and an identification of the most relevant processes in the definition of its plasma properties, were achieved. Measurements of plasma potential, the floating potential, the temperature of the electrons, and the density of the plasma, for pressures ranging from 10(-3) to 10(-1) Pa and for discharge potentials for 45 V to 120 V were accomplished. These measurements were made with a Langmuir spherical probe with 1mm in diameter. In the whole range of operation the presence of two populations of electrons with distinct temperatures in the energy range from 1 to 10 eV was observed, although for pressures approaching 10(-1) Pa the plasma tended to a single population of electrons with temperature of 1eV. The difference between plasma and floating potentials was observed to become smaller as the pressure raised, and the potential difference between plasma and anode reached a value around 2 V when pressure raised above 10(-2) Pa. The plasma density increases approximately linearly with pressure, for values below 10(-2) Pa, but above 10(-1) Pa its increase with pressure is quite reduced. A study on the collision processes in the plasma volume and on loss processes to surfaces allowed to interpret qualitatively the observed plasma behavior and to estimate, by means of simple expressions, some of the plasma parameters. The loss areas for ions and primary electrons were estimated from experimental results. A simple quantitative model which allows the calculation of plasma density in the whole range of operation, reproduced the correct order of magnitude of experimental values. However, an additional work, both theoretical and experimental, is required to obtain better agreement between experimental and theoretical values.
Comparison of Polar Cap (PC) index calculations.
NASA Astrophysics Data System (ADS)
Stauning, P.
2012-04-01
The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.
Charge Correlations in Plasma Line Broadening
Wrighton, Jeffrey M.; Dufty, James W.
2008-10-22
The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.
Plasma Heating Simulation in the VASIMR System
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.
2005-01-01
The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.
System analysis of plasma centrifuges and sputtering
NASA Technical Reports Server (NTRS)
Hong, S. H.
1978-01-01
System analyses of cylindrical plasma centrifuges are presented, for which the velocity field and electromagnetic fields are calculated. The effects of different electrode geometrics, induced magnetic fields, Hall-effect, and secondary flows are discussed. It is shown that speeds of 10000 m/sec can be achieved in plasma centrifuges, and that an efficient separation of U238 and U235 in uranium plasmas is feasible. The external boundary-value problem for the deposition of sputtering products is reduced to a Fredholm integral equation, which is solved analytically by means of the method of successive approximations.
[Temperature measurement of DC argon plasma jet].
Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa
2008-01-01
The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.
NASA Astrophysics Data System (ADS)
Mendonça, Tito; Hidalgo, Carlos
2010-12-01
Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of
Applications of atmospheric plasmas
NASA Astrophysics Data System (ADS)
Oldham, Christopher John
Surface modification techniques using plasmas have historically been completed in a low pressure environment due to Pd (pressure x gap distance) considerations influencing the behavior of plasma generation. Generally, plasmas produced in a low pressure environment are of a non-thermal or cold nature. The basic feature of non-thermal plasmas is the majority of electrical energy used to generate the plasma is primarily used to produce energetic electrons for generating chemical species. Low pressure plasmas serve many purposes for materials processing. Since the plasma environment is contained within a closed vessel, the plasma can be controlled very easily. Low pressure plasmas have been used in many industries but the complexity associated with the large pumping stations and limitation to batch processing has motivated new work in the area of atmospheric plasmas. Atmospheric plasmas offer both economic and technical justification for use over low pressure plasmas. Since atmospheric plasmas can be operated at ambient conditions, lower costs associated with continuous processing and a decrease in the complexity of equipment validate atmospheric plasma processing as a next generation plasma-aided manufacturing process. In an effort to advance acceptance of atmospheric plasma processing into industry, a process was developed, the dielectric barrier discharge (DBD), in order to generate a homogeneous and non-thermal plasma discharge at ambient conditions. The discharge was applied to the reduction of known food borne pathogens, deposition of thin film materials, and modification of lignocellulosic biomass.
CONVEYOR FOUNDATIONS CALCULATION
S. Romanos
1995-03-10
The purpose of these calculations is to design foundations for all conveyor supports for the surface conveyors that transport the muck resulting from the TBM operation, from the belt storage to the muck stockpile. These conveyors consist of: (1) Conveyor W-TO3, from the belt storage, at the starter tunnel, to the transfer tower. (2) Conveyor W-SO1, from the transfer tower to the material stacker, at the muck stockpile.
Strength calculations on airplanes
NASA Technical Reports Server (NTRS)
Baumann, A
1925-01-01
Every strength calculation, including those on airplanes, must be preceded by a determination of the forces to be taken into account. In the following discussion, it will be assumed that the magnitudes of these forces are known and that it is only a question of how, on the basis of these known forces, to meet the prescribed conditions on the one hand and the practical requirements on the other.
Sensitivity to Error Fields in NSTX High Beta Plasmas
Park, Jong-Kyu; Menard, Jonathan E.; Gerhardt, Stefan P.; Buttery, Richard J.; Sabbagh, Steve A.; Bell, Steve E.; LeBlanc, Benoit P.
2011-11-07
It was found that error field threshold decreases for high β in NSTX, although the density correlation in conventional threshold scaling implies the threshold would increase since higher β plasmas in our study have higher plasma density. This greater sensitivity to error field in higher β plasmas is due to error field amplification by plasmas. When the effect of amplification is included with ideal plasma response calculations, the conventional density correlation can be restored and threshold scaling becomes more consistent with low β plasmas. However, it was also found that the threshold can be significantly changed depending on plasma rotation. When plasma rotation was reduced by non-resonant magnetic braking, the further increase of sensitivity to error field was observed.
Eukaryogenesis, how special really?
Booth, Austin; Doolittle, W. Ford
2015-01-01
Eukaryogenesis is widely viewed as an improbable evolutionary transition uniquely affecting the evolution of life on this planet. However, scientific and popular rhetoric extolling this event as a singularity lacks rigorous evidential and statistical support. Here, we question several of the usual claims about the specialness of eukaryogenesis, focusing on both eukaryogenesis as a process and its outcome, the eukaryotic cell. We argue in favor of four ideas. First, the criteria by which we judge eukaryogenesis to have required a genuinely unlikely series of events 2 billion years in the making are being eroded by discoveries that fill in the gaps of the prokaryote:eukaryote “discontinuity.” Second, eukaryogenesis confronts evolutionary theory in ways not different from other evolutionary transitions in individuality; parallel systems can be found at several hierarchical levels. Third, identifying which of several complex cellular features confer on eukaryotes a putative richer evolutionary potential remains an area of speculation: various keys to success have been proposed and rejected over the five-decade history of research in this area. Fourth, and perhaps most importantly, it is difficult and may be impossible to eliminate eukaryocentric bias from the measures by which eukaryotes as a whole are judged to have achieved greater success than prokaryotes as a whole. Overall, we question whether premises of existing theories about the uniqueness of eukaryogenesis and the greater evolutionary potential of eukaryotes have been objectively formulated and whether, despite widespread acceptance that eukaryogenesis was “special,” any such notion has more than rhetorical value. PMID:25883267
Model of electron collecting plasma contactors
Davis, V.A.; Katz, I.; Mandell, M.J.; Parks, D.E. )
1991-06-01
In laboratory experiments, plasma contactors are observed to collect ampere-level electron currents with low impedance. In order to extend the laboratory experience to the low-earth-orbit environment, a model of plasma contactors is being developed. Laboratory results are being used to support and validate the model development. The important physical processes observed in the laboratory are that the source plasma is separated from the background plasma by a double layer and that ionization of the expellant gas by the collected electrons creates the bulk of the ions that leave the source plasma. The model, which uses Poisson's equation with a physical charge density that includes the ion and electron components of both the source and the ambient plasmas, reproduces this phenomenon for typical experimental parameters. The calculations, in agreement with the laboratory results, show little convergence of the accelerated electrons. The angular momentum of the incoming electrons dramatically reduces the peak electron density. These electrons ionize enough gas to generate the source plasma. Calculations show that the increase in ionization rate with potential produces a steep rise in collected current with increasing potential as seen in the laboratory. 26 refs.
Free energy in plasmas under wave-induced diffusion
Fisch, N.J. . Plasma Physics Lab.); Rax, J.M. )
1993-05-01
When waves propagate through a bounded plasma, the wave may be amplified or damped at the expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma diffusion in velocity and configuration space. In the absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain structures are mixed and fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the consideration of specific examples, certain strategies for maximizing energy extraction are identified.
Investigation of plasma-aided bituminous coal gasification
Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.
2009-04-15
This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.
Fubiani, G.; Boeuf, J. P.
2013-11-15
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2013-11-01
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).
International movement of plasma and plasma contracting.
Farrugia, A
2005-01-01
Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.
Spreadsheet Based Scaling Calculations and Membrane Performance
Wolfe, T D; Bourcier, W L; Speth, T F
2000-12-28
Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total Flux and Scaling Program (TFSP), written for Excel 97 and above, provides designers and operators new tools to predict membrane system performance, including scaling and fouling parameters, for a wide variety of membrane system configurations and feedwaters. The TFSP development was funded under EPA contract 9C-R193-NTSX. It is freely downloadable at www.reverseosmosis.com/download/TFSP.zip. TFSP includes detailed calculations of reverse osmosis and nanofiltration system performance. Of special significance, the program provides scaling calculations for mineral species not normally addressed in commercial programs, including aluminum, iron, and phosphate species. In addition, ASTM calculations for common species such as calcium sulfate (CaSO{sub 4}{times}2H{sub 2}O), BaSO{sub 4}, SrSO{sub 4}, SiO{sub 2}, and LSI are also provided. Scaling calculations in commercial membrane design programs are normally limited to the common minerals and typically follow basic ASTM methods, which are for the most part graphical approaches adapted to curves. In TFSP, the scaling calculations for the less common minerals use subsets of the USGS PHREEQE and WATEQ4F databases and use the same general calculational approach as PHREEQE and WATEQ4F. The activities of ion complexes are calculated iteratively. Complexes that are unlikely to form in significant concentration were eliminated to simplify the calculations. The calculation provides the distribution of ions and ion complexes that is used to calculate an effective ion product ''Q.'' The effective ion product is then compared to temperature adjusted solubility products (Ksp's) of solids in order to calculate a Saturation Index (SI) for each solid of
On Power Measurements of Single-Electrode Low-Power Ar Plasma Jets
NASA Astrophysics Data System (ADS)
Prysiazhnyi, Vadym; Ricci, Alonso H. C.; Kostov, Konstantin G.
2016-06-01
A study of electrical properties, methodology, and precision of power measurement was made on two types of Ar plasma jets, a single-strip-electrode plasma jet and a single-rod-electrode plasma jet. The dynamics of current peaks, methods for determining discharge power, and power measurement precision (especially important for applications in plasma medicine) are discussed for each type of plasma jet. Lower error in power calculation was obtained when the plasma jet did not touch the substrate, as well as more repetitive dynamics of the current peaks. Averaging high number of periods (over 500) when calculating the power by the Lissajous figure technique led to decrease of the experimental error.
On Power Measurements of Single-Electrode Low-Power Ar Plasma Jets
NASA Astrophysics Data System (ADS)
Prysiazhnyi, Vadym; Ricci, Alonso H. C.; Kostov, Konstantin G.
2016-10-01
A study of electrical properties, methodology, and precision of power measurement was made on two types of Ar plasma jets, a single-strip-electrode plasma jet and a single-rod-electrode plasma jet. The dynamics of current peaks, methods for determining discharge power, and power measurement precision (especially important for applications in plasma medicine) are discussed for each type of plasma jet. Lower error in power calculation was obtained when the plasma jet did not touch the substrate, as well as more repetitive dynamics of the current peaks. Averaging high number of periods (over 500) when calculating the power by the Lissajous figure technique led to decrease of the experimental error.
Status and special features of the Atomki ECR ion source
Biri, S.; Palinkas, J.
2012-02-15
The ECR ion source has been operating in ATOMKI (Debrecen) since 1996. During the past 15 years lots of minor and numerous major technical modifications have been carried out on the ECRIS. Many of these changes aimed the increasing of beams charge, intensity, and the widening of the ion choice. Another group of the modifications were performed to develop special, non-standard operation modes or to produce peculiar plasmas and beams.
Electron Scattering in Hot/Warm Plasmas
Rozsnyai, B F
2008-01-18
Electrical and thermal conductivities are presented for aluminum, iron and copper plasmas at various temperatures, and for gold between 15000 and 30000 Kelvin. The calculations are based on the continuum wave functions computed in the potential of the temperature and density dependent self-consistent 'average atom' (AA) model of the plasma. The cross sections are calculated by using the phase shifts of the continuum electron wave functions and also in the Born approximation. We show the combined effect of the thermal and radiative transport on the effective Rosseland mean opacities at temperatures from 1 to 1000 eV. Comparisons with low temperature experimental data are also presented.
Kempa, K.; Bakshi, P.; Gornik, E.
1996-09-01
We show theoretically that strong plasma mode generation is possible in a nonequilibrium steady-state quasi-one-dimensional bounded solid-state plasma, in which a nonequilibrium distribution is maintained by appropriate injection/extraction of carriers. We calculate the density response of realistic model systems using the random-phase approximation, determine the normal modes of the bounded carrier plasma, and show that strong plasma instabilities can be generated under suitable conditions. Such stimulated plasma oscillations could lead to sources of terahertz electromagnetic radiation. {copyright} {ital 1996 The American Physical Society.}
Communication through plasma sheaths
Korotkevich, A. O.; Newell, A. C.; Zakharov, V. E.
2007-10-15
We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.
Marelene Rosenberg
2005-02-22
Our theoretical research on dust-plasma interactions has concentrated on three main areas: a)studies of grain charging and applications; b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; c) waves in strongly coupled dusty plasmas.
Motley, R.W.; Glanz, J.
1982-10-25
A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Special and general superatoms.
Luo, Zhixun; Castleman, A Welford
2014-10-21
of application of the jellium model and modification of the theory to account for nonspherical symmetry and nonmetal-doped metal clusters are still illusive to be further developed. It is still worth mentioning that a superatom concept has also been introduced in ligand-stabilized metal clusters which could also follow the major shell-closing electron count for a spherical, square-well potential. By proposing a new concept named as special and general superatoms, herein we try to summarize all these investigations in series, expecting to provide an overview of this field with a primary focus on the joint undertakings which have given rise to the superatom concept. To be specific, for special superatoms, we limit to clusters under a strict jellium model and simply classify them into groups based on their valence electron counts. While for general superatoms we emphasize on nonmetal-doped metal clusters and ligand-stabilized metal clusters, as well as a few isovalent cluster systems. Hopefully this summary of special and general superatoms benefits the further development of cluster-related theory, and lights up the prospect of using them as building blocks of new materials with tailored properties, such as inexpensive isovalent systems for industrial catalysis, semiconductive superatoms for transistors, and magnetic superatoms for spin electronics. PMID:25252219
Boulos, M.I. . Dept. of Chemical Engineering)
1991-12-01
This paper is a review of the fundamental aspects involved in material processing using thermal plasma technology. The description of plasma-generating devices covers dc plasma torches, dc transferred arcs, radio-frequency (RF) inductively coupled plasma torches, and hybrid combinations of them. Emphasis is given to the identification of the basic energy-coupling mechanism in each case and the principal characteristics of the flow and temperature fields in the plasma. Materials-processing techniques using thermal plasmas are grouped in two broad categories, depending on the role played by the plasma in the process. Only typical examples are given in this review of each type of processes. The simplest and most widely used processes such as spheroidization, melting, deposition, and spray-coating make use of the plasma only as a high-temperature energy source. Thermal plasma technology is also used in applications involving chemical synthesis in which the plasma acts as a source of chemically active species.
Calculation of Electron Trajectories
1982-06-01
EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less
Zero Temperature Hope Calculations
Rozsnyai, B F
2002-07-26
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the
Plasma catalytic reforming of methane
Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Alexeev, N.
1998-08-01
Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.
Industrial plasmas in academia
NASA Astrophysics Data System (ADS)
Hollenstein, Ch; Howling, AA; Guittienne, Ph; Furno, I.
2015-01-01
The present review, written at the occasion of the 2014 EPS Innovation award, will give a short overview of the research and development of industrial plasmas within the last 30 years and will also provide a first glimpse into future developments of this important topic of plasma physics and plasma chemistry. In the present contribution, some of the industrial plasmas studied at the CRPP/EPFL at Lausanne are highlighted and their influence on modern plasma physics and also discharge physics is discussed. One of the most important problems is the treatment of large surfaces, such as that used in solar cells, but also in more daily applications, such as the packaging industry. In this contribution, the advantages and disadvantages of some of the most prominent plasmas such as capacitively- and inductively-coupled plasmas are discussed. Electromagnetic problems due to the related radio frequency and its consequences on the plasma reactor performance, and also dust formation due to chemical reactions in plasma, are highlighted. Arcing and parasitic discharges occurring in plasma reactors can lead to plasma reactor damages. Some specific problems, such as the gas supply of a large area reactor, are discussed in more detail. Other topics of interest have been dc discharges such as those used in plasma spraying where thermal plasmas are applied for advanced material processing. Modern plasma diagnostics make it possible to investigate sparks in electrical discharge machining, which surprisingly show properties of weakly-coupled plasmas. Nanosecond dielectric barrier discharge plasmas have been applied to more speculative topics such as applications in aerodynamics and will surely be important in the future for ignition and combustion. Most of the commonly-used plasma sources have been shown to be limited in their performance. Therefore new, more effective plasma sources are urgently required. With the recent development of novel resonant network antennas for new
Io Plasma Torus : Structure and Transport
NASA Astrophysics Data System (ADS)
Smyth, W. H.; Marconi, M. L.; Spiro, R. W.; Wolf, R. A.
1996-09-01
In the Jupiter system, the complex plasma torus structures that emerge from the Iogenic plasma source and magnetospheric transport processes are extraordinary, although not well understood. Two of the most interesting and unexplained of these structures, organized near Io's orbit, are (1) the radial distribution of the plasma density clearly observed in both the optical S(+) (6716 Angstroms, 6731 Angstroms) and ultraviolet S(++) (685 Angstroms) emission lines and (2) the System III longitude asymmetry of the ion temperature observed in the S(+) optical emission lines. The so-called plasma ``ribbon,'' the brightest portion of the radial structure, is located just within Io's orbit and has a planetocentric distance that varies with both east-west location about Jupiter and System III longitude. The ion temperature exhibits a minimum in the so-called ``active sector'' located near 200(deg) System III longitude. To study the east-west and System III longitude asymmetries of the ribbon structure, we have developed a time-dependent, two-dimensional plasma transport model (L-shell and System III longitude angle) containing an Io plasma source that moves about Jupiter in the plasma torus described by an offset tilted dipole magnetic field in the presence of an east-west electric field. Preliminary calculations to be presented show that the plasma density evolves in time and produces, as it approaches steady state, a maximum just within Io's orbit. To study the System III asymmetry of the torus, we have undertaken preliminary transport calculations using the Rice Convection Model for Jupiter (RCM-J) and have included a System III longitudinally dependent Pedersen conductivity in the planetary ionosphere. The Pedersen conductivity in the ionosphere near Io's flux tube has a minimum in the active sector because of local maxima of the magnetic field. These RCM-J calculations show that the outward plasma transport rate exhibits a System III longitude dependence. The
Penner, J.E.; Haselman, L.C.; Edwards, L.L.
1985-01-01
Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.
3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions
NASA Astrophysics Data System (ADS)
Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; Mancini, M.
2016-03-01
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.
A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas
Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J.
2013-09-15
The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.
Megía-Macías, A.; Vizcaíno-de-Julián, A.; Cortázar, O. D.
2014-03-15
A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.
A Methodology for Calculating Radiation Signatures
Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Preliminary activation calculations for the Poloidal Divertor Experiment
Judd, J.L.; Scott, A.J.; Nigg, D.W.; Bohn, T.S.
1981-01-01
The Poloidal Divertor Experiment (PDX) tokamak is being operated by the Princeton Plasma Physics Laboratory (PPPL) to study plasma cross section shaping, high power neutral beam heating, and divertor control of plasma impurities in tokamaks. Experiments to date have been performed at relatively low power, but with 6 MW of neutral beam power eventually available, high D-D plasma reaction rates are expected that will yield up to 10/sup 15/ 2.45-MeV neutrons per pulse. This neutron emission level is high enough to cause significant neutron-induced machine activation that will limit the occupancy time of personnel entering the room to repair or change parts. The dose rate depends on the location in the room and, of course, the pulsing history prior to entry. This paper describes one-dimensional activation calculations that have been done for PDX to provide preliminary dose rate information for various times after shutdown following one week of high power operation.
Comparison of Methods for Calculating Radiative Heat Transfer
Schock, Alfred; Abbate, M J
2012-01-19
Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
Aslanyan, V.; Tallents, G. J.
2014-06-15
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.
Propagation of phase modulation signals in time-varying plasma
NASA Astrophysics Data System (ADS)
Yang, Min; Li, Xiaoping; Wang, Di; Liu, Yanming; He, Pan
2016-05-01
The effects of time-varying plasma to the propagation of phase modulation signals are investigated in this paper. Through theoretical analysis, the mechanism of the interaction between the time-varying plasma and the phase modulation signal is given. A time-varying plasma generator which could produce arbitrary time-varying plasma is built by adjusting the discharge power. A comparison of results from experiment and simulation prove that the time-varying plasma could cause the special rotation of QPSK (Quadrature Phase Shift Keying) constellation, and the mechanism of constellation point's rotation is analyzed. Additionally, the experimental results of the QPSK signals' EVM (Error Vector Magnitude) after time-varying and time-invariant plasma with different ωp/ω are given. This research could be used to improve the TT&C (Tracking Telemeter and Command) system of re-entry vehicles.
The Foreign Language Learner with Special Needs. A Special Issue.
ERIC Educational Resources Information Center
Language Association Bulletin, 1985
1985-01-01
An issue of the journal devoted to teaching foreign languages to students with special educational needs, resulting from a New York State Board of Regents plan to require foreign languages of all students, contains these articles: "A New Challenge: The Foreign Language Learner with Special Educational Needs" (Harriet Barnett, John B. Webb);…
What's "Special" about Special Education? A Field under Siege.
ERIC Educational Resources Information Center
Fuchs, Douglas; Fuchs, Lynn S.
Special education is under fire from full inclusionists who advocate for children with severe mental retardation and who contend that special education settings are immoral dumping grounds for children deemed "unteachable." Other advocates of inclusion focus on the invalidity of disability categories, tests, and instructional services which, in…
Crystallization of classical multicomponent plasmas
Medin, Zach; Cumming, Andrew
2010-03-15
We develop a method for calculating the equilibrium properties of the liquid-solid phase transition in a classical, ideal, multicomponent plasma. Our method is a semianalytic calculation that relies on extending the accurate fitting formulas available for the one-, two-, and three-component plasmas to the case of a plasma with an arbitrary number of components. We compare our results to those of C. J. Horowitz et al. [Phys. Rev. E 75, 066101 (2007)], who used a molecular-dynamics simulation to study the chemical properties of a 17-species mixture relevant to the ocean-crust boundary of an accreting neutron star at the point where half the mixture has solidified. Given the same initial composition as Horowitz et al., we are able to reproduce to good accuracy both the liquid and solid compositions at the half-freezing point; we find abundances for most species within 10% of the simulation values. Our method allows the phase diagram of complex mixtures to be explored more thoroughly than possible with numerical simulations. We briefly discuss the implications for the nature of the liquid-solid boundary in accreting neutron stars.