Sample records for plasma splay process

  1. Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa

    NASA Astrophysics Data System (ADS)

    Gulliford, Alice R.; Flint, Stephen S.; Hodgson, David M.

    2017-08-01

    Up to 12% of the mud-prone, ephemeral distributive fluvial system stratigraphy in the Permo-Triassic lower Beaufort Group, South Africa, comprises tabular fine-grained sandstone to coarse-grained siltstone bodies, which are interpreted as proximal to distal crevasse splay deposits. Crevasse splay sandstones predominantly exhibit ripple to climbing ripple cross-lamination, with some structureless and planar laminated beds. A hierarchical architectural scheme is adopted, in which 1 m thick crevasse splay elements extend for tens to several hundreds of meters laterally, and stack with other splay elements to form crevasse splay sets up to 4 m thick and several kilometers in width and length. Paleosols and nodular horizons developed during periods, or in areas, of reduced overbank flooding are used to subdivide the stratigraphy, separating crevasse splay sets. Deposits from crevasse splays differ from frontal splays as their proximal deposits are much thinner and narrower, with paleocurrents oblique to the main paleochannel. In order for crevasse splay sets to develop, the parent channel belt and the location where crevasse splays form must stay relatively fixed during a period of multiple flood events. Beaufort Group splays have similar geometries to those of contemporary perennial rivers but exhibit more lateral variability in facies, which is interpreted to be the result of more extreme fluctuations in discharge regime. Sharp-based crevasse splay packages are associated with channel avulsion, but most are characterized by a gradual coarsening upward, interpreted to represent progradation. The dominance of progradational splays beneath channel belt deposits may be more characteristic of progradational stratigraphy in a distributive fluvial system rather than dominated by avulsion processes in a trunk river system. This stratigraphic motif may therefore be an additional criterion for recognition of distributive fluvial systems in the ancient record.

  2. Preliminary assessment of recent deposition related to a crevasse splay on the Mississippi River delta: Implications for coastal restoration

    USGS Publications Warehouse

    Ferina, N.F.; Flocks, J.G.; Kingdinger, Jack L.; Miner, M.D.; Motti, J. P.; Chadwick, Paul C.; Johnston, James B.

    2005-01-01

    Historically, the Mississippi River has replenished sediment across the lower deltaic plain, abating land loss. However, flood-control structures along the river now restrict this natural process and divert sediment from the modern delta offshore to the shelf break, thereby removing it from the coastal system. Localized crevasse splays, however, can deposit significant amounts of sediment in a short span of time.Satellite imagery and field investigations, including eight sediment vibracores, have identified a recent crevasse splay originating from Brant Bayou within the Delta National Wildlife Refuge on the lower Mississippi River delta. The splay deposits are estimated to be as much as 3 m thick and are located stratigraphically above shallow interdistributary-bay deposits. In addition, the deposits exhibit physical characteristics similar to those of large scale prograded deltas. The Bayou Brant crevasse splay began forming in 1978 and has built approximately 3.7 km2 of land. Coastal planners hope to utilize on this natural process of sediment dispersion to create new land within the deltaic plain.

  3. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta

    USGS Publications Warehouse

    Cahoon, Donald R.; White, David A.; Lynch, James C.

    2011-01-01

    Crevasse splay environments provide a mesocosm for evaluating wetland formation and maintenance processes on a decadal time scale. Site elevation, water levels, vertical accretion, elevation change, shallow subsidence, and plant biomass were measured at five habitats along an elevation gradient to evaluate wetland formation and development in Brant Pass Splay; an active crevasse splay of the Balize delta of the Mississippi River. The processes of vertical development (vertical accretion, elevation change, and shallow subsidence) were measured with the surface elevation table–marker horizon method. There were three distinct stages to the accrual of elevation capital and wetland formation in the splay: sediment infilling, vegetative colonization, and development of a mature wetland community. Accretion, elevation gain, and shallow subsidence all decreased by an order of magnitude from the open water (lowest elevation) to the forest (highest elevation) habitats. Vegetative colonization occurred within the first growing season following emergence of the mud surface. An explosively high rate of below-ground production quickly stabilized the loosely consolidated sub-aerial sediments. After emergent vegetation colonization, vertical development slowed and maintenance of marsh elevation was driven both by sediment trapping by the vegetation and accumulation of plant organic matter in the soil. Continued vertical development and survival of the marsh then depended on the health and productivity of the plant community. The process of delta wetland formation is both complex and nonlinear. Determining the dynamics of wetland formation will help in understanding the processes driving the past building of the delta and in developing models for restoring degraded wetlands in the Mississippi River delta and other deltas around the world.

  4. Entanglement of solid vortex matter: a boomerang-shaped reduction forced by disorder in interlayer phase coherence in Bi2Sr2CaCu2O8+y.

    PubMed

    Kato, T; Shibauchi, T; Matsuda, Y; Thompson, J R; Krusin-Elbaum, L

    2008-07-11

    We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi2Sr2CaCu2O8+y containing randomly splayed linear defects. The interlayer phase coherence--probed by the Josephson plasma resonance--is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low-field decrease in coherence, indicative of meandering vortices. We uncover a distinct temperature scaling between in-plane and out-of-plane critical currents with opposing dependencies on field and time, consistent with the theoretically proposed "splayed-glass" state.

  5. Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects With Type 2 Diabetes

    PubMed Central

    DeFronzo, Ralph A.; Hompesch, Marcus; Kasichayanula, Sreeneeranj; Liu, Xiaoni; Hong, Ying; Pfister, Marc; Morrow, Linda A.; Leslie, Bruce R.; Boulton, David W.; Ching, Agatha; LaCreta, Frank P.; Griffen, Steven C.

    2013-01-01

    OBJECTIVE To examine the effect of dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on the major components of renal glucose reabsorption (decreased maximum renal glucose reabsorptive capacity [TmG], increased splay, and reduced threshold), using the pancreatic/stepped hyperglycemic clamp (SHC) technique. RESEARCH DESIGN AND METHODS Subjects with type 2 diabetes (n = 12) and matched healthy subjects (n = 12) underwent pancreatic/SHC (plasma glucose range 5.5–30.5 mmol/L) at baseline and after 7 days of dapagliflozin treatment. A pharmacodynamic model was developed to describe the major components of renal glucose reabsorption for both groups and then used to estimate these parameters from individual glucose titration curves. RESULTS At baseline, type 2 diabetic subjects had elevated TmG, splay, and threshold compared with controls. Dapagliflozin treatment reduced the TmG and splay in both groups. However, the most significant effect of dapagliflozin was a reduction of the renal threshold for glucose excretion in type 2 diabetic and control subjects. CONCLUSIONS The SGLT2 inhibitor dapagliflozin improves glycemic control in diabetic patients by reducing the TmG and threshold at which glucose is excreted in the urine. PMID:23735727

  6. Anatomy and dimensions of fluvial crevasse-splay deposits: Examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Burns, C. E.; Mountney, N. P.; Hodgson, D. M.; Colombera, L.

    2017-04-01

    Crevasse-splay deposits form a volumetrically significant component of many fluvial overbank successions (up to 90% in some successions).Yet the relationships between the morphological form of accumulated splay bodies and their internal facies composition remains poorly documented from ancient successions. This work quantifies lithofacies distributions and dimensions of exhumed crevasse-splay architectural elements in the Campanian Castlegate Sandstone and Neslen Formation, Mesaverde Group, Utah, USA, to develop a depositional model. Fluvial crevasse-splay bodies thin from 2.1 m (average) to 0.8 m (average) and fine from a coarsest recorded grain size of lower-fine sand to fine silt away from major trunk channel bodies. Internally, the preserved deposits of splays comprise laterally and vertically variable sandstone and siltstone facies associations: proximal parts are dominated by sharp and erosional-based sandstone-prone units, which may be structureless or may comprise primary current lineation on beds and erosional gutter casts; medial parts comprise sets of climbing-ripple strata and small scale deformed beds; distal parts comprise sets of lower-stage plane beds and complex styles of lateral grading into fine-grained floodbasin siltstones and coals. Lithofacies arrangements are used to establish the following: (i) recognition criteria for crevasse-splay elements; (ii) criteria for the differentiation between distal parts of crevasse-splay bodies and floodplain fines; and (iii) empirical relationships with which to establish the extent (ca. 500 m long by 1000 m wide) and overall semi-elliptical planform shape of crevasse-splay bodies. These relationships have been established by high-resolution stratigraphic correlation and palaeocurrent analysis to identify outcrop orientation with respect to splay orientation. This permits lateral changes in crevasse-splay facies architecture to be resolved. Facies models describing the sedimentology and architecture of crevasse-splay deposits preserved in floodplain successions serve as tools for determining both distance from and direction to major trunk channel sandbodies.

  7. Splay fault slip in a subduction margin, a new model of evolution

    NASA Astrophysics Data System (ADS)

    Conin, Marianne; Henry, Pierre; Godard, Vincent; Bourlange, Sylvain

    2012-08-01

    In subduction zones, major thrusts called splay faults are thought to slip coseismically during large earthquakes affecting the main plate interface. We propose an analytical condition for the activation of a splay fault based on force balance calculations and suggest thrusting along the splay fault is generally conditioned by the growth of the accretionary wedge, or by the erosion of the hanging wall. In theory, normal slip on the splay fault may occur when the décollement has a very low friction coefficient seaward. Such a low friction also implies an unstable extensional state within the outer wedge. Finite element elasto-plastic calculations with a geometry based on the Nankai Kumano section were performed and confirm that this analytical condition is a valid approximation. Furthermore, localized extension at a shallow level in the splay hanging wall is observed in models for a wide range of friction coefficients (from ∼0 to the value of internal friction coefficient of the rock, here equals to 0.4). The timing of slip established for the splay fault branch drilled on Nankai Kumano transect suggests a phase of concurrent splay and accretionary wedge growth ≈2 Ma to ≈1.5 Ma, followed by a locking of the splay ≈1.3 Ma. Active extension is observed in the hanging wall. This evolution can be explained by the activation of a deeper and weaker décollement, followed by an interruption of accretion. Activation of a splay as a normal fault, as hypothesized in the case of the Tohoku 2011 earthquake, can be achieved only if the friction coefficient on the décollement drops to near zero. We conclude that the tectonic stress state largely determines long-term variations of tightly related splay fault and outer décollement activity and thus influences where and how coseismic rupture ends, but that occurrence of normal slip on a splay fault requires coseismic friction reduction.

  8. Stalk Phase Formation: Effects of Dehydration and Saddle Splay Modulus

    PubMed Central

    Kozlovsky, Yonathan; Efrat, Avishay; Siegel, David A.; Kozlov, Michael M.

    2004-01-01

    One of the earliest lipid intermediates forming in the course of membrane fusion is the lipid stalk. Although many aspects of the stalk hypothesis were elaborated theoretically and confirmed by experiments it remained unresolved whether stalk formation is always an energy consuming process or if there are conditions where the stalks are energetically favorable and form spontaneously resulting in an equilibrium stalk phase. Motivated by a recent breakthrough experiments we analyze the physical factors determining the spontaneous stalk formation. We show that this process can be driven by interplay between two factors: the elastic energy of lipid monolayers including a contribution of the saddle splay deformation and the energy of hydration repulsion acting between apposing membranes. We analyze the dependence of stalk formation on the saddle splay (Gaussian) modulus of the lipid monolayers and estimate the values of this modulus based on the experimentally established phase boundary between the lamellar and the stalk phases. We suggest that fusion proteins can induce stalk formation just by bringing the membranes into close contact, and accumulating, at least locally, a sufficiently large energy of the hydration repulsion. PMID:15454446

  9. How much land for your sand: effects of vegetation and compaction on crevasse splay formation

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Tornqvist, T. E.; Esposito, C. R.

    2016-12-01

    Crevasse splays, failed avulsions that make up a significant portion of fluvio-deltaic overbank architecture in the Mississippi River Delta, are a natural analog for sediment diversions that are being planned to rebuild or sustain coastal wetlands. Here we use Delft3D to study the rates and mechanisms of crevasse splay growth. Because crevasse splays often form in peat-rich and vegetated environments, we have modified Delft3D to include simple formulations for the dynamic interaction between morphodynamics, vegetation, and soil compaction. Detailed stratigraphic data from prehistoric splays in the Mississippi River Delta provide useful constraints on long-term compaction rates, sedimentology, and splay volumes. We find that compaction and the absence of vegetation increase the lifespan of crevasse splays, sometimes from 900 to 4000 flood days (days during which the crevasse is geomorphically active, equivalent to model days in our simulations). Additionally, we find that in a few tested scenarios vegetation primarily acts to increase channel depths and flush out fine-grained sediment towards the flood-basin, decreasing the bulk mud capture efficiency of the splay. One model experiment with moderate vegetation heights and low susceptibility for soil compaction was a particularly "efficient" sediment diversion: every 1 m3 of imported sediment resulted in 2.55 m2 of new land.

  10. Tsunamis and splay fault dynamics

    USGS Publications Warehouse

    Wendt, J.; Oglesby, D.D.; Geist, E.L.

    2009-01-01

    The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time-dependent boundary condition for a 2D shallow-water hydrodynamic tsunami calculation. We find that if me stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami man in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest mat dynamic earthquake modeling may be a useful tool in tsunami researcn. Copyright 2009 by the American Geophysical Union.

  11. Focused exhumation along megathrust splay faults in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Haeussler, P. J.; Armstrong, P. A.; Liberty, L. M.; Ferguson, K.; Finn, S.; Arkle, J. C.; Pratt, T. L.

    2011-12-01

    Megathrust splay faults have been identified as important for generating tsunamis in some subduction zone earthquakes (1946 Nankai, 1964 Alaska, 2004 Sumatra). The larger role of megathrust splay faults in accretionary prisms is not well known. In Alaska, we have new evidence that megathrust splay faults are conduits for focused exhumation. In the southern Alaska accretionary complex, in the Prince William Sound region above the 1964 M9.2 earthquake rupture, apatite (U-Th)/He (AHe) ages, with closure temperatures of about 65°C, are typically in the range of 10-20 Ma. These relatively old ages indicate little to no accumulation of permanent strain during the megathrust earthquake cycle. However, the youngest AHe ages in all of Prince William Sound are from Montague Island, with two ages of 1.4 Ma on the southwest part of the island and two ages of 4 Ma at the northeast end of the island. Montague Island lies in the hanging wall of the Patton Bay megathrust splay fault, which ruptured during the 1964 earthquake, and resulted in 9 m of vertical uplift. Two other megathrust splay faults also ruptured during the 1964 earthquake in the same area. New high-resolution bathymetry and seismic reflection profiles show abundant normal faults in the region adjacent and north of the megathrust splay faults. The largest of these is the Montague Strait fault, which has 80 m of post glacial offset (~12kya?). We interpret this extension in the hanging wall as accommodating the exhumation of the rocks on Montague Island along the megathrust splay faults. An examination of legacy seismic reflection profiles shows the megathrust splay faults rooting downward into the decollement. At least some extension in the hanging wall may also be related to thrusting over a ramp-flat geometry. These megathrust splay faults are out of sequence thrusts, as they are located about 130 km inboard from the trench. This out of sequence thrusting that is causing the exhumation on Montague Island may be driven by underplating or by the Yakutat microplate collision. We suggest that rapid exhumation along megathrust splay faults, in association with normal faulting, may be a feature along other megathrust splay faults around the world.

  12. Efficient Retention of Mud for Land Building on the Mississippi Delta Plain

    NASA Astrophysics Data System (ADS)

    Esposito, C. R.; Shen, Z.; Tornqvist, T. E.; Marshak, J.; White, C. D.

    2016-02-01

    Levee breaching and crevasse splay deposition are fundamental drivers of floodplain and delta plain aggradation in lowland river systems, but questions persist as to whether floodplains and delta plains are faithful recorders of riverine sediment load. In the Mississippi River Delta, where land preservation strategies depend on the sediment delivery capability of human-made, managed crevasse splays, this gap in understanding is also a major management concern. Here we present data characterizing the deposit of the Attakapas Crevasse Splay, which was active in the Lafourche Subdelta of the Mississippi River Delta approximately 1100 to 600 years ago. At the time of its inception the splay was 100 river kilometers from the shoreline, and discharged into a mature cypress swamp. We use LiDAR data and 132 cores (up to 13 m deep and described at 10 cm intervals for sediment texture and organic matter) to develop a three-dimensional model of the crevasse splay deposit. Our model is sufficient to measure the sedimentary composition and volume of the entire deposit, and to resolve the channel bodies preserved within it. We demonstrate that the Attakapas Crevasse Splay deposit is dominated by mud, with only 5-8% of its mass consisting of sand. The sand fraction preserved in the splay is very similar to the sand fraction in suspension in the upper 5 to 10 meters of the modern Mississippi River, suggesting that the splay was a highly efficient trap for material that escaped the confines of the trunk channel. Accretion rates in the splay of 1-4 cm/yr persisted over centennial timescales, and sediment retention rates were between 70 and 100%. We attribute the extremely high sediment retention rate to the splay's protected inland location and its densely vegetated environment, and we note the contrast with lower sediment retention rates (20 to 30% according to various studies, although these estimates may be too low) estimated in settings on the open coast such as the Wax Lake Delta.

  13. Crevasse Splays Versus Avulsions: A Recipe for Land Building With Levee Breaches

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Törnqvist, Torbjörn E.; Esposito, Christopher R.

    2018-05-01

    Natural-levee breaches can not only initiate an avulsion but also, under the right circumstances, lead to crevasse splay formation and overbank sedimentation. The formative conditions for crevasse splays are not well understood, yet such river sediment diversions form an integral part of billion-dollar coastal restoration projects. Here we use Delft3D to investigate the influence of vegetation and soil consolidation on the evolution of a natural-levee breach. Model simulations show that crevasse splays heal because floodplain aggradation reduces the water surface slope, decreasing water discharge into the flood basin. Easily erodible and unvegetated floodplains increase the likelihood for channel avulsions. Denser vegetation and less potential for soil consolidation result in small crevasse splays that are not only efficient sediment traps but also short-lived. Successful crevasse splays that generate the largest land area gain for the imported sediment require a delicate balance between water and sediment discharge, vegetation root strength, and soil consolidation.

  14. Records of transient avulsion-related river patterns in ancient deposits: evidence for different styles of channel-floodplain coupling

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Edmonds, D.; Millard, C.; Toms, L.; Fogaren, C.

    2012-12-01

    River mobility and avulsion are important controls on how course and fine sediment are distributed across alluvial basins. In some systems, broad distributary channel networks that form during channel avulsions contribute significantly to overbank aggradation within the basin and help transport relatively coarse sediment from the channel out onto the floodplain. In contrast, avulsion-related deposits are virtually absent in other systems, which primarily avulse either through incision or with no significant aggradational phase preceding channel relocation; in these systems, overbank sedimentation primarily comprises relatively fine floodplain deposits. In order to constrain the conditions under which distributary-channel networks develop during avulsions, we evaluate channel, avulsion, and floodplain deposits in several ancient units including the Ferris (Maastrichtian/Paleocene, Wyoming), Fort Union (Paleocene, Wyoming), Wasatch (Paleocene/Eocene, Colorado), and Willwood (Paleocene/Eocene, Wyoming) formations. Ancient deposits afford the opportunity to observe multiple (tens to hundreds) channel-avulsion realizations and evaluate characteristic spatial and temporal variability in channel, avulsion, and floodplain deposits within a basin. In each formation, spatial relationships and grain-size distributions of channel, proximal-overbank, distal-overbank, and, where present, avulsion deposits are compared. The thickness, width, and stratigraphic frequency of crevasse-splay and avulsion deposits are characterized in each formation, and paleosol development is documented in order to provide information about relative differences in floodplain conditions (particularly sedimentation rate and floodplain drainage) throughout each unit. We compare these results to modern systems and numerical models. Several formations contain abundant and distinctive evidence of prograding sediment wedges preceding avulsed channels (Willwood Formation and some members of the Wasatch formation), while others contain virtually no avulsion-associated deposits (Ferris Formation). The Fort Union Formation and one member of the Wasatch Formation show a mix of both. These results largely reflect depositional processes and not preservation bias within ancient deposits. Evidence from ancient deposits also suggests sediment partitioning between channels and floodplains was mediated by crevasse-splay production and avulsion, where some systems were "tuned" to produce large splay deposits and other systems produced only infrequent, small splays. Systems that readily produced splay deposits are associated with more prominent avulsion deposits, and splay production seems to be influenced by the particle-size distribution of sediment carried in the channel and floodplain drainage conditions (where abundant fine-sand and coarse-silt sediment and relatively well-drained floodplain conditions promote crevasse-splay production). Avulsion deposits reflect a transient distributary phase associated with a marked increase in local overbank sedimentation rates, but this phase is not ubiquitous to all avulsive systems. The persistence of conditions that promote or inhibit crevasse-splay and avulsion-deposit production may strongly influence channel-floodplain coupling in aggrading fluvial systems.

  15. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion.

    PubMed

    Mirjanian, Dina; Dickey, Allison N; Hoh, Jan H; Woolf, Thomas B; Stevens, Mark J

    2010-09-02

    The fusion between two lipid bilayers involves crossing a complicated energy landscape. The limiting barrier in the process appears to be between two closely opposed bilayers and the intermediate state where the outer leaflets are fused. We have performed molecular dynamics simulations to characterize the free energy barrier for the fusion of two liposomes and to examine the molecular details of barrier crossing. To capture the slow dynamics of fusion, a model using coarse-grained representations of lipids was used. The fusion between pairs of liposomes was simulated for four systems: DPPC, DOPC, a 3:1 mixture of DPPC/DPPE, and an asymmetric lipid tail system in which one tail of DPPC was reduced to half the length (ASTail). The weighted histogram method was used to compute the free energy as a function of separation distance. The relative barrier heights for these systems was found to be ASTail > DPPC > DPPC/DPPE > DOPC, in agreement with experimental observations. Further, the free energy curves for all four can be overlaid on a single curve by plotting the free energy versus the surface separation (differing only in the point of fusion). These simulations also confirm that the two main contributions to the free energy barrier are the removal of water between the vesicles and the deformation of the vesicle. The most prominent molecular detail of barrier crossing in all cases examined was the splaying of lipid tails, where initially a single splayed lipid formed a bridge between the two outer leaflets that promotes additional lipid mixing between the vesicles and eventually leads to fusion. The tail splay appears to be closely connected to the energetics of the process. For example, the high barrier for the ASTail is the result of a smaller distance between terminal methyl groups in the splayed molecule. The shortening of this distance requires the liposomes to be closer together, which significantly increases the cost of water removal and bilayer deformation. Before tail splay can initiate fusion, contact must occur between a tail end and the external water. In isolated vesicles, the contact fraction is correlated to the fusogenicity difference between DPPC and DOPC. Moreover, for planar bilayers, the contact fraction is much lower for DPPC, which is consistent with its lack of fusion in giant vesicles. The simulation results show the key roles of lipid tail dynamics in governing the fusion energy landscape.

  16. Consequences of the presence of a weak fault on the stress and strain within an active margin

    NASA Astrophysics Data System (ADS)

    Conin, M.; Henry, P.; Godard, V.; Bourlange, S.

    2009-12-01

    Accreting margins often display an outer thrust and fold belt and an inner forearc domain overlying the subduction plate. Assuming that this overlying material behaves as Coulomb material, the outer wedge and the inner wedge are classically approximated as a critical state and a stable state Coulomb wedge, respectively. Critical Coulomb wedge theory can account for the transition from wedge to forearc. However, it cannot be used to determine the state of stress in the transition zone, nor the consequences of a discontinuity within the margin. The presence of a discontinuity such as a splay fault having a low effective friction coefficient should affect the stress state within the wedge, at least locally around the splay fault. Moreover, the effective friction coefficient of the seismogenic zone is expected to vary during the seismic cycle, and this may influence the stability of the Coulomb wedges. We use the ADELI finite element code (Chery and Hassani, 2000) to model the quasi-static stress and strain of a decollement and splay fault system, within a two dimensional elasto-plastic wedge with Drucker-Prager rheology. The subduction plane, the basal decollement of the accretionary wedge and the splay fault are modeled with contact elements. The modeled margin comprises an inner and an outer domain with distinct tapers and basal friction coefficients. For a given splay fault geometry, we evaluate the friction coefficient threshold for splay fault activation as a function of the basal friction coefficients, and examine the consequences of motion along the splay fault on stress and strain within the wedge and on the surface slope at equilibrium. Friction coefficients are varied in time to mimic the consequence of the seismic cycle on the static stress state and strain distribution. Results show the possibility of coexistence of localized extensional regime above the splay fault within a regional compressional regime. Such coexistence is consistent with stress orientation estimation made from breakouts in the Nankai accretionary prim (Kinoshita et al, 2009).

  17. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    USGS Publications Warehouse

    Farrell, K.M.

    2001-01-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.

  18. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Farrell, K. M.

    2001-02-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.

  19. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals.

    PubMed

    Luo, Xiang; Yang, Xianhai; Qiao, Xianliang; Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Peijnenburg, Willie J G M

    2017-03-22

    Reaction with hydroxyl radicals (˙OH) is an important removal pathway for organic pollutants in the aquatic environment. The aqueous reaction rate constant (k OH ) is therefore an important parameter for fate assessment of aquatic pollutants. Since experimental determination fails to meet the requirement of being able to efficiently handle numerous organic chemicals at limited cost and within a relatively short period of time, in silico methods such as quantitative structure-activity relationship (QSAR) models are needed to predict k OH . In this study, a QSAR model with a larger and wider applicability domain as compared with existing models was developed. Following the guidelines for the development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD), the model shows satisfactory performance. The applicability domain of the model has been extended and contained chemicals that have rarely been covered in most previous studies. The chemicals covered in the current model contain functional groups including [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right], -C[triple bond, length as m-dash]C-, -C 6 H 5 , -OH, -CHO, -O-, [double bond splayed left]C[double bond, length as m-dash]O, -C[double bond, length as m-dash]O(O)-, -COOH, -C[triple bond, length as m-dash]N, [double bond splayed left]N-, -NH 2 , -NH-C(O)-, -NO 2 , -N[double bond, length as m-dash]C-N[double bond splayed right], [double bond splayed left]N-N[double bond splayed right], -N[double bond, length as m-dash]N-, -S-, -S-S-, -SH, -SO 3 , -SO 4 , -PO 4 , and -X (F, Cl, Br, and I).

  20. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin

    NASA Astrophysics Data System (ADS)

    Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.

    2008-12-01

    Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.

  1. Structural analysis of Nalagarh lobe, NW Himalaya: implication of thrusting across tectonic edge of NW limb of Nahan salient, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Philip, G.; Suresh, N.

    2017-07-01

    The Main Boundary Fault (MBF), convex towards southwest, forms the leading edge of the Nahan salient. Near the southern end of an oblique ramp, a lobe-shaped physiographic front, named in this work as Nalagarh lobe, has developed across NW limb of salient. The lobe has formed across the MBF that separates the hanging wall Lower Tertiary Dharmsala rocks from the footwall Upper Tertiary Siwalik rocks and overlying Quaternaries. In front of lobe, thrust fault splays (Splay-1 and Splay-2) and associated tectonic fabrics have developed within the Late Pleistocene fan deposit. Structural elements developed across the front of Nalagarh lobe are analysed with reference to evolution of lobe. An unweathered 15-m-high hanging wall or wedge top forms the uplifted and rejuvenated bedrock fault scarp of the MBF. Below the MBF, the fan deposit has underthrust along Splay-1. Later the Splay-2 formed within fan deposit near south of Splay-1. Geometry of the overturned limb of tight to isoclinal fault propagation fold, formed on Splay-2 plane, suggests that the fold formed by normal drag, produced by intermittent fault-slips along Splay-2. The displacement along Splay-2 offset the marker bed to 1 m by which some clasts rotated parallel to the traces of brittle axial planes of fold. The variable fold geometry and style of deformation are analysed along length of thrust splays for 5 km. It is revealed that the lobe is bounded by transverse thrust faults along its NW and SE margins. The geometry of salient and oblique ramp suggests that the transverse thrust faults and associated transverse folds formed by right-lateral displacement along the NW limb of the salient. Marking the northern margin of the intermontane piggyback basin of Pinjaur dun, the MBF is interpreted to be an out-of-sequence thrust that has brought up the Lower Tertiary Dharmsala rocks over the Late Pleistocene fan deposit. The geometry of lobe and its bounding transverse faults suggest that faults are intimately associated with the kinematics of the transition between the Nahan salient and Kangra recess. The transition is a transfer zone forming a long pre-Himalayan lineament across which the stratigraphic set of the Tethys and Lesser Himalaya is different. The study suggests that the lateral ramp on the Main Himalayan Thrust does not exist beneath the apex and also beneath the SE limb of the salient in the Sub-Himalayan region. This ramp should be present only beneath near end point of SW limb of the Nahan salient.

  2. Effects of CO2 adsorption on proton migration on a hydrated ZrO2 surface: an ab initio molecular dynamics study.

    PubMed

    Sato, Ryuhei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2017-08-02

    Hydration reactions on a carbonate-terminated cubic ZrO 2 (110) surface were analyzed using ab initio molecular dynamics (AIMD) simulations. After hydration reactions, carbonates were still present on the surface at 500 K. However, these carbonates are very weak conjugate bases and only act as steric hindrance in proton hopping processes between acidic chemisorbed H 2 O molecules (Zr-OH 2 ) and monodentate hydroxyl groups (Zr-OH - ). Similar to a carbonate-free hydrated surface, Zr-OH 2 , Zr-OH - , and polydentate hydroxyl groups ([double bond splayed left]OH + ) were observed, while the ratio of acidic Zr-OH 2 was significantly larger than that on the carbonate-free hydrated surface. A thermodynamic discussion and bond property analysis reveal that CO 2 adsorption significantly decreases the basicity of surface oxide ions ([double bond splayed left]O), whereas the acidity of Zr-OH 2 is not affected. As a result, protons released from [double bond splayed left]OH + react with Zr-OH - to form Zr-OH 2 , leading to a deficiency of proton acceptor sites, which decreases the proton conductivity by the hopping mechanism.

  3. Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska

    USGS Publications Warehouse

    Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew

    2013-01-01

    High-resolution sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.

  4. Holocene deposition and megathrust splay fault geometries within Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Pratt, T. L.

    2011-12-01

    New high resolution sparker seismic reflection data, in conjunction with reprocessed legacy seismic data, provide the basis for a new fault, fold, and Holocene sediment thickness database for Prince William Sound, Alaska. Additionally, legacy airgun seismic data in Prince William Sound and the Gulf of Alaska tie features on these new sparker data to deeper portions of megathrust splay faults. We correlate regionally extensive bathymetric lineaments within Prince William Sound to megathrust splay faults, such as the ones that ruptured in the 1964 M9.2 earthquake. Lastly, we estimate Holocene sediment thickness within Prince William Sound to better constrain the Holocene fault history throughout the region. We identify three seismic facies related to Holocene, Quaternary, and Tertiary strata that are crosscut by numerous high angle normal faults in the hanging wall of the megathrust splay faults. The crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A change in exhumation rates, slip rates, and fault orientation appears near Hinchinbrook that we attribute to differences in subducted slab geometry. Based on our slip rate analysis, we calculate average Holocene displacements of 20 m and 100 m in eastern and western Prince William Sound, respectively. Landward of two splay faults exposed on Montague Island, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes.

  5. Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska

    NASA Astrophysics Data System (ADS)

    Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew

    2013-10-01

    sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.

  6. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.

  7. Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Bassett, Dan; Jiang, Junle; Shearer, Peter M.; Ji, Chen

    2017-11-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted ∼65 s with a rupture speed of ∼1.2 km/s, while the second stage lasted from ∼65 to 150 s with a rupture speed of ∼2.7 km/s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also colocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  8. Focused exhumation along megathrust splay faults in Prince William Sound, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Armstrong, Phillip A; Liberty, Lee M; Ferguson, Kelly M; Finn, Shaun P; Arkle, Jeannette C; Pratt, Thomas L.

    2015-01-01

    Megathrust splay faults are a common feature of accretionary prisms and can be important for generating tsunamis during some subduction zone earthquakes. Here we provide new evidence from Alaska that megathrust splay faults have been conduits for focused exhumation in the last 5 Ma. In most of central Prince William Sound, published and new low-temperature thermochronology data indicate little to no permanent rock uplift over tens of thousands of earthquake cycles. However, in southern Prince William Sound on Montague Island, apatite (U–Th)/He ages are as young as 1.1 Ma indicating focused and rapid rock uplift. Montague Island lies in the hanging wall of the Patton Bay megathrust splay fault system, which ruptured during the 1964 M9.2 earthquake and produced ∼9 m of vertical uplift. Recent geochronology and thermochronology studies show rapid exhumation within the last 5 Ma in a pattern similar to the coseismic uplift in the 1964 earthquake, demonstrating that splay fault slip is a long term (3–5 my) phenomena. The region of slower exhumation correlates with rocks that are older and metamorphosed and constitute a mechanically strong backstop. The region of rapid exhumation consists of much younger and weakly metamorphosed rocks, which we infer are mechanically weak. The region of rapid exhumation is separated from the region of slow exhumation by the newly identified Montague Strait Fault. New sparker high-resolution bathymetry, seismic reflection profiles, and a 2012 Mw4.8 earthquake show this feature as a 75-km-long high-angle active normal fault. There are numerous smaller active normal(?) faults in the region between the Montague Strait Fault and the splay faults. We interpret this hanging wall extension as developing between the rapidly uplifting sliver of younger and weaker rocks on Montague Island from the essentially fixed region to the north. Deep seismic reflection profiles show the splay faults root into the subduction megathrust where there is probable underplating. Thus the exhumation and extension in the hanging wall are likely driven by underplating along the megathrust décollement, thickening in the overriding plate and a change in rheology at the Montague Strait Fault to form a structural backstop. A comparison with other megathrust splay faults around the world shows they have significant variability in their characteristics, and the conditions for their formation are not particularly unique.

  9. The impact of splay faults on fluid flow, solute transport, and pore pressure distribution in subduction zones: A case study offshore the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lauer, Rachel M.; Saffer, Demian M.

    2015-04-01

    Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.

  10. Multiple geophysical observations indicate possible splay fault activation during the 2006 Java Tsunami earthquake

    NASA Astrophysics Data System (ADS)

    Fan, W.; Bassett, D.; Denolle, M.; Shearer, P. M.; Ji, C.; Jiang, J.

    2017-12-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s, while the second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s. In addition, P-wave high-frequency radiated energy and fall-off rates indicate a rupture transition at 60 s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also collocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  11. Uncertainties in the Forecasted Performance of Sediment Diversions Associated with Differences Between "Optimized" Diversion Design Criteria and the Natural Crevasse-Splay Sub-Delta Life-Cycle

    NASA Astrophysics Data System (ADS)

    Brown, G.

    2017-12-01

    Sediment diversions have been proposed as a crucial component of the restoration of Coastal Louisiana. They are generally characterized as a means of creating land by mimicking natural crevasse-splay sub-delta processes. However, the criteria that are often promoted to optimize the performance of these diversions (i.e. large, sand-rich diversions into existing, degraded wetlands) are at odds with the natural processes that govern the development of crevasse-splay sub-deltas (typically sand-lean or sand-neutral diversions into open water). This is due in large part to the fact that these optimization criteria have been developed in the absence of consideration for the natural constraints associated with fundamental hydraulics: specifically, the conservation of mechanical energy. Although the implementation of the aforementioned optimization criteria have the potential to greatly increase the land-building capacity of a given diversion, the concomitant widespread inundation of the existing wetlands (an unavoidable consequence of diverting into a shallow, vegetated embayment), and the resultant stresses on existing wetland vegetation, have the potential to dramatically accelerate the loss of these existing wetlands. Hence, there are inherent uncertainties in the forecasted performance of sediment diversions that are designed according to the criteria mentioned above. This talk details the reasons for these uncertainties, using analytic and numerical model results, together with evidence from field observations and experiments. The likelihood that, in the foreseeable future, these uncertainties can be reduced, or even rationally bounded, is discussed.

  12. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  13. A possible source mechanism of the 1946 Unimak Alaska far-field tsunami, uplift of the mid-slope terrace above a splay fault zone

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter

    2016-01-01

    In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of “tsunami” earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.

  14. Geometric frustration and compatibility conditions for two-dimensional director fields.

    PubMed

    Niv, Idan; Efrati, Efi

    2018-01-17

    Bent core (or banana shaped) liquid-crystal-forming-molecules locally favor an ordered state of zero splay and constant bend. Such a state, however, cannot be realized in the plane and the resulting liquid-crystalline phase is frustrated and must exhibit some compromise of these two mutually contradicting local intrinsic tendencies. This constitutes one of the most well-studied examples in which the intrinsic geometry of the constituents of a material gives rise to a geometrically frustrated assembly. Such geometric frustration is not only natural and ubiquitous but also leads to a striking variety of morphologies of ground states and exotic response properties. In this work we establish the necessary and sufficient conditions for two scalar functions, s and b to describe the splay and bend of a director field in the plane. We generalize these compatibility conditions for geometries with non-vanishing constant Gaussian curvature, and provide a reconstruction formula for the director field depending only on the splay and bend fields and their derivatives. Finally, we discuss optimal compromises for simple incompatible cases where the locally preferred values of the splay and bend cannot be simultaneously achieved.

  15. A Possible Source Mechanism of the 1946 Unimak Alaska Far-Field Tsunami: Uplift of the Mid-Slope Terrace Above a Splay Fault Zone

    NASA Astrophysics Data System (ADS)

    von Huene, Roland; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter

    2016-12-01

    In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of "tsunami" earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.

  16. Microstructures and strain variation: Evidence of multiple splays in the North Almora Thrust Zone, Kumaun Lesser Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav; Agarwal, Amar; Agarwal, K. K.; Srivastava, Samriddhi; Alva Valdivia, L. M.

    2017-01-01

    The North Almora Thrust zone (NATZ) marks the boundary of the Almora Crystalline Complex (ACC) against the Lesser Himalayan Sedimentary sequence (LHS) in the north. Its southern counterpart, the South Almora Thrust (SAT), is a sharply marked contact between the ACC and the LHS in the south. Published studies argue various contradictory emplacement modes of the North Almora Thrust. Recent studies have implied splays of smaller back thrusts in the NATZ. The present study investigates meso- and microstructures, and strain distribution in the NATZ and compares it with strain distribution across the SAT. In the NATZ, field evidence reveals repeated sequence of 10-500 m thick slices of proto- to ultra-mylonite, thrust over the Lesser Himalayan Rautgara quartzite. In accordance with the field evidence, the strain analysis reveals effects of splays of smaller thrust in the NATZ. The study therefore, argues that contrary to popular nomenclature the northern contact of the ACC with the LHS is not a single thrust plane, but a thrust zone marked by numerous thrust splays.

  17. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  18. Lateralization of splay posture in reticulated giraffe (Giraffa camelopardalis reticulate).

    PubMed

    Svoke, Joseph T

    2017-02-01

    Motor laterality is quite often studied in non-human primates, but rarely has been investigated within ungulates. The aim of the study was to use the naturally occurring splay behavior in giraffe as a method to look for the presence of laterality. Four male giraffes housed at Zoo Atlanta were watched for three months, recording their first leg moved to begin the splay posture and the total number of leg movements to achieve a secure stance. All four giraffe significantly moved their left leg first to begin the stance, which suggests at least individual level laterality. However, using the number of leg movements overall, the last leg moved was only significant in one individual. Copyright © 2016. Published by Elsevier B.V.

  19. Siblicide, splayed-toes-flight display, and grappling in the Saker Falcon

    USGS Publications Warehouse

    Ellis, D.H.; Whitlock, P.L.; Tsengeg, Pu; Nelson, R.W.

    1999-01-01

    We observed two incidents of novel social behavior in the saker falcon (Falco cherrug) in Mongolia. First, we provide an account of a two-week-old saker falcon chick killing its nest mate, the first direct observation of siblicide in the genus Falco. We also report aerial combat between three adult saker falcons including observations of talon grappling, whirling, and Splayed-toes-flight, a previously undescribed social display.

  20. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    NASA Astrophysics Data System (ADS)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  1. Free energy perturbation method for measuring elastic constants of liquid crystals

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet

    There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.

  2. What Controls Sediment Retention in an Emerging Delta?

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.

    2016-12-01

    What controls sediment retention in an emerging delta? Here, we examine the effects of river discharge and flow velocity on sediment retention rate, using a developing crevasse splay in the Lower Mississippi Delta as a study location. With a controlled discharge that ranges from 28 to 280 m3/s, Davis Pond Freshwater Diversion connects the Mississippi River to the adjacent wetland, allowing river water, sediment, and nutrients to flow into the marsh. Although Davis Pond was primarily designed to regulate salinity within Barataria Basin rather than to build land, a new crevasse splay has recently emerged at the mouth of the diversion's outfall channel. Short (5 cm) sediment cores were collected at 22 locations around the Davis Pond receiving basin in spring 2015, fall 2015, and spring 2016. All cores were analyzed for sediment geotechnical parameters including organic content, bulk density, and grain size. Sediment input into the receiving basin was calculated using a ratings curve. Activity of the radioisotope beryllium-7 was used to calculate rates of sediment accumulation and retention. We find that while sediment input is greater during high flow, rate of retention is greater during low flow. This is likely due to the increase in flow velocity that accompanies high discharge, which retains sediment in suspension and leads to more throughput of material. Furthermore, the diversion operation regime of sustained low flow punctuated by short-duration high discharge events has increased soil bulk density, mineral sediment accumulation, and marsh platform elevation. River diversions such as Davis Pond mimic the land-building processes of natural crevasse splays and provide a promising method to restore deltaic wetlands worldwide.

  3. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  4. Aseismic deformation of a fold-and-thrust belt imaged by SAR interferometry near Shahdad, southeast Iran

    NASA Technical Reports Server (NTRS)

    Fielding, Eric J.; Wright, Tim J.; Muller, Jordan; Parsons, Barry E.; Walker, Richard

    2004-01-01

    At depth, many fold-and-thrust belts are composed of a gently dipping, basal thrust fault and steeply dipping, shallower splay faults that terminate beneath folds at the surface. Movement on these buried faults is difficult to observe, but synthetic aperture radar (SAR) interferometry has imaged slip on at least 600 square kilometers of the Shahdad basal-thrust and splay-fault network in southeast Iran.

  5. Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Henrys, S.; Pecher, I.; Wallace, L.; Klaeschen, D.

    2016-12-01

    Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities resolved to ˜14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an ˜18 km long ramp, beneath Porangahau Ridge. This apparent step in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.

  6. Interpretation of the Seattle uplift, Washington, as a passive-roof duplex

    USGS Publications Warehouse

    Brocher, T.M.; Blakely, R.J.; Wells, R.E.

    2004-01-01

    We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.

  7. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  8. Large-scale splay faults on a strike-slip fault system: The Yakima Folds, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.

    2012-01-01

    The Yakima Folds (YF) comprise anticlines above reverse faults cutting flows of the Miocene Columbia River Basalt Group of central Washington State. The YF are bisected by the ~1100-km-long Olympic-Wallowa Lineament (OWL), which is an alignment of topographic features including known faults. There is considerable debate about the origin and earthquake potential of both the YF and OWL, which lie near six major dams and a large nuclear waste storage site. Here I show that the trends of the faults forming the YF relative to the OWL match remarkably well the trends of the principal stress directions at the end of a vertical strike-slip fault. This comparison and the termination of some YF against the OWL are consistent with the YF initially forming as splay faults caused by an along-strike decrease in the amount of strike-slip on the OWL. The hypothesis is that the YF faults initially developed as splay faults in the early to mid Miocene under NNW-oriented principal compressive stress, but the anticlines subsequently grew with thrust motion after the principal compressive stress direction rotated to N-S or NNE after the mid-Miocene. A seismic profile across one of the YF anticlines shows folding at about 7 km depth, indicating deformation of sub-basalt strata. The seismic profile and the hypothesized relationship between the YF and the OWL suggest that the structures are connected in the middle or lower crust, and that the faults forming the YF are large-scale splay faults associated with a major strike-slip fault system.

  9. Controls on the quality of Miocene reservoirs, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises

    2018-01-01

    An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.

  10. A splay tree-based approach for efficient resource location in P2P networks.

    PubMed

    Zhou, Wei; Tan, Zilong; Yao, Shaowen; Wang, Shipu

    2014-01-01

    Resource location in structured P2P system has a critical influence on the system performance. Existing analytical studies of Chord protocol have shown some potential improvements in performance. In this paper a splay tree-based new Chord structure called SChord is proposed to improve the efficiency of locating resources. We consider a novel implementation of the Chord finger table (routing table) based on the splay tree. This approach extends the Chord finger table with additional routing entries. Adaptive routing algorithm is proposed for implementation, and it can be shown that hop count is significantly minimized without introducing any other protocol overheads. We analyze the hop count of the adaptive routing algorithm, as compared to Chord variants, and demonstrate sharp upper and lower bounds for both worst-case and average case settings. In addition, we theoretically analyze the hop reducing in SChord and derive the fact that SChord can significantly reduce the routing hops as compared to Chord. Several simulations are presented to evaluate the performance of the algorithm and support our analytical findings. The simulation results show the efficiency of SChord.

  11. Blind-Side, High-Temperature Fastener Lock

    NASA Technical Reports Server (NTRS)

    Matza, E. C.; While, D. M.

    1985-01-01

    Formed-in-place staple provides positive mechanical lock. Post-supported, advanced carbon/carbon standoff panels, currently under consideration as alternate thermal protection system for Shuttle orbiter, locking feature applicable to temperatures of 1,600 degrees F (870 degrees C) and higher and employable after panel installed, resulting in blind application. Blind-side locking technique employs wire staple inserted into grooves in post, formed in place by ramped portion of post grooves. This splays out wire ends that move into castellated end of grommet, mechanically locking post and grommet against relative rotation. Splayed ends provide mechanical lock to prevent wire from falling out.

  12. Splay Fault Branching from the Hikurangi Subduction Shear Zone: Implications for Slow Slip and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Plaza-Faverola, A. A.; Pecher, I. A.; Klaeschen, D.; Wallace, L.

    2016-12-01

    Seismic reflection data along the East Coast of the New Zealand North Island are used to map the offshore character and geometry of the central Hikurangi subduction thrust and outer wedge in a region of short term ( 2-3 weeks duration) geodetically determined slow-slip events (SSEs). Pre-stack depth migration of line 05CM-38 was used to derive subducting slab geometry and upper crustal structure together with a Vp image of the crust that is resolved to 14 km depth. The subduction interface is a shallow dipping thrust at < 7 km deep near the trench and steps down to 14 km depth along an approximately 18 km long ramp, beneath Porangahau Ridge. This bend in the subducted plate is associated with splay fault branching and coincides with the zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. We infer that the step down in the décollement transfers slip on the plate interface from the top of subducting sediments to the oceanic crust and drives underplating beneath the inner margin of central Hikurangi margin. Low-velocity subducting sediments (LVZ) beneath the plate interface, updip of the plate interface ramp, are interpreted as being capped with a low permeability condensed layer of chalk and interbedded mudstones. We interpret this LVZ as fluid-rich overpressured sediments that have been displaced and later imbricated by splay faults in a region that may mark the up-dip transition from seismic to aseismic behavior. Further, we hypothesize that fluids derived from the overpressured sediment are channeled along splay faults to the shallow sub-seafloor near Porangahau Ridge where seafloor seepage and an upwarping of the gas hydrate Bottom-Simulating Reflector have been documented.

  13. Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D.

    2017-01-01

    Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

  14. Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director.

    PubMed

    Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D

    2017-01-11

    Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

  15. Ontogenetic scaling of the olfactory antennae and flicking behavior of the shore crab, Hemigrapsus oregonensis.

    PubMed

    Waldrop, Lindsay D

    2013-07-01

    Malacostracan crustaceans such as crabs flick antennae with arrays of olfactory sensilla called aesthetascs through the water to sense odors. Flicking by crabs consists of a quick downstroke, in which aesthetascs are deflected laterally (splayed), and a slower, reversed return stroke, in which aesthetascs clump together. This motion causes water to be flushed within and then held in between aesthetascs to deliver odor molecules to olfactory receptors. Although this odor sampling method relies on a narrow range of speeds, sizes, and specific arrangements of aesthetascs, most crabs dramatically change these during ontogeny. In this study, the morphometrics of the aesthetascs, array, and antennae and the flicking kinematics of the Oregon shore crab, Hemigrapsus oregonensis (Decapoda: Brachyura), are examined to determine their scaling relationships during ontogeny. The morphometrics of the array and antennae increase more slowly than would be predicted by isometry. Juvenile crabs' aesthetascs splay relatively further apart than adults, likely due to changing material properties of aesthetasc cuticle during growth. These results suggest that disproportionate growth and altered aesthetasc splay during flicking will mediate the size changes due to growth that would otherwise lead to a loss of function.

  16. A Unique Case of Carotid Splaying by a Cervical Vagal Neurofibroma and the Role of Neuroradiology in Surgical Management

    PubMed Central

    Buehler, Mark; Mrak, Robert E; Mansour, Tarek R; Medhkour, Yacine; Medhkour, Azedine

    2017-01-01

    Carotid splaying, also known as the Lyre sign, is a widening of the carotid bifurcation due to the displacement of the internal carotid artery and the external carotid artery just distal to the point of divergence. This phenomenon is classically exhibited by highly vascularized carotid body tumors and, in rare cases, by cervical sympathetic chain schwannomas. Demonstration of the Lyre sign by a cervical vagal neurofibroma, however, is a unique occurrence that has not been previously documented in the literature. Neurofibromas are slow growing, poorly vascularized soft tissue masses and are a hallmark of the autosomal dominant genetic disorder, neurofibromatosis type 1 (NF-1). While targeted genetic therapies are evolving, management is currently dependent on a case-by-case resection of tumors with specific indications for chemo and radiation therapy. These resections rely on magnetic resonance imaging (MRI) to visualize tumor location and infiltration, but even in the setting of an established NF-1 diagnosis, additional imaging can be beneficial in ruling out more precarious tumors and optimizing surgical outcomes. In this case, a 25-year-old female with known NF-1 presented with an enlarging cervical mass that demonstrated splaying of the left internal and external carotid arteries on MRI. Due to the typical association of the Lyre sign with carotid body tumors, magnetic resonance angiography (MRA) was crucial in guiding surgical decision making. Carotid body tumors are highly vascularized, may compress carotid branches, and carry a high risk of intraoperative bleeding. They are best visualized with MRA, which assesses carotid splaying and patency, and demonstrates vascular blushing within the tumor.  This patient's MRA demonstrated the Lyre sign, patency of all carotid vessels, and a lack of vascularity within the mass, thus lowering suspicion for a carotid body tumor. Intraoperative use of imaging results facilitated a successful resection of a soft tissue tumor with minimal blood loss and no complications. Postoperative histologic examination confirmed a neurofibroma and definitively ruled out a carotid body tumor. This case highlights the importance of utilizing MRA whenever carotid splaying is seen on MRI and supports the consideration of neurofibromas in the differential for this finding.  PMID:29147633

  17. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  18. Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael R.; Leibler, Stanislas

    2018-05-01

    The abundance of available static protein structural data makes the more effective analysis and interpretation of this data a valuable tool to supplement the experimental study of protein mechanics. Structural displacements can be difficult to analyze and interpret. Previously, we showed that strains provide a more natural and interpretable representation of protein deformations, revealing mechanical coupling between spatially distinct sites of allosteric proteins. Here, we demonstrate that other transformations of displacements yield additional insights. We calculate the divergence and curl of deformations of the transmembrane channel KcsA. Additionally, we introduce quantities analogous to bend, splay, and twist deformation energies of nematic liquid crystals. These transformations enable the decomposition of displacements into different modes of deformation, helping to characterize the type of deformation a protein undergoes. We apply these calculations to study the filter and gating regions of KcsA. We observe a continuous path of rotational deformations physically coupling these two regions, and, we propose, underlying the allosteric interaction between these regions. Bend, splay, and twist distinguish KcsA gate opening, filter opening, and filter-gate coupling, respectively. In general, physically meaningful representations of deformations (like strain, curl, bend, splay, and twist) can make testable predictions and yield insights into protein mechanics, augmenting experimental methods and more fully exploiting available structural data.

  19. Assembly, Elasticity, and Structure of Lyotropic Chromonic Liquid Crystals and Disordered Colloids

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.

    This dissertation describes experiments which explore the structure and dynamics in two classes of soft materials: lyotropic chromonic liquid crystals and colloidal glasses and super-cooled liquids. The first experiments found that the achiral LCLCs, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG) both exhibit spontaneous mirror symmetry breaking in the nematic phase driven by a giant elastic anisotropy of their twist modulus compared to their splay and bend moduli. Resulting structures of the confined LCLCs display interesting director configurations due to interplay of topologically required defects and twisted director fields. At higher concentrations, the LCLC compounds form columnar phases. We studied the columnar phase confined within spherical drops and discovered and understood configurations of the LC that sometimes led to non-spherical droplet shapes. The second experiments with SSY LCLCs confined in hollow cylinders uncovered director configurations which were driven in large measure by an exotic elastic modulus known as saddle-splay. We measured this saddle-splay modulus in a LCLC for the first time and found it to be more than 50 times greater than the twist elastic modulus. This large relative value of the saddle-splay modulus violates a theoretical result/assumption known as the Ericksen inequality. A third group of experiments on LCLCs explored the drying process of sessile drops containing SSY solutions, including evaporation dynamics, morphology, and deposition patterns. These drops differ from typical, well-studied evaporating colloidal drops primarily due to the LCLC's concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, creating surface tension gradients and significant density and viscosity variation within the droplet. Thus, the drying multiphase drops exhibit new convective currents, drop morphologies, deposition patterns, as well as a novel ordered crystalline phase. Finally, experiments in colloidal glasses and super-cooled liquids were initiated to probe the relationship between structure and dynamics in their constituent particles. The displacements of individual particles in the colloids can be decomposed into small cage fluctuations and large rearrangements into new cages. We found a correlation between the rate of rearrangement and the local cage structure associated with each particle. Particle trajectories of a two-dimensional binary mixture of soft colloids are captured by video microscopy. We use a machine learning method to calculate particle "softness'', which indicates the likelihood of rearrangement based on many radial structural features for each particle. We measured the residence time between consecutive rearrangements and related probability distribution functions (PDFs). The softness-dependent conditional PDF is well fit by an exponential with decay time decreasing monotonically with increasing softness. Using these data and a simple thermal activation model, we determined activation energies for rearrangements.

  20. Pluton emplacement within an extensional transfer zone during dextral strike-slip faulting: an example from the late Archaean Abitibi Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Lacroix, S.; Sawyer, E. W.; Chown, E. H.

    1998-01-01

    The Lake Abitibi area within the late Archaean Abitibi Greenstone Belt exhibits an interlinked plutonic, structural and metamorphic evolution that may characterize segmented strike-slip faults at upper-to-mid-crustal levels. Along the major, southeastward propagating Macamic D2 dextral strike-slip fault, Theological and preexisting D1 structural heterogeneities induced the development of NNW-trending dextral-oblique splays which evolved into an extensional trailing fan and created an extensional, NNW-dipping stepover. Magma flowing upwards from deeper parts of the Macamic Fault spread towards the southeast at upper crustal levels along both the oblique-slip and extensional D2 splays, and built several plutons in a pull-apart domain between 2696 and 2690 Ma. Different emplacement and material transfer mechanisms operated simultaneously in different parts of the system, including fault dilation and wedging, lateral expansion, wall-rock ductile flow and stoping. Transfer of movement between D2 splays occurred under ductile conditions during syn-emplacement, amphibolite-grade metamorphism (500-700 °C). During cooling (< 2690 Ma), narrower brittle-ductile zones of greenschist-grade shearing were concentrated along the pluton-wall rock contacts, but the extensional stepover locked since both normal and reverse movements occurred along NNW-dipping faults. Pluton emplacement, contact metamorphism and propagation of D2 faults appear to have been closely linked during the Superior Province-wide late transpressional event.

  1. Static internal performance of a single-engine onaxisymmetric-nozzle vaned-thrust-reverser design with thrust modulation capabilities

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Burley, J. R., II

    1985-01-01

    An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.

  2. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering

    PubMed Central

    Schmidt, Nathan W.; Wong, Gerard C. L.

    2013-01-01

    Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This ‘saddle-splay curvature selection rule’ is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials. PMID:24778573

  3. Command of active matter by topological defects and patterns

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Turiv, Taras; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg D.

    2016-11-01

    Self-propelled bacteria are marvels of nature with a potential to power dynamic materials and microsystems of the future. The challenge lies in commanding their chaotic behavior. By dispersing swimming Bacillus subtilis in a liquid crystalline environment with spatially varying orientation of the anisotropy axis, we demonstrate control over the distribution of bacterial concentration, as well as the geometry and polarity of their trajectories. Bacteria recognize subtle differences in liquid crystal deformations, engaging in bipolar swimming in regions of pure splay and bend but switching to unipolar swimming in mixed splay-bend regions. They differentiate topological defects, heading toward defects of positive topological charge and avoiding negative charges. Sensitivity of bacteria to preimposed orientational patterns represents a previously unknown facet of the interplay between hydrodynamics and topology of active matter.

  4. Phase retardation vs. pretilt angle in liquid crystal cells with homogeneous and inhomogeneous LC director configuration.

    PubMed

    Belyaev, Victor; Solomatin, Alexey; Chausov, Denis

    2013-02-25

    Phase retardation of both extraordinary and ordinary polarized rays passing through a liquid crystal (LC) cell with homogeneous and inhomogeneous LC director distribution is calculated as a function of the LC pretilt angle θ₀ on the cell substrates in the range 0 ≤ θ₀ ≤ 90°. The LC pretilt on both substrates can have the same or opposite direction, thereby forming homogeneous, splay, or bend director configurations. At the same pretilt angle value, the largest phase retardation ΔΦ is observed in splay LC cells, whereas the smallest phase retardation is observed in bend cells. For the θ₀ values close to 0, 45°, and 90°, analytical approximations are derived, showing that phase retardation depends on LC birefringence variation.

  5. STOVL Hot Gas Ingestion control technology

    NASA Technical Reports Server (NTRS)

    Amuedo, K. C.; Williams, B. R.; Flood, J. D.; Johns, A. L.

    1991-01-01

    A comprehensive wind tunnel test program was conducted to evaluate control of Hot Gas Ingestion (HGI) on a 9.2 percent scale model of the McDonnell Aircraft Company model 279-3C advanced Short Takeoff and Vertical Landing (STOVL) configuration. The test was conducted in the NASA-Lewis Research Center 9 ft by 15 ft Low Speed Wind Tunnel during the summer of 1987. Initial tests defined baseline HGI levels as determined by engine face temperature rise and temperature distortion. Subsequent testing was conducted to evaluate HGI control parametrically using Lift Improvement Devices (LIDs), forward nozzle splay angle, a combination of LIDs and forward nozzle splay angle, and main inlet blocking. The results from this test program demonstrate that HGI can be effectively controlled and that HGI is not a barrier to STOVL aircraft development.

  6. Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.

    2009-04-01

    Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.

  7. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    NASA Astrophysics Data System (ADS)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques derived from imagery acquired by an unmanned aerial vehicle and ground control points measured with realtime kinematic GPS receivers. This terrain model will be combined with subsurface geophysical data to form a comprehensive model of the subsurface.

  8. Geophysical Characterization of the Hilton Creek Fault System

    NASA Astrophysics Data System (ADS)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography, various models of the Hilton Creek Fault System and cross-sections through focal mechanism and earthquake catalogs, and will attempt to integrate these observations into a single fault geometry model.

  9. Seismic imaging and hydrogeologic characterization of the Potomac Formation in northern New Castle County, Delaware

    NASA Astrophysics Data System (ADS)

    Zullo, Claudia Cristina

    Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to short distances, contrary to correlations in previous studies that have indicated connection of sands at distances of at least 3 km. The results highlight the importance of integrating multiple sources of geologic information for the interpretation of the stratigraphic architecture of non-marine sediments, and the value of roadway-based land-streamer seismic data for the interpretation of near-surface (less than 300-m-depth) aquifer sand characteristics in developed areas.

  10. Focused rock uplift above the subduction décollement at Montague and Hinchinbrook Islands, Prince William Sound, Alaska

    USGS Publications Warehouse

    Ferguson, Kelly M; Armstrong, Phillip A; Arkle Jeanette C,; Haeussler, Peter J.

    2014-01-01

    Megathrust splay fault systems in accretionary prisms have been identified as conduits for long-term plate motion and significant coseismic slip during subduction earthquakes. These fault systems are important because of their role in generating tsunamis, but rarely are emergent above sea level where their long-term (million year) history can be studied. We present 32 apatite (U-Th)/He (AHe) and 27 apatite fission-track (AFT) ages from rocks along an emergent megathrust splay fault system in the Prince William Sound region of Alaska above the shallowly subducting Yakutat microplate. The data show focused exhumation along the Patton Bay megathrust splay fault system since 3–2 Ma. Most AHe ages are younger than 5 Ma; some are as young as 1.1 Ma. AHe ages are youngest at the southwest end of Montague Island, where maximum fault displacement occurred on the Hanning Bay and Patton Bay faults and the highest shoreline uplift occurred during the 1964 earthquake. AFT ages range from ca. 20 to 5 Ma. Age changes across the Montague Strait fault, north of Montague Island, suggest that this fault may be a major structural boundary that acts as backstop to deformation and may be the westward mechanical continuation of the Bagley fault system backstop in the Saint Elias orogen. The regional pattern of ages and corresponding cooling and exhumation rates indicate that the Montague and Hinchinbrook Island splay faults, though separated by only a few kilometers, accommodate kilometer-scale exhumation above a shallowly subducting plate at million year time scales. This long-term pattern of exhumation also reflects short-term seismogenic uplift patterns formed during the 1964 earthquake. The increase in rock uplift and exhumation rate ca. 3–2 Ma is coincident with increased glacial erosion that, in combination with the fault-bounded, narrow width of the islands, has limited topographic development. Increased exhumation starting ca. 3–2 Ma is interpreted to be due to rock uplift caused by increased underplating of sediments derived from the Saint Elias orogen, which was being rapidly eroded at that time.

  11. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  12. Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.

    PubMed

    Cheng, Jian; Basser, Peter J

    2018-01-01

    In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 52. SUPREME COURT ROOM, SOUTH WALL, WEST WINDOW DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. SUPREME COURT ROOM, SOUTH WALL, WEST WINDOW DETAIL OF EAST SPLAYED JAMB AND TRIM (NOTE REPAIRED AREAS) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  14. Command of active matter by topological defects and patterns.

    PubMed

    Peng, Chenhui; Turiv, Taras; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg D

    2016-11-18

    Self-propelled bacteria are marvels of nature with a potential to power dynamic materials and microsystems of the future. The challenge lies in commanding their chaotic behavior. By dispersing swimming Bacillus subtilis in a liquid crystalline environment with spatially varying orientation of the anisotropy axis, we demonstrate control over the distribution of bacterial concentration, as well as the geometry and polarity of their trajectories. Bacteria recognize subtle differences in liquid crystal deformations, engaging in bipolar swimming in regions of pure splay and bend but switching to unipolar swimming in mixed splay-bend regions. They differentiate topological defects, heading toward defects of positive topological charge and avoiding negative charges. Sensitivity of bacteria to preimposed orientational patterns represents a previously unknown facet of the interplay between hydrodynamics and topology of active matter. Copyright © 2016, American Association for the Advancement of Science.

  15. Complex Channel Avulsion in the Meghna River Foodplain During the Mid to Late Holocene: The Potential Effect of Tectonic and Co-Seismic Uplift

    NASA Astrophysics Data System (ADS)

    Dunham, A.; Grall, C.; Mondal, D. R.; Steckler, M. S.; Rajapara, H.; Kumar, B.; Philibosian, B.; Akhter, S. H.; Singhvi, A. K.

    2016-12-01

    Channel migrations and river avulsions in deltaic river systems are mainly driven by differential changes of surface topography, such as the superelevation of channels due to sedimentation. In addition to such autocyclic processes, tectonic events, such as earthquakes, may also lead to avulsions from sudden uplift. The eastern part of the Ganges-Brahmaputra-Meghna Delta (GBMD) is underlain by the blind megathrust of the IndoBurma subduction zone. In this region we investigate a 100 km long sinuous abandoned channel of the Meghna River. Immediately south of the channel, it has been previously shown that the topography is slightly higher than on the rest of the Delta and there is an oxidized Holocene exposure surface. Part of the Titas River flows northward from this area into the abandoned channel belt, opposite of the southward flowing rivers of the delta. We provide results from a detailed investigation of this abandoned channel of the Meghna River using stratigraphic logs of hand-drilled wells, resistivity profiles, sediment analyses and OSL and C14 dating, The OSL ages to be presented constrain the possible date of the event. We employ numerical modeling to evaluate the hypothesis that the co-seismic uplift associated to an earthquake can trigger the channel migration. Our modeling approach aims to estimate the co-seismic uplift associated with potential seismic events using an elastic Coulomb's dislocation model. The geometry fault in our model is estimated using geologic and GPS constraints with standard elastic parameters (Young's modulus = 80 GPa; Poisson's ratio = 0.3). We explored different potential earthquakes geometries that involve the megathrust, a splay fault, or the megathrust terminating in the splay. The magnitude and distribution of co-seismic slip are also varied between a rupture length of 112.5km and 180km along a 225km long fault. We show that any class of models can produce the amount of uplift (1-2 m) necessary for triggering the river avulsion. Thus the avulsion could be due to a >M8 megathrust earthquake or a M7 splay fault rupture. In either case, the rupture cannot extend west of the abandoned channel to the current Meghna River, and thus did not rupture to the deformation front, where the megacity of Dhaka now lies.

  16. Earth observation taken by the Expedition 42 crew

    NASA Image and Video Library

    2015-03-02

    ISS042E311037 (03/02/2015) --- A waning sun, splayed its light across the planet and created this serene scene. US astronauts aboard the International Space Station snapped this Earth Observation on Mar 2, 2015.

  17. Evolution of fluvial styles in the Eocene Wasatch Formation, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Warwick, Peter D.; Flores, Romeo M.; Ethridge, Frank G.; Flores, Romeo M.

    1987-01-01

    Vertical and lateral facies changes in the lower part of the Eocene Wasatch Formation in the Powder River Basin, Wyoming represent an evolution of fluvial systems that varied from meandering to anastomosing. The meandering facies in the lower part of the study interval formed in a series of broad meanderbelts in a northnorthwestflowing system. Upon abandonment this meanderbelt facies served as a topographic high on which a raised or ombrotrophic Felix peat swamp developed. Peat accumulated until compaction permitted encroachment of crevasse splays from an adjoining transitional facies which consists of deposits of a slightly sinuous fluvial system. Crevasse splays eventually prograded over the peat swamp that was partly covered by lakes. Bifurcation, reunification, and transformation of crevasse channels into major conduits produced an anastomosing system that was characterized by diverging and converging channels separated by floodbasins drowned by lakes and partly covered swamps.

  18. Defect Interactions in Anisotropic Two-Dimensional Fluids

    NASA Astrophysics Data System (ADS)

    Stannarius, R.; Harth, K.

    2016-10-01

    Disclinations in liquid crystals bear striking analogies to defect structures in a wide variety of physical systems, and their straightforward optical observability makes them excellent models to study fundamental properties of defect interactions. We employ freely suspended smectic-C films, which behave as quasi-two-dimensional polar nematics. A procedure to capture high-strength disclinations in localized spots is introduced. These disclinations are released in a controlled way, and the motion of the mutually repelling topological charges with strength +1 is studied quantitatively. We demonstrate that the classical models, which employ elastic one-constant approximation, fail to describe their dynamics correctly. In realistic liquid crystals, even small differences between splay and bend constants lead to the selection of pure splay or pure bend +1 defects. For those, the models work only in very special configurations. In general, additional director walls are involved which reinforce the repulsive interactions substantially.

  19. Multistage extensional evolution of the central East Greenland Caledonides

    NASA Astrophysics Data System (ADS)

    White, Arthur P.; Hodges, Kip V.

    2002-10-01

    Recent field investigations in the central East Greenland Caledonides (72°-74°N) resulted in the identification of an orogen-scale extensional fault system called the Fjord Region Detachment (FRD). Previous geochronologic constraints on this deformation indicated that the FRD was active circa 430-425 Ma, a time when the Baltica-Laurentia collision was thought to be occurring, and continued to be active for up to 80 million years. We present new 40Ar/39Ar thermochronologic data from an E-W transect that cuts across two splays of the FRD. Our data demonstrate that at least two distinct episodes of faulting were responsible for extension in the East Greenland Caledonides: an earlier phase (circa 425-423 Ma) that was synorogenic and penetrated to middle-crustal levels, followed by a post-Caledonian phase of reactivation (˜414 to 380 Ma) that affected even deeper structural levels. Furthermore, we present in situ UV laser 40Ar/39Ar data for pseudotachylite collected along the deepest splay of the FRD that indicate this fault was active again as recently as ˜357 Ma (coeval with Devonian basin formation). Altogether, our data suggest that rather than being active continuously for 80 million years, the FRD consisted of multiple splays that were active for shorter intervals over discrete time periods separated by as much as 60 million years. Finally, our data provide evidence that young extensional deformation associated with postorogenic collapse in East Greenland was not restricted to the formation of sedimentary basins in the far eastern part of the orogen, but also resulted in deformation of the Archean-Paleozoic crystalline basement.

  20. Landslides and megathrust splay faults captured by the late Holocene sediment record of eastern Prince William Sound, Alaska

    USGS Publications Warehouse

    Finn, S.P.; Liberty, Lee M.; Haeussler, Peter J.; Pratt, Thomas L.

    2015-01-01

    We present new marine seismic‐reflection profiles and bathymetric maps to characterize Holocene depositional patterns, submarine landslides, and active faults beneath eastern and central Prince William Sound (PWS), Alaska, which is the eastern rupture patch of the 1964 Mw 9.2 earthquake. We show evidence that submarine landslides, many of which are likely earthquake triggered, repeatedly released along the southern margin of Orca Bay in eastern PWS. We document motion on reverse faults during the 1964 Great Alaska earthquake and estimate late Holocene slip rates for these growth faults, which splay from the subduction zone megathrust. Regional bathymetric lineations help define the faults that extend 40–70 km in length, some of which show slip rates as great as 3.75  mm/yr. We infer that faults mapped below eastern PWS connect to faults mapped beneath central PWS and possibly onto the Alaska mainland via an en echelon style of faulting. Moderate (Mw>4) upper‐plate earthquakes since 1964 give rise to the possibility that these faults may rupture independently to potentially generate Mw 7–8 earthquakes, and that these earthquakes could damage local infrastructure from ground shaking. Submarine landslides, regardless of the source of initiation, could generate local tsunamis to produce large run‐ups along nearby shorelines. In a more general sense, the PWS area shows that faults that splay from the underlying plate boundary present proximal, perhaps independent seismic sources within the accretionary prism, creating a broad zone of potential surface rupture that can extend inland 150 km or more from subduction zone trenches.

  1. New access to the deep interior of the Nankai accretionary complex and comprehensive characterization of subduction inputs and recent mega splay fault activity (IODP-NanTroSEIZE Expedition 338)

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Moore, Gregory F.; Kanagawa, Kyuichi; Dugan, Brandon; Fabbri, Olivier; Toczko, Sean; Maeda, Lena

    2013-04-01

    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multi-expedition Integrated Ocean Drilling Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. IODP Expedition 338 (1 October 2012 - 13 January 2013), extended riser Hole C0002F from 856 meters below the sea floor (mbsf) to 2005 mbsf. Site C0002 is the centerpiece of the NanTroSEIZE project, and is planned to be deepened to eventually reach the seismogenic fault zone during upcoming drilling expeditions. The original Exp. 338 operational plan to case the hole to 3600 mbsf had to be revised as sudden changes in sea conditions resulted in damage to parts of the riser system, thus the hole was suspended at 2005 mbsf but left for future re-entry. The revised operation plan included additional riserless logging and coring of key targets not sampled during previous NanTroSEIZE expeditions, but relevant to comprehensively characterize the alteration stage of the oceanic basement input to the subduction zone, the early stage of Kumano Basin evolution and the recent activity of the shallow mega splay fault zone system and submarine landslides. Here we present preliminary results from IODP Exp. 338: Logging While Drilling (LWD), mud gas monitoring and analysis on cuttings from the deep riser hole characterize two lithological units within the internal accretionary prism, separated by a prominent fault zone at ~1640 mbsf. Internal style of deformation, downhole increase of thermogenically formed formation gas and evidence for mechanical compaction and cementation document a complex structural evolution and provide unprecedented insights into the mechanical state and behavior of the wedge at depth. Additionally, multiple samples of the unconformity between the Kumano Basin and accretionary prism at Site C0002 shed new light on this debatable unconformity boundary and suggest variable erosional processes active on small spatial scales. Results from riserless drilling at input Site C0012 include 178.7 m of detailed LWD characterization of the oceanic basement, indicating an upper ~100 m zone of altered pillow basalts and sheet flow deposits, and a lower, presumably less altered basement unit without indication for interlayered sediment horizons. Low angle faults identified in X-ray Computed Tomography images and structural investigation on cores from Site C0022, located in the slope basin immediately seaward of the megasplay fault zone, indicate splay-fault-related, out-of-sequence thrusting within slope basin sediments and shed new light on recent activity of the megasplay. Lastly, Exp. 338 added additional coring to improve our understanding of submarine landslides in the slope basins seaward of the splay fault and yields new LWD data to characterize in situ internal structures and properties of mass-transport deposits as it relates to the dynamics and kinematics of submarine landslides.

  2. Initial results from the Nankai Trough shallow splay and frontal thrust (IODP Expedition 316): Implications for fluid flow

    NASA Astrophysics Data System (ADS)

    Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.

    2008-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.

  3. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Madden, E. H.; Wollherr, S.; Uphoff, C.; Rettenberger, S.; Bader, M.

    2017-12-01

    SeisSol (www.seissol.org) is an open-source software package based on an arbitrary high-order derivative Discontinuous Galerkin method (ADER-DG). It solves spontaneous dynamic rupture propagation on pre-existing fault interfaces according to non-linear friction laws, coupled to seismic wave propagation with high-order accuracy in space and time (minimal dispersion errors). SeisSol exploits unstructured meshes to account for complex geometries, e.g. high resolution topography and bathymetry, 3D subsurface structure, and fault networks. We present the up-to-date largest (1500 km of faults) and longest (500 s) dynamic rupture simulation modeling the 2004 Sumatra-Andaman earthquake. We demonstrate the need for end-to-end-optimization and petascale performance of scientific software to realize realistic simulations on the extreme scales of subduction zone earthquakes: Considering the full complexity of subduction zone geometries leads inevitably to huge differences in element sizes. The main code improvements include a cache-aware wave propagation scheme and optimizations of the dynamic rupture kernels using code generation. In addition, a novel clustered local-time-stepping scheme for dynamic rupture has been established. Finally, asynchronous output has been implemented to overlap I/O and compute time. We resolve the frictional sliding process on the curved mega-thrust and a system of splay faults, as well as the seismic wave field and seafloor displacement with frequency content up to 2.2 Hz. We validate the scenario by geodetic, seismological and tsunami observations. The resulting rupture dynamics shed new light on the activation and importance of splay faults.

  4. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm.

    PubMed

    Kozlovsky, Yonathan; Chernomordik, Leonid V; Kozlov, Michael M

    2002-11-01

    Lipid bilayer fusion is thought to involve formation of a local hemifusion connection, referred to as a fusion stalk. The subsequent fusion stages leading to the opening of a fusion pore remain unknown. The earliest fusion pore could represent a bilayer connection between the membranes and could be formed directly from the stalk. Alternatively, fusion pore can form in a single bilayer, referred to as hemifusion diaphragm (HD), generated by stalk expansion. To analyze the plausibility of stalk expansion, we studied the pathway of hemifusion theoretically, using a recently developed elastic model. We show that the stalk has a tendency to expand into an HD for lipids with sufficiently negative spontaneous splay, (~)J(s)< 0. For different experimentally relevant membrane configurations we find two characteristic values of the spontaneous splay. (~)J*(s) and (~)J**(s), determining HD dimension. The HD is predicted to have a finite equilibrium radius provided that the spontaneous splay is in the range (~)J**(s)< (~)J(s)<(~)J*(s), and to expand infinitely for (~)J(s)<(~)J**(s). In the case of common lipids, which do not fuse spontaneously, an HD forms only under action of an external force pulling the diaphragm rim apart. We calculate the dependence of the HD radius on this force. To address the mechanism of fusion pore formation, we analyze the distribution of the lateral tension emerging in the HD due to the establishment of lateral equilibrium between the deformed and relaxed portions of lipid monolayers. We show that this tension concentrates along the HD rim and reaches high values sufficient to rupture the bilayer and form the fusion pore. Our analysis supports the hypothesis that transition from a hemifusion to a fusion pore involves radial expansion of the stalk.

  5. Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA

    USGS Publications Warehouse

    Witter, Robert C.; Zhang, Yinglong J.; Wang, Kelin; Priest, George R.; Goldfinger, Chris; Stimely, Laura; English, John T.; Ferro, Paul A.

    2013-01-01

    Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic tree that evaluates a model’s consistency with geological and geophysical data. The scenarios provide inputs to a hydrodynamic model, SELFE, used to simulate tsunami generation, propagation, and inundation on unstructured grids with <5–15 m resolution in coastal areas. Tsunami simulations delineate the likelihood that Cascadia tsunamis will exceed mapped inundation lines. Maximum wave elevations at the shoreline varied from ∼4 m to 25 m for earthquakes with 9–44 m slip and Mw 8.7–9.2. Simulated tsunami inundation agrees with sparse deposits left by the A.D. 1700 and older tsunamis. Tsunami simulations for large (22–30 m slip) and medium (14–19 m slip) splay fault scenarios encompass 80%–95% of all inundation scenarios and provide reasonable guidelines for land-use planning and coastal development. The maximum tsunami inundation simulated for the greatest splay fault scenario (36–44 m slip) can help to guide development of local tsunami evacuation zones.

  6. Field-Effects in Large Axial Ratio Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Lonberg, Franklin J.

    This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.

  7. Distribution of very low frequency earthquakes in the Nankai accretionary prism influenced by a subducting-ridge

    NASA Astrophysics Data System (ADS)

    Toh, Akiko; Obana, Koichiro; Araki, Eiichiro

    2018-01-01

    We investigated the distribution of very low frequency earthquakes (VLFEs) that occurred in the shallow accretionary prism of the eastern Nankai trough during one week of VLFE activity in October 2015. They were recorded very close from the sources by an array of broadband ocean bottom seismometers (BBOBSs) equipped in Dense Oceanfloor Network system for Earthquakes and Tsunamis 1 (DONET1). The locations of VLFEs estimated using a conventional envelope correlation method appeared to have a large scatter, likely due to effects of 3D structures near the seafloor and/or sources that the method could not handle properly. Therefore, we assessed their relative locations by introducing a hierarchal clustering analysis based on patterns of relative peak times of envelopes within the array measured for each VLFE. The results suggest that, in the northeastern side of the network, all the detected VLFEs occur 30-40 km landward of the trench axis, near the intersection of a splay fault with the seafloor. Some likely occurred along the splay fault. On the other hand, many VLFEs occur closer to the trench axis in the southwestern side, likely along the plate boundary, and the VLFE activity in the shallow splay fault appears less intense, compared to the northeastern side. Although this could be a snap-shot of activity that becomes more uniform over longer-term, the obtained distribution can be reasonably explained by the change in shear stresses and pore pressures caused by a subducting-ridge below the northeastern side of DONET1. The change in stress state along the strike of the plate boundary, inferred from the obtained VLFE distribution, should be an important indicator of the strain release pattern and localised variations in the tsunamigenic potential of this region.

  8. 17. Detail view southwest showing brick parapet, wood entablature, brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Detail view southwest showing brick parapet, wood entablature, brick pilasters with molded wood caps, splayed arch and arched window lintels of north elevation of west operator's house. - Yellow Mill Bridge, Spanning Yellow Mill Channel at Stratford Avenue, Bridgeport, Fairfield County, CT

  9. Effects of age and body mass index on breast characteristics: A cluster analysis.

    PubMed

    Coltman, Celeste E; Steele, Julie R; McGhee, Deirdre E

    2018-05-24

    Limited research has quantified variation in the characteristics of the breasts among women and determined how these breast characteristics are influenced by age and body mass. The aim of this study was to classify the breasts of women in the community into different categories based on comprehensive and objective measurements of the characteristics of their breasts and torsos, and to determine the effect of age and body mass index (BMI) on the prevalence of these breast categories. Four breast characteristic clusters were identified (X-Large, Very-ptotic & Splayed; Large, Ptotic & Splayed; Medium & Mildly-ptotic; and Small & Non-ptotic), with age and BMI shown to significantly affect the breast characteristic clusters. These results highlight the difference in breast characteristics exhibited among women and how these clusters are affected by age and BMI. The breast characteristic clusters identified in this study could be used as a basis for future bra designs and sizing systems in order to improve bra fit for women.

  10. Noise radiation directivity from a wind-tunnel inlet with inlet vanes and duct wall linings

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Phillips, J. D.

    1986-01-01

    The acoustic radiation patterns from a 1/15th scale model of the Ames 80- by 120-Ft Wind Tunnel test section and inlet have been measured with a noise source installed in the test section. Data were acquired without airflow in the duct. Sound-absorbent inlet vanes oriented parallel to each other, or splayed with a variable incidence relative to the duct long axis, were evaluated along with duct wall linings. Results show that splayed vans tend to spread the sound to greater angles than those measured with the open inlet. Parallel vanes narrowed the high-frequency radiation pattern. Duct wall linings had a strong effect on acoustic directivity by attenuating wall reflections. Vane insertion loss was measured. Directivity results are compared with existing data from square ducts. Two prediction methods for duct radiation directivity are described: one is an empirical method based on the test data, and the other is a analytical method based on ray acoustics.

  11. Sympathetic Chain Schwannoma Resembling Carotid Body Tumour.

    PubMed

    Najeeb, Tallat; Khan, Musaddiq

    2016-06-01

    Schwannomas are rare, benign nerve sheath tumours of parapharyngeal space. Differential diagnosis should include salivary gland tumours, paragangliomas, neurofibromas, and metastatic lymph nodes. The tumours may arise from vagus nerve and cervical sympathetic chain (CSC). Diagnosis is usually made by imaging techniques: contrast CT, magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA). Fine needle aspiration cytology (FNAC) is useful diagnostic procedure but poor results are seen in neurogenic tumours. Rarely, a vascular CSC schwannoma at the level of carotid arteries bifurcation may mimic carotid body tumour (CBT) on imaging techniques, especially if they are vascular, causing splaying of internal and external carotid arteries. Clinically patient was asymptomatic except for a pulsatile swelling in neck for 5 years. The presented case resembled CBTclinically, on ultrasound and on imaging techniques causing splaying of carotid arteries. FNAC was inconclusive and was always hemorrhagic. During operation, it was found to be CSC schwannoma just posterior to carotid body. CSC was sacrificed and patient developed Horner syndrome postoperatively.

  12. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    USGS Publications Warehouse

    Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.

    2008-01-01

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.

  13. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side-chain and a main-chain LCP nematic solutions were investigated. The addition of the side-chain LCP into a flow-aligning LMMN (5CB) induces director tumbling in the mixture, and, the dissolution of the main-chain LCP into a director tumbling LMMN (8CB) makes the solution become a flow-aligning nematic. Based on the hydrodynamic theory, these observations are further confirmation of the chain anisotropies of the LCPs investigated. Ericksen's transversely isotropic fluid model was used to extract the various viscosity coefficients with good accuracy. In addition, we believe that this is the first time the bulk rheological consequences of director tumbling in LMMNs has been observed.

  14. 379. Delineator Unknown December 1932 STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    379. Delineator Unknown December 1932 STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; CABLES AND ATTACHMENTS - WEST BAY CROSSING; SPLAY CASTINGS; CONTRACT NO. 6A; DRAWING NO. 4 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  15. Active tectonic of the Medlicott Wadia Thrust (Western Himalaya) inferred from morphotectonic analysis

    NASA Astrophysics Data System (ADS)

    Vignon, V.; Mugnier, J. L.; Replumaz, A.; Vassallo, R.; Ramakrishnan, R.; Srivastava, P.; Malik, M. M.; Jouanne, F.; Carcaillet, J.

    2010-12-01

    We study the main emergence of the Main Himalayan Thrust (MHT), in the western Himalaya. The MHT is the active Indian/Asian plate boundary and is responsible for M > 8 shallow earthquakes. Its main emergence in west Himalaya occurred along the Medlicott Wadia Thrust (MWT) responsible for the 2005 M 7.6 Balakot earthquake in Pakistan. In the Riasi area, two major rivers, the Chenab and the Anji, have built large fluvial terraces across the MWT. We have mapped the geometry of the terraces and the elevation of the tectonic scarps using kinematic GPS, total station measurements and satellite imagery. The terraces have been dated combining several methods: cosmogenic-nuclide dating (10Be) on boulders constituting the terrace treads, and Optically Stimulated Luminescence (OSL) on fine-grained deposit layers. At the hanging wall of the fault, the Palaeozoic limestone bedrock is deeply incised by Chenab River that formed a series of stepped strath terraces from the present river level up to 350 m above it. We have mapped and measured the relative height of 8 terraces and of their alluvial cover. To estimate the incision rate of the hanging wall, we dated 3 terraces, situated respectively 375 m, 250m and 100m above the present day river bed. The highest terrace has a minimum exposure age of 28 ka. This yield a maximum incision rate of 1,3 cm/yr over the last 28 ka. At the foot wall of the fault, we have mapped 6 terraces deposited above tertiary foreland basin sediment (Siwalik). The most extended terrace, on which the Riasi city is built, forms the top of a more than 40 m thick aggradation sedimentary body, deposited between 16 and 14 ka. A tributary inflowing stream (Nodda River) deposited a steep alluvial fan above the active fault. Nodda River incised since ~4 ka its own deposits and provides a natural trench, revealing three splays of the Riasi thrust. Along the northern splay, Precambrian limestones are thrust over Quaternary sediments. This splay is sealed by Chenab and Nodda deposits and the last motion occurred in a syn-sedimentary context between 35-39 ka. Colluvial wedges related to ~few-meters-displacement paleoearthquakes are preserved within the sedimentary pile. The second splay cuts through the alluvial fan, leading to a scarp that increases towards East reaching more than 37-m-high. The southern splay folds the alluvial fan into a fault-cored anticline, leading to a 34-m-high scarp. These two fault segments are the most recent active structures of the MHT. With a total vertical displacement of ~70 m of a surface dated at around 14 ka the long term slip rate can be estimated between 4.5 and 9 mm/yr. This work confirms that the Medlicott Wadia Thrust is one of the main emergences of the Main Himalayan Thrust in western Himalaya and suggests that it is more active in the Riasi area than in the Balakot area. Considering a 5 centuries seismic gap on a >70 km segment, and a faulting behaviour able to generate several meters co-seismic movement, we may expect a major event in the next few decades in the Riasi region.

  16. Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states

    NASA Astrophysics Data System (ADS)

    Picallo, Clara B.; Riecke, Hermann

    2011-03-01

    Motivated by recent observations in neuronal systems we investigate all-to-all networks of nonidentical oscillators with adaptive coupling. The adaptation models spike-timing-dependent plasticity in which the sum of the weights of all incoming links is conserved. We find multiple phase-locked states that fall into two classes: near-synchronized states and splay states. Among the near-synchronized states are states that oscillate with a frequency that depends only very weakly on the coupling strength and is essentially given by the frequency of one of the oscillators, which is, however, neither the fastest nor the slowest oscillator. In sufficiently large networks the adaptive coupling is found to develop effective network topologies dominated by one or two loops. This results in a multitude of stable splay states, which differ in their firing sequences. With increasing coupling strength their frequency increases linearly and the oscillators become less synchronized. The essential features of the two classes of states are captured analytically in perturbation analyses of the extended Kuramoto model used in the simulations.

  17. Note: Formation of the nematic splay-bend in two-dimensional systems of bow-shaped particles

    NASA Astrophysics Data System (ADS)

    Karbowniczek, Paweł

    2018-04-01

    Recently, Tavarone et al. (J. Chem. Phys. 143, 114505 (2015)) discussed phase behavior of zig-zag and bow-shaped particles composed of three needles. The authors presented very interesting results of extensive Monte Carlo simulations with periodic boundary conditions in the constant-NVT and the constant-NPT ensembles. In addition to isotropic, nematic, and smectic phases, they identified a modulated nematic, which is actually the nematic splay-bend phase ($N_{SB}$), long-anticipated for bent-core systems (Europhys. Lett. 56, 247 (2001)). They also described isotropic-nematic and nematic-smectic transitions using Density Functional Theory in mean-field approximation. The authors, however, did not provided a theoretical description of the $N_{SB}$. Here, we present a simple theory of a phase transition to the $N_{SB}$ phase to fill the gap. In our study, we use Onsager-type Density Functional Theory with perfect order approximation and Meyer parametrization of modulated structures. We present results for arbitrary ratios of the length of central and side segments and opening angles of bow-shaped particles.

  18. Elastic moduli of a smectic membrane: a rod-level scaling analysis

    NASA Astrophysics Data System (ADS)

    Wensink, H. H.; Morales Anda, L.

    2018-02-01

    Chiral rodlike colloids exposed to strong depletion attraction may self-assemble into chiral membranes whose twisted director field differs from that of a 3D bulk chiral nematic. We formulate a simple microscopic variational theory to determine the elastic moduli of rods assembled into a bidimensional smectic membrane. The approach is based on a simple Onsager-Straley theory for a non-uniform director field that we apply to describe rod twist within the membrane. A microscopic approach enables a detailed estimate of the individual Frank elastic moduli (splay, twist and bend) as well as the twist penetration depth of the smectic membrane in relation to the rod density and shape. We find that the elastic moduli are distinctly different from those of a bulk nematic fluid, with the splay elasticity being much stronger and the curvature elasticity much weaker than for rods assembled in a three-dimensional nematic fluid. We argue that the use of the simplistic one-constant approximation in which all moduli are assumed to be of equal magnitude is not appropriate for modelling the structure-property relation of smectic membranes.

  19. Previously unrecognized now-inactive strand of the North Anatolian fault in the Thrace basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perincek, D.

    1988-08-01

    The North Anatolian fault is a major 1,200 km-long transform fault bounding the Anatolian plate to the north. It formed in late middle Miocene time as a broad shear zone with a number of strands splaying westward in a horsetail fashion. Later, movement became localized along the stem, and the southerly and northerly splays became inactive. One such right-lateral, now-inactive splay is the west-northwest-striking Thrace strike-slip fault system, consisting of three subparallel strike-slip faults. From north to south these are the Kirklareli, Lueleburgaz, and Babaeski fault zones, extending {plus minus} 130 km along the strike. The Thrace fault zone probablymore » connected with the presently active northern strand of the North Anatolian fault in the Sea of Marmara in the southeast and may have joined the Plovdiv graben zone in Bulgaria in the northwest. The Thrace basin in which the Thrace fault system is located, is Cenozoic with a sedimentary basin fill from middle Eocene to Pliocene. The Thrace fault system formed in pre-Pliocene time and had become inactive by the Pliocene. Strike-slip fault zones with normal and reverse separation are detected by seismic reflection profiles and subsurface data. Releasing bend extensional structures (e.g., near the town of Lueleburgaz) and restraining bend compressional structures (near Vakiflar-1 well) are abundant on the fault zones. Umurca and Hamitabad fields are en echelon structures on the Lueleburgaz fault zone. The Thrace strike-slip fault system has itself a horsetail shape, the various strands of which become younger southward. The entire system died before the Pliocene, and motion on the North Anatolian fault zone began to be accommodated in the Sea of Marmara region. Thus the Thrace fault system represents the oldest strand of the North Anatolian fault in the west.« less

  20. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  1. Cold seeps and splay faults on Nankai margin

    NASA Astrophysics Data System (ADS)

    Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.

    2003-04-01

    Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two fault systems tap in different sources.

  2. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.

    2012-01-01

    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed during late-stage fault zone reorganization. The Santa Rosa pull-apart basin formed ca. 1 Ma, during the reorganization of the right stepover geometry of the Rodgers Creek–Maacama fault system, when the maturely evolved overlapping geometry of the northern Rodgers Creek and Maacama fault zones was overprinted by a less evolved, non-overlapping stepover geometry. The Rodgers Creek–Maacama fault system has contributed at least 44–53 km of right-lateral displacement to the East Bay fault system south of San Pablo Bay since 7 Ma, at a minimum rate of 6.1–7.8 mm/yr.

  3. Three-dimensional splay fault geometry and implications for tsunami generation.

    PubMed

    Moore, G F; Bangs, N L; Taira, A; Kuramoto, S; Pangborn, E; Tobin, H J

    2007-11-16

    Megasplay faults, very long thrust faults that rise from the subduction plate boundary megathrust and intersect the sea floor at the landward edge of the accretionary prism, are thought to play a role in tsunami genesis. We imaged a megasplay thrust system along the Nankai Trough in three dimensions, which allowed us to map the splay fault geometry and its lateral continuity. The megasplay is continuous from the main plate interface fault upwards to the sea floor, where it cuts older thrust slices of the frontal accretionary prism. The thrust geometry and evidence of large-scale slumping of surficial sediments show that the fault is active and that the activity has evolved toward the landward direction with time, contrary to the usual seaward progression of accretionary thrusts. The megasplay fault has progressively steepened, substantially increasing the potential for vertical uplift of the sea floor with slip. We conclude that slip on the megasplay fault most likely contributed to generating devastating historic tsunamis, such as the 1944 moment magnitude 8.1 Tonankai event, and it is this geometry that makes this margin and others like it particularly prone to tsunami genesis.

  4. Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea

    NASA Astrophysics Data System (ADS)

    Arfai, Jashar; Lutz, Rüdiger; Franke, Dieter; Gaedicke, Christoph; Kley, Jonas

    2016-04-01

    The architecture of intra-chalk deposits in the `Entenschnabel' area of the German North Sea is studied based on 3D seismic data. Adapted from seismic reflection characteristics, four types of mass-transport deposits (MTDs) are distinguished, i.e. slumps, slides, channels and frontal splay deposits. The development of these systems can be linked to inversion tectonics and halotectonic movements of Zechstein salt. Tectonic uplift is interpreted to have caused repeated tilting of the sea floor. This triggered large-scale slump deposition during Turonian-Santonian times. Slump deposits are characterised by chaotic reflection patterns interpreted to result from significant stratal distortion. The south-eastern study area is characterised by a large-scale frontal splay complex. This comprises a network of shallow channel systems arranged in a distributive pattern. Several slide complexes are observed near the Top Chalk in Maastrichtian and Danian sediments. These slides are commonly associated with large incisions into the sediments below. Best reservoir properties with high producible porosities are found in the reworked chalk strata, e.g. Danish North Sea, therefore MTDs detected in the study area are regarded as potential hydrocarbon reservoirs and considered as exploration targets.

  5. Near-field interaction of colloid near wavy walls

    NASA Astrophysics Data System (ADS)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  6. Juvenile-onset distal myopathy in Rottweiler dogs.

    PubMed

    Hanson, S M; Smith, M O; Walker, T L; Shelton, G D

    1998-01-01

    Two juvenile Rottweiler siblings were presented with the complaint of decreased activity and various postural abnormalities, including plantigrade and palmigrade stance and splayed forepaw digits. The neurologic examinations were otherwise normal. Electromyography revealed rare fibrillation potentials and positive sharp waves. Motor nerve conduction velocities were normal, whereas compound muscle action potentials from the interosseous muscles were decreased. These findings were consistent with a primary myopathy. A 3rd pup from a different litter and a 4th pup from a litter with 3 of 8 affected dogs had similar clinical presentations. Histopathologic changes in fresh-frozen muscle biopsy samples were similar in all pups and consisted of myofiber atrophy with mild myonecrosis, endomysial fibrosis and replacement of muscle with fatty tissue. These changes were more severe in distal muscles than in proximal muscles. Plasma carnitine concentrations (total and free) were decreased in all pups. Muscle carnitine concentrations (total and free) were decreased in 3 of 4 pups and the least affected pup had a borderline low free muscle carnitine concentration. Abnormalities involving major metabolic pathways were not found on quantification of organic and amino acids. Dystrophin immunocytochemistry was normal in 2 dogs tested. Distal myopathies in humans are classified under the dystrophic group of muscle disorders. These 4 cases represent a form of muscular dystrophy apparently not previously reported in dogs.

  7. Observation of seafloor crustal movement using the seafloor acoustic ranging on Kumano-nada

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2010-12-01

    Along the Nankai Trough, where the Philippine Sea plate subducts under southeastern Japan with a convergence rate of about 65 mm/yr, large interplate thrust earthquakes of magnitude 8 class have occurred repeatedly with recurrence intervals of 100-200 years. About 60 years have passed since the last earthquakes happened in 1944 and 1946. Therefore it is important to monitor the tectonic activities in the Nankai Trough. Since most of the source region of the earthquakes is located beneath the ocean, an observation system is necessary in the offshore source region. We developed a seafloor acoustic ranging system to continuously monitor the seafloor crustal movement. We aim to monitor the activity in the splay faults in the rupture area of the Tonankai earthquake in the Nankai subduction zone. Slips along the active splay faults may be an important mechanism that the elastic strain caused by relative plate motion. We carried out two experiments, a short-term (one day) and a long-term (four month) experiments, to estimate the repeatability of acoustic measurements of this system. We deployed four PXPs (precision acoustic transponders) with about 600 m (M2-S1 baseline) and 920 m (M2-S2 base line) spacing in the long-term experiment. The standard deviation in acoustic measurements was about 1 cm on each baseline. In September 2008 we carried out an observation to monitor an active splay faults on Kumano-Nada prism slope. We deployed three PXPs with about 925 m (M1-S2 baseline) and 725 m (M1-S2 base line) spacing at the depth of some 2880 m. We recovered them in August 2010 to get data of acoustic measurements for 6 month and pressure measurements for 18 month. The round trip travel time shows a variation with peak-to-peak amplitude of about 1msec. We preliminarily collected the time series of round trip travel times using sound speed, which was estimated from measured temperature and pressure, and attitude data. We discuss the result of a variation of distance.

  8. Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.

    2009-12-01

    Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.

  9. Possible Strain Partitioning Between the Kumano Forearc Basin and the Slope of the Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.

    2008-12-01

    A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.

  10. Tsunami Hazard Assessment of the Northern Oregon Coast: A Multi-Deterministic Approach Tested at Cannon Beach, Oregon

    NASA Astrophysics Data System (ADS)

    Priest, G. R.; Goldfinger, C.; Wang, K.; Witter, R. C.; Zhang, Y.; Baptista, A.

    2008-12-01

    To update the tsunami hazard assessment method for Oregon, we (1) evaluate geologically reasonable variability of the earthquake rupture process on the Cascadia megathrust, (2) compare those scenarios to geological and geophysical evidence for plate locking, (3) specify 25 deterministic earthquake sources, and (4) use the resulting vertical coseismic deformations as initial conditions for simulation of Cascadia tsunami inundation at Cannon Beach, Oregon. Because of the Cannon Beach focus, the north-south extent of source scenarios is limited to Neah Bay, Washington to Florence, Oregon. We use the marine paleoseismic record to establish recurrence bins from the 10,000 year event record and select representative coseismic slips from these data. Assumed slips on the megathrust are 8.4 m (290 yrs of convergence), 15.2 m (525 years of convergence), 21.6 m (748 years of convergence), and 37.5 m (1298 years of convergence) which, if the sources were extended to the entire Cascadia margin, give Mw varying from approximately 8.3 to 9.3. Additional parameters explored by these scenarios characterize ruptures with a buried megathrust versus splay faulting, local versus regional slip patches, and seaward skewed versus symmetrical slip distribution. By assigning variable weights to the 25 source scenarios using a logic tree approach, we derived percentile inundation lines that express the confidence level (percentage) that a Cascadia tsunami will NOT exceed the line. Lines of 50, 70, 90, and 99 percent confidence correspond to maximum runup of 8.9, 10.5, 13.2, and 28.4 m (NAVD88). The tsunami source with highest logic tree weight (preferred scenario) involved rupture of a splay fault with 15.2 m slip that produced tsunami inundation near the 70 percent confidence line. Minimum inundation consistent with the inland extent of three Cascadia tsunami sand layers deposited east of Cannon Beach within the last 1000 years suggests a minimum of 15.2 m slip on buried megathrust ruptures. The largest tsunami run-up at the 99 percent isoline was from 37.5 m slip partitioned to a splay fault. This type of extreme event is considered to be very rare, perhaps once in 10,000 years based on offshore paleoseismic evidence, but it can produce waves rivaling the 2004 Indian Ocean tsunami. Cascadia coseismic deformation most similar to the Indian Ocean earthquake produced generally smaller tsunamis than at the Indian Ocean due mostly to the 1 km shallower water depth on the Cascadia margin. Inundation from distant tsunami sources was assessed by simulation of only two Mw 9.2 earthquakes in the Gulf of Alaska, a hypothetical worst-case developed by the Tsunami Pilot Study Working Group (2006) and a historical worst case, the 1964 Prince William Sound Earthquake; maximum runups were, respectively, 12.4 m and 7.5 m.

  11. Structure of the Integral Membrane Protein CAAX Protease Ste24p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor Jr., Edward E.; Horanyi, Peter S.; Clark, Kathleen M.

    2012-10-26

    Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a -factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavitymore » containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.« less

  12. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery looking at the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. Note the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation Blanket and the black High-temperature Reusable Surface Insulation tiles along the outer edges (HRSI tiles). The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFSI) Blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges . The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view also a good detailed view of the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  15. Volcanic facies architecture of an intra-arc strike-slip basin, Santa Rita Mountains, Southern Arizona

    NASA Astrophysics Data System (ADS)

    Busby, Cathy J.; Bassett, Kari N.

    2007-09-01

    The three-dimensional arrangement of volcanic deposits in strike-slip basins is not only the product of volcanic processes, but also of tectonic processes. We use a strike-slip basin within the Jurassic arc of southern Arizona (Santa Rita Glance Conglomerate) to construct a facies model for a strike-slip basin dominated by volcanism. This model is applicable to releasing-bend strike-slip basins, bounded on one side by a curved and dipping strike-slip fault, and on the other by curved normal faults. Numerous, very deep unconformities are formed during localized uplift in the basin as it passes through smaller restraining bends along the strike-slip fault. In our facies model, the basin fill thins and volcanism decreases markedly away from the master strike-slip fault (“deep” end), where subsidence is greatest, toward the basin-bounding normal faults (“shallow” end). Talus cone-alluvial fan deposits are largely restricted to the master fault-proximal (deep) end of the basin. Volcanic centers are sited along the master fault and along splays of it within the master fault-proximal (deep) end of the basin. To a lesser degree, volcanic centers also form along the curved faults that form structural highs between sub-basins and those that bound the distal ends of the basin. Abundant volcanism along the master fault and its splays kept the deep (master fault-proximal) end of the basin overfilled, so that it could not provide accommodation for reworked tuffs and extrabasinally-sourced ignimbrites that dominate the shallow (underfilled) end of the basin. This pattern of basin fill contrasts markedly with that of nonvolcanic strike-slip basins on transform margins, where clastic sedimentation commonly cannot keep pace with subsidence in the master fault-proximal end. Volcanic and subvolcanic rocks in the strike-slip basin largely record polygenetic (explosive and effusive) small-volume eruptions from many vents in the complexly faulted basin, referred to here as multi-vent complexes. Multi-vent complexes like these reflect proximity to a continuously active fault zone, where numerous strands of the fault frequently plumb small batches of magma to the surface. Releasing-bend extension promotes small, multivent styles of volcanism in preference to caldera collapse, which is more likely to form at releasing step-overs along a strike-slip fault.

  16. The Contribution of Coseismic Displacements due to Splay Faults Into the Local Wavefield of the 1964 Alaska Tsunami

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Ruppert, N.; Fisher, M.; West, D.; Hansen, R.

    2008-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska. For many locations in the Gulf of Alaska, the 1964 tsunami generated by the Mw9.2 Great Alaska earthquake may be the worst-case tsunami scenario. We use the 1964 tsunami observations to verify our numerical model of tsunami propagation and runup, therefore it is essential to use an adequate source function of the 1964 earthquake to reduce the level of uncertainty in the modeling results. It was shown that the 1964 co-seismic slip occurred both on the megathrust and crustal splay faults (Plafker, 1969). Plafker (2006) suggested that crustal faults were a major contributor to vertical displacements that generated local tsunami waves. Using eyewitness arrival times of the highest observed waves, he suggested that the initial tsunami wave was higher and closer to the shore, than if it was generated by slip on the megathrust. We conduct a numerical study of two different source functions of the 1964 tsunami to test whether the crustal splay faults had significant effects on local tsunami runup heights and arrival times. The first source function was developed by Johnson et al. (1996) through joint inversion of the far-field tsunami waveforms and geodetic data. The authors did not include crustal faults in the inversion, because the contribution of these faults to the far-field tsunami was negligible. The second is the new coseismic displacement model developed by Suito and Freymueller (2008, submitted). This model extends the Montague Island fault farther along the Kenai Peninsula coast and thus reduces slip on the megathrust in that region. We also use an improved geometry of the Patton Bay fault based on the deep crustal seismic reflection and earthquake data. We propagate tsunami waves generated by both source models across the Pacific Ocean and record wave amplitudes at the locations of the tide gages that recorded the 1964 tsunami. As expected, the two sources produce very similar waveforms in the far field that are also in good agreement with the tide gage records. In order to study the near-field tsunami effects, we will construct embedded telescoping bathymetry grids around tsunami generation area to calculate tsunami arrival times and sea surface heights for both source models of the 1964 earthquake, and use available observation data to verify the model results.

  17. The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways

    PubMed Central

    Walley, Justin W.; Rowe, Heather C.; Xiao, Yanmei; Chehab, E. Wassim; Kliebenstein, Daniel J.; Wagner, Doris; Dehesh, Katayoon

    2008-01-01

    Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks. PMID:19079584

  18. Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay

    NASA Technical Reports Server (NTRS)

    Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan

    2004-01-01

    Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.

  19. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    PubMed

    Walley, Justin W; Rowe, Heather C; Xiao, Yanmei; Chehab, E Wassim; Kliebenstein, Daniel J; Wagner, Doris; Dehesh, Katayoon

    2008-12-01

    Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  20. Application of UAV-SfM photogrammetry and aerial lidar to a disastrous flood: repeated topographic measurement of a newly formed crevasse splay of the Kinu River, central Japan

    NASA Astrophysics Data System (ADS)

    Izumida, Atsuto; Uchiyama, Shoichiro; Sugai, Toshihiko

    2017-09-01

    Geomorphic impacts of a disastrous crevasse splay that formed in September 2015 and its post-formation modifications were quantitatively documented by using repeated, high-definition digital surface models (DSMs) of an inhabited and cultivated floodplain of the Kinu River, central Japan. The DSMs were based on pre-flood (resolution: 2 m) and post-flood (resolution: 1 m) aerial light detection and ranging (lidar) data from January 2007 and September 2015, respectively, and on structure-from-motion (SfM) photogrammetry data (resolution: 3.84 cm) derived from aerial photos taken by an unmanned aerial vehicle (UAV) in December 2015. After elimination of systematic errors among the DSMs and down-sampling of the SfM-derived DSM, elevation changes on the order of 10-1 m - including not only topography but also growth of vegetation, vanishing of flood waters, and restoration and repair works - were detected. Comparison of the DSMs showed that the volume eroded by the flood was more than twice the deposited volume in the area within 300-500 m of the breached artificial levee, where the topography was significantly affected. The results suggest that DSMs based on a combination of UAV-SfM and lidar data can be used to quantify, rapidly and in rich detail, topographic changes on floodplains caused by floods.

  1. A possible transoceanic tsunami directed toward the U.S. west coast from the Semidi segment, Alaska convergent margin

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Dartnell, Peter

    2016-01-01

    The Semidi segment of the Alaska convergent margin appears capable of generating a giant tsunami like the one produced along the nearby Unimak segment in 1946. Reprocessed legacy seismic reflection data and a compilation of multibeam bathymetric surveys reveal structures that could generate such a tsunami. A 200 km long ridge or escarpment with crests >1 km high is the surface expression of an active out-of-sequence fault zone, recently referred to as a splay fault. Such faults are potentially tsunamigenic. This type of fault zone separates the relatively rigid rock of the margin framework from the anelastic accreted sediment prism. Seafloor relief of the ridge exceeds that of similar age accretionary prism ridges indicating preferential slip along the splay fault zone. The greater slip may derive from Quaternary subduction of the Patton Murray hot spot ridge that extends 200 km toward the east across the north Pacific. Estimates of tsunami repeat times from paleotsunami studies indicate that the Semidi segment could be near the end of its current inter-seismic cycle. GPS records from Chirikof Island at the shelf edge indicate 90% locking of plate interface faults. An earthquake in the shallow Semidi subduction zone could generate a tsunami that will inundate the US west coast more than the 1946 and 1964 earthquakes because the Semidi continental slope azimuth directs a tsunami southeastward.

  2. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  3. Control on frontal thrust progression by the mechanically weak Gondwana horizon in the Darjeeling-Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Das, Animesh

    2018-03-01

    This study integrates field evidence with laboratory experiments to show the mechanical effects of a lithologically contrasting stratigraphic sequence on the development of frontal thrusts: Main Boundary Thrust (MBT) and Daling Thrust (DT) in the Darjeeling-Sikkim Himalaya (DSH). We carried out field investigations mainly along two river sections in the DSH: Tista-Kalijhora and Mahanadi, covering an orogen-parallel stretch of 20 km. Our field observations suggest that the coal-shale dominated Gondwana sequence (sandwiched between the Daling Group in the north and Siwaliks in the south) has acted as a mechanically weak horizon to localize the MBT and DT. We simulated a similar mechanical setting in scaled model experiments to validate our field interpretation. In experiments, such a weak horizon at a shallow depth perturbs the sequential thrust progression, and causes a thrust to localize in the vicinity of the weak zone, splaying from the basal detachment. We correlate this weak-zone-controlled thrust with the DT, which accommodates a large shortening prior to activation of the weak zone as a new detachment with ongoing horizontal shortening. The entire shortening in the model is then transferred to this shallow detachment to produce a new sequence of thrust splays. Extrapolating this model result to the natural prototype, we show that the mechanically weak Gondwana Sequence has caused localization of the DT and MBT in the mountain front of DSH.

  4. Integration of LiDAR and cropmark remote sensing for the study of fluvial and anthropogenic landforms in the Brenta-Bacchiglione alluvial plain (NE Italy)

    NASA Astrophysics Data System (ADS)

    Ninfo, Andrea; Mozzi, Paolo; Abbà, Tiziano

    2016-05-01

    The geomorphological study of alluvial plains takes great advantage from the integration of detailed altimetry with high-resolution images, especially in the lower-relief sectors, like those in the distal plain of the Brenta and Bacchiglione rivers near the city of Padua (mean slope 1-0.8‰). The LiDAR data which were specifically acquired for this research (Riegl LMS-Q560, mean density 7 points/m2, overall area 123 km2), were classified and interpolated in order to map fluvial and anthropogenic landforms. The acquisition was carried out in a moment of minimal vegetation luxuriance (March 2011), in order to minimize ground cover. The DEM (z accuracy < 5-10 cm) was processed and analyzed in integration with high resolution oblique and vertical, multispectral (VIS + IR) and panchromatic aerial images. These latter were acquired during the summer crop season, with the aim of maximizing the detection of vegetation response to different soils, sediments and landforms (cropmarks). A detailed field survey was conducted with soil observation, hand augerings and description of stratigraphic sections in pits, in order to validate the remote sensing interpretations. The detailed topography allowed the identification and mapping of low rise interfluves and scarps (< 1-2 m), paleochannels, scroll bars and crevasse splays. The reconstruction of a precise "ground" surface in the narrow medieval streets detailed the morphology of the multi-stratified archeological mound in the historical center of Padua. The remote sensing of cropmarks is the most appropriate method to complete the mapping of the numerous fluvial forms that have little or no topographic expression being too small (i.e. minor crevasse channels and splays) and/or flattened by anthropogenic activity (mainly plowing). LiDAR intensity permitted a precise mapping of LGM deposits that have shown peculiar reflectivity related to specific soil characteristics (i.e., presence of calcic horizons in well-drained, elevated position). High resolution images and LiDAR DEM allow the analysis of this largely anthropized low-plain environment at cell-size scale of 0.5-1 m, i.e. approximating the original complexity of the alluvial sedimentary environment. The results bring advances in the comprehension of the Last Glacial Maximum and Holocene evolution of the Brenta-Bacchiglione plain. The large-scale mapping of paleohydrographic features led to the recognition of different fluvial styles adopted by the Brenta River: i) braided to wandering paleochannels, 100-300 m wide, in fine-sediment dominated fluvioglacial LGM distal alluvial plain, ii) meandering (up to ~ 3.5) single channels, 50-100 m wide, with evidence of lateral migration in early and middle Holocene channel belts, and iii) low to medium sinuosity (~ 1.15-1.5) single channels with vertical aggradation, associated with ridges and widespread crevasse channels and splays during the middle Holocene. The derived maps provide significant support to land and urban planning, e.g., in the definition of appropriate geotechnical analysis, the estimation of buried archeological deposits in the city center, and the assessment of flooding hazard.

  5. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.

  6. Rock uplift above the subduction megathrust at Montague and Hinchinbrook Islands, Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Ferguson, Kelly M.

    Deformation related to the transition from strike-slip to convergent slip during flat-slab subduction of the Yakutat microplate has resulted in regions of focused rock uplift and exhumation. In the St. Elias and Chugach Mountains, faulting related to transpressional processes and bending of fault systems coupled with enhanced glacial erosion causes rapid exhumation. Underplating below the syntaxial bend farther west in the Chugach Mountains and central Prince William Sound causes focused, but less rapid, exhumation. Farther south in the Prince William Sound, plate boundary deformation transitions from strike-slip to nearly full convergence in the Montague Island and Hinchinbrook Island region, which is ˜20 km above the megathrust between the Yakutat microplate and overriding North American Plate. Montague and Hinchinbrook Islands are narrow, elongate, and steep, with a structural grain formed by several megathrust fault splays, some of which slipped during the 1964 M9.2 earthquake. Presented here are 32 new apatite (U-Th)/He (AHe) and 28 new apatite fission-track (AFT) ages from the Montague and Hinchinbrook Island regions. Most AHe ages are <5 Ma, with some as young as 1.1 Ma. AHe ages are youngest at the southwest end of Montague Island, where maximum fault displacement occurred on the Hanning Bay and Patton Bay faults during the 1964 earthquake. AFT ages range from ˜5 Ma to ˜20 Ma and are also younger at the SW end of Montague Island. These ages and corresponding exhumation rates indicate that the Montague and Hinchinbrook Island region is a narrow zone of intense deformation probably related to duplex thrusting along one or more megathrust fault splays. I interpret the rates of rock uplift and exhumation to have increased in the last ˜5 My, especially at the southwest end of the island system and farthest from the region dominated by strike-slip and transpressional deformation to the northeast. The narrow band of deformation along these islands likely represents the northwestern edge of a broader swath of plate boundary deformation between the Montague-Hinchinbrook Island region and the Kayak Island fault zone.

  7. Application of Subspace Detection to the 6 November 2011 M5.6 Prague, Oklahoma Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Benz, H.; Johnson, C. E.; Aster, R. C.; McNamara, D. E.

    2015-12-01

    Subspace detection is a powerful tool for the identification of small seismic events. Subspace detectors improve upon single-event matched filtering techniques by using multiple orthogonal waveform templates whose linear combinations characterize a range of observed signals from previously identified earthquakes. Subspace detectors running on multiple stations can significantly increasing the number of locatable events, lowering the catalog's magnitude of completeness and thus providing extraordinary detail on the kinematics of the aftershock process. The 6 November 2011 M5.6 earthquake near Prague, Oklahoma is the largest earthquake instrumentally recorded in Oklahoma history and the largest earthquake resultant from deep wastewater injection. A M4.8 foreshock on 5 November 2011 and the M5.6 mainshock triggered tens of thousands of detectable aftershocks along a 20 km splay of the Wilzetta Fault Zone known as the Meeker-Prague fault. In response to this unprecedented earthquake, 21 temporary seismic stations were deployed surrounding the seismic activity. We utilized a catalog of 767 previously located aftershocks to construct subspace detectors for the 21 temporary and 10 closest permanent seismic stations. Subspace detection identified more than 500,000 new arrival-time observations, which associated into more than 20,000 locatable earthquakes. The associated earthquakes were relocated using the Bayesloc multiple-event locator, resulting in ~7,000 earthquakes with hypocentral uncertainties of less than 500 m. The relocated seismicity provides unique insight into the spatio-temporal evolution of the aftershock sequence along the Wilzetta Fault Zone and its associated structures. We find that the crystalline basement and overlying sedimentary Arbuckle formation accommodate the majority of aftershocks. While we observe aftershocks along the entire 20 km length of the Meeker-Prague fault, the vast majority of earthquakes were confined to a 9 km wide by 9 km deep surface striking N54°E and dipping 83° to the northwest near the junction of the splay with the main Wilzetta fault structure. Relocated seismicity shows off-fault stress-related interaction to distances of 10 km or more from the mainshock, including clustered seismicity to the northwest and southeast of the mainshock.

  8. Method & apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Ward, Pamela Denise; Stevenson, Joel O'Don

    2004-10-19

    The invention generally relates to various aspects of a plasma process and, more specifically, to the monitoring of such plasma processes. One aspect relates to a plasma monitoring module that may be adjusted in at least some manner so as to re-evaluate a previously monitored plasma process. For instance, optical emissions data on a plasma process that was previously monitored by the plasma monitoring module may be replayed through the plasma monitoring module after making at least one adjustment in relation to the plasma monitoring module.

  9. Complete abolition of reading and writing ability with a third ventricle colloid cyst: implications for surgical intervention and proposed neural substrates of visual recognition and visual imaging ability.

    PubMed

    Barker, Lynne Ann; Morton, Nicholas; Romanowski, Charles A J; Gosden, Kevin

    2013-10-24

    We report a rare case of a patient unable to read (alexic) and write (agraphic) after a mild head injury. He had preserved speech and comprehension, could spell aloud, identify words spelt aloud and copy letter features. He was unable to visualise letters but showed no problems with digits. Neuropsychological testing revealed general visual memory, processing speed and imaging deficits. Imaging data revealed an 8 mm colloid cyst of the third ventricle that splayed the fornix. Little is known about functions mediated by fornical connectivity, but this region is thought to contribute to memory recall. Other regions thought to mediate letter recognition and letter imagery, visual word form area and visual pathways were intact. We remediated reading and writing by multimodal letter retraining. The study raises issues about the neural substrates of reading, role of fornical tracts to selective memory in the absence of other pathology, and effective remediation strategies for selective functional deficits.

  10. Calculating the Bending Modulus for Multicomponent Lipid Membranes in Different Thermodynamic Phases

    PubMed Central

    2013-01-01

    We establish a computational approach to extract the bending modulus, KC, for lipid membranes from relatively small-scale molecular simulations. Fluctuations in the splay of individual pairs of lipids faithfully inform on KC in multicomponent membranes over a large range of rigidities in different thermodynamic phases. Predictions are validated by experiments even where the standard spectral analysis-based methods fail. The local nature of this method potentially allows its extension to calculations of KC in protein-laden membranes. PMID:24039553

  11. Long-wavelength instabilities in a system of interacting active particles

    NASA Astrophysics Data System (ADS)

    Fazli, Zahra; Najafi, Ali

    2018-02-01

    Based on a microscopic model, we develop a continuum description for a suspension of microscopic self-propelled particles. With this continuum description we study the role of long-range interactions in destabilizing macroscopic ordered phases that are developed by short-range interactions. Long-wavelength fluctuations can destabilize both isotropic and symmetry-broken polar phases in a suspension of dipolar particles. The instabilities in a suspension of pullers (pushers) arise from splay (bend) fluctuations. Such instabilities are not seen in a suspension of quadrupolar particles.

  12. The 7.9 Denali Fault, Alaska Earthquake of November 3, 2002: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Kore, K. R.

    2003-04-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 earthquake on October 23. This earlier earthquake and its zone of aftershocks were located ~20 km to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. The geologists mapped a ~300-km-long rupture and measured maximum offsets of 8.8 meters. The 7.9 event ruptured three different faults. The rupture began on the northeast trending Susitna Glacier Thrust fault, a splay fault south of the Denali fault. Then the rupture transferred to the Denali fault and propagated eastward for 220 km. At about 143W the rupture moved onto the adjacent southeast-trending Totschunda fault and propagated for another 55 km. The cumulative length of the 6.7 and 7.9 aftershock zones along the Denali and Totschunda faults is about 380 km. The earthquakes were recorded and processed by the Alaska Earthquake Information Center (AEIC). The AEIC acquires and processes data from the Alaska Seismic Network, consisting of over 350 seismograph stations. Nearly 40 of these sites are equipped with the broad-band sensors, some of which also have strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary seismic network of 6 instruments following the 6.7 earthquake and an additional 20 stations following the 7.9 earthquake. Prior to the 7.9 Denali Fault event, the AEIC was locating 35 to 50 events per day. After the event, the processing load increased to over 300 events per day during the first week following the event. In this presentation, we will present and interpret the aftershock location patterns, first motion focal mechanism solutions, and regional seismic moment tensors for the larger events. We used the double difference method to relocate aftershocks of both the 6.7 and 7.9 events. The relocated aftershocks indicate complex faulting along the rupture zone. The aftershocks are located not only along the main rupture zone, but also illuminate multiple splay faults north and south of the Denali fault. We calculated principal stress directions along the Denali fault both before and after the 7.9 event from the focal mechanisms. The stress orientations before and after the event are nearly identical. The maximum horizontal compressive stress is nearly normal to the trace of the Denali fault and rotates gradually from NW orientation at the western end of the rupture zone to NE orientation near the junction with the Totschunda fault.

  13. Synchronization of coupled metronomes on two layers

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  14. Efficient retention of mud drives land building on the Mississippi Delta plain

    NASA Astrophysics Data System (ADS)

    Esposito, Christopher R.; Shen, Zhixiong; Törnqvist, Torbjörn E.; Marshak, Jonathan; White, Christopher

    2017-07-01

    Many of the world's deltas - home to major population centers - are rapidly degrading due to reduced sediment supply, making these systems less resilient to increasing rates of relative sea-level rise. The Mississippi Delta faces some of the highest rates of wetland loss in the world. As a result, multibillion dollar plans for coastal restoration by means of river diversions are currently nearing implementation. River diversions aim to bring sediment back to the presently sediment-starved delta plain. Within this context, sediment retention efficiency (SRE) is a critical parameter because it dictates the effectiveness of river diversions. Several recent studies have focused on land building along the open coast, showing SREs ranging from 5 to 30 %. Here we measure the SRE of a large relict crevasse splay in an inland, vegetated setting that serves as an appropriate model for river diversions. By comparing the mass fraction of sand in the splay deposit to the estimated sand fraction that entered it during its life cycle, we find that this mud-dominated sediment body has an SRE of ≥ 75 %, i.e., dramatically higher than its counterparts on the open coast. Our results show that transport pathways for mud are critical for delta evolution and that SRE is highly variable across a delta. We conclude that sediment diversions located in settings that are currently still vegetated are likely to be the most effective in mitigating land loss and providing long-term sustainability.

  15. Gapless quantum excitations from an icelike splayed ferromagnetic ground state in stoichiometric Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Ross, K. A.; Kermarrec, E.; ...

    2016-02-03

    We know the ground state of the quantum spin ice candidate magnet Yb 2Ti 2O 7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb 2Ti 2O 7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlatesmore » with temperatures much higher than T-C. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb 2Ti 2O 7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb 2Ti 2O 7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb 2Ti 2O 7's sister quantum magnet Yb 2Ti 2O 7.« less

  16. A fast algorithm for identifying friends-of-friends halos

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Modi, C.

    2017-07-01

    We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference implementation employs a dual KD-tree correlation function code. We construct features in a hierarchical tree structure, and use a splay operation to reduce the average cost of identifying the root of a feature from O [ log L ] to O [ 1 ] (L is the size of a feature) without additional memory costs. This reduces the overall time complexity of merging trees from O [ L log L ] to O [ L ] , reducing the number of operations per splay by orders of magnitude. We next introduce a pruning operation that skips merge operations between two fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number of merge operations in high density peaks from O [δ2 ] to O [ δ ] . We show that for cosmological data set the algorithm eliminates more than half of merge operations for typically used linking lengths b ∼ 0 . 2 (relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast correlation function codes.

  17. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions.

    PubMed

    Schoonover, Jon E; Crim, Jackie F; Williard, Karl W J; Groninger, John W; Zaczek, James J; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees (Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year(-1) translating to a sediment loss rate of 46.1 metric ton year(-1) from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year(-1)) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  18. Plasma Processing of Metallic and Semiconductor Thin Films in the Fisk Plasma Source

    NASA Technical Reports Server (NTRS)

    Lampkin, Gregory; Thomas, Edward, Jr.; Watson, Michael; Wallace, Kent; Chen, Henry; Burger, Arnold

    1998-01-01

    The use of plasmas to process materials has become widespread throughout the semiconductor industry. Plasmas are used to modify the morphology and chemistry of surfaces. We report on initial plasma processing experiments using the Fisk Plasma Source. Metallic and semiconductor thin films deposited on a silicon substrate have been exposed to argon plasmas. Results of microscopy and chemical analyses of processed materials are presented.

  19. Plasma Synthesis and Sintering of Advanced Ceramics

    DTIC Science & Technology

    1990-09-15

    CONTENTS Page LIST OF TABLES iv OBJECTIVES 1 COLLOIDAL PLASMA PROCESSING: CONCEPTS 1 BACKGROUND 2 Ultrafine Particles 2 Colloidal Plasma 3 Particle...colloidal plasma processing of ceramics. COLLOIDAL PLASMA PROCESSING: CONCEPTS It is well known that ultrafine particles prepared in gas plasmas agglomerate...BACKGROUND Ultrafine Particles . There are well recognized advantages to using small particles in ceramic processing. The instantaneous densification

  20. 21 CFR 640.34 - Processing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.34 Processing. (a) Plasma. Plasma shall be... collecting, processing, and storage system unless the product is to be stored as Liquid Plasma. (b) Fresh Frozen Plasma. Fresh frozen plasma shall be prepared from blood collected by a single uninterrupted...

  1. 21 CFR 640.34 - Processing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.34 Processing. (a) Plasma. Plasma shall be... collecting, processing, and storage system unless the product is to be stored as Liquid Plasma. (b) Fresh Frozen Plasma. Fresh frozen plasma shall be prepared from blood collected by a single uninterrupted...

  2. 21 CFR 640.34 - Processing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.34 Processing. (a) Plasma. Plasma shall be... collecting, processing, and storage system unless the product is to be stored as Liquid Plasma. (b) Fresh Frozen Plasma. Fresh frozen plasma shall be prepared from blood collected by a single uninterrupted...

  3. 21 CFR 640.34 - Processing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.34 Processing. (a) Plasma. Plasma shall be... collecting, processing, and storage system unless the product is to be stored as Liquid Plasma. (b) Fresh Frozen Plasma. Fresh frozen plasma shall be prepared from blood collected by a single uninterrupted...

  4. 21 CFR 640.34 - Processing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.34 Processing. (a) Plasma. Plasma shall be... collecting, processing, and storage system unless the product is to be stored as Liquid Plasma. (b) Fresh Frozen Plasma. Fresh frozen plasma shall be prepared from blood collected by a single uninterrupted...

  5. The synergetic effect of UV rays on the decomposition of xylene in dielectric barrier discharge plasma and photocatalyst process

    NASA Astrophysics Data System (ADS)

    Li, Wenjuan; Gu, Zhenyu; Teng, Fuhua; Lu, Jianhai; Dong, Shibi; Miao, Xiaoping; Wu, Zhongbiao

    2018-06-01

    The degradation of xylene in the dielectric barrier discharge plasma and photocatalyst process was studied, focusing on the synergetic effect of UV rays from plasma process and external UV lamps on the decomposition of xylene. The results showed that xylene could be decomposed by the discharge process in plasma system, whereas the UV rays from plasma process was very weak. After adding TiO2, the removal efficiency of xylene and energy yield in plasma process were enhanced since energetic particles activated the catalysis of TiO2. The removal efficiency of xylene and energy field in plasma and photocatalyst process combined with external UV lamps were further enhanced attributed to the degradation effect of plasma, the catalysis of TiO2 activated by plasma, the photolysis of UV rays and the photocatalysis of photocatalyst. The synergetic effect of UV rays from external UV lamps was obvious.

  6. Autonomous Experimentation of Carbon Nanotube Using Response Surface Methods

    DTIC Science & Technology

    2015-03-26

    on the unique challenges of creating autonomous research robots . v Table of Contents Page Abstract...previous RSM results. 31 S AR Reset a l data les Disp ay Sta t Menu Adjust eas ble bounda es Ad ust acto evel size Dec de andom o speci ed n t...al sta t ni ial Sta t Gene ate andom sta t # o uns D splay O Block Menu C ea e O B ock des gn Disp ay ull O Design Menu C ea e O ull Design W

  7. Optical Emission Studies of the NRL Plasma Torch for the Shipboard Waste Treatment Program

    DTIC Science & Technology

    1999-02-26

    Arc Heating of Molten Steel in a Tundish", Plasma Chemistry and Plasma Processing, Vol.14, pp.361-381,1994. [3] H. Herman, "Plasma-sprayed...Treatment", Plasma Chemistry and Plasma Processing, Vol.15, pp.677-692,1995. [5] S. Paik and H.D. Nguyen, "Numerical Modeling of Multiphase Plasma/Soil Row...Gleizes, S. Vacquie and P. Brunelot, "Modeling of the Cathode Jet of a High- Power Transferred Arc", Plasma Chemistry and Plasma Processing, Vol.13

  8. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  9. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials.

    PubMed

    Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L; Veith, Gabriel M; Levine, Alan M; Lee, Richard J; Mahurin, Shannon M; Dai, Sheng; Naskar, Amit K; Paranthaman, Mariappan Parans

    2017-08-23

    Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and -CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced -SO 3 H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. This study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.

  10. Taphonomy and paleoecology of nonmarine mollusca: indicators of alluvial plain lacustrine sedimentation, upper part of the Tongue River Member, Fort Union Formation ( Paleocene), Northern Powder River Basin, Wyoming and Montana ( USA).

    USGS Publications Warehouse

    Hanley, J.H.; Flores, R.M.

    1987-01-01

    The composition, species abundances, and spatial and temporal distributions of mollusc assemblages were controlled by the environments in which they lived and the depositional processes that affected the molluscs after death and before final burial. Post-mortem transport, reworking and concentration of shells, and mixing of faunal elements from discrete habitats produced a taphonomic 'overprint' on assemblage characteristics that directly reflects the processes of alluvial plain and floodbasin lacustrine sedimentation. The 'overprint' can be interpreted from outcrop analysis of molluscan biofabric, which consists of: 1) orientation, fragmentation, size-sorting, abrasion, density, and dispersion of shells, 2) the nature and extent of shell-infilling, and 3) ratio of articulated to disarticulated bivalves. Taphonomic characteristics were used with sedimentological properties to differentiate in-place, reworked, transported, and ecologically mixed mollusc assemblages. This study also defines the paleoecology of habitat preferences of mollusc species as a basis for recognition of the environments in which these assemblages were deposited: 1) large floodbasin lakes, 2) small floodbasin lakes, and 3) crevasse deltas and splays. Integration of sedimentology and paleoecology provides an interdisciplinary approach to the interpretation of alluvial environments through time in the Tongue River Member. -Authors

  11. Predictive MRI correlates of lesser metatarsophalangeal joint plantar plate tear.

    PubMed

    Umans, Rachel L; Umans, Benjamin D; Umans, Hilary; Elsinger, Elisabeth

    2016-07-01

    To identify correlated signs on non-enhanced MRI that might improve diagnostic detection of plantar plate (PP) tear. We performed an IRB-approved, HIPAA-compliant retrospective analysis of 100 non-contrast MRI (50 PP tear, 50 controls). All were anonymized, randomized, and reviewed; 20 were duplicated to assess consistency. One musculoskeletal radiologist evaluated qualitative variables. A trained non-physician performed measurements. Consistency and concordance were assessed. Pearson's Chi-square test was used to test the correlation between qualitative findings and PP tear status. Correlation between measurements and PP status was assessed using t tests and Wilcoxon's rank-sum test (p values < 0.05 considered significant). Classification and regression trees were utilized to identify attributes that, taken together, would consistently distinguish PP tear from controls. Quantitative measurements were highly reproducible (concordance 0.88-0.99). Elevated 2nd MT protrusion, lesser MT supination and rotational divergence of >45° between the 1st-2nd MT axis correlated with PP tear. Pericapsular soft tissue thickening correlated most strongly with PP tear, correctly classifying 95 % of cases and controls. Excluding pericapsular soft tissue thickening, sequential assessment of 2nd toe enthesitis, 2nd flexor tendon subluxation, and splaying of the second and third toes accurately classified PP status in 92 %. Pericapsular soft tissue thickening most strongly correlated with PP tear. For cases in which it might be difficult to distinguish pericapsular fibrosis from neuroma, sequential assessment of 2nd toe enthesitis, flexor tendon subluxation and splaying of the 2nd and 3rd toe is most helpful for optimizing accurate diagnosis of PP tear.

  12. Hydrodynamic controls on the long-term construction of large river floodplains and alluvial ridges

    NASA Astrophysics Data System (ADS)

    Nicholas, Andrew; Aalto, Rolf; Sambrook Smith, Gregory; Schwendel, Arved

    2017-04-01

    Floodplain construction involves the interplay between channel belt sedimentation and avulsion, overbank deposition of fines, and sediment reworking by channel migration. Each of these processes is controlled, in part, by within-channel and/or overbank hydraulics. However, while spatially-distributed hydrodynamic models are used routinely to simulate floodplain inundation and overbank sedimentation during individual floods, most existing models of long-term floodplain construction and alluvial architecture do not account for flood hydraulics explicitly. Instead, floodplain sedimentation is typically modelled as an exponential function of distance from the river, and avulsion thresholds are defined using topographic indices that quantify alluvial ridge morphology (e.g., lateral:downstream slope ratios or metrics of channel belt super-elevation). Herein, we apply a hydraulically driven model of floodplain evolution, in order to quantify the controls on alluvial ridge construction and avulsion likelihood in large lowland rivers. We combine a simple model of meander migration and cutoff with a 2D grid-based model of flood hydrodynamics and overbank sedimentation. The latter involves a finite volume solution of the shallow water equations and an advection-diffusion model for suspended sediment transport. The model is used to carry out a series of numerical experiments to investigate floodplain construction for a range of flood regimes and sediment supply scenarios, and results are compared to field data from the Rio Beni system, northern Bolivia. Model results, supported by field data, illustrate that floodplain sedimentation is characterised by a high degree of intermittency that is driven by autogenic mechanisms (i.e. even in the absence of temporal variations in flood magnitude and sediment supply). Intermittency in overbank deposits occurs over a range of temporal and spatial scales, and is associated with the interaction between channel migration dynamics and crevasse splay formation. Moreover, alluvial ridge construction, by splay deposition, is controlled by the balance between in-channel and overbank sedimentation rates, and by ridge reworking linked to channel migration. The resulting relationship between sedimentation rates, ridge morphology and avulsion likelihood is more complex than that which is incorporated with existing models of long-term floodplain construction that neglect flood hydraulics. These results have implications for the interpretation of floodplain deposits as records of past flood regimes, and for the controls on the alluvial architecture of large river floodplains.

  13. Method and apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Stevenson, Joel O'Don; Ward, Pamela Peardon Denise

    2001-01-01

    The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber. Plasma health evaluations and process identification through optical emissions analysis are included in this aspect. Yet another aspect associated with the present invention relates in at least some manner to the endpoint of a plasma process (e.g., plasma recipe, plasma clean, conditioning wafer operation) or discrete/discernible portion thereof (e.g., a plasma step of a multiple step plasma recipe). A final aspect associated with the present invention relates to how one or more of the above-noted aspects may be implemented into a semiconductor fabrication facility, such as the distribution of wafers to a wafer production system.

  14. Method and apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Stevenson, Joel O'Don; Ward, Pamela Peardon Denise

    2001-01-01

    The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber. Plasma health evaluations and process identification through optical emissions analysis are included in this aspect. Yet another aspect associated with the present invention relates in at least some manner to the endpoint of a plasma process (e.g., plasma recipe, plasma clean, conditioning wafer operation) or discrete/discemible portion thereof (e.g., a plasma step of a multiple step plasma recipe). A final aspect associated with the present invention relates to how one or more of the above-noted aspects may be implemented into a semiconductor fabrication facility, such as the distribution of wafers to a wafer production system.

  15. Method and apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Stevenson, Joel O'Don; Ward, Pamela Peardon Denise

    2000-01-01

    The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber. Plasma health evaluations and process identification through optical emissions analysis are included in this aspect. Yet another aspect associated with the present invention relates in at least some manner to the endpoint of a plasma process (e.g., plasma recipe, plasma clean, conditioning wafer operation) or discrete/discernible portion thereof (e.g., a plasma step of a multiple step plasma recipe). A final aspect associated with the present invention relates to how one or more of the above-noted aspects may be implemented into a semiconductor fabrication facility, such as the distribution of wafers to a wafer production system.

  16. Method and apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Stevenson, Joel O'Don; Ward, Pamela Peardon Denise

    2002-07-16

    The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber. Plasma health evaluations and process identification through optical emissions analysis are included in this aspect. Yet another aspect associated with the present invention relates in at least some manner to the endpoint of a plasma process (e.g., plasma recipe, plasma clean, conditioning wafer operation) or discrete/discernible portion thereof (e.g., a plasma step of a multiple step plasma recipe). A final aspect associated with the present invention relates to how one or more of the above-noted aspects may be implemented into a semiconductor fabrication facility, such as the distribution of wafers to a wafer production system.

  17. Cold plasma processing technology makes advances

    USDA-ARS?s Scientific Manuscript database

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  18. Method and apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Ward, Pamela Denise Peardon; Stevenson, Joel O'Don

    2002-01-01

    The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber. Plasma health evaluations and process identification through optical emissions analysis are included in this aspect. Yet another aspect associated with the present invention relates in at least some manner to the endpoint of a plasma process (e.g., plasma recipe, plasma clean, conditioning wafer operation) or discrete/discernible portion thereof (e.g., a plasma step of a multiple step plasma recipe). Another aspect associated with the present invention relates to how one or more of the above-noted aspects may be implemented into a semiconductor fabrication facility, such as the distribution of wafers to a wafer production system. A final aspect of the present invention relates to a network a plurality of plasma monitoring systems, including with remote capabilities (i.e., outside of the clean room).

  19. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  20. A pharmacological analysis of the hyperactivity syndrome induced by β-phenylethylamine in the mouse

    PubMed Central

    Dourish, Colin T.

    1982-01-01

    1 The effects of the putative 5-hydroxytryptamine (5-HT) receptor antagonists, methysergide, mianserin and methergoline, the dopamine receptor antagonists, haloperidol, thioridazine and clozapine, and the noradrenaline (NA) receptor antagonists, phentolamine, phenoxybenzamine and propranolol on the behavioural responses of mice to β-phenylethylamine (PEA, 75 mg/kg) have been examined. 2 PEA produced a syndrome consisting of three distinct phases. The brief initial phase (0-5 min after injection) which consisted of forward walking, sniffing and headweaving, was succeeded by a locomotor depressant phase (5-20 min after injection) which consisted of abortive grooming, headweaving, splayed hindlimbs, forepaw padding, sniffing and hyperreactivity, and a late locomotor stimulant phase (20-35 min after injection), which was characterized by forward walking, sniffing, hyperreactivity, rearing and licking. 3 Methysergide, mianserin, methergoline, clozapine and propranolol inhibited headweaving and splayed hindlimbs, whereas haloperidol, thioridazine, phentolamine and phenoxybenzamine had no effect on these responses. Forepaw padding was strongly inhibited by methergoline and a high dose of mianserin, and weakly antagonized by methysergide, clozapine, haloperidol and thioridazine. In contrast, padding was mildly potentiated by phenoxybenzamine and phentolamine but strongly potentiated by propranolol. It is proposed that headweaving and splayed hindlimbs are 5-HT-mediated responses whereas forepaw padding also involves 5-HT mechanisms but may be partially due to release of tryptamine. 4 Rearing and licking were inhibited by haloperidol (most strongly), thioridazine and clozapine but potentiated by mianserin, methysergide, propranolol, phenoxybenzamine or phentolamine. Methergoline inhibited licking without affecting rearing. It is suggested that PEA-induced rearing and licking are produced by activation of dopaminergic neurones and inhibited by 5-HT or NA stimulation. 5 Phenoxybenzamine inhibited sniffing and produced backward walking when administered prior to PEA, suggesting mediation by NA of sniffing and an inhibitory influence of NA on backward walking. 6 Clozapine and thioridazine were the most effective antagonists of hyperreactivity and it is proposed that this response is dopamine-mediated. Forward walking was inhibited by high doses of haloperidol or clozapine and potentiated by methergoline, mianserin or methysergide, suggesting that hyperactivity may also be mediated by dopamine but subject to 5-HT inhibition. 7 Abortive grooming was the dominant behavioural component observed after PEA administration and was prevented by all of the antagonists tested which suggests that catecholamine and 5-HT mechanisms may be involved in the expression of this response. 8 Since PEA is an endogenous compound in animals and man, and has been claimed to be present in abnormal amounts in some schizophrenics, PEA-induced behavioural stimulation in mice (which includes the postulated hallucinogenic responses of abortive grooming and backward walking) may be a useful animal model of psychosis. PMID:6982090

  1. Layered Fault Rocks Below the West Salton Detachment Fault (WSDF), CA Record Multiple Seismogenic? Slip Events and Transfer of Material to a Fault Core

    NASA Astrophysics Data System (ADS)

    Axen, G. J.; Luther, A. L.; Selverstone, J.; Mozley, P.

    2011-12-01

    Unique layered cataclasites (LCs) occur locally along footwall splays, S of the ~N-dipping, top-E WSDF. They are well exposed in a NW-plunging antiform that folds the LCs and their upper and lower bounding faults. Layers range from very fine-grained granular shear zones 1-2 mm thick and cm's to m's long, to medium- to coarse-grained isotropic granular cataclasite with floating clasts up to 4-5 cm diameter in layers up to ~30 cm thick and 3 to >10 m long. The top, N-flank contact is ~5 m structurally below the main WSDF. Maximum thickness of the LCs is ~5 m on the S flank of the antiform, where the upper 10-50 cm of LCs are composed of relatively planar layers that are subparallel to the upper fault, which locally displays ultracataclasite. Deeper layers are folded into open to isoclinal folds and are faulted. Most shear-sense indicators show N-side-to-E or -SE slip, and include: (1) aligned biotite flakes and mm-scale shear bands that locally define a weak foliation dipping ~ESE, (2) sharp to granular shears, many of which merge up or down into fine-grained layers and, in the base of the overlying granodiorite, (3) primary reidel shears and (4) folded pegmatite dikes. Biotite is unaltered and feldspars are weakly to strongly altered to clays and zeolites. Zeolites also grew in pores between clasts. XRF analyses suggest minimal chemical alteration. The upper fault is sharp and relatively planar, carries granular to foliated cataclasitic granodiorite that grades up over ~2-4 m into punky, microcracked but plutonic-textured rock with much of the feldspar alteration seen in LC clasts. Some upper-plate reidels bend into parallelism with the top fault and bound newly formed LC layers. The basal fault truncates contorted layers and lacks evidence of layers being added there. We infer that the deeper, contorted layers are older and that the LC package grew upward by transfer of cataclasized slices from the overlying granodiorite while folding was ongoing. Particle-size distributions reflect constrained comminution and shear localization (slopes of ~3-3.5 on log-log plots of grain size vs. no. of grains > grain size). The LCs require episodic slip events that probably record dozens of seismic cycles. Foliation likely records post- or interseismic creep. Geometric complexities among the WSDF footwall splays presumably caused episodic dilation that allowed accumulation and folding of the LCs. Mechanical processes dominated over chemical processes. A key question is why the LCs apparently were stronger than the overlying granodiorite, leading to formation of new LC layers rather than significant reworking of older layers.

  2. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  3. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  4. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  5. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  6. Plasma chemistry study of PLAD processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{submore » 4} and GeH{sub 4} are studied and demonstrated.« less

  7. 21 CFR 640.54 - Processing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Cryoprecipitate § 640.54 Processing. (a) Processing the plasma. (1) The plasma shall be separated from the red blood cells by centrifugation to obtain essentially cell-free plasma. (2) The plasma shall be placed in a freezer within 8 hours after blood collection or...

  8. 21 CFR 640.54 - Processing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Cryoprecipitate § 640.54 Processing. (a) Processing the plasma. (1) The plasma shall be separated from the red blood cells by centrifugation to obtain essentially cell-free plasma. (2) The plasma shall be placed in a freezer within 8 hours after blood collection or...

  9. 21 CFR 640.54 - Processing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Cryoprecipitate § 640.54 Processing. (a) Processing the plasma. (1) The plasma shall be separated from the red blood cells by centrifugation to obtain essentially cell-free plasma. (2) The plasma shall be placed in a freezer within 8 hours after blood collection or...

  10. 21 CFR 640.54 - Processing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Cryoprecipitate § 640.54 Processing. (a) Processing the plasma. (1) The plasma shall be separated from the red blood cells by centrifugation to obtain essentially cell-free plasma. (2) The plasma shall be placed in a freezer within 8 hours after blood collection or...

  11. 21 CFR 640.54 - Processing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Cryoprecipitate § 640.54 Processing. (a) Processing the plasma. (1) The plasma shall be separated from the red blood cells by centrifugation to obtain essentially cell-free plasma. (2) The plasma shall be placed in a freezer within 8 hours after blood collection or...

  12. Plasma, The Fourth State of Matter

    ERIC Educational Resources Information Center

    Zandy, Hassan F.

    1970-01-01

    Discusses plasma as a source of energy through nuclear fission processes, as well as the difficulties encountered in such a process. States that 99 percent of the matter in the universe is plasma, and only 1 percent is the common three states of matter. Describes the fundamental properties of plasma, plasma "pinch, and plasma oscillations. (RR)

  13. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, Cary B.

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamomore » Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.« less

  14. Automated plasma control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma etching and desmear processes for printed wiring board (PWB) manufacture are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. These techniques are not real-time methods however, and do not allow for immediate diagnosis and process correction. These tests often require scrapping some fraction of a batch to insure the integrity of the rest. Since these tests verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. These tests are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process anomalies should be detected and corrected before the parts being treated are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored along with applications of this technique to for process control, failure analysis and endpoint determination in PWB manufacture.

  15. Preservation of large titanosaur sauropods in overbank fluvial facies: A case study in the Cretaceous of Argentina

    NASA Astrophysics Data System (ADS)

    González Riga, Bernardo J.; Astini, Ricardo A.

    2007-04-01

    Patagonia exhibits a particularly abundant record of Cretaceous dinosaurs with worldwide relevance. Although paleontological studies are relatively numerous, few include taphonomic information about these faunas. This contribution provides the first detailed sedimentological and taphonomical analyses of a dinosaur bone quarry from northern Neuquén Basin. At Arroyo Seco (Mendoza Province, Argentina), a large parautochthonous/autochthonous accumulation of articulated and disarticulated bones that represent several sauropod individuals has been discovered. The fossil remains, assigned to Mendozasaurus neguyelap González Riga, correspond to a large (18-27-m long) sauropod titanosaur collected in the strata of the Río Neuquén Subgroup (late Turoronian-late Coniacian). A taphonomic viewpoint recognizes a two-fold division into biostratinomic and fossil-diagenetic processes. Biostratinomic processes include (1) subaerial biodegradation of sauropod carcasses on well-drained floodplains, (2) partial or total skeletal disarticulation, (3) reorientation of bones by sporadic overbank flows, and (4) subaerial weathering. Fossil-diagenetic processes include (1) plastic deformation of bones, (2) initial permineralization with hematite, (3) fracturing and brittle deformation due to lithostatic pressure; (4) secondary permineralization with calcite in vascular canals and fractures, and (5) postfossilization bone weathering. This type of bone concentration, also present in Rincón de los Sauces (northern Patagonia), suggests that overbank facies tended to accumulate large titanosaur bones. This taphonomic mode, referred to as "overbank bone assemblages", outlines the potential of crevasse splay facies as important sources of paleontological data in Cretaceous meandering fluvial systems.

  16. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    DOEpatents

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  17. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    DOEpatents

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  18. Elastic and viscous properties of the nematic dimer CB7CB

    NASA Astrophysics Data System (ADS)

    Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.

    2017-12-01

    We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.

  19. Channel Networks on Large Fans: Refining Analogs for the Ridge-forming Unit, Sinus Meridiani

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin

    2009-01-01

    Stream channels are generally thought of as forming within confined valley settings, separated by interfluves. Sinuous ridges on Mars and Earth are often interpreted as stream channels inverted by subsequent erosion of valley sides. In the case of the ridge-forming unit (RFU), this interpretation fails to explain the (i) close spacing of the ridges, which are (ii) organized in networks, and which (iii) cover large areas (approximately 175,000 km (exp 2)). Channel networks on terrestrial fans develop unconfined by valley slopes. Large fans (100s km long) are low-angle, fluvial features, documented worldwide, with characteristics that address these aspects of the RFU. Ridge patterns Channels on large fans provide an analog for the sinuous and elongated morphology of RFU ridges, but more especially for other patterns such as subparallel, branching and crossing networks. Branches are related to splays (delta-like distributaries are rare), whose channels can rejoin the main channel. Crossing patterns can be caused by even slight sinuosity splay-related side channels often intersect. An avulsion node distant from the fan apex, gives rise to channels with slightly different, and hence intersecting, orientations. Channels on neighboring fans intersect along the common fan margin. 2. Network density Channels are the dominant feature on large terrestrial fans (lakes and dune fields are minor). Inverted landscapes on subsequently eroded fans thus display indurated channels as networks of significantly close-spaced ridges. 3. Channel networks covering large areas Areas of individual large terrestrial fans can reach >200,000 km 2 (105-6 km 2 with nested fans), providing an analog for the wide area distribution of the RFU.

  20. Reservoir characterization of Mesaverde (Campanian) bedload fluvial meanderbelt sandstones, northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.R. Jr.

    1984-04-01

    Reservoir characterization of Mesaverde meanderbelt sandstones is used to determined directional continuity of permeable zones. A 500-m (1600 ft) wide fluvial meanderbelt in the Mesaverde Group is exposed as laterally continuous 3-10-m (10-33-ft) high sandstone cliffs north of Rangely, Colorado. Forty-eight detailed measured sections through 3 point bar complexes oriented at right angles to the long axis of deposition and 1 complex oriented parallel to deposition were prepared. Sections were tied together by detailed sketches delineating and tracing major bounding surfaces such as scours and clay drapes. These complexes contain 3 to 8 multilateral sandstone packages separated by 5-20 cmmore » (2-8 in.) interbedded siltstone and shale beds. Component facies are point bars, crevasse splays, chute bars, and floodplain/overbank deposits. Two types of lateral accretion surfaces are recognized in the point bar facies. Gently dipping lateral accretions containing fining-upward sandstone packages. Large scale trough cross-bedding at the base grades upward into ripples and plane beds. Steeply dipping lateral accretion surfaces enclose beds characterized by climbing ripple cross laminations. Bounding surfaces draped by shale lags can seal vertically stacked point bars from reservoir communication. Scoured boundaries allow communication in some stacked point bars. Crevasse splays showing climbing ripples form tongues of very fine-grained sandstone which flank point bars. Chute channels commonly cut upper point bar surfaces at their downstream end. Chute facies are upward-fining with small scale troughs and common dewatering structures. Siltstones and shales underlie the point bar complexes and completely encase the meanderbelt system. Bounding surfaces at the base of the complexes are erosional and contain large shale rip-up clasts.« less

  1. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  2. Identifying tectonic parameters that influence tsunamigenesis

    NASA Astrophysics Data System (ADS)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  3. Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.

  4. 40 CFR 98.98 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...

  5. 40 CFR 98.98 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...

  6. 40 CFR 98.98 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production chambers... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...

  7. Plasma process control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  8. Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.

    PubMed

    Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew

    2015-12-10

    While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.

  9. Planar controlled zone microwave plasma system

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxvlle, TN

    2011-10-04

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  10. Controlled zone microwave plasma system

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-10-20

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  11. Monitoring non-thermal plasma processes for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  12. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  13. Study of ND3-enhanced MAR processes in D2-N2 plasmas to induce plasma detachment

    NASA Astrophysics Data System (ADS)

    Abe, Shota; Chakraborty Thakur, Saikat; Doerner, Russ; Tynan, George

    2017-10-01

    The Molecular Assisted Recombination (MAR) process is thought to be a main channel of volumetric recombination to induce the plasma detachment operation. Authors have focused on a new plasma recombination process supported by ammonia molecules, which will be formed by impurity seeding of N2 for controlling divertor plasma temperature and heat loads in ITER. This ammonia-enhanced MAR process would occur throughout two steps. In this study, the first step of the new MAR process is investigated in low density plasmas (Ne 1016 m-3, Te 4 eV) fueled by D2 and N2. Ion and neutral densities are measured by a calibrated Electrostatic Quadrupole Plasma (EQP) analyzer, combination of an ion energy analyzer and mass spectrometer. The EQP shows formation of ND3 during discharges. Ion densities calculated by a rate equation model are compared with experimental results. We find that the model can reproduce the observed ion densities in the plasma. The model calculation shows that the dominant neutralization channel of Dx+(x =1-3) ions in the volume is the formation of NDy+(y =3 or 4) throughout charge/D+ exchange reactions with ND3. Furthermore, high density plasmas (Ne 1016 m-3) have been achieved to investigate electron-impact dissociative recombination processes of formed NDy+,which is the second step of this MAR process.

  14. The Basic Plasma Science Facility: a platform for studying plasma processes relevant to space and astrophysical settings

    NASA Astrophysics Data System (ADS)

    Carter, T. A.

    2017-10-01

    The Basic Plasma Science Facility at UCLA is a national user facility for studies of fundamental processes in magnetized plasmas. The centerpiece is the Large Plasma Device, a 20 m, magnetized linear plasma device. Two hot cathode plasma sources are available. A Barium Oxide coated cathode produces plasmas with n 1012 cm-3, Te 5 eV, Ti < 1 eV with magnetic field from 400G-2kG. This low- β plasma has been used to study fundamental processes, including: dispersion and damping of kinetic and inertial Alfvén waves, flux ropes and magnetic reconnection, three-wave interactions and parametric instabilities of Alfvén waves, turbulence and transport, and interactions of energetic ions and electrons with plasma waves. A new Lanthanum Hexaboride (LaB6) cathode is now available which produces significantly higher densities and temperatures: n < 5 ×1013 cm-3, Te 12 eV, Ti 6 eV. This higher pressure plasma source enabled the observation of laser-driven collisionless magnetized shocks and, with lowered magnetic field, provides magnetized plasmas with β approaching or possibly exceeding unity. This opens up opportunities for investigating processes relevant to the solar wind and astrophysical plasmas. BaPSF is jointly supported by US DOE and NSF.

  15. Inductive plasmas for plasma processing

    NASA Astrophysics Data System (ADS)

    Keller, John H.

    1996-05-01

    With the need for high plasma density and low pressure in single wafer etching tools, a number of inductive etching systems have been and are being developed for commercial sale. This paper reviews some of the history of low-pressure inductive plasmas, gives features of inductive plasmas, limitations, corrections and presents uses for plasma processing. The theory for the skin depth, rf coil impedance and efficiency is also discussed.

  16. Characterization of plasma processing induced charging damage to MOS devices

    NASA Astrophysics Data System (ADS)

    Ma, Shawming

    1997-12-01

    Plasma processing has become an integral part of the fabrication of integrated circuits and takes at least 30% of whole process steps since it offers advantages in terms of directionality, low temperature and process convenience. However, wafer charging during plasma processes is a significant concern for both thin oxide damage and profile distortion. In this work, the factors affecting this damage will be explained by plasma issues, device structure and oxide quality. The SPORT (Stanford Plasma On-wafer Real Time) charging probe was developed to investigate the charging mechanism of different plasma processes including poly-Si etching, resist ashing and PECVD. The basic idea of this probe is that it simulates a real device structure in the plasma environment and allows measurement of plasma induced charging voltages and currents directly in real time. This measurement is fully compatible with other charging voltage measurement but it is the only one to do in real-time. Effect of magnetic field induced plasma nonuniformity on spatial dependent charging is well understood by this measurement. In addition, the plasma parameters including ion current density and electron temperature can also be extracted from the probe's plasma I-V characteristics using a dc Langmuir probe like theory. It will be shown that the MOS device tunneling current from charging, the dependence on antenna ratio and the etch uniformity can all be predicted by using this measurement. Moreover, the real-time measurement reveals transient and electrode edge effect during processing. Furthermore, high aspect ratio pattern induced electron shading effects can also be characterized by the probe. On the oxide quality issue, wafer temperature during plasma processing has been experimentally shown to be critical to charging damage. Finally, different MOS capacitor testing methods including breakdown voltage, charge-to-breakdown, gate leakage current and voltage-time at constant current bias were compared to find the optimum method for charging device reliability testing.

  17. Plasma Processing of Model Residential Solid Waste

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  18. The line roughness improvement with plasma coating and cure treatment for 193nm lithography and beyond

    NASA Astrophysics Data System (ADS)

    Zheng, Erhu; Huang, Yi; Zhang, Haiyang

    2017-03-01

    As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.

  19. Plasma characterization studies for materials processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfender, E.; Heberlein, J.

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torchmore » model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.« less

  20. Plasma treatment effect on angiogenesis in wound healing process evaluated in vivo using angiographic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Park, T. J.; Jang, S. J.; You, S. J.; Oh, W. Y.

    2016-12-01

    Non-thermal atmospheric pressure plasma holds promise for promoting wound healing. However, plasma-induced angiogenesis, which is important to better understand the underlying physics of plasma treatment effect on wound healing, remains largely unknown. We therefore evaluated the effect of non-thermal plasma on angiogenesis during wound healing through longitudinal monitoring over 30 days using non-invasive angiographic optical coherence tomography imaging in vivo. We demonstrate that the plasma-treated vascular wound area of mouse ear was noticeably decreased as compared to that of control during the early days in the wound healing process. We also observed that the vascular area density was increased in the plasma affected region near the wound as compared to the plasma unaffected region. The difference in the vascular wound area and the vascular area density peaked around day 3. This indicates that the plasma treatment induced additional angiogenic effects in the wound healing process especially during the early days. This non-invasive optical angiographic approach for in vivo time-lapse imaging provides further insights into elucidating plasma-induced angiogenesis in the wound healing process and its application in the biomedical plasma evaluation.

  1. Preparation Of Sources For Plasma Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Waters, William J.; Sliney, Hal; Kowalski, D.

    1993-01-01

    Multicomponent metal targets serving as sources of vapor for plasma vapor deposition made in modified pressureless-sintering process. By use of targets made in modified process, one coats components with materials previously plasma-sprayed or sintered but not plasma-vapor-deposited.

  2. A review on plasma-etch-process induced damage of HgCdTe

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun

    2018-05-01

    Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.

  3. Non-classical types of loess

    NASA Astrophysics Data System (ADS)

    Iriondo, M. H.; Kröhling, D. M.

    2007-12-01

    The purpose of this contribution is to describe the sequence of physical and chemical processes resulting in the sediment-type named loess, a fine-grained sediment deposit of universal occurrence. Owing to historical causes, loess has been (and still is) implicitly linked to glacial/periglacial environments among most naturalists. However it is known today that most eolian dust is deflated from tropical deserts. Hence, that sequence of processes is more comprehensive than the former narrow cold scenario. Six examples of different "non-classical" cases (from South America and Europe) that fit well to the loess definition are developed: 1) volcanic loess in Ecuador: pyroclastic eruptions/valley wind/mountain praire/silica structuring; 2) tropical loess in northeastern Argentina, Brazil and Uruguay: deflation of river and fan splays/savanna/iron sesquioxide structuring; 3) gypsum loess in northern Spain: destruction of anhydrite/gypsiferous layers in a dry climate/valley wind/Saharian shrub peridesert/gypsum structuring; 4) trade-wind deposits in Venezuela and Brazil: deflation in tidal flats/trade wind into the continent/savanna/iron hydroxide structuring; 5) anticyclonic gray loess in Argentina: continental anticyclone on plains/anti-clockwise winds and whirls/steppe/carbonate structuring. All these non-classical types conform to the accepted loess definitions and they also share the most important field characteristics of loess such as grain size, friability, vertical or sub-vertical slopes in outcrops, subfusion and others. Other cases can probably be recognized when systematically scrutinized.

  4. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials

    DOE PAGES

    Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L.; ...

    2017-08-11

    Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this paper, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C–H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption–desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed thatmore » the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and –CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced –SO 3H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. Finally, this study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.« less

  5. Towards Plasma-Based Water Purification: Challenges and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Foster, John

    2016-10-01

    Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.

  6. Review of microscopic plasma processes of occurring during refilling of the plasmasphere

    NASA Technical Reports Server (NTRS)

    Singh, N.; Torr, D. G.

    1988-01-01

    Refilling of the plasmashere after geomagnetic storms involves both macroscopic and microscopic plasma processes. The latter types of processes facilitate the refilling by trapping the plasma in the flux tube and by thermalizing the interhemispheric flow. A review of studies on microscopic processes is presented. The primary focus in this review is on the processes when the density is low and the plasma is collisionless. The discussion includes electrostatic shock formation, pitch angle scatterring extended ion heating and localized ion heating in the equatorial region.

  7. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor); Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  8. Coccidioidomycosis.

    PubMed

    Laffer, Matthew; Ackerman, Lindsay

    2018-01-01

    A 23-year-old man presented with new-onset pruritic and painful urticarial lesions and targetoid erythematous plaques on both palms, the trunk, and the upper and lower extremities (Figure 1). Additionally, small pustules were discovered on the neck (Figure 2), and there with edematous erythematous vermillion lips with splaying onto the cutaneous lips without ulceration. The patient stated he had had a fever before the eruption, fatigue, chills, myalgias, and sore throat. A chest x-ray was obtained and showed bilateral infiltrates. Two 4-mm punch biopsies were performed on the left forearm and left side of the neck; a resulting section from the left forearm is shown in Figure 3.

  9. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    NASA Astrophysics Data System (ADS)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  10. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  11. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice.

    PubMed

    Almeida, Francisca Diva Lima; Gomes, Wesley Faria; Cavalcante, Rosane Souza; Tiwari, Brijesh K; Cullen, Patrick J; Frias, Jesus Maria; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2017-12-01

    In this study, the effect of atmospheric pressure cold plasma and high-pressure processing on the prebiotic orange juice was evaluated. Orange juice containing 7g/100g of commercial fructooligosaccharides (FOS) was directly and indirectly exposed to a plasma discharge at 70kV with processing times of 15, 30, 45 and 60s. For high-pressure processing, the juice containing the same concentration of FOS was treated at 450MPa for 5min at 11.5°C in an industrial equipment (Hyperbaric, model: 300). After the treatments, the fructooligosaccharides were qualified and quantified by thin layer chromatography. The organic acids and color analysis were also evaluated. The maximal overall fructooligosaccharides degradation was found after high-pressure processing. The total color difference was <3.0 for high-pressure and plasma processing. citric and ascorbic acid (Vitamin C) showed increased content after plasma and high-pressure treatment. Thus, atmospheric pressure cold plasma and high-pressure processing can be used as non-thermal alternatives to process prebiotic orange juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. LARGE—A Plasma Torch for Surface Chemistry Applications and CVD Processes—A Status Report

    NASA Astrophysics Data System (ADS)

    Zimmermann, Stephan; Theophile, Eckart; Landes, Klaus; Schein, Jochen

    2008-12-01

    The LARGE ( LONG ARG GENERATOR) is a new generation DC-plasma torch featuring an extended arc which is operated with a perpendicular gas flow to create a wide (up to 45 cm) plasma jet well suited for large area plasma processing. Using plasma diagnostic systems like high speed imaging, enthalpy probe, emission spectroscopy, and tomography, the LARGE produced plasma jet characteristics have been measured and sources of instability have been identified. With a simple model/simulation of the system LARGE III-150 and numerous experimental results, a new nozzle configuration and geometry (LARGE IV-150) has been designed, which produces a more homogenous plasma jet. These improvements enable the standard applications of the LARGE plasma torch (CVD coating process and surface activation process) to operate with higher efficiency.

  13. D.C. - ARC plasma generator for nonequilibrium plasmachemical processes

    NASA Astrophysics Data System (ADS)

    Kvaltin, J.

    1990-06-01

    The analysis of conditions for generation of nonequilibrium plasma to plasmachemical processes is made and the design of d.c.-arc plasma generator on the base of integral criterion is suggested. The measurement of potentials on the plasma column of that generator is presented.

  14. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  15. Plasma Spraying of Ceramics with Particular Difficulties in Processing

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.

    2015-01-01

    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

  16. Fluorophore-based sensor for oxygen radicals in processing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu; Sabat, Grzegorz

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye thatmore » is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.« less

  17. Preparation of Liquid Crystal Networks for Macroscopic Oscillatory Motion Induced by Light.

    PubMed

    Vantomme, Ghislaine; Gelebart, Anne Helene; Broer, Dirk J; Meijer, E W

    2017-09-20

    A strategy based on doped liquid crystalline networks is described to create mechanical self-sustained oscillations of plastic films under continuous light irradiation. The photo-excitation of dopants that can quickly dissipate light into heat, coupled with anisotropic thermal expansion and self-shadowing of the film, gives rise to the self-sustained deformation. The oscillations observed are influenced by the dimensions and the modulus of the film, and by the directionality and intensity of the light. The system developed offers applications in energy conversion and harvesting for soft-robotics and automated systems. The general method described here consists of creating free-standing liquid crystalline films and characterizing the mechanical and thermal effects observed. The molecular alignment is achieved using alignment layers (rubbed polyimide), commonly used in the display manufacturing industry. To obtain actuators with large deformation, the mesogens are aligned and polymerized in a splay/bend configuration, i.e., with the director of the liquid crystals (LCs) going gradually from planar to homeotropic through the film thickness. Upon irradiation, the mechanical and thermal oscillations obtained are monitored with a high-speed camera. The results are further quantified by image analysis using an image processing program.

  18. Inner hair cell stereocilia movements captured in-situ by a high-speed camera with subpixel image processing

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Puria, Sunil; Steele, Charles R.; Ricci, Anthony J.

    2018-05-01

    Mechanical stimulation of the stereocilia hair bundles of the inner and outer hair cells (IHCs and OHCs, respectively) drives IHC synaptic release and OHC electromotility. The modes of hair-bundle motion can have a dramatic influence on the electrophysiological responses of the hair cells. The in vivo modes of motion are, however, unknown for both IHC and OHC bundles. In this work, we are developing technology to investigate the in situ hair-bundle motion in excised mouse cochleae, for which the hair bundles of the OHCs are embedded in the tectorial membrane but those of the IHCs are not. Motion is generated by pushing onto the stapes at 1 kHz with a glass probe coupled to a piezo stack, and recorded using a high-speed camera at 10,000 frames per second. The motions of individual IHC stereocilia and the cell boundary are analyzed using 2D and 1D Gaussian fitting algorithms, respectively. Preliminary results show that the IHC bundle moves mainly in the radial direction and exhibits a small degree of splay, and that the stereocilia in the second row move less than those in the first row, even in the same focal plane.

  19. Structural Basis for Recognition and Sequestration of UUUOH 3 ' Temini of Nascent RNA Polymerase III Transcripts by La, a Rheumatic Disease Autoantigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova,M.; Yuan, Y.; Phan, A.

    2006-01-01

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUUOH 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 Angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the {beta} sheet edge,more » rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUUOH 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.« less

  20. Preparation of Liquid Crystal Networks for Macroscopic Oscillatory Motion Induced by Light

    PubMed Central

    Broer, Dirk J.; Meijer, E. W.

    2017-01-01

    A strategy based on doped liquid crystalline networks is described to create mechanical self-sustained oscillations of plastic films under continuous light irradiation. The photo-excitation of dopants that can quickly dissipate light into heat, coupled with anisotropic thermal expansion and self-shadowing of the film, gives rise to the self-sustained deformation. The oscillations observed are influenced by the dimensions and the modulus of the film, and by the directionality and intensity of the light. The system developed offers applications in energy conversion and harvesting for soft-robotics and automated systems. The general method described here consists of creating free-standing liquid crystalline films and characterizing the mechanical and thermal effects observed. The molecular alignment is achieved using alignment layers (rubbed polyimide), commonly used in the display manufacturing industry. To obtain actuators with large deformation, the mesogens are aligned and polymerized in a splay/bend configuration, i.e., with the director of the liquid crystals (LCs) going gradually from planar to homeotropic through the film thickness. Upon irradiation, the mechanical and thermal oscillations obtained are monitored with a high-speed camera. The results are further quantified by image analysis using an image processing program. PMID:28994766

  1. Structural basis for recognition and sequestration of UUU(OH) 3' temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen.

    PubMed

    Teplova, Marianna; Yuan, Yu-Ren; Phan, Anh Tuân; Malinina, Lucy; Ilin, Serge; Teplov, Alexei; Patel, Dinshaw J

    2006-01-06

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUU(OH) 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the beta sheet edge, rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUU(OH) 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.

  2. Metal droplet erosion and shielding plasma layer under plasma flows typical of transient processes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru

    It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.

  3. 21 CFR 640.68 - Processing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.68 Processing. (a) Sterile system. All administration and transfer sets inserted into blood containers used for processing Source Plasma intended for manufacturing into injectable or noninjectable products and all interior surfaces of plasma containers used for...

  4. 21 CFR 640.68 - Processing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.68 Processing. (a) Sterile system. All administration and transfer sets inserted into blood containers used for processing Source Plasma intended for manufacturing into injectable or noninjectable products and all interior surfaces of plasma containers used for...

  5. 21 CFR 640.68 - Processing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.68 Processing. (a) Sterile system. All administration and transfer sets inserted into blood containers used for processing Source Plasma intended for manufacturing into injectable or noninjectable products and all interior surfaces of plasma containers used for...

  6. 21 CFR 640.68 - Processing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.68 Processing. (a) Sterile system. All administration and transfer sets inserted into blood containers used for processing Source Plasma intended for manufacturing into injectable or noninjectable products and all interior surfaces of plasma containers used for...

  7. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.

  8. Annular vortex merging processes in non-neutral electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaga, Chikato, E-mail: d146073@hiroshima-u.ac.jp; Ito, Kiyokazu; Higaki, Hiroyuki

    2015-06-29

    Non-neutral electron plasmas in a uniform magnetic field are investigated experimentally as a two dimensional (2D) fluid. Previously, it was reported that 2D phase space volume increases during a vortex merging process with viscosity. However, the measurement was restricted to a plasma with a high density. Here, an alternative method is introduced to evaluate a similar process for a plasma with a low density.

  9. Plasma contactor research, 1989

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  10. Bacterial spore inactivation induced by cold plasma.

    PubMed

    Liao, Xinyu; Muhammad, Aliyu Idris; Chen, Shiguo; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-04-05

    Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.

  11. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters

    PubMed Central

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-01-01

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes. PMID:25938699

  12. Correlation between the plasma characteristics and the surface chemistry of plasma-treated polymers through partial least-squares analysis.

    PubMed

    Mavadat, Maryam; Ghasemzadeh-Barvarz, Massoud; Turgeon, Stéphane; Duchesne, Carl; Laroche, Gaétan

    2013-12-23

    We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.

  13. Experimental validation of a phenomenological model of the plasma contacting process

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.; Monheiser, Jeff M.

    1988-01-01

    A preliminary model of the plasma coupling process is presented which describes the phenomena observed in ground-based experiments using a hollow cathode plasma contactor to collect electrons from a dilute ambient plasma under conditions where magnetic field effects can be neglected. The locations of the double-sheath region boundaries are estimated and correlated with experimental results. Ion production mechanisms in the plasma plume caused by discharge electrons from the contactor cathode and by electrons streaming into the plasma plume through the double-sheath from the ambient plasma are also discussed.

  14. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing

  15. Pacifichem 2000 Symposium on Plasma Chemistry and Technology for Green Manufacturing, Pollution Control and Processing Applications

    DTIC Science & Technology

    2001-03-19

    Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on

  16. Cold plasma processing to improve food safety

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is an antimicrobial process being developed for application as a food processing technology. This novel intervention is the subject of an expanding research effort by groups around the world. A variety of devices can be used to generate cold plasma and apply it to the food commodity bein...

  17. Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Zhili; Shneider, Mikhail N.

    2010-03-15

    This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodiummore » ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.« less

  18. A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.

    2017-03-01

    Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.

  19. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less

  20. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.

    PubMed

    Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2017-06-01

    Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  1. Method for atmospheric pressure reactive atom plasma processing for surface modification

    DOEpatents

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  2. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28 papers that are selected via strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This proceeding offers an overview on the recent advances in thermal and non-equilibrium plasmas as well as the challenges ahead in the field of plasma research and applications among engineers and scientists. It is an honor to present this volume of Journal of Physics: Conference Series and we deeply thank the authors for their enthusiastic and high-grade contribution. The editors hope that this proceeding will be useful and helpful for deepening our understanding of science and technology of plasma materials processing and also for stimulating further development of the plasma technology. Finally, I would like to thank the organizing committee and organizing secretariat of SPSM-26, and the participants of the conference for contribution to a successful and exciting meeting. The conference was chaired by Prof. Masaharu Shiratani, Kyushu University. I would also like to thank the financial support from The 153rd Committee on Plasma Materials Science. Editors of SPMS-26 Prof Takayuki Watanabe, Kyushu University, Japan Prof Makoto Sekine, Nagoya University, Japan Prof Takanori Ichiki, The University of Tokyo, Japan Prof Masaharu Shiratani, Kyushu University, Japan Prof Akimitsu Hatta, Kochi University of Technology, Japan Sponsors and Supporting Organization: The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science

  3. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.

  4. Plasma-based water purification: Challenges and prospects for the future

    NASA Astrophysics Data System (ADS)

    Foster, John E.

    2017-05-01

    Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role these processes play in water purification. The development of plasma diagnostics usable in this multiphase environment along with modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. We conclude with a discussion of prospects for the future of plasma-based water purification.

  5. A Survey of Plasmas and Their Applications

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Grabbe, C. (Editor)

    2006-01-01

    Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).

  6. Physical processes associated with current collection by plasma contactors

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  7. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  8. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuettner, Lindsey A.

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  9. Mirror-field confined compact plasma source using permanent magnet for plasma processings.

    PubMed

    Goto, Tetsuya; Sato, Kei-Ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 10 11 cm -3 could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  10. Plasma-water interactions at atmospheric pressure in a dc microplasma

    NASA Astrophysics Data System (ADS)

    Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide

    2013-09-01

    Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.

  11. Real-Time Fault Classification for Plasma Processes

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001

  12. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    PubMed

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  13. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  14. Submillimeter Spectroscopic Diagnostics in Semiconductor Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Stout, Phillip J.; Walker, Quentin; Armacost, Michael D.

    2014-06-01

    Submillimeter absorption spectroscopy was used to study semiconductor processing plasmas. Abundances and temperatures of molecules, radicals, and ions can be determined without altering any of the properties of the plasma. The behavior of these measurements provides useful applications in monitoring process steps. A summary of such applications will be presented, including etching and cleaning endpoint detection.

  15. Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry

    NASA Astrophysics Data System (ADS)

    Tenner, F.; Brock, C.; Klämpfl, F.; Schmidt, M.

    2015-01-01

    The process of laser metal welding is widely used in industry. Nevertheless, there is still a lack of complete process understanding and control. For analyzing the process we used two high-speed cameras. Therefore, we could image the plasma plume (which is directly accessible by a camera) and the keyhole (where most of the process instabilities occur) during laser welding isochronously. Applying different image processing steps we were able to find a correlation between those two process characteristics. Additionally we imaged the plasma plume from two directions and were able to calculate a volume with respect to the vaporized material the plasma plume carries. Due to these correlations we are able to conclude the keyhole stability from imaging the plasma plume and vice versa. We used the found correlation between the keyhole behavior and the plasma plume to explain the effect of changing laser power and feed rate on the keyhole geometry. Furthermore, we tried to outline the phenomena which have the biggest effect on the keyhole geometry during changes of feed rate and laser power.

  16. Plasma processing of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.

  17. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  18. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  19. Plasma precipitation on Mercury's nightside and its implications for magnetospheric convection and exosphere generation.

    NASA Astrophysics Data System (ADS)

    Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Korth, H.; Anderson, B. J.; Solomon, S. C.

    2015-12-01

    Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.

  20. Plasma precipitation on Mercury's nightside and its implications for magnetospheric convection and exosphere generation.

    NASA Astrophysics Data System (ADS)

    Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Dewey, R. M.; Sarantos, M.

    2016-12-01

    Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.

  1. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  2. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  3. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1990-01-01

    The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products.

  4. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  5. Spherical tensor analysis of polar liquid crystals with biaxial and chiral molecules

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Zhong-can, Ou-Yang

    2012-11-01

    With the help of spherical tensor expression, an irreducible calculus of a Lth-rank macroscopic susceptibility χ for a polar liquid crystal (PLC) of biaxial and chiral molecules written as the average of molecular hyperpolarizability tensor β associated with their spherical orientational order parameters (0⩽l⩽L) is presented. Comprehensive formulas of L=1,2 have been obtained and the latter explains the optical activity and spontaneous splay texture observed in bent-core PLC. The expression of L=3 specifies for the molecules with D2 symmetry which can be applied to analyze the nonlinear optical second harmonic generation (SHG) observed in proteins, peptides, and double-stranded DNA at interfaces.

  6. Molecular structure of the lecithin ripple phase

    NASA Astrophysics Data System (ADS)

    de Vries, Alex H.; Yefimov, Serge; Mark, Alan E.; Marrink, Siewert J.

    2005-04-01

    Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in one domain of the ripple is found to be that of a splayed gel; in the other domain the lipids are gel-like and fully interdigitated. In the concave part of the kink region between the domains the lipids are disordered. The results are consistent with the experimental information available and provide an atomic-level model that may be tested by further experiments. molecular dynamics simulation | structural model

  7. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  8. Medical Plasma in Dentistry: A Future Therapy for Peri-implantitis

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Jablonowski, Lukasz; Kramer, Axel; Weltmann, Klaus-Dieter; Kocher, Thomas

    Biofilm formation plays a major role in the pathogenesis of many oral diseases especially in peri-implantits. To evaluate the anti-biofilm effect of different plasma devices and processes we used different dental biofilm models: Candida albicans, Streptococcus mutans, Streptococcus sanguinis, aerobe multispecies human saliva and anaerobe plaque biofilms. After 10 min treatment we reduced the biofilms by 5 log10 steps using dielectric barrier discharge (DBD) plasma. Chlorhexidine is the gold standard antiseptic which achieved in the same time only a 1.5 log10 reduction. All plasma devices (DBD or plasma jets) damaged the membrane of the microorganisms but only etching plasma sources can remove the biofilm as shown in CLSM micrographs. It is possible to improve the plasma process using antiseptics like octenidine. This combination significantly reduced CFU values after 1 min plasma treatment compared to the plasma control. Beside the anti-biofilm effect an additional effect of plasma is the contact angle reduction of different titanium implant surfaces from 90° to super-hydrophilic (<5°). This can improve the implant healing process. Thus in the future, plasma could be an interesting treatment option in dentistry, especially in treatment of peri-implantits.

  9. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, P. V.; Doleans, M.; Hannah, B.

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  10. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    DOEpatents

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  11. Effect of microwave argon plasma on the glycosidic and hydrogen bonding system of cotton cellulose.

    PubMed

    Prabhu, S; Vaideki, K; Anitha, S

    2017-01-20

    Cotton fabric was processed with microwave (Ar) plasma to alter its hydrophilicity. The process parameters namely microwave power, process gas pressure and processing time were optimized using Box-Behnken method available in the Design Expert software. It was observed that certain combinations of process parameters improved existing hydrophilicity while the other combinations decreased it. ATR-FTIR spectral analysis was used to identify the strain induced in inter chain, intra chain, and inter sheet hydrogen bond and glycosidic covalent bond due to plasma treatment. X-ray diffraction (XRD) studies was used to analyze the effect of plasma on unit cell parameters and degree of crystallinity. Fabric surface etching was identified using FESEM analysis. Thus, it can be concluded that the increase/decrease in the hydrophilicity of the plasma treated fabric was due to these structural and physical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effective utilization of ozone in plasma-based advanced oxidation process

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Ishibashi, Naoto; Sugiyama, Tsuyoshi; Kim, Hyun-Ha

    2018-05-01

    Decomposition of acetic acid in water was conducted using multiple plasmas generated within oxygen bubbles. Ballast capacitors were used to control the plasma input power, allowing hydrogen peroxide and ozone to be produced at different rates in each plasma by adjusting the capacitance. By using an ozone absorber connected to the plasma reactor, OH radicals, both generated by the plasmas directly and reproduced from hydrogen peroxide through reactions with ozone, could be effectively utilized for the reduction of total organic carbon (TOC). Under the condition with the highest ozone production rate, higher processing speed and energy efficiency for the TOC reduction were achieved compared with other plasma methods.

  13. On improved understanding of plasma-chemical processes in complex low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger

    2018-05-01

    Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  14. Influence of radiative processes on the ignition of deuterium–tritium plasma containing inactive impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Sherman, V. E.

    2016-08-15

    The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result ofmore » using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.« less

  15. Optimization and testing of solid thin film lubrication deposition processes

    NASA Astrophysics Data System (ADS)

    Danyluk, Michael J.

    A novel method for testing solid thin films in rolling contact fatigue (RCF) under ultra-high vacuum (UHV) and high rotational speeds (130 Hz) is presented in this thesis. The UHV-RCF platform is used to quantify the adhesion and lubrication aspects of two thin film coatings deposited on ball-bearings using a physical vapor deposition ion plating process. Plasma properties during ion plating were measured using a Langmuir probe and there is a connection between ion flux, film stress, film adhesion, process voltage, pressure, and RCF life. The UHV-RCF platform and vacuum chamber were constructed using off-the-shelf components and 88 RCF tests in high vacuum have been completed. Maximum RCF life was achieved by maintaining an ion flux between 10 13 to 1015 (cm-2 s-1) with a process voltage and pressure near 1.5 kV and 15 mTorr. Two controller schemes were investigated to maintain optimal plasma conditions for maximum RCF life: PID and LQR. Pressure disturbances to the plasma have a detrimental effect on RCF life. Control algorithms that mitigate pressure and voltage disturbances already exist. However, feedback from the plasma to detect disturbances has not been explored related to deposition processes in the thin-film science literature. Manometer based pressure monitoring systems have a 1 to 2 second delay time and are too slow to detect common pressure bursts during the deposition process. Plasma diagnostic feedback is much faster, of the order of 0.1 second. Plasma total-current feedback was used successfully to detect a typical pressure disturbance associated with the ion plating process. Plasma current is related to ion density and process pressure. A real-time control application was used to detect the pressure disturbance by monitoring plasma-total current and converting it to feedback-input to a pressure control system. Pressure overshoot was eliminated using a nominal PID controller with feedback from a plasma-current diagnostic measurement tool.

  16. Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis

    NASA Astrophysics Data System (ADS)

    Baranov, O.; Bazaka, K.; Kersten, H.; Keidar, M.; Cvelbar, U.; Xu, S.; Levchenko, I.

    2017-12-01

    Given the vast number of strategies used to control the behavior of laboratory and industrially relevant plasmas for material processing and other state-of-the-art applications, a potential user may find themselves overwhelmed with the diversity of physical configurations used to generate and control plasmas. Apparently, a need for clearly defined, physics-based classification of the presently available spectrum of plasma technologies is pressing, and the critically summary of the individual advantages, unique benefits, and challenges against key application criteria is a vital prerequisite for the further progress. To facilitate selection of the technological solutions that provide the best match to the needs of the end user, this work systematically explores plasma setups, focusing on the most significant family of the processes—control of plasma fluxes—which determine the distribution and delivery of mass and energy to the surfaces of materials being processed and synthesized. A novel classification based on the incorporation of substrates into plasma-generating circuitry is also proposed and illustrated by its application to a wide variety of plasma reactors, where the effect of substrate incorporation on the plasma fluxes is emphasized. With the key process and material parameters, such as growth and modification rates, phase transitions, crystallinity, density of lattice defects, and others being linked to plasma and energy fluxes, this review offers direction to physicists, engineers, and materials scientists engaged in the design and development of instrumentation for plasma processing and diagnostics, where the selection of the correct tools is critical for the advancement of emerging and high-performance applications.

  17. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  18. Plasma gasification of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, G.W.; Tsangaris, A.V.

    1995-12-31

    Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less

  19. Method and system for nanoscale plasma processing of objects

    DOEpatents

    Oehrlein, Gottlieb S [Clarksville, MD; Hua, Xuefeng [Hyattsville, MD; Stolz, Christian [Baden-Wuerttemberg, DE

    2008-12-30

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  20. Final Technical Report for Grant DE-FG02-04ER54795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlino, Robert L

    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less

  1. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  2. Ti film deposition process of a plasma focus: Study by an experimental design

    NASA Astrophysics Data System (ADS)

    Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.

    2017-10-01

    The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.

  3. The evolution of the storm-time ring current in response to different characteristics of the plasma source

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.

    2006-12-01

    We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.

  4. Space-time evolution of ejected plasma for the triggering of gas switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shanhong, E-mail: liushanhong108098@163.com; Liu, Xuandong; Shen, Xi

    2016-06-15

    Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence onmore » the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from “plasmoid” to “plasma flow,” and the distribution of the ejected plasma goes through “cloud,” “core-cloud,” and “branch” in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted “U”-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the “branch” channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%–90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.« less

  5. Development of manufacturing methods for the production of superconductive devices. Final technical documentary report, 28 Jun 1965--27 Jun 1969. [Plasma arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haid, D.A.; Fietz, W.A.

    1969-06-01

    The effort to scale-up the plasma-arc process to produce large solenoids and saddle coils is described. Large coils (up to 16-/sup 3///sub 4/ in. and 41-in. length) of three different configurations, helical, ''pancake'' and ''saddle,'' were fabricated using the plasma arc process.

  6. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  7. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  8. Plasma Processing of Lunar Regolith Simulant for Diverse Applications

    NASA Technical Reports Server (NTRS)

    Schofield, Elizabeth C.; Sen, Subhayu; O'Dell, J. Scott

    2008-01-01

    Versatile manufacturing technologies for extracting resources from the moon are needed to support future space missions. Of particular interest is the production of gases and metals from lunar resources for life support, propulsion, and in-space fabrication. Deposits made from lunar regolith could yield highly emissive coatings and near-net shaped parts for replacement or repair of critical components. Equally important is development of high fidelity lunar simulants for ground based validation of potential lunar surface operations. Described herein is an innovative plasma processing technique for insitu production of gases, metals, coatings, and deposits from lunar regolith, and synthesis of high fidelity lunar simulant from NASA issued lunar simulant JSC-1. Initial plasma reduction trials of JSC-1 lunar simulant have indicated production of metallic iron and magnesium. Evolution of carbon monoxide has been detected subsequent to reduction of the simulant using the plasma process. Plasma processing of the simulant has also resulted in glassy phases resembling the volcanic glass and agglutinates found in lunar regolith. Complete and partial glassy phase deposits have been obtained by varying the plasma process variables. Experimental techniques, product characterization, and process gas analysis will be discussed.

  9. Investigation of sewage sludge treatment using air plasma assisted gasification.

    PubMed

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-06-01

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    NASA Astrophysics Data System (ADS)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  11. Mechanistic study of plasma damage to porous low-k: Process development and dielectric recovery

    NASA Astrophysics Data System (ADS)

    Shi, Hualiang

    Low-k dielectrics with porosity are being introduced to reduce the RC delay of Cu/low-k interconnect. However, during the O2 plasma ashing process, the porous low-k dielectrics tend to degrade due to methyl depletion, moisture uptake, and densification, increasing the dielectric constant and leakage current. This dissertation presents a study of the mechanisms of plasma damage and dielectric recovery. The kinetics of plasma interaction with low-k dielectrics was investigated both experimentally and theoretically. By using a gap structure, the roles of ion, photon, and radical in producing damage on low-k dielectrics were differentiated. Oxidative plasma induced damage was proportional to the oxygen radical density, enhanced by VUV photon, and increased with substrate temperature. Ion bombardment induced surface densification, blocking radical diffusion. Two analytical models were derived to quantify the plasma damage. Based on the radical diffusion, reaction, and recombination inside porous low-k dielectrics, a plasma altered layer model was derived to interpret the chemical effect in the low ion energy region. It predicted that oxidative plasma induced damage can be reduced by decreasing pore radius, substrate temperature, and oxygen radical density and increasing carbon concentration and surface recombination rate inside low-k dielectrics. The model validity was verified by experiments and Monte-Carlo simulations. This model was also extended to the patterned low-k structure. Based on the ion collision cascade process, a sputtering yield model was introduced to interpret the physical effect in the high ion energy region. The model validity was verified by checking the ion angular and energy dependences of sputtering yield using O2/He/Ar plasma, low-k dielectrics with different k values, and a Faraday cage. Low-k dielectrics and plasma process were optimized to reduce plasma damage, including increasing carbon concentration in low-k dielectrics, switching plasma generator from ICP to RIE, increasing hard mask thickness, replacing O2 by CO2 plasma, increasing CO addition in CO/O 2 plasma, and increasing N2 addition in CO2/N 2 plasma. By combining analytical techniques with the Kramers-Kronig dispersion relation and quantum chemistry calculation, the origin of dielectric loss was ascribed to the physisorbed water molecules. Post-ash CH4 plasma treatment, vapor silylation process, and UV radiation were developed to repair plasma damage.

  12. Plasma rotation in the Peking University Plasma Test device.

    PubMed

    Xiao, Chijie; Chen, Yihang; Yang, Xiaoyi; Xu, Tianchao; Wang, Long; Xu, Min; Guo, Dong; Yu, Yi; Lin, Chen

    2016-11-01

    Some preliminary results of plasma rotations in a linear plasma experiment device, Peking University Plasma Test (PPT) device, are reported in this paper. PPT has a cylindrical vacuum chamber with 500 mm diameter and 1000 mm length, and a pair of Helmholtz coils which can generate cylindrical or cusp magnetic geometry with magnitude from 0 to 2000 G. Plasma was generated by a helicon source and the typical density is about 10 13 cm -3 for the argon plasma. Some Langmuir probes, magnetic probes, and one high-speed camera are set up to diagnose the rotational plasmas. The preliminary results show that magnetic fluctuations exist during some plasma rotation processes with both cylindrical and cusp magnetic geometries, which might be related to some electromagnetic processes and need further studies.

  13. Streamers and their applications

    NASA Astrophysics Data System (ADS)

    Pemen, A. J. M.

    2011-10-01

    In this invited lecture we give an overview of our 15 years of experience on streamer plasma research. Efforts are directed to integrating the competence areas of plasma physics, pulsed power technology and chemical processing. The current status is the development of a large scale pulsed corona system for gas treatment. Applications on biogas conditioning, VOC removal, odor abatement and control of traffic emissions have been demonstrated. Detailed research on electrical and chemical processes resulted in a boost of efficiencies. Energy transfer efficiency to the plasma was raised to above 90%. Simultaneous improvement of the plasma chemistry resulted in a highly efficient radical generation: O-radical production up to 50% of the theoretical maximum has been achieved. A major challenge in pulsed power driven streamers is to unravel, understand and ultimately control the complex interactions between the transient plasma, electrical circuits, and process. Even more a challenge is to yield electron energies that fit activation energies of the process. We will discuss our ideas on adjusting pulsed power waveforms and plasma reactor settings to obtain more controlled catalytic processing: the ``Chemical Transistor'' concept.

  14. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  15. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  16. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  17. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  18. Separation of mixtures of chemical elements in plasma

    NASA Astrophysics Data System (ADS)

    Dolgolenko, D. A.; Muromkin, Yu A.

    2017-10-01

    This paper reviews proposals on the plasma processing of radioactive waste (RW) and spent nuclear fuel (SNF). The chemical processing of SNF based on the extraction of its components from water solutions is rather expensive and produces new waste. The paper considers experimental research on plasma separation of mixtures of chemical elements and isotopes, whose results can help evaluate the plasma methods of RW and SNF reprocessing. The analysis identifies the difference between ionization levels of RW and SNF components at their transition to the plasma phase as a reason why all plasma methods are difficult to apply.

  19. Saturn's Magnetospheric Plasma Flow Encountered by Titan

    NASA Astrophysics Data System (ADS)

    Sillanpää, I.

    2017-09-01

    Titan has been a major target of the ending Cassini mission to Saturn. 126 flybys have sampled, measured and observed a variety of Titan's features and processes from the surface features to atmospheric composition and upper atmospheric processes. Titan's interaction with the magnetospheric plasma flow it is mostly embedded in is highly dependent on the characteristics of the ambient plasma. The density, velocity and even the composition of the plasma flow can have great variance from flyby to flyby. Our purpose is the present the plasma flow conditions for all over 70 flybys of which we have Cassini Plasma Spectrometer (CAPS) measurements.

  20. Plasma heating for containerless and microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Leung, Emily W. (Inventor); Man, Kin F. (Inventor)

    1994-01-01

    A method for plasma heating of levitated samples to be used in containerless microgravity processing is disclosed. A sample is levitated by electrostatic, electromagnetic, aerodynamic, or acoustic systems, as is appropriate for the physical properties of the particular sample. The sample is heated by a plasma torch at atmospheric pressure. A ground plate is provided to help direct the plasma towards the sample. In addition, Helmholtz coils are provided to produce a magnetic field that can be used to spiral the plasma around the sample. The plasma heating system is oriented such that it does not interfere with the levitation system.

  1. PREFACE: 12th High-Tech Plasma Processes Conference (HTPP-12)

    NASA Astrophysics Data System (ADS)

    Gleizes, Alain; Ghedini, Emanuele; Gherardi, Matteo; Sanibondi, Paolo; Dilecce, Giorgio

    2012-12-01

    The High-Tech Plasma Processes - 12th European Plasma Conference (HTPP-12) was held in Bologna (Italy) on 24-29 June 2012. The conference series started in 1990 as a thermal plasma conference and gradually expanded to include other topic fields as well. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. Thanks to the efforts of the conference chairman, Professor Vittorio Colombo and of the co-chair, Professor Piero Favia, a well balanced participation from both the communities of thermal and nonthermal plasma researchers was achieved; this resulted in just about 196 attendees from 39 countries, with 8 plenary and 15 invited talks, plus 50 oral and 140 poster contributions. This volume of Journal of Physics: Conference Series gathers papers from regular contributions of HTPP-12; each contribution submitted for publication has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In the end, 39 manuscripts were accepted for publication, covering different topics of plasma processing science: from plasma fundamentals and modelling to source design and process diagnostics, from nanomaterial synthesis to surface modification, from waste treatment to plasma applications in a liquid environment. It is an honour to present this volume of Journal of Physics: Conference Series and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-12. The Editors of the HTPP 12 Proceedings Professor Alain Gleizes (head of the ISC) Dr Emanuele Ghedini Dr Matteo Gherardi Dr Paolo Sanibondi Dr Giorgio Dilecce Bologna, 30 October 2012

  2. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption signal was used to calculate absolute densities and temperatures of polar species. Measurements of molecular species were demonstrated for inductively coupled plasmas.

  3. Fabrication Processes and Mechanical Behavior of CNT/Metal Nanocomposites

    DTIC Science & Technology

    2013-12-01

    process, were investigated and applied for fabrication of CNT/Cu and CNT/Ni nanocomposite powders. The spark plasma sintering process was applied... spark plasma sintering process to fabricate CNT/NiTi and CNT/Al-Cu nanocomposites. It is confirmed that the CNTs were homogeneously dispersed in NiTi...can be seen in Figure 1-1. The CNT/NiTi composite powders were consolidated by spark plasma sintering (SPS, Dr. Sinter Lab., Sumitomo). The CNT/NiTi

  4. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  5. Cost of Purchased Versus Produced Plasma from Donor Recruitment Through Transfusion.

    PubMed

    Prioli, Katherine M; Pizzi, Laura T; Karp, Julie Katz; Galanis, Taki; Herman, Jay H

    2016-10-01

    Plasma is used to treat acquired coagulopathy or thrombotic thrombocytopenic purpura, or to reverse warfarin effect. Scant data are available, however, about its costs. To estimate total costs of plasma from production through administration, from the perspective of a US hospital blood donor center (BDC). Six sequential decision analytic models were constructed and informed by primary and secondary data on time, tasks, personnel, and supplies for donation, processing, and administration. Expected values of the models were summed to yield the BDC's total cost of producing, preparing, and transfusing plasma. Costs ($US 2015) are reported for a typical patient using three units of plasma. Models assume plasma was obtained from whole blood donation and transfused in an inpatient setting. Univariate sensitivity analyses were performed to test the impact of changing inputs for personnel costs and adverse event (AE) rates and costs. BDC production cost of plasma was $91.24/patient ($30.41/unit), a $30.16/patient savings versus purchased plasma. Administration and monitoring costs totaled $194.64/patient. Sensitivity analyses indicated that modifying BDC personnel costs during donation and processing has little impact on total plasma costs. However, the probability and cost of transfusion-associated circulatory overload (TACO) have a significant impact on costs. Plasma produced by our BDC may be less costly than purchased plasma. Though plasma processes have multiple tasks involving staff time, these are not the largest cost driver. Major plasma-related AEs are uncommon, but are the biggest driver of total plasma costs.

  6. Statistical physics of modulated phases in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shamid, Shaikh M.

    Nematic liquid crystals are the state of the matter in which there is no positional order like crystals but it has orientational order of the constituent molecules. In the conventional nematics, the long axes of the rod-like molecules tend to align up or down uniformly along a director n. If the constituent molecules are chiral, they tend to form a modulated structure in one of the space dimensions. They are called the chiral nematics. If the chirality is strong enough we get the modulated structures in all three dimensions called the chiral blue phase. On the other hand, if the molecules are achiral, but an additional polar dipole is attached to the molecules, they also tend to form a modulated structure. In these types of materials we observe an important physical effect called flexoelectric effect, in which the polar order is linearly coupled to the director gradients. This dissertation work presents analytical and simulation studies of that modulated structures using the flexoelectric mechanism. Classic work by R. B. Meyer and further studies by I. Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-shaped liquid crystals. In this recently discovered twist-bend nematic phase the modulation is along one of the space dimensions. If this flexoelectric coupling is strong enough, in addition to twist-bend and splay-bend, here we predict the formation of polar analog of chiral blue phases (in both 2D and 3D) made of achiral polar liquid crystal materials by using Elastic continuum theory-based numerical calculations and computer simulations. This dissertation work also presents the coarse-grained theory of twist-bend phase. This theory predicts normal modes of fluctuation in both sides of nematic to twist-bend transition, which then compared with light scattering experiments. Macroscopic elastic and electric properties of twist-bend nematics can be realized using this coarse-grained description.

  7. The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity.

    PubMed

    Johnson, Kaeli C M; Xia, Shitou; Feng, Xiaoqi; Li, Xin

    2015-08-01

    SNC1 (SUPPRESSOR OF NPR1, CONSTITUTIVE 1) is one of a suite of intracellular Arabidopsis NOD-like receptor (NLR) proteins which, upon activation, result in the induction of defense responses. However, the molecular mechanisms underlying NLR activation and the subsequent provocation of immune responses are only partially characterized. To identify negative regulators of NLR-mediated immunity, a forward genetic screen was undertaken to search for enhancers of the dwarf, autoimmune gain-of-function snc1 mutant. To avoid lethality resulting from severe dwarfism, the screen was conducted using mos4 (modifier of snc1, 4) snc1 plants, which display wild-type-like morphology and resistance. M2 progeny were screened for mutant, snc1-enhancing (muse) mutants displaying a reversion to snc1-like phenotypes. The muse9 mos4 snc1 triple mutant was found to exhibit dwarf morphology, elevated expression of the pPR2-GUS defense marker reporter gene and enhanced resistance to the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Via map-based cloning and Illumina sequencing, it was determined that the muse9 mutation is in the gene encoding the SWI/SNF chromatin remodeler SYD (SPLAYED), and was thus renamed syd-10. The syd-10 single mutant has no observable alteration from wild-type-like resistance, although the syd-4 T-DNA insertion allele displays enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Transcription of SNC1 is increased in both syd-4 and syd-10. These data suggest that SYD plays a subtle, specific role in the regulation of SNC1 expression and SNC1-mediated immunity. SYD may work with other proteins at the chromatin level to repress SNC1 transcription; such regulation is important for fine-tuning the expression of NLR-encoding genes to prevent unpropitious autoimmunity. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.

    PubMed

    Chen, Bolun; Engelbrecht, Jan R; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  9. Cluster synchronization in networks of identical oscillators with α -function pulse coupling

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  10. Aftershocks of the june 20, 1978, Greece earthquake: A multimode faulting sequence

    USGS Publications Warehouse

    Carver, D.; Bollinger, G.A.

    1981-01-01

    A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated. The epicenters for four large (M ??? 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58?? or 73??, respectively. A preferred nodal-plane dip of 36?? was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required. ?? 1981.

  11. Estimation of fault geometry of a slow slip event off the Kii Peninsula, southwest of Japan, detected by DONET

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Nakano, M.; Hori, T.; Takahashi, N.

    2015-12-01

    The Japan Agency for Marine-Earth Science and Technology installed permanent ocean bottom observation network called Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) off the Kii Peninsula, southwest of Japan, to monitor earthquakes and tsunamis. We detected the long-term vertical displacements of sea floor from the ocean-bottom pressure records, starting from March 2013, at several DONET stations (Suzuki et al., 2014). We consider that these displacements were caused by the crustal deformation due to a slow slip event (SSE).  We estimated the fault geometry of the SSE by using the observed ocean-bottom displacements. The ocean-bottom displacements were obtained by removing the tidal components from the pressure records. We also subtracted the average of pressure changes taken over the records at stations connected to each science node from each record in order to remove the contributions due to atmospheric pressure changes and non-tidal ocean dynamic mass variations. Therefore we compared observed displacements with the theoretical ones that was subtracted the average displacement in the fault geometry estimation. We also compared observed and theoretical average displacements for the model evaluation. In this study, the observed average displacements were assumed to be zero. Although there are nine parameters in the fault model, we observed vertical displacements at only four stations. Therefore we assumed three fault geometries; (1) a reverse fault slip along the plate boundary, (2) a strike slip along a splay fault, and (3) a reverse fault slip along the splay fault. We obtained that the model (3) gives the smallest residual between observed and calculated displacements. We also observed that this SSE was synchronized with a decrease in the background seismicity within the area of a nearby earthquake cluster. In the future, we will investigate the relationship between the SSE and the seismicity change.

  12. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  13. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis.

    PubMed

    Levdikov, Vladimir M; Blagova, Elena; Young, Vicki L; Belitsky, Boris R; Lebedev, Andrey; Sonenshein, Abraham L; Wilkinson, Anthony J

    2017-02-17

    CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (c G MP-stimulated phosphodiesterases, a denylate cyclases, F hlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  15. Correlations between plasma variables and the deposition process of Si films from chlorosilanes in low pressure RF plasma of argon and hydrogen

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Grill, A.; Manory, R.; Grossman, E.

    1984-01-01

    The dissociation of chlorosilanes to silicon and its deposition on a solid substrate in a RF plasma of mixtures of argon and hydrogen were investigated as a function of the macrovariables of the plasma. The dissociation mechanism of chlorosilanes and HCl as well as the formation of Si in the plasma state were studied by sampling the plasma with a quadrupole mass spectrometer. Macrovariables such as pressure, net RF power input and locations in the plasma reactor strongly influence the kinetics of dissociation. The deposition process of microcrystalline silicon films and its chlorine contamination were correlated to the dissociation mechanism of chlorosilanes and HCl.

  16. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  17. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less

  18. 21 CFR 640.91 - Processing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...

  19. 21 CFR 640.91 - Processing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...

  20. 21 CFR 640.91 - Processing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...

  1. 21 CFR 640.91 - Processing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.91 Processing. (a) Date... °C or colder. (e) Heat treatment. Heating of the final containers of Plasma Protein Fraction (Human... concentration of the product. (g) Incubation. All final containers of Plasma Protein Fraction (Human) shall be...

  2. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.

    2016-10-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  3. Dusty Plasmas on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.

    2006-12-01

    The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment

  4. Seafloor expressions of tectonic structures in Isfjorden, Svalbard: implications for fluid migration

    NASA Astrophysics Data System (ADS)

    Roy, Srikumar; Noormets, Riko; Braathen, Alvar

    2014-05-01

    This study investigates the seafloor expressions of Isfjorden in western Svalbard, interlinked with sub-seafloor structures using a dense grid of 2D multichannel marine seismic and magnetic data integrated with high resolution multibeam bathymetric data. The underlying bedrock structures spans from Paleozoic carbonates and evaporates to Mesozoic and Paleogene sandstones and shales. This 4 to 6 km thick succession is truncated by structures linked to Eocene transpressional deformation that resulted in the formation of the West Spitsbergen Fold-and-Thrust Belt (WSFTB). The WSFTB divides into three major belts : (a) western zone characterized by a basement involved fold-thrust complex, (b) central zone consisting of three thin-skinned fold-thrust sheets with thrusts splaying from décollement layers and, east of a frontal duplex system, (c) eastern zone showing décollement in Mesozoic shales with some thrust splays, and with the décollement interacting with reactivated, steep and basement-rooted faults (Bergh et al., 1997). In the continuation, we discuss combined seafloor and bedrock observations, starting from the west. In the west, a 6.5 km long and 5 to 9 m high ridge demarcates the eastern boundary of the major basement involved fold complex, with thrusted and folded competent Cretaceous to Paleogene units reaching the seafloor. Three submarine slides originate from this ridge, possibly triggered by tectonic activities. In Central Isfjorden (central zone of the WSFTB), several NNW-SSE striking ridges with a relief of 5 to 25 m have been tied with shallow, steep faults and folds. In addition to the NNW-SSE striking ridges, a set of SW-NE striking ridges with relief of 2 to 5 m are observed in Nordfjorden. Based on the seismic data observations, these ridges can be linked to the surface expression of competent sandstones that are transported on splay-thrusts above a décollement in Triassic shales. Further, seafloor ridges with relief of 5 of 18 m, linked to high amplitude flat reflectors and high magnetic values have been interpreted as Cretaceous dolerite intrusions in Nordfjorden and central Isfjorden. In the eastern Isfjorden (eastern zone of WSFTB), a 10.5 km long N-S striking ridge in Billefjorden corresponds to the deep-seated Billefjorden Fault Zone, extending south across the mouth of Tempelfjorden where it is 8.5 km long. This composite ridge is bound by a steep east-dipping fault, placing competent Carboniferous and Permian carbonates at the seafloor. Overall, our study shows a distinct pattern of pockmarks concentrated along the identified ridges on the seafloor of Isfjorden. These ridges can be linked to fault-fold systems and dolerite intrusions in the bedrock, thereby suggesting various possible fluid migration pathways towards pockmarks: (i) along fracture networks associated with folds and intrusions, (ii) along décollement zones and faults acting as localized conduits, and (iii) directly from organic rich layers when exposed at the seafloor. Reference: Bergh, S. G., Braathen, A., and Andresen, A., 1997, Interaction of basement-involved and thin-skinned tectonism in the Tertiary fold-thrust belt of central Spitsbergen, Svalbard: AAPG Bulletin, v. 81, no. 4, p. 637-661.

  5. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal (LLC), constructed by mixing LCLC with self-propelled microorganism, bacteria strain called Bacillus subtilis . The coupling between bacterial flow and the nematic long-rang order of the LCLC matrix results in a wealth of intriguing dynamic phenomena, among which are 1) programmable trajectories of bacterial motion guided by patterned director field, 2) cargo particle transportation along such trajectories, 3) local melting of the liquid crystal caused by the bacteria-produced shear flow, 4) birefringence-enabled visualization of microflow generated by nanometer-thick bacterial flagella and 5) activity triggered transition from non-flow uniform state into a flowing one-dimensional pattern and its evolution into a turbulent array of topological defects. In addition, due to the long-rang elastic interaction mediated by the nematic matrix, LLC shows collective dynamics at very low fraction of bacteria, on the order of 0.2%, about 1/10 of bacteria fraction needed in isotropic media for collective motion. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.

  6. PREFACE: 13th High-Tech Plasma Processes Conference (HTPP-2014)

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The High-Tech Plasma Processes - 13th European Plasma Conference (HTPP-2014) was held in Toulouse (France) on 22-27 June 2014. The conference series started in 1990 as a thermal plasma conference and has gradually expanded to include other related topics. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is an international conference organised in Europe every two years with topics encompassing the whole field of plasma processing science. The aim of the conference is to bring different scientific communities together, to facilitate contacts between science, technology and industry and to provide a platform for the exploration of both the fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have acheived a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 142 people from 17 countries attended the conference with the total number of contributions being 155, consisting of 8 plenary and 8 invited talks plus 51 oral and 88 poster contributions. We have received numerous papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed (60 referees with at least two reviewing each paper) and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 52 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We have grouped the papers into the following 5 topics: - Arc-Materials Interaction and Metallurgy - Plasma Torches and Spraying - Synthesis of Powders and Nanomaterials - Deposition and Surface Treatment - Non-Equilibrium Plasmas We deeply thank the authors for their enthusiastic and high-grade contributions and we are convinced that this volume of Journal of Physics: Conference Series will be interesting for our community. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-2014. The Editors of the HTPP-2014 Proceedings Dr Alain Gleizes, chairman of HTPP-2014 Prof. Jochen Schein, head of the ISC Prof. Philippe Teulet Toulouse, 14th October 2014

  7. Space plasma contractor research, 1988

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1989-01-01

    Results of experiments conducted on hollow cathode-based plasma contractors are reported. Specific tests in which attempts were made to vary plasma conditions in the simulated ionospheric plasma are described. Experimental results showing the effects of contractor flowrate and ion collecting surface size on contactor performance and contactor plasma plume geometry are presented. In addition to this work, one-dimensional solutions to spherical and cylindircal space-charge limited double-sheath problems are developed. A technique is proposed that can be used to apply these solutions to the problem of current flow through elongated double-sheaths that separate two cold plasmas. Two conference papers which describe the essential features of the plasma contacting process and present data that should facilitate calibration of comprehensive numerical models of the plasma contacting process are also included.

  8. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  9. Paleoseismology at high latitudes: Seismic disturbance of upper Quaternary deposits along the Castle Mountain fault near Houston, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Best, Timothy C.; Waythomas, Christopher F.

    2002-01-01

    Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61°30′ N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes east-northeast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes.The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5–1.0 m indicates faulting when the ground was not frozen—i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and colluvial wedge. In only one trench did we observe a discrete fault plane with measurable offset. It lay beneath a 2-m-thick carapace of liquefied sand and silt and displayed a total of 0.9–1.85 m of thrust motion since deposition of the oldest deposits in the trenches at ca. 13,500 yr B.P. We found liquefaction ejecta on paleosols at only one other trench, where there were bluejoint (Calamagrostis canadensis) tussocks that lacked an extensive root mat. From crosscutting relationships, we interpret three paleoliquefaction events on the main trace of the Castle Mountain fault: 2145–1870, 1375–1070, and 730–610 cal. yr B.P. These four earthquakes on the Castle Mountain fault in the past ∼2700 yr indicate an average recurrence interval of ∼700 yr. As it has been 600–700 yr since the last significant earthquake, a significant (magnitude 6–7) earthquake in the near future may be likely. Paleoseismic data indicate that the timing and recurrence interval of megathrust earthquakes is similar to the timing and recurrence interval of Castle Mountain fault earthquakes, suggesting a possible link between faulting on the megathrust and on “crustal” structures.

  10. Development of a fluid model for DC arc plasma torches and its integration with downstream models of atmospheric plasma spray particle plumes

    NASA Astrophysics Data System (ADS)

    Cannamela, Michael J., III

    The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.

  11. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.

  12. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    NASA Astrophysics Data System (ADS)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  13. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  14. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  15. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  16. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  17. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  18. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  19. The contribution of dissociative processes to the production of atomic lines in hydrogen plasmas

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1985-01-01

    The contribution of molecular dissociative processes to the production of atomic lines is considered for a steady-state hydrogen plasma. If the contribution of dissociative processes is dominant, a substantial simplification in plasma diagnostics can be achieved. Numerical calculations have been performed for the production of Balmer alpha, beta, and gamma lines in hydrogen plasmas with medium and large degrees of ionization (x greater than about 0.0001) and for electron temperatures of 5000-45,000 K and electron densities of 10 to the 10th to 10 to the 16th/cu cm.

  20. Effect of the self-pumped limiter concept on the tritium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-01-01

    The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.

  1. Emission coefficients of low temperature thermal iron plasma

    NASA Astrophysics Data System (ADS)

    Mościcki, T.; Hoffman, J.; Szymański, Z.

    2004-03-01

    Iron plasma appears during material processing with laser, electric are etc., and has considerable influence on the processing conditions. In this paper emission coefficients of low temperature thermal iron plasma at atmospheric pressure are presented. Net emission coefficients ɛ N have been calculated for pure iron plasma as well as for Fe-Ar and Fe-He plasma mixtures. To calculate the recombination radiation the knowledge of the Biberman factors ξ {fb/z}( T e, λ) is necessary and they have been calculated from the iron photo-ionization cross sections. The calculations allow estimation of energy losses, energy radiated by plasma plume and its comparison with the energy absorbed from laser beam.

  2. Plasma Diagnostics: Use and Justification in an Industrial Environment

    NASA Astrophysics Data System (ADS)

    Loewenhardt, Peter

    1998-10-01

    The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.

  3. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions.

    PubMed

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  4. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, M.; Lang, N.; Röpcke, J.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less

  5. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    NASA Astrophysics Data System (ADS)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  6. Modeling of low pressure plasma sources for microelectronics fabrication

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  7. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating

    NASA Astrophysics Data System (ADS)

    Tinck, S.; Boullart, W.; Bogaerts, A.

    2011-08-01

    In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.

  8. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  9. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  10. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    DOE PAGES

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; ...

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit themore » adoption of plasma polymers.« less

  11. Plasma parameters in a multidipole plasma system

    NASA Astrophysics Data System (ADS)

    Ruscanu, D.; Anita, V.; Popa, G.

    Plasma potential and electron number densities and electron temperatures under bi-Maxwellian approximation for electron distribution function of the multidipole argon plasma source system were measured for a gas pressure ranging between 10-4 and 10-3 mbar and an anode-cathode voltage ranging between 40 and 120 V but a constant discharge current intensity. The first group, as ultimate or cold electrons and main electron plasma population, results by trapping of the slow electrons produced by ionisation process due to primary-neutral collisions. The trapping process is produced by potential well due to positive plasma potential with respect to the anode so that electron temperature of the ultimate electrons does not depend on both the gas pressure and discharge voltage. The second group, as secondary or hot electrons, results as degrading process of the primaries and their number density increases while their temperature decreases with the increase of both the gas pressure and discharge voltage.

  12. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources duemore » to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.« less

  13. Dusty Plasmas in Planetary Magnetospheres Award

    NASA Technical Reports Server (NTRS)

    Horanyi, Mihaly

    2005-01-01

    This is my final report for the grant Dusty Plasmas in Planetary Magnetospheres. The funding from this grant supported our research on dusty plasmas to study: a) dust plasma interactions in general plasma environments, and b) dusty plasma processes in planetary magnetospheres (Earth, Jupiter and Saturn). We have developed a general purpose transport code in order to follow the spatial and temporal evolution of dust density distributions in magnetized plasma environments. The code allows the central body to be represented by a multipole expansion of its gravitational and magnetic fields. The density and the temperature of the possibly many-component plasma environment can be pre-defined as a function of coordinates and, if necessary, the time as well. The code simultaneously integrates the equations of motion with the equations describing the charging processes. The charging currents are dependent not only on the instantaneous plasma parameters but on the velocity, as well as on the previous charging history of the dust grains.

  14. Real-Time Plasma Process Condition Sensing and Abnormal Process Detection

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2010-01-01

    The plasma process is often used in the fabrication of semiconductor wafers. However, due to the lack of real-time etching control, this may result in some unacceptable process performances and thus leads to significant waste and lower wafer yield. In order to maximize the product wafer yield, a timely and accurately process fault or abnormal detection in a plasma reactor is needed. Optical emission spectroscopy (OES) is one of the most frequently used metrologies in in-situ process monitoring. Even though OES has the advantage of non-invasiveness, it is required to provide a huge amount of information. As a result, the data analysis of OES becomes a big challenge. To accomplish real-time detection, this work employed the sigma matching method technique, which is the time series of OES full spectrum intensity. First, the response model of a healthy plasma spectrum was developed. Then, we defined a matching rate as an indictor for comparing the difference between the tested wafers response and the health sigma model. The experimental results showed that this proposal method can detect process faults in real-time, even in plasma etching tools. PMID:22219683

  15. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  16. Priority Queues for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in new priority queue data structures for event list management of computer simulations, and includes a new priority queue data structure and an improved event horizon applied to priority queue data structures. ne new priority queue data structure is a Qheap and is made out of linked lists for robust, fast, reliable, and stable event list management and uses a temporary unsorted list to store all items until one of the items is needed. Then the list is sorted, next, the highest priority item is removed, and then the rest of the list is inserted in the Qheap. Also, an event horizon is applied to binary tree and splay tree priority queue data structures to form the improved event horizon for event management.

  17. Generation, propagation, and switching of orientational waves in photoexcited liquid-crystalline monolayers.

    PubMed

    Okuzono, Tohru; Tabe, Yuka; Yokoyama, Hiroshi

    2004-05-01

    Photoinduced orientational waves in illuminated liquid-crystalline monolayers is one of the most remarkable far-from-equilibrium phenomena that systems of soft condensed matter exhibit. We model this behavior from a phenomenological point of view, taking the anisotropic photoexcitation of molecules into account. Numerical simulations as well as theoretical analyses of the model reveal that the intricate interplay between the spontaneous splay deformation of the liquid-crystalline order and the anisotropy of the photoexcitation can lead to the generation and propagation of orientational waves. The model can explain all the salient features of the phenomenon-in particular, the anomalous reversal of the propagation direction upon 90 degrees rotation of the polarization direction of illumination, which evaded theoretical explanation for nearly a decade.

  18. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    PubMed Central

    Shang, Lijun

    2007-01-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the “helix-bundle crossing”. However, in the inwardly rectifying (Kir) potassium channel family, the role of this “hinge” residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper “hinge” residues are in close contact with the base of the pore α-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the “lower” gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue. PMID:17657484

  19. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to stimulate critical discussions and collaborations in the future.

  20. Decay instability of an electron plasma wave in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Ferdous, T.; Salimullah, M.

    1996-03-01

    The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.

  1. Temporal characterization of plasma cw high-power CO2 laser-matter interaction: contribution to the welding process control

    NASA Astrophysics Data System (ADS)

    Engel, Thierry; Kane, M.; Fontaine, Joel

    1997-08-01

    During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.

  2. Researching the Possibility of Creating Highly Effective Catalysts for the Thermochemical Heat Regeneration and Hydrocarbon Reforming

    DTIC Science & Technology

    2006-11-01

    PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF

  3. Process to make structured particles

    DOEpatents

    Knapp, Angela Michelle; Richard, Monique N; Luhrs, Claudia; Blada, Timothy; Phillips, Jonathan

    2014-02-04

    Disclosed is a process for making a composite material that contains structured particles. The process includes providing a first precursor in the form of a dry precursor powder, a precursor liquid, a precursor vapor of a liquid and/or a precursor gas. The process also includes providing a plasma that has a high field zone and passing the first precursor through the high field zone of the plasma. As the first precursor passes through the high field zone of the plasma, at least part of the first precursor is decomposed. An aerosol having a second precursor is provided downstream of the high field zone of the plasma and the decomposed first material is allowed to condense onto the second precursor to from structured particles.

  4. Optical in situ monitoring of plasma-enhanced atomic layer deposition process

    NASA Astrophysics Data System (ADS)

    Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang

    2018-06-01

    An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.

  5. Relativistically strong electromagnetic radiation in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less

  6. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  7. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the plasma torch and the single-phase three-phase plasma injector for use in a plasma-chemical unit for production of nano-dispersed materials are described in the paper.

  8. Space and surface charge behavior analysis of charge-eliminated polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro

    1995-12-31

    Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less

  9. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  10. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.

  11. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    NASA Astrophysics Data System (ADS)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  12. Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing

    NASA Technical Reports Server (NTRS)

    Fiske, Peter S.

    2006-01-01

    Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.

  13. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1991-01-01

    The utilization of a cold or nonequilibrium plasma in chlorination processing is discussed. Titanium dioxide (TiO2) was successfully chlorinated at temperatures between 700 and 900 C without the aid of carbon. In addition to these initial experiments, a technique was developed for determining the temperature of a specimen in a plasma. Development of that technique has required evaluating the emissivity of TiO2, ZrO2, and FeOTiO2 and analyzing the specimen temperature in a plasma as a function of both power absorbed by the plasma and the pressure of the plasma. The mass spectrometer was also calibrated with TiCl4 and CCl4 vapor.

  14. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuettner, Lindsey Ann

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work willmore » be discussed.« less

  15. Introduction of Nano-seconds Pulsed Discharge Plasma and its Applications

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Wang, Douyan; Matsumoto, Takao; Okada, Sho; Akiyama, Hidenori

    During the decades, the developments of high power semiconductor switch, magnetic core and etc have allowed us to manufacture the pulsed power source having higher energy transfer efficiency. As the results, the pulsed discharge has been recognized as one of the promised non-thermal plasma to practical use. In this paper, a generation process, electron energy, impedance and a temperature of the pulsed discharge plasma would be explained. In addition, a nano-seconds pulsed discharge plasma would be introduced as the non-thermal plasma processing giving us the highest energy efficiency and be demonstrated it.

  16. Sedimentation History of Halfway Creek Marsh, Upper Mississippi River National Wildlife and Fish Refuge, Wisconsin, 1846-2006

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Knox, James C.; Schubauer-Berigan, Joseph P.

    2007-01-01

    The history of overbank sedimentation in the vicinity of Halfway Creek Marsh near La Crosse, Wis., was examined during 2005?06 by the U.S. Geological Survey and University of Wisconsin?Madison as part of a broader study of sediment and nutrient loadings to the Upper Mississippi River bottomlands by the U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S. Geological Survey. Historical sedimentation patterns and rates were interpreted from field-scale topographic surveys and sediment cores collected from the marsh and upstream flood plains. Historical maps and aerial photographs were used to establish the timing of disturbances and to document changes in channel patterns after Euro-American settlement (post 1846). Episodic overbank sedimentation patterns and rates were linked to watershed agricultural activity, large floods, artificial levee construction, channel alterations, and dam failures over the past 160 years. These forces affected sedimentation on and between levees, the development of alluvial fans and flood-plain splays, and the general pattern of flood-plain sedimentation through the upper and lower marsh. Historical overbank deposits, episodically deposited after about 1860, are as much as 6 feet thick in the upper marsh and as much as 4 feet thick in the lower marsh, representing a total volume of approximately 1.8 million cubic yards. These stratified deposits consist of multiple layers of silt and clay, very fine to fine sand, and some medium to very coarse sand. Coarse-grained deposits are associated with flood-plain splays caused by breaches in artificial levees during large floods. Estimated sedimentation rates were highest from 1919 to 1936 [26,890 cubic yards per year (yd3/yr)] and exceeded by about 30 times the 1846?85 rate of 920 yd3/yr and exceeded by 7 times the 1994?2006 rate of 3,740 yd3/yr. The 1994?2006 sedimentation rate was the lowest since Euro-American settlement, but natural levees along the 1994?2006 channel of Halfway Creek through the lower marsh continued to form and are currently (2006) about 1 foot higher than the surrounding marsh. Natural levee building in the lower marsh from 1994?2006 was accentuated by the lack of overbank sediment storage in the upper marsh. The historical storage of sediment in the upper and lower marsh affects modern streamflow and sediment transport processes of Halfway Creek and Sand Lake Coulee through the marsh, and it also affects marsh vegetation and wildlife habitat. Results from this investigation will help improve the understanding of how past overbank sedimentation patterns continue to influence modern and future water quality, sediment transport, nutrient loads, and water-related resources in riparian habitats common to the Upper Mississippi River National Wildlife and Fish Refuge.

  17. Interplay between discharge physics, gas phase chemistry and surface processes in hydrocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Hassouni, Khaled

    2013-09-01

    In this paper we present two examples that illustrate two different contexts of the interplay between plasma-surface interaction process and discharge physics and gas phase chemistry in hydrocarbon discharges. In the first example we address the case of diamond deposition processes and illustrate how a detailed investigation of the discharge physics, collisional processes and transport phenomena in the plasma phase make possible to accurately predict the key local-parameters, i.e., species density at the growing substrate, as function of the macroscopic process parameters, thus allowing for a precise control of diamond deposition process. In the second example, we illustrate how the interaction between a rare gas pristine discharge and carbon (graphite) electrode induce a dramatic change on the discharge nature, i.e., composition, ionization kinetics, charge equilibrium, etc., through molecular growth and clustering processes, solid particle formation and dusty plasma generation. Work done in collaboration with Alix Gicquel, Francois Silva, Armelle Michau, Guillaume Lombardi, Xavier Bonnin, Xavier Duten, CNRS, Universite Paris 13.

  18. Control of plasma process by use of harmonic frequency components of voltage and current

    DOEpatents

    Miller, Paul A.; Kamon, Mattan

    1994-01-01

    The present invention provides for a technique for taking advantage of the intrinsic electrical non-linearity of processing plasmas to add additional control variables that affect process performance. The technique provides for the adjustment of the electrical coupling circuitry, as well as the electrical excitation level, in response to measurements of the reactor voltage and current and to use that capability to modify the plasma characteristics to obtain the desired performance.

  19. Blood Substrate Collection and Handling Procedures under Pseudo-Field Conditions: Evaluation of Suitability for Inflammatory Biomarker Measurement

    PubMed Central

    Danese, Andrea; Shalev, Idan; Williams, Benjamin S.; Caspi, Avshalom

    2015-01-01

    Routine incorporation of blood-based biomarker measurements in population studies has been hampered by challenges in obtaining samples suitable for biomarker assessment outside of laboratory settings. Here, we assessed the suitability of venous blood left unprocessed for four, 24 or 48 hours post-collection at either room temperature or 4°C for quantification of two biomarkers, Interleukin-6 (IL-6) and C-Reactive Protein (CRP). Blood samples were collected in both K2EDTA tubes and a dedicated plasma-preservation tube, P100. Dried Blood Spot (DBS) samples from the same subjects were also collected in order to compare delayed-processing plasma performance against a popular alternative collection method. K2EDTA mean plasma concentrations of both IL-6 and CRP were not significantly different from concentrations in plasma processed immediately; this was observed for tubes stored up to 48 hours pre-processing at either temperature. Concentrations of IL-6 measured in P100 tubes showed significant time-dependent increases when stored at room temperature; otherwise, levels of IL-6 and CRP were similar to those processed immediately. Levels of CRP in DBS were correlated with plasma CRP levels, even when pre-processed blood was stored for up to 48 hours. These data indicate that plasma is suitable for IL-6 and CRP estimation under data-collection conditions that involve processing delays. PMID:26652682

  20. Blood Substrate Collection and Handling Procedures under Pseudo-Field Conditions: Evaluation of Suitability for Inflammatory Biomarker Measurement.

    PubMed

    Sugden, Karen; Danese, Andrea; Shalev, Idan; Williams, Benjamin S; Caspi, Avshalom

    2015-01-01

    Routine incorporation of blood-based biomarker measurements in population studies has been hampered by challenges in obtaining samples suitable for biomarker assessment outside of laboratory settings. Here, we assessed the suitability of venous blood left unprocessed for 4, 24, or 48 hours post-collection at either room temperature or 4°C for quantification of two biomarkers, Interleukin-6 (IL-6) and C-reactive protein (CRP). Blood samples were collected in both K2EDTA tubes and a dedicated plasma-preservation tube, P100. Dried blood spot (DBS) samples from the same subjects were also collected in order to compare delayed-processing plasma performance against a popular alternative collection method. We found that K2EDTA mean plasma concentrations of both IL-6 and CRP were not significantly different from concentrations in plasma processed immediately; this was observed for tubes stored up to 48 hours pre-processing at either temperature. Concentrations of IL-6 measured in P100 tubes showed significant time-dependent increases when stored at room temperature; otherwise, levels of IL-6 and CRP were similar to those found in samples processed immediately. Levels of CRP in DBS were correlated with plasma CRP levels, even when pre-processed blood was stored for up to 48 hours. These data indicate that plasma is suitable for IL-6 and CRP estimation under data collection conditions that involve processing delays.

  1. Development of non-thermal plasma jet and its potential application for color degradation of organic pollutant in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Pirdo Kasih, Tota; Kharisma, Angel; Perdana, Muhammad Kevin; Murphiyanto, Richard Dimas Julian

    2017-12-01

    This paper presents the development of non-thermal plasma-based AOPs for color degradation in wastewater treatment. The plasma itself was generated by an in-house high voltage power supply (HVPS). Instead of gas-phase plasma system, we applied plasma jet system underwater during wastewater treatment without additional any chemicals (chemical-free processing). The method is thought to maximize the energy transfer and increase the efficient interaction between plasma and solution during the process. Our plasma jet system could proceed either by using helium (He), argon (Ar) and air as the medium in an open air atmosphere. Exploring the developed plasma to be applied in organic wastewater treatment, we demonstrated that the plasma jet could be generated underwater and yields in color degradation of methylene blue (MB) wastewater model. When using Ar gas as a medium, the color degradation of MB could be achieved within 90 minutes. Whereas, by using Ar with an admixing of oxygen (O2) gas, the similar result could be accomplished within 60 minutes. Additional O2 gas in the latter might produce more hydroxyl radicals and oxygen-based species which speed up the oxidative reaction with organic pollutants, and hence accelerate the process of color degradation.

  2. Compression of Intense Laser Pulses in Plasma

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.; Malkin, Vladimir M.; Shvets, Gennady

    2001-10-01

    A counterpropagating short pulse can absorb the energy of a long laser pulse in plasma, resulting in pulse compression. For processing very high power and very high total energy, plasma is an ideal medium. Thus, in plasma one can contemplate the compression of micron light pulses to exawatts per square cm or fluences to kilojoules per square cm, prior to the vacuum focus. Two nonlinear plasma effects have recently been proposed to accomplish compression at very high power in counterpropagating geometry: One is compression by means of Compton or so-called superradiant scattering, where the nonlinear interaction of the plasma electrons with the lasers dominates the plasma restoring motion due to charge imbalance [G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. v. 81, 4879 (1998)]. The second is fast compression by means of stimulated backward Raman scattering (SBRS), where the amplification process outruns deleterious processes associated with the ultraintense pulse [V. M. Malkin, G. Shvets, N. J. Fisch, Phys. Rev. Lett., v. 82, 4448 (1999)]. In each of these regimes, in a realistic plasma, there are technological challenges that must be met and competing effects that must be kept smaller than the desired interaction.

  3. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination

    NASA Astrophysics Data System (ADS)

    Al-rawaf, Ali F.; Fuliful, Fadhil Khaddam; Khalaf, Mohammed K.; Oudah, Husham. K.

    2018-04-01

    Non-thermal atmospheric-pressure plasma jet represents an excellent approach for the decontamination of bacteria. In this paper, we want to improve and characterize a non-thermal plasma jet to employ it in processes of sterilization. The electrical characteristics was studied to describe the discharge of the plasma jet and the development of plasma plume has been characterized as a function of helium flow rate. Optical emission spectroscopy was employed to detect the active species inside the plasma plume. The inactivation efficiency of non-thermal plasma jet was evaluated against Staphylococcus aureus bacteria by measuring the diameter of inhibition zone and the number of surviving cells. The results presented that the plasma plume temperature was lower than 34° C at a flow rate of 4 slm, which will not cause damage to living tissues. The diameter of inhibition zone is directly extended with increased exposure time. We confirmed that the inactivation mechanism was unaffected by UV irradiation. In addition, we concluded that the major reasons for the inactivation process of bacteria is because of the action of the reactive oxygen and nitrogen species which formed from ambient air, while the charged particles played a minor role in the inactivation process.

  4. The Earth's magnetosphere as a sample of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    Plasma processes in the Earth's neighborhood determine the environmental conditions under which space-based equipment for science or technology must operate. These processes are peculiar to a state of matter that is rare on Earth but dominates the universe as whole. The physical, and especially the electrodynamic, properties of this state of matter is still far from well understood. By fortunate circumstances, the magnetosphere-ionosphere system of the Earth provides a rich sample of widely different plasma populations, and, even more importantly, it is the site of a remarkable variety of plasma processes. In different combinations such processes must be important throughout the universe, which is overwhelmingly dominated by matter in the plasma state. Therefore, observations and experiments in the near-Earth plasma serve a multitude of purposes. They will not only (1) clarify the dynamics of the space environment but also (2) widen the understanding of matter, (3) form a basis for interpretating remote observations of astrophysical objects, thereby even (4) help to reconstruct events that led to the evolution of the solar system. Last but not least they will (5) provide know-how required for adapting space-based technology to the plasma environment. Such observations and experiments will require a close mutual interplay between science and technology.

  5. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    PubMed

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  6. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  7. Propagation of Plasma Bunches through a Transverse Magnetic Barrier

    NASA Astrophysics Data System (ADS)

    Bishaev, A. M.; Gavrikov, M. B.; Kozintseva, M. V.; Savel'ev, V. V.

    2018-01-01

    The injection of a plasma bunch into a multipolar trap can be applied to fill the trap with a plasma. The injection of the bunch into a tokamak-like trap can be considered an additional means for controlling the processes of plasma heating and fuel delivery to the central zone of a thermonuclear reactor. In both cases, the bunch is injected normally to the magnetic field of the trap. It has been shown theoretically, experimentally, and by numerical simulation that the depth of plasma bunch penetration into the magnetic field varies in direct proportion to the bunch energy and in inverse proportion to the magnetic pressure and the cross-sectional area of the plasma bunch. The data of this work allow researchers to estimate the values of plasma bunch parameters at which the bunch will be trapped. As a result, the process of plasma bunch trapping has been optimized.

  8. Foundations of atmospheric pressure non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  9. Gordon Research Conference on Plasma Chemistry (10th), Held in Tilton, New Hampshire on August 15-19, 1988

    DTIC Science & Technology

    1989-10-01

    The 1988 Gordon Research Conference on Plasma Chemistry was divided into nine sessions. Eight had two or three invited talks and two or three...findings in low pressure, non-equilibrium plasma chemistry , covering the topics of plasmas in device technology, and plasma enhanced processing...applications and surface-plasma interactions. Six joint sessions included sessions on future plasma chemistry , nucleation and growth, plasma modeling, one each

  10. Apparatus and method for plasma processing of SRF cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.

    2016-05-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.

  11. Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han

    2016-11-01

    The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.

  12. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  13. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    NASA Astrophysics Data System (ADS)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  14. Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source

    NASA Astrophysics Data System (ADS)

    Sosnin, É. A.; Goltsova, P. A.; Panarin, V. A.; Skakun, V. S.; Tarasenko, V. F.; Didenko, M. V.

    2017-08-01

    Using optical and chemical processes, the composition of the products of decay of the atmospheric-pressure non-equilibrium plasma is determined in a pulsed, high-voltage discharge in the modes of apokampic and corona discharges. It is shown that the products of decay primarily contain nitrogen oxides NO x, and in the mode of the corona discharge - ozone. Potential applications of this source of plasma are discussed with respect to plasma processing of the seeds of agricultural crops.

  15. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  16. Role of plasma electrons in the generation of a gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.; Rusetski, I. S.

    2012-12-01

    The role of different ionization mechanisms in penning-type gas discharges used to generate an emitting plasma in plasma electron sources is considered. It is shown that, under certain conditions, a substantial contribution to the process of gas ionization is provided by plasma electrons.

  17. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  18. Pulse thermal processing of functional materials using directed plasma arc

    DOEpatents

    Ott, Ronald D [Knoxville, TN; Blue, Craig A [Knoxville, TN; Dudney, Nancy J [Knoxville, TN; Harper, David C [Kingston, TN

    2007-05-22

    A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

  19. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  20. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  1. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.

  2. Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François

    2016-09-01

    Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.

  3. Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.

    2013-08-01

    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.

  4. Motion of negative ion plasma near the boundary with electron−ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Yu. V., E-mail: medve@mail.ru

    2017-01-15

    Processes occurring near the boundary between three-component plasma with negative ions and two-component electron−ion plasma are considered. The excited waves and instability are described. Stability condition at the boundary is determined.

  5. JPRS Report. Soviet Union, EKO: Economics & Organization of Industrial Production No. 7, July 1987.

    DTIC Science & Technology

    1987-12-03

    to the question of the interest in plasma equip- ment in various branches of the national economy. Plasma processes occupy a leading position among...the principally new technologies that are based on process - ing concentrated flows of energy. Even today there are more than 50 of them. An entire...branch of chemistry has been formed—plasma chemistry, for which it is typical to have processes with an average mass temperature of the working gas

  6. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  7. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    NASA Astrophysics Data System (ADS)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  8. A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization.

    PubMed

    Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo

    2005-05-01

    To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.

  9. Low-temperature preparation of GaN-SiO2 interfaces with low defect density. II. Remote plasma-assisted oxidation of GaN and nitrogen incorporation

    NASA Astrophysics Data System (ADS)

    Bae, Choelhwyi; Lucovsky, Gerald

    2004-11-01

    Low-temperature remote plasma-assisted oxidation and nitridation processes for interface formation and passivation have been extended from Si and SiC to GaN. The initial oxidation kinetics and chemical composition of thin interfacial oxide were determined from analysis of on-line Auger electron spectroscopy features associated with Ga, N, and O. The plasma-assisted oxidation process is self-limiting with power-law kinetics similar to those for the plasma-assisted oxidation of Si and SiC. Oxidation using O2/He plasma forms nearly pure GaOx, and oxidation using 1% N2O in N2 forms GaOxNy with small nitrogen content, ~4-7 at. %. The interface and dielectric layer quality was investigated using fabricated GaN metal-oxide-semiconductor capacitors. The lowest density of interface states was achieved with a two-step plasma-assisted oxidation and nitridation process before SiO2 deposition.

  10. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  11. Surface-Plasma Interaction on the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horanyi, M.; Wang, X.; Robertson, S.

    2008-09-07

    The electrostatic levitation and transport of lunar dust remains a controversial science issue since the Apollo era. As a function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface emit and absorb plasma particles and are exposed to solar UV photons. There are several in situ and remote sensing observations that indicate that dusty plasma processes are responsible for the mobilization and transport of lunar soil. We briefly discuss the existing observations, and report on a series of experiments that addressmore » some of the most relevant processes acting on dusty surfaces exposed to plasmas and UV radiation.« less

  12. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spectral and temporal characteristics of a laser plasma

    NASA Astrophysics Data System (ADS)

    Lipchak, A. I.; Solomonov, V. I.; Tel'nov, V. A.; Osipov, V. V.

    1995-04-01

    An experimental investigation was made of the spectral and temporal characteristics of a laser plasma formed by the interaction of a CO2 laser pulse with a target in atmospheric air. The results obtained indicate that the main role in the process of filling the excited states in a laser plasma is played by a recombination cascade and that both atoms and molecules of the atmospheric gases are excited. The result also show that a laser plasma can be used in spectroscopic analysis of multicomponent samples. The solution of the thermophysical problem of heating of a target by laser radiation supports the existing ideas on the process of formation of a plasma near the target surface in air.

  13. Effect of Coulomb Collisions on Low Gas Pressure Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanbu, K.; Furubayashi, T.

    2006-05-05

    A recent trend in material processing plasmas is the use of a low gas pressure and high plasma density. In such plasmas, Coulomb collisions among charged particles has been considered to have a significant effect on plasma structure. By use of Bobylev and Nanbu's theory [Phy. Rev. E, 61(2000), 4576], this effect on argon plasmas and oxygen plasmas generated by a capacitive discharge is examined. It is found that the effect is appreciable only for oxygen plasmas.

  14. Scalable graphene production: perspectives and challenges of plasma applications

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  15. Scalable graphene production: perspectives and challenges of plasma applications.

    PubMed

    Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth

    2016-05-19

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  16. Method for depositing high-quality microcrystalline semiconductor materials

    DOEpatents

    Guha, Subhendu [Bloomfield Hills, MI; Yang, Chi C [Troy, MI; Yan, Baojie [Rochester Hills, MI

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  17. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  18. Microwave processes in the SPD-ATON stationary plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirdyashev, K. P., E-mail: kpk@ms.ire.rssi.ru

    2016-09-15

    Results of experimental studies of microwave processes accompanying plasma acceleration in the SPD-ATON stationary plasma thruster are presented. Specific features of the generation of microwave oscillations in both the acceleration channel and the plasma flow outgoing from the thruster are analyzed on the basis of local measurements of the spectra of the plasma wave fields. Mechanisms for generation of microwave oscillations are considered with allowance for the inhomogeneity of the electron density and magnetic field behind the edge of the acceleration channel. The effect of microwave oscillations on the electron transport and the formation of the discharge current in themore » acceleration channel is discussed.« less

  19. Enzymatic degradation of somatostatin by rat plasma and hypothalamus.

    PubMed

    Dupont, A; Alvarado-Urbina, G; Côté, J; Labrie, F

    1978-10-01

    A highly sensitive and specific radioimmunoassay for somatostatin has been used to study inactivation of the neurohormone by plasma and hypothalamic peptidase(s). Specificity of the inactivation process was indicated by the absence of interference by addition of luteinizing hormone releasing hormone, thyrotropin-releasing hormone, oxytocin, or substance P. The inactivating ability of hypothalamic tissue and plasma was destroyed by heating and the protease inhibitor benzamidine prevented plasma activity, thus suggesting the enzymatic nature of the processes involved. The present data suggest that the inactivation of somatostatin by hypothalamus and plasma could be an important factor in the regulation of circulating somatostatin levels.

  20. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  1. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  2. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  3. Mathematical Model Of Variable-Polarity Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1996-01-01

    Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.

  4. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    NASA Astrophysics Data System (ADS)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  5. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    NASA Astrophysics Data System (ADS)

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  6. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, David A.

    2009-01-01

    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  7. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  8. Plasma Shield for In-Air and Under-Water Beam Processes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2007-11-01

    As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.

  9. Isomer and Fluorination Effects among Fluorine Substituted Hydrocarbon C3/C4 Molecules in Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Patel, U. R.; Joshipura, K. N.

    2015-05-01

    Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.

  10. Electron Heating Mode Transitions in Nitrogen (13.56 and 40.68) MHz RF-CCPs

    NASA Astrophysics Data System (ADS)

    Erozbek Gungor, Ummugul; Bilikmen, Sinan Kadri; Akbar, Demiral

    2015-09-01

    Capacitively coupled radio frequency plasmas (RF-CCPs) are commonly used in plasma material processing. Parametrical structure of the plasma determines the demands of processing applications. For example; high density plasmas in gamma mode are mostly preferred for etching applications while stabile plasmas in gamma mode are usually used in sputtering applications. For this reason, characterization of the plasma is very essential before surface modification of the materials. In this work, analysis of electron heating mode transition in high frequency (40.68 MHz) RF-CCP was deeply investigated. The plasma was generated in a home-made (500 × 400 mm2) stainless steel cylindrical reactor in which two identical (200 mm in diameter) electrodes were placed with 40 mm interval. In addition, L-type automatic matching network system was connected to the 40.68 MHz RF generator to get high accuracy. Moreover, the pure (99.995 %) nitrogen was used as an activation gas on account of having an appreciable impression in plasma processing applications. Furthermore, diagnostic measurements of the plasma were done by using the Impedans Langmuir single and double probe systems. It was found that two transition points; α- γ (pressure dependent) and γ- α (RF power dependent) were observed in both medium and high RF-CCPs. As a result, the α- γ pressure transition increased, whereas the γ- α power transition remained constant by changing the RF frequency sources.

  11. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    NASA Astrophysics Data System (ADS)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  12. Minimum reaction network necessary to describe Ar/CF4 plasma etch

    NASA Astrophysics Data System (ADS)

    Helpert, Sofia; Chopra, Meghali; Bonnecaze, Roger T.

    2018-03-01

    Predicting the etch and deposition profiles created using plasma processes is challenging due to the complexity of plasma discharges and plasma-surface interactions. Volume-averaged global models allow for efficient prediction of important processing parameters and provide a means to quickly determine the effect of a variety of process inputs on the plasma discharge. However, global models are limited based on simplifying assumptions to describe the chemical reaction network. Here a database of 128 reactions is compiled and their corresponding rate constants collected from 24 sources for an Ar/CF4 plasma using the platform RODEo (Recipe Optimization for Deposition and Etching). Six different reaction sets were tested which employed anywhere from 12 to all 128 reactions to evaluate the impact of the reaction database on particle species densities and electron temperature. Because many the reactions used in our database had conflicting rate constants as reported in literature, we also present a method to deal with those uncertainties when constructing the model which includes weighting each reaction rate and filtering outliers. By analyzing the link between a reaction's rate constant and its impact on the predicted plasma densities and electron temperatures, we determine the conditions at which a reaction is deemed necessary to the plasma model. The results of this study provide a foundation for determining which minimal set of reactions must be included in the reaction set of the plasma model.

  13. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying

    2017-09-01

    The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.

  14. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Choi, Hagyoung

    2013-11-07

    In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradationmore » test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.« less

  15. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  16. The dependence of the sporicidal effects on the power and pressure of RF-generated plasma processes.

    PubMed

    Lassen, Klaus S; Nordby, Bolette; Grün, Reinar

    2005-07-01

    The sporicidal effect of 20 different radio-frequency plasma processes produced by combining five different gas mixtures [O(2), Ar/H(2) (50/50%), Ar/H(2) (5/95%), O(2)/H(2) (50/50%), O(2)/H(2) (95/5%)] with four power/pressure settings were tested. Sporicidal effects of oxygen-containing plasmas were dependent on power at low pressure settings but not at high pressure settings. In the absence of oxygen no power dependency was observed at either high or low pressure settings. Survivor curves obtained with the use of nonoxygen plasmas typically had a tailing tendency. Only a mixture-optimized Ar/H(2) (15/85%) plasma process was not encumbered by tailing, and produced a decimal reduction time (D value) below 2 min for Bacillus stearothermophilus spores. Scanning electron microscopy showed that a CF(4)/O(2) plasma did more damage to the substrate than the 15/85% Ar/H(2) plasma. The present results indicate that UV irradiation inactivation is swift and power and pressure independent. Additionally, it is produced at low energy. However, it is not complete. Inactivation through etching is highly power and pressure dependent; finally, inactivation by photodesorption is moderately power and pressure dependent. A sterilization process relying on this mechanism is very advantageous because it combines a highly sporicidal effect with low substrate damage. Copyright 2005 Wiley Periodicals, Inc.

  17. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    NASA Astrophysics Data System (ADS)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the formation carboxylic and phenyl amine groups, which may provide additional active sites for grafting by way of hydrogen abstraction from the latter. Further analysis of XPS data, however, showed that macroradicals and active sites of grafting were formed at least at one of the carbon atoms in the aromatic ring. A reduction of microbial activity up to 3-log reduction was achieved by plasma treated Kevlar grafted by either diallyl diammonium chloride (DADMAC) or 3- ((trimethoxysilyl)-propyl) dimethylammonium chloride (TMS), with the latter being the one with better performance. It was found that high antimicrobial activity was obtained by the combination of high RF power, short time of exposure, and low concentration of monomer. Of the three processing methods studied, the one with immersion method produced higher graft yield. However, one-step plasma graft-polymerization with pad-dry method has proven itself more interesting due to its potential for an open continuous process. This research has been successful in producing effective antimicrobial properties on Kevlar fabric by plasma-initiated and plasma-controlled graft polymerization, which is unprecedented. The design of experiments showed that better results with higher order of log reduction can be obtained by process optimization, e.g. by using response surface methods. It would also be very beneficial to continue the research for the development of plasma graft-polymerization process with more rigorous design, which involves the use of crosslinker and antimicrobial monomers with different chemistry. A study that involves the development of a robust design for processes that perform consistently as intended under a wide range of user's conditions and yet produce high-level performance with high reliability would also be advantageous. The major implication of the findings from this research for the finishing of Kevlar is that a wide array of different surface functionalities may become more readily available now than ever. Plasma technology has made surface chemistry functionalization of Kevlar more straightforward and easier to perform, which opens new avenues for achieving functional and multifunctional Kevlar fabrics using a fast, more economic and environmentally friendly continuous process for niche market such as military applications and protective clothing for emergency responders.

  18. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  19. Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.; Ryzhkov, S. V.; Frolko, P. A.

    2017-05-01

    The paper presents the results of mathematical modeling of physical processes in electronic devices such as helicon discharge and coaxial pulsed plasma thruster. A mathematical model of coaxial magneto-plasma accelerator (with a preionization helicon discharge), which allows estimating the transformation of one form of energy to another, as well as to evaluate the level of the contribution of different types of energy, the increase in mass of the accelerated plasmoid in the process of changing the speed. Main plasma parameters with experimental data were compared.

  20. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  1. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    PubMed

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  2. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  3. Analysis of benzoquinone decomposition in solution plasma process

    NASA Astrophysics Data System (ADS)

    Bratescu, M. A.; Saito, N.

    2016-01-01

    The decomposition of p-benzoquinone (p-BQ) in Solution Plasma Processing (SPP) was analyzed by Coherent Anti-Stokes Raman Spectroscopy (CARS) by monitoring the change of the anti-Stokes signal intensity of the vibrational transitions of the molecule, during and after SPP. Just in the beginning of the SPP treatment, the CARS signal intensities of the ring vibrational molecular transitions increased under the influence of the electric field of plasma. The results show that plasma influences the p-BQ molecules in two ways: (i) plasma produces a polarization and an orientation of the molecules in the local electric field of plasma and (ii) the gas phase plasma supplies, in the liquid phase, hydrogen and hydroxyl radicals, which reduce or oxidize the molecules, respectively, generating different carboxylic acids. The decomposition of p-BQ after SPP was confirmed by UV-visible absorption spectroscopy and liquid chromatography.

  4. Active Plasma Resonance Spectroscopy: Evaluation of a fluiddynamic-model of the planar multipole resonance probe using functional analytic methods

    NASA Astrophysics Data System (ADS)

    Friedrichs, Michael; Brinkmann, Ralf Peter; Oberrath, Jens

    2016-09-01

    Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP. By coupling the model of the cold plasma with the maxwell equations for electrostatics an analytical model for the admittance of the plasma is derivated, adjusted to cylindrical geometry and solved analytically for the planar MRP using functional analytic methods.

  5. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  6. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  7. A Course on Plasma Processing in Integrated Circuit Fabrication.

    ERIC Educational Resources Information Center

    Sawin, Herbert H.; Reif, Rafael

    1983-01-01

    Describes a course, taught jointly by electrical/chemical engineering departments at the Massachusetts Institute of Technology, designed to teach the fundamental science of plasma processing as well as to give an overview of the present state of industrial processes. Provides rationale for course development, texts used, class composition, and…

  8. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  9. Hydrodynamics of Turning Flocks.

    PubMed

    Yang, Xingbo; Marchetti, M Cristina

    2015-12-18

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.

  10. Seismotectonic segmentation along the Chilean megathrust (Invited)

    NASA Astrophysics Data System (ADS)

    Melnick, D.; Moreno, M.

    2010-12-01

    This study focuses on understanding seismotectonic segmentation of megathrusts (MT). Recent research suggests elements associated to MT segmentation include: oceanic features, such as seamounts, seismic and aseismic ridges, and fracture zones; thickness and nature of trench sediments; and upper-plate heterogeneities as changes in density, lithology, and presence of splay faults or microplates, features usually manifested in coastline morphology. The 3500-km-long Chilean MT includes all these elements with various amplitudes under fairly constant kinematics and strike. Along the Nazca-South America boundary, the dense GPS network and knowledge of MT geometry allows inverting for the degree of interplate coupling or locking rate. Here we compare locking, historical MT ruptures, and long-term structure. Along-strike changes in locking rate occur at wavelengths of ~100-500 km, and locally correlate with historical ruptures as well as with lower and/or upper plate features, but without a clear systematic pattern. The transition between the 1960 M9.5 and 2010 M8.8 earthquake segments at Arauco (38.5S) has 100 km overlap deduced from land-level changes. Coherent deformation suggest this boundary has been stationary over 4 Myr, and is associated to margin-parallel collision of a forearc microplate along a Paleozoic shear zone. Seismically-active reverse splay faults bound the Peninsula and may absorb coseismic MT slip and stall rupture propagation. To the north, rupture of the 2010 M8.8 event stopped before the prominent J.Fernandez Ridge and its boundary may be associated to the Pichilemu fault, a steep oblique structure that generated a M6.9 aftershock. The change from accretionary to erosive character across this Ridge, from variable thickness of trench sediments, is manifested in narrowing of the coupling zone northwards and a small local decrease in locking rate. This local decrease is coincident with the Maipo orocline axis and a sharp bend in the orogen, which formed at 10 Ma. A sharp decrease in locking rates appears at 32.5S, near the northern end of the 1906 M8.5 earthquake. The 1906 segment appears to be highly coupled in the pre-2010 GPS data. High locking characterizes the southern edge of the 1922 M8.5 event at the Choros Peninsulas, diffusing northward. The Mejillones Peninsula, a prominent discontinuity in the coastline that marks the transition between the 1995 M8 and 1877 M8.7 earthquakes, is associated to a regional lineament of Paleogene paleomagnetic rotation and major discontinuities in Andean structural style along the fore-, intra-, and foreland regions. Minor changes in trench sediment thickness along the erosive segment may be reflected in local variations in locking rate. Two regions with localized decrease in locking rate are spatially associated to the intersection of prominent oceanic ridges at 27.5 and 21.5S, but not to boundaries of historical earthquakes. In general terms, oceanic features seem to have minor influence on earthquake rupture, except for the southern limit of the 1960 event, but are reflected as discrete lows in locking rate. Seismotectonic segmentation along the Chile MT seems to be rather controlled by upper-plate discontinuities such as splay faults and lithological boundaries inherited from the Paleozoic pre-Andean tectonic history of the margin.

  11. Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California

    NASA Astrophysics Data System (ADS)

    Yule, J.; McBurnett, P.; Ramzan, S.

    2011-12-01

    The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace. Subtle evidence for a third event is poorly constrained by age data to have occurred between 1600 and 2500 yrs ago. The southern splay at Millard Canyon forms a 1.5 ± 0.1 m scarp in an alluvial terrace that is inset into the lowest terrace at the northern Millard site, and therefore must be < ~1300 yrs old. Slip on this fault probably occurred during the most recent rupture in the Pass. In summary, we think that the most recent earthquake occurred 600-700 yrs ago and generated ~6 m of slip on the San Gorgonio Pass fault zone. The evidence for two older earthquakes is less complete but suggests that they are similar in style and magnitude to the most recent event. The available data therefore suggest that the San Gorgonio Pass fault zone has produced three large (~6 m) events in the last ~2000 yrs, a return period of ~700 yrs assuming that the next rupture is imminent. We prefer a model whereby a majority of San Andreas fault ruptures end as they approach the Pass region from the north or the south (like the Wrightwood event of A.D. 1812 and possibly the Coachella Valley event of ~A.D. 1680). Relatively rare (once-per-millennia?), through-going San Andreas events break the San Gorgonio Pass fault zone and produce the region's largest earthquakes.

  12. Modes of active deformation in Eastern Hispaniola

    NASA Astrophysics Data System (ADS)

    García-Senz, J.; Pérez-Estaún, A.

    2012-04-01

    Eastern Hispaniola and the Puerto Rico Island are the emerged part of a doubly vergent thrust wedge formed by oblique arc-continent collision with subduction and underthrusting of the North America Plate in the Puerto Rico trench and underthrusting of the Caribbean crust in The Muertos trough (Dolan et al. 1998, Mann et al., 2002, ten Brink et al. 2010). In the relatively small area of Eastern Hispaniola several types of active crustal deformation have been recognized: 1) At the prowedge of the orogene, the rear of the accretionary prism is cut by the strike-slip Septentrional Fault, bounding a sliver plate (Mann et al, 2002). Recent detailed mapping and aeromagnetic surveys in the onshore part of the prism (Samaná Peninsula and Septentrional Cordillera, Sysmin Team) revealed that the internal structure of the sliver is made of parallel bands of sigmoidal, left-lateral, NW-SE thrust splays, bounded by steep strike-slip faults. We interpreted these structures as transpressional strike-slip duplex. It is worth to note the similarity between the strike and dip of the thrust splays and the 303, 62, 74 focal mechanism calculated by Russo and Villaseñor (1995) for the thrust event of the August 4, 1946 Hispaniola earthquake. 2) The uplifted core of the orogen extends between the accretionary prism and the beginning of the Muertos retrowedge. Half of this area is occupied by the Oriental Cordillera, a recent uplift of cretaceous island-arc rocks arching the Late Neogene reef. The rest of the territory is the Caribbean Coastal Plain modelled on the Late Neogene reef. The Oriental Cordillera is made of two en echelon left-stepping uplifts: the domal-shaped Haitises and the rhombohedral-shaped Seibo (García-Senz et al, 2007); the latter share structural similarities and scaling relations with the 90° neutral stepover model of McClay and Bonora (2001). Therefore we interpret it as a restraining stepover developed over a blind splay of the Septentrional Fault, and the main active fault at surface, the Yabón fault, as a trans pop-up strike-slip fault. 3) The contractive faults and folds that form the Oriental Cordillera disappear to the east replaced by a field of NW-SE to WNW-ESE trending normal faults with fresh scarps up to 75 m high depressing the Late Neogene reef (Punta Cana extended area). In plan form, the faults show multiple relays and transverse ramps at the overlaps. A NE-SW section coast to coast across the Punta Cana area show the Late Neogene reef gently arched and cut by normal faults bounding half-grabens, with the main throw directed to the NE. The amount of extension exceeds 3 km (5% of stretching). A very similar system of normal faults has been documented in seismic lines across the Mona Passage (eg. van Gestel et al., 1998, Mondziel, 2007, Chaytor and ten Brink, 2010) and onshore western Puerto Rico (Hippolyte et al., 2005), which are interpreted by a pinning extension model (Dolan et al., 1998, Mann et al., 2002) or by oblique extension (Chaytor and ten Brink, 2010). Whatever the tectonic model may be, our data places an onshore boundary between transpressional and extensional domains. 4) The retrowedge at the southern margin of Hispaniola form an imbricate of E-W segmented thrusts overriding the Muertos trough (ten Brink et al., 2010). These authors suggest that the transport direction within the Muertos thrust system is southward perpendicular to the regional trend of the belt.

  13. Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon

    2016-12-01

    The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.

  14. Effects of the injected plasma on the breakdown process of the trigatron gas switch under low working coefficient

    NASA Astrophysics Data System (ADS)

    Chen, Li; Yang, Lanjun; Qiu, Aici; Huang, Dong; Liu, Shuai

    2018-01-01

    Based on the surface flashover discharge, the injected plasma was generated, and the effects on the breakdown process of the trigatron gas switch were studied in this paper. The breakdown model caused by the injected plasma under the low working coefficient (<0.7) was established. The captured framing images showed that the injected plasma distorted the electrical field of the gap between the frontier of the injected plasma and the opposite electrode, making it easier to achieve the breakdown critical criterion. The calculation results indicated that the breakdown delay time was mainly decided by the development of the injected plasma, as without considering the effects of the photo-ionization and the invisible expansion process, the breakdown delay time of the calculation results was 20% higher than the experimental results. The morphology of the injected plasma generated by polyethylene surface flashover was more stable and regular than ceramic, leading to a 30% lower breakdown delay time when the working coefficient is larger than 0.2, and the difference increased sharply when the working coefficient is lower than 0.2. This was significant for improving the trigger performance of the trigatron gas switch under low working coefficient.

  15. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent advances in thermal and non-equilibrium plasmas as well as on more new and innovative developments in the field of life innovation, green innovation and a technical report session. The editors hope that this volume will be useful and helpful for deepening our understanding of science and technology of plasma materials processing and also for stimulating further development of the plasma technology. Finally, we would like to thank the conference chairmen, the members of the organizing committee, the advisory committee, the executive committee, the program committee, the publication committee, organizing secretariat and financial support from The 153rd Committee on Plasma Materials Science, JSPS. Sponsors and Supporting Organization: The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science Organizing Committee Chairperson: Osamu Tsuji, SAMCO Corporation, Japan Advisory Committee Chairperson: Akihisa Matsuda, Osaka University, Japan Executive Committee Chairperson: Masaru Hori, Nagoya University, Japan Program Committee Chairperson: Takamasa Ishigaki, Hosei University, Japan Publication Committee Chairperson: Takayuki Watanabe, Kyushu University Editors of APCPST-11 and SPMS-25 Professor Takayuki Watanabe, Kyushu University, Japan Professor Toshio Kaneko, Tohoku University, Japan Professor Makoto Sekine, Nagoya University, Japan Professor Yasunori Tanaka, Kanazawa University, Japan

  16. Kinetic Theory of Plasmas

    DTIC Science & Technology

    2009-09-01

    RTO-EN-AVT-162 means of a Coulomb potential screened at the Debye length (Delcroix and Bers, 1984; Balescu , 1988). 4. The plasma is composed of...Theory of Plasmas 2 - 28 RTO-EN-AVT-162 References Balescu , R. (1988). Transport Processes in Plasmas. Elsevier, Amsterdam. Barth, T. (2008

  17. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    NASA Astrophysics Data System (ADS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  18. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    PubMed

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  19. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  20. Robust Low-Cost Cathode for Commercial Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  1. Graphene nanoribbons: Relevance of etching process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less

  2. Device and method for automated separation of a sample of whole blood into aliquots

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.

    1989-01-01

    A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.

  3. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  4. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  5. Hybrid welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Samigullin, A. D.; Bashmakov, D. A.; Israphilov, I. Kh; Turichin, G. A.

    2017-01-01

    The article addresses issues laser - plasma welding (LPW) dissimilar metals and the results of metallographic studies of the microstructure of welds ferrite - 40 steel and molybdenum - steel 40. Increasing potential opportunities the high-energy processing is carried out by integration the laser radiation (LR) and plasma, which allows you to create the desired spatial distribution of the energy flow for technological processes (TP) of laser-plasma heat treatment (LPT) of metals. The distribution of the thermal field is determined by the density distribution of energy flow LR and plasma exposure time, and the thermal characteristics of the treated metal. The most interesting is the treatment of details with ring flow of plasma and LR axial impact.

  6. Apparatus and method for carbon fiber surface treatment

    DOEpatents

    Paulauskas, Felix L; Sherman, Daniel M

    2014-06-03

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  7. Apparatus and method for carbon fiber surface treatment

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2012-07-24

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  8. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  9. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  10. Incoherent Scatter Plasma Lines: Observations and Applications

    NASA Astrophysics Data System (ADS)

    Akbari, Hassanali; Bhatt, Asti; La Hoz, Cesar; Semeter, Joshua L.

    2017-10-01

    Space plasmas are host to the electrostatic Langmuir waves and a rich range of processes associated with them. Many of such processes that are of interest in micro-scale plasma physics and magnetosphere-ionosphere physics are open to investigation via incoherent scatter plasma lines—i.e., a pair of resonant peaks in the incoherent scatter radar (ISR) spectrum, symmetrically displaced from the radar transmitting frequency by about the plasma frequency, as the signature of Langmuir waves in the ISR spectrum. There now exists a large body of literature devoted to the investigation of a number of topics in ionospheric physics via plasma line theory and observation. It is the goal of this work to provide a comprehensive review of this literature, from the early theoretical works on oscillations in magnetized plasma to the recent advances in plasma line measurements and applications. This review includes detailed theoretical discussions on the intensity and frequency displacement of plasma lines. It reviews the experimental observations of plasma lines enhanced by various sources of energy and discusses the implications of the observations in the context of ionospheric physics. The review also covers the practical aspects of plasma line measurements, from measurement techniques to the applications of plasma lines in estimating the bulk parameters of the ionosphere.

  11. Edge and divertor plasma: detachment, stability, and plasma-wall interactions

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Lee, Wonjae; Phsenov, A. A.; Smirnov, R. D.; Smolyakov, A. I.; Stepanenko, A. A.; Zhang, Yanzeng

    2017-10-01

    The paper presents an overview of the results of studies on a wide range of the edge plasma related issues. The rollover of the plasma flux to the target during progressing detachment process is shown to be caused by the increase of the impurity radiation loss and volumetric plasma recombination, whereas the ion-neutral friction, although important for establishing the necessary edge plasma conditions, does not contribute per se to the rollover of the plasma flux to the target. The processes limiting the power loss by impurity radiation are discussed and a simple estimate of this limit is obtained. Different mechanisms of meso-scale thermal instabilities driven by impurity radiation and resulting in self-sustained oscillations in the edge plasma are identified. An impact of sheared magnetic field on the dynamics of the blobs and ELM filaments playing an important role in the edge and SOL plasma transport is discussed. Trapping of He, which is an intrinsic impurity for the fusion plasmas, in the plasma-facing tungsten material is considered. A newly developed model, accounting for the generation of additional He traps caused by He bubble growth, fits all the available experimental data on the layer of nano-bubbles observed in W under irradiation by low energy He plasma.

  12. Development of Electric Field and Plasma Wave Investigations for Future Space Weather Missions: ERG, SCOPE, and beyond

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ono, T.; Misawa, H.; Kojima, H.; Yagitani, S.; Kasahara, Y.; Ishisaka, K.

    2009-04-01

    The electric field and plasma wave investigation is important for the clarification of global plasma dynamics and energetic processes in the planetary Magnetospheric studies. We have several missions which will contribute those objectives. the small-sized radiation belt mission, ERG (Energization and Radiation in Geospace), the cross-scale formation flight mission, SCOPE, the BepiColombo mission to Mercury, and the small-sized and full-scale Jovian mission in future. Those will prevail the universal plasma mechanism and processes in the space laboratory. The main purposes of electric field and plasma wave observation for those missions are: (1) Examination of the theories of high-energy particle acceleration by plasma waves, (2) identification of the origin of electric fields in the magnetosphere associated with cross-scale coupling processes, (3) diagnosis of plasma density, temperature and composition, and (4) investigation of wave-particle interaction and mode conversion processes. Simultaneous observation of plasma waves and energetic particles with high resolution will enable us to investigate the wave-particle interaction based on quasi-linear theory and non-linear models. In this paper, we will summarize the current plan and efforts for those future activities. In order to achieve those objectives, the instrument including sensitive sensors (the long wire / stem antennae, the search-coil / loop antennae) and integrated receiver systems are now in development, including the direct identification of nonlinear wave-particle interactions associated will be tried by Wave-particle Correlator. And, as applications of those development, we will mention to the space interferometer and the radar sounder technologies.

  13. Development of atomic radical monitoring probe and its application to spatial distribution measurements of H and O atomic radical densities in radical-based plasma processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo

    2009-09-01

    Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less

  14. Automated processing of whole blood samples into microliter aliquots of plasma.

    PubMed

    Burtis, C A; Johnson, W W; Walker, W A

    1988-01-01

    A rotor that accepts and automatically processes a bulk aliquot of a single blood sample into multiple aliquots of plasma has been designed and built. The rotor consists of a central processing unit, which includes a disk containing eight precision-bore capillaries. By varying the internal diameters of the capillaries, aliquot volumes ranging 1 to 10 mul can be prepared. In practice, an unmeasured volume of blood is placed in a centre well, and, as the rotor begins to spin, is moved radially into a central annular ring where it is distributed into a series of processing chambers. The rotor is then spun at 3000 rpm for 10 min. When the centrifugal field is removed by slowly decreasing the rotor speed, an aliquot of plasma is withdrawn by capillary action into each of the capillary tubes. The disk containing the eight measured aliquots of plasma is subsequently removed and placed in a modifed rotor for conventional centrifugal analysis. Initial evaluation of the new rotor indicates that it is capable of producing discrete, microliter volumes of plasma with a degree of accuracy and precision approaching that of mechanical pipettes.

  15. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    PubMed

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We aspire to address scientists, who will get involved in the fields of (super)hydrophobicity and/or in atmospheric pressure plasma processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Signal processing methods for MFE plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  17. Microstructural Evolution of Nanocrystalline Diamond Films Due to CH4/Ar/H2 Plasma Post-Treatment Process.

    PubMed

    Lin, Sheng-Chang; Yeh, Chien-Jui; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan

    2015-10-07

    Plasma post-treatment process was observed to markedly enhance the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films. TEM examinations reveal that the prime factor which improves the EFE properties of these films is the coalescence of ultrasmall diamond grains (∼5 nm) forming large diamond grains about hundreds of nanometers accompanied by the formation of nanographitic clusters along the grain boundaries due to the plasma post-treatment process. OES studies reveal the presence of large proportion of atomic hydrogen and C2 (or CH) species, which are the main ingredients that altered the granular structure of the UNCD films. In the post-treatment process, the plasma interacts with the diamond films by a diffusion process. The recrystallization of diamond grains started at the surface region of the material, and the interaction zone increased with the post-treatment period. The entire diamond film can be converted into a nanocrystalline granular structure when post-treated for a sufficient length of time.

  18. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    PubMed

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  19. Simulation of SiO2 etching in an inductively coupled CF4 plasma

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Plasma etching technology is an indispensable processing method in the manufacturing process of semiconductor devices. Because of the high fluorine/carbon ratio of CF4, the CF4 gas is often used for etching SiO2. A commercial software ESI-CFD is used to simulate the process of plasma etching with an inductively coupled plasma model. For the simulation part, CFD-ACE is used to simulate the chamber, and CFD-TOPO is used to simulate the surface of the sample. The effects of chamber pressure, bias voltage and ICP power on the reactant particles were investigated, and the etching profiles of SiO2 were obtained. Simulation can be used to predict the effects of reaction conditions on the density, energy and angular distributions of reactant particles, which can play a good role in guiding the etching process.

  20. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  1. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  2. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  3. Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan

    2018-01-01

    A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.

  4. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  5. Differences in metabolite profiles caused by pre-analytical blood processing procedures.

    PubMed

    Nishiumi, Shin; Suzuki, Makoto; Kobayashi, Takashi; Yoshida, Masaru

    2018-05-01

    Recently, the use of metabolomic analysis of human serum and plasma for biomarker discovery and disease diagnosis in clinical studies has been increasing. The feasibility of using a metabolite biomarker for disease diagnosis is strongly dependent on the metabolite's stability during pre-analytical blood processing procedures, such as serum or plasma sampling and sample storage prior to centrifugation. However, the influence of blood processing procedures on the stability of metabolites has not been fully characterized. In the present study, we compared the levels of metabolites in matched human serum and plasma samples using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with mass spectrometry. In addition, we evaluated the changes in plasma metabolite levels induced by storage at room temperature or at a cold temperature prior to centrifugation. As a result, it was found that 76 metabolites exhibited significant differences between their serum and plasma levels. Furthermore, the pre-centrifugation storage conditions significantly affected the plasma levels of 45 metabolites. These results highlight the importance of blood processing procedures during metabolome analysis, which should be considered during biomarker discovery and the subsequent use of biomarkers for disease diagnosis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    PubMed

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2017-09-01

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N 2 is used as desorbing gas. In addition, as air or O 2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O 2 plasmas generate active species to oxidize IPA to form acetone, CO 2 , and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  7. Plasma processing of large curved surfaces for superconducting rf cavity modification

    DOE PAGES

    Upadhyay, J.; Im, Do; Popović, S.; ...

    2014-12-15

    In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less

  8. Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marqués, J.-L.; Schein, J.

    2015-01-01

    Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma.

  9. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium ions...

  10. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium ions...

  11. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium ions...

  12. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium ions...

  13. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note: In the plasma separation process, a plasma of uranium ions...

  14. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsouleas, Thomas C.; Sahai, Aakash A.

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of themore » laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.« less

  15. Conceptual Design of Electron-Beam Generated Plasma Tools

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott

    2015-09-01

    Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.

  16. Characterization of the Low-Molecular-Weight Human Plasma Peptidome.

    PubMed

    Greening, David W; Simpson, Richard J

    2017-01-01

    The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomics in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.

  17. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlquist, D.R.

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less

  18. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  19. Modelling of plasma processes in cometary and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2013-02-01

    Electrons from the Sun, often accelerated by magnetospheric processes, produce low-density plasmas in the upper atmospheres of planets and their satellites. The secondary electrons can produce further ionization, dissociation and excitation, leading to enhancement of chemical reactions and light emission. Similar processes are driven by photoelectrons produced by sunlight in upper atmospheres during daytime. Sunlight and solar electrons drive the same processes in the atmospheres of comets. Thus for both understanding of planetary atmospheres and in predicting emissions for comparison with remote observations it is necessary to simulate the processes that produce upper atmosphere plasmas. In this review, we describe relevant models and their applications and address the importance of electron-impact excitation cross sections, towards gaining a quantitative understanding of the phenomena in question.

  20. Spectral line intensity irreversibility in circulatory plasma magnetization processes

    NASA Astrophysics Data System (ADS)

    Qu, Z. Q.; Dun, G. T.

    2012-01-01

    Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.

Top