Method for fabricating beryllium structures
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1977-01-01
Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.
Concept for a beryllium divertor with in-situ plasma spray surface regeneration
NASA Astrophysics Data System (ADS)
Smith, M. F.; Watson, R. D.; McGrath, R. T.; Croessmann, C. D.; Whitley, J. B.; Causey, R. A.
1990-04-01
Two serious problems with the use of graphite tiles on the ITER divertor are the limited lifetime due to erosion and the difficulty of replacing broken tiles inside the machine. Beryllium is proposed as an alternative low-Z armor material because the plasma spray process can be used to make in-situ repairs of eroded or damaged surfaces. Recent advances in plasma spray technology have produced beryllium coatings of 98% density with a 95% deposition efficiency and strong adhesion to the substrate. With existing technology, the entire active region of the ITER divertor surface could be coated with 2 mm of beryllium in less than 15 h using four small plasma spray guns. Beryllium also has other potential advantages over graphite, e.g., efficient gettering of oxygen, ten times less tritium inventory, reduced problems of transient fueling from D/T exchange and release, no runaway erosion cascades from self-sputtering, better adhesion of redeposited material, as well as higher strength, ductility, and fracture toughness than graphite. A 2-D finite element stress analysis was performed on a 3 mm thick Be tile brazed to an OFHC soft-copper saddle block, which was brazed to a high-strength copper tube. Peak stresses remained 50% below the ultimate strength for both brazing and in-service thermal stresses.
Beryllium processing technology review for applications in plasma-facing components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, R.G.; Jacobson, L.A.; Stanek, P.W.
1993-07-01
Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less
Thermal shock induced oxidation of beryllium
NASA Astrophysics Data System (ADS)
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2017-12-01
Beryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m-2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m-2 and a pulse duration of 1 ms, leading to a peak surface temperature of ˜800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ˜0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.
Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER
NASA Astrophysics Data System (ADS)
Brezinsek, S.; JET-EFDA contributors
2015-08-01
The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.
Hydrogen transport behavior of beryllium
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.; Macaulay-Newcombe, R. G.
1992-12-01
Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy, Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
Tritium retention in S-65 beryllium after 100 eV plasma exposure
NASA Astrophysics Data System (ADS)
Causey, Rion A.; Longhurst, Glen R.; Harbin, Wally
1997-02-01
The tritium plasma experiment (TPE) has been used to measure the retention of tritium in S-65 beryllium under conditions similar to that expected for the international thermonuclear experimental reactor (ITER). Beryllium samples 2 mm thick and 50 mm in diameter were exposed to a plasma of tritium and deuterium. The particle flux striking the samples was varied from approximately 1 × 10 17 ( D + T)/ cm2s up to about 3 × 10 18 ( D + T)/ cm2s. The beryllium samples were negatively biased to elevate the energy of the impinging ions to 100 eV. The temperature of the samples was varied from 373 K to 973 K. Exposure times of 1 h were used. Subsequent to the plasma exposure, the samples were outgassed in a separate system where 99% He and 1% H 2 gas was swept over the samples during heating. The sweep gas along with the released tritium was sent through an ionization chamber, through a copper oxide catalyst bed, and into a series of glycol bubblers. The amount of released tritium was determined both by the ionization chamber and by liquid scintillation counting of the glycol. Tritium retention in the beryllium disks varied from a high of 2.4 × 10 17 ( D + T)/ cm2 at 373 K to a low of 1 × 10 16 ( D + T)/ cm2 at 573 K. For almost every case, the tritium retention in the beryllium was less than that calculated using the C = 0 boundary condition at the plasma facing surface. It is believed that this lower than expected retention is due to rapid release of tritium from the large specific surface area created in the implant zone due to the production of voids, bubbles, and blisters.
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...
2018-03-01
Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
NASA Astrophysics Data System (ADS)
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.
2018-03-01
We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.
Hydrogen isotope retention in beryllium for tokamak plasma-facing applications
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Causey, R. A.; Davis, J. W.; Doerner, R. P.; Federici, G.; Haasz, A. A.; Longhurst, G. R.; Wampler, W. R.; Wilson, K. L.
Beryllium has been used as a plasma-facing material to effect substantial improvements in plasma performance in the Joint European Torus (JET), and it is planned as a plasma-facing material for the first wall (FW) and other components of the International Thermonuclear Experimental Reactor (ITER). The interaction of hydrogenic ions, and charge-exchange neutral atoms from plasmas, with beryllium has been studied in recent years with widely varying interpretations of results. In this paper we review experimental data regarding hydrogenic atom inventories in experiments pertinent to tokamak applications and show that with some very plausible assumptions, the experimental data appear to exhibit rather predictable trends. A phenomenon observed in high ion-flux experiments is the saturation of the beryllium surface such that inventories of implanted particles become insensitive to increased flux and to continued implantation fluence. Methods for modeling retention and release of implanted hydrogen in beryllium are reviewed and an adaptation is suggested for modeling the saturation effects. The TMAP4 code used with these modifications has succeeded in simulating experimental data taken under saturation conditions where codes without this feature have not. That implementation also works well under more routine conditions where the conventional recombination-limited release model is applicable. Calculations of tritium inventory and permeation in the ITER FW during the basic performance phase (BPP) using both the conventional recombination model and the saturation effects assumptions show a difference of several orders of magnitude in both inventory and permeation rate to the coolant.
Summary of Surface Swipe Sampling for Beryllium on Lead Bricks and Shielding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paik, S Y; Barron, D A
2011-08-03
Approximately 25,000 lbs of lead bricks at Site 300 were assessed by the Site 300 Industrial Hygienis tand Health Physicist for potential contamination of beryllium and radiation for reuse. These lead bricks and shielding had been used as shielding material during explosives tests that included beryllium and depleted uranium. Based on surface swipe sampling that was performed between July 26 and October 11, 2010, specifically for beryllium, the use of a spray encapsulant was found to be an effective means to limit removable surface contamination to levels below the DOE release limit for beryllium, which is 0.2 mcg/100 cm{sup 2}.more » All the surface swipe sampling data for beryllium and a timeline of when the samples were collected (and a brief description) are presented in this report. On December 15, 2010, the lead bricks and shielding were surveyed with an ion chamber and indicated dose rates less than 0.05 mrem per hour on contact. This represents a dose rate consistent with natural background. An additional suevey was performed on February 8, 2011, using a GM survey instrument to estimate total activity on the lead bricks and shielding, confirming safe levels of radioactivity. The vendor is licensed to possess and work with radioactive material.« less
Radiation−condensation instability in tokamaks with mixed impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, D. Kh.; Pshenov, A. A., E-mail: Pshenov.andrey@gmail.com
2015-08-15
Radiation−condensation instability (RCI) is one of the possible mechanisms behind the formation of microfaceted asymmetric radiation from the edge (MARFE) of a tokamak. It has been previously shown by the authors that RCI in carbon-seeded plasma can be stabilized using neon injection. Recently, beryllium- and tungsten-seeded plasmas became a subject of great interest. Therefore, in the present paper, RCI stability analysis of the edge plasma seeded with beryllium, tungsten, nitrogen, and carbon is performed. The influence of neutral hydrogen fluxes from the wall on the marginal stability limit is studied as well.
Beryllium chemical speciation in elemental human biological fluids.
Sutton, Mark; Burastero, Stephen R
2003-09-01
The understanding of beryllium chemistry in human body fluids is important for understanding the prevention and treatment of chronic beryllium disease. Thermodynamic modeling has traditionally been used to study environmental contaminant migration and rarely in the examination of metal (particularly beryllium) toxicology. In this work, a chemical thermodynamic speciation code (MINTEQA2) has been used to model and understand the chemistry of beryllium in simulated human biological fluids such as intracellular, interstitial, and plasma fluids, a number of airway surface fluids for patients with lung conditions, saliva, sweat, urine, bile, gastric juice, and pancreatic fluid. The results show that predicted beryllium solubility and speciation vary markedly between each simulated biological fluid. Formation of beryllium hydroxide and/or phosphate was observed in most of the modeled fluids, and results support the postulation that beryllium absorption in the gastrointestinal tract may be limited by the formation of beryllium phosphate solids. It is also postulated that beryllium is potentially 13% less soluble in the airway surface fluid of a patient with asthma when compared to a "normal" case. The results of this work, supported by experimental validation, can aid in the understanding of beryllium toxicology. Our results can potentially be applied to assessing the feasibility of biological monitoring or chelation treatment of beryllium body burden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Andresen, B; Burastero, S R
2005-02-03
This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied atmore » LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.« less
Process for forming exoergic structures with the use of a plasma
Kelly, M.D.
1987-05-29
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
Process for forming exoergic structures with the use of a plasma
Kelly, Michael D.
1989-02-21
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten, without chemically reacting in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
Beryllium contamination inside vehicles of machine shop workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, W.T.; Henneberger, P.K.; Martyny, J.
1999-04-01
Inhalation of beryllium particles causes a chronic, debilitating lung disease--chronic beryllium disease (CBD)--in immunologically sensitized workers. Evidence that very low concentrations of beryllium may initiate this chronic disease is provided by incidences of the illness in family members exposed to beryllium dust from workers` clothes and residents in neighborhoods surrounding beryllium refineries. This article describes the results of a cross-sectional survey to evaluate potential take-home beryllium exposures by measuring surface concentrations on the hands and in vehicles of workers at a precision machine shop where cases of CBD had recently been diagnosed. Many workers did not change out of theirmore » work clothes and shoes at the end of their shift, increasing the risk of taking beryllium home to their families. Wipe samples collected from workers` hands and vehicle surfaces were analyzed for beryllium content by inductively coupled argon plasma-atomic emission spectroscopy (ICP-AES). The results ranged widely, from nondetectable to 40 {micro}g/ft{sup 2} on workers` hands and up to 714 {micro}g/fg{sup 2} inside their vehicles, demonstrating that many workers carried residual beryllium on their hands and contaminated the inside of their vehicles when leaving work. The highest beryllium concentrations inside the workers` vehicles were found on the drivers` floor (GM = 19 {micro}g/ft{sup 2}, GSD = 4.9), indicating that workers were carrying beryllium on their shoes into their vehicles. A safe level of beryllium contamination on surfaces is not known, but it is prudent to reduce the potential for workers to carry beryllium away from the work site.« less
Beryllium surface levels in a military ammunition plant.
Sanderson, Wayne T; Leonard, Stephanie; Ott, Darrin; Fuortes, Laurence; Field, William
2008-07-01
This study evaluated the presence of beryllium surface contamination in a U.S. conventional munitions plant as an indicator of possible past beryllium airborne and skin exposure and used these measurements to classify job categories by potential level of exposure. Surface samples were collected from production and nonproduction areas of the plant and at regional industrial reference sites with no known history of beryllium use. Surface samples of premoistened wiping material were analyzed for beryllium mass content using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and results expressed as micrograms of beryllium per 100 square centimeters (micro g/100 cm(2)). Beryllium was detected in 87% of samples collected at the munitions plant and in 72% of the samples collected at regional reference sites. Two munitions plant samples from areas near sanders and grinders were above 3.0 micro g/100 cm(2) (U.S. Department of Energy surface contamination limit). The highest surface level found at the reference sites was 0.44 micro g/100 cm(2). Workers in areas where beryllium-containing alloy tools were sanded or ground, but not other work areas, may have been exposed to airborne beryllium concentrations above levels encountered in other industries where metal work is conducted. Surface sampling provided information useful for categorizing munitions plant jobs by level of past beryllium airborne and skin exposure and, subsequently, for identifying employees within exposure strata to be screened for beryllium sensitization.
Vacuum Plasma Spraying Replaces Electrodeposition
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.
1992-01-01
Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.
Modelling of radiation impact on ITER Beryllium wall
NASA Astrophysics Data System (ADS)
Landman, I. S.; Janeschitz, G.
2009-04-01
In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.
Effects of neutron irradiation at 70-200 °C in beryllium
NASA Astrophysics Data System (ADS)
Chakin, V. P.; Kazakov, V. A.; Melder, R. R.; Goncharenko, Yu. D.; Kupriyanov, I. B.
2002-12-01
At present beryllium is considered one of the metals to be used as a plasma facing and blanket material. This paper presents the investigations of several Russian beryllium grades fabricated by HE and HIP technologies. Beryllium specimens were irradiated in the SM reactor at 70-200 °C up to a neutron fluence (0.6-3.9)×10 22 cm -2 ( E>0.1 MeV). It is shown that the relative mass decrease of beryllium specimens that were in contact with the water coolant during irradiation achieved the value >1.5% at the maximum dose. Swelling was in the range of 0.2-1.5% and monotonically increasing with the neutron dose. During mechanical tensile and compression tests one could observe the absolute brittle destruction of the irradiated specimens at the reduced strength level in comparison to the initial state. A comparatively higher level of brittle strength was observed on beryllium specimens irradiated at 200 °C. The basic type of destruction of the irradiated beryllium specimens is brittle and intergranular with some fraction of transgranular chip.
Plasma Spraying of Ceramics with Particular Difficulties in Processing
NASA Astrophysics Data System (ADS)
Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.
2015-01-01
Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.
Plasma spray processing of TiC-based coatings for sliding wear resistance
NASA Astrophysics Data System (ADS)
Mohanty, Mahesh
Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.
Compton scattering measurements from dense plasmas
Glenzer, S. H.; Neumayer, P.; Doppner, T.; ...
2008-06-12
Here, Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, whilemore » in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.« less
Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety.
Pérez-Bosque, Anna; Polo, Javier; Torrallardona, David
2016-01-01
The use of growth promoting and therapeutic antibiotics in piglet feed has been a concerning subject over the last few decades because of the risk of generating antimicrobial resistance that could be transferred to humans. As a result, many products have been proposed as potential alternatives to the use of antibiotics, and among these, spray dried plasma is considered one of the most promising. However, there have been concerns about its biosafety, particularly during periods of emergence or re-emergence of swine diseases in different regions of the world, such as the recent porcine epidemic diarrhea virus outbreak in North America. The objectives of this paper are to review recent publications about the use of spray dried plasma as an alternative to antibiotics in weaned pig diets, the possible mechanisms of action of spray dried plasma, and the existing evidence related to the biosafety of spray dried animal plasma. Particular attention is given to studies in which spray dried plasma has been directly compared to antibiotics or other alternative antimicrobial products. Several studies on the possible modes of action for spray dried plasma, such as preservation of gut barrier function or modulation of the immune response, are also reviewed. Finally, the paper focuses on the review of the existing studies on the risks of disease transmission with the use of spray dried plasma from porcine origin. Overall, spray dried plasma is a promising alternative to in-feed antimicrobials for piglets, particularly during the early stages of the post-weaning phase. Additionally, there is enough evidence to support that commercial spray dried porcine plasma is a safe product for pigs.
FAST TRACK COMMUNICATION: A Be-W interatomic potential
NASA Astrophysics Data System (ADS)
Björkas, C.; Henriksson, K. O. E.; Probst, M.; Nordlund, K.
2010-09-01
In this work, an interatomic potential for the beryllium-tungsten system is derived. It is the final piece of a potential puzzle, now containing all possible interactions between the fusion reactor materials beryllium, tungsten and carbon as well as the plasma hydrogen isotopes. The potential is suitable for plasma-wall interaction simulations and can describe the intermetallic Be2W and Be12W phases. The interaction energy between a Be surface and a W atom, and vice versa, agrees qualitatively with ab initio calculations. The potential can also reasonably describe BexWy molecules with x, y = 1, 2, 3, 4.
2010-01-01
Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium
Plasma sprayed ceria-containing interlayer
Schmidt, Douglas S.; Folser, George R.
2006-01-10
A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.
Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala
2009-02-06
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 microm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants.
Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala
2008-01-01
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431
Be ITER-like wall at the JET tokamak under plasma
NASA Astrophysics Data System (ADS)
Tsavalas, P.; Lagoyannis, A.; Mergia, K.; Rubel, M.; Triantou, K.; Harissopulos, S.; Kokkoris, M.; Petersson, P.; Contributors, JET
2017-12-01
The JET tokamak is operated with beryllium and tungsten plasma-facing components to prepare for the exploitation of ITER. To determine beryllium erosion and migration in JET a set of markers were installed. Specimens from different beryllium marker tiles of the main wall of the ITER-like wall (ILW) JET tokamak from the first and the second D-D campaign were analyzed with nuclear reaction analysis, x-ray fluorescence spectroscopy, scanning electron microscopy and x-ray diffraction (XRD). Emphasis was on the determination of carbon plasma impurities deposited on beryllium surfaces. The 12C(d, p0)13C reaction was used to quantify carbon deposition and to determine depth profiles. Carbon quantities on the surface of the Be tiles are low, varying from (0.35 ± 0.07) × 1017 to (11.8 ± 0.6) × 1017 at cm-2 in the deposition depth from 0.4 to 6.7 μm, respectively. In the 0.4-0.5 mm wide grooves of castellation sides the carbon content is found up to (14.3 ± 2.5) × 1017 at cm-2 while it is higher (up to (38 ± 4) × 1017 at cm-2) in wider gaps (0.8 mm) separating tile segments. Oxygen (O), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni) and tungsten (W) were detected in all samples exposed to plasma and the reference one but at lower quantities at the latter. In the central part of the Inner Wall Guard Limiter from the first ILW campaign and in the Outer Poloidal Limiter from the second ILW campaign the Ni interlayer has been completely eroded. XRD shows the formation of BeNi in most specimens.
NASA Astrophysics Data System (ADS)
Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.
2001-06-01
The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja
2014-11-07
Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rusu, M. I.; Pardanaud, C.; Ferro, Y.; Giacometti, G.; Martin, C.; Addab, Y.; Roubin, P.; Minissale, M.; Ferri, L.; Virot, F.; Barrachin, M.; Lungu, C. P.; Porosnicu, C.; Dinca, P.; Lungu, M.; Köppen, M.; Hansen, P.; Linsmeier, Ch.
2017-07-01
This study demonstrates that Raman microscopy is a suitable technique for future post mortem analyses of JET and ITER plasma facing components. We focus here on laboratory deposited and bombarded samples of beryllium and beryllium carbides and start to build a reference spectral databases for fusion relevant beryllium-based materials. We identified the beryllium phonon density of states, its second harmonic and E 2G and B 2G second harmonic and combination modes for defective beryllium in the spectral range 300-700 and 700-1300 cm-1, lying close to Be-D modes of beryllium hydrides. We also identified beryllium carbide signature, Be2C, combining Raman microscopy and DFT calculation. We have shown that, depending on the optical constants of the material probed, in depth sensitivity at the nanometer scale can be performed using different wavelengths. This way, we demonstrate that multi-wavelength Raman microscopy is sensitive to in-depth stress caused by ion implantation (down to ≈30 nm under the surface for Be) and Be/C concentration (down to 400 nm or more under the surface for Be+C), which is a main contribution of this work. The depth resolution reached can then be adapted for studying the supersaturated surface layer found on tokamak deposits.
Investigation of ITER candidate beryllium grades irradiated at high temperature
NASA Astrophysics Data System (ADS)
Kupriyanov, I. B.; Gorokhov, V. A.; Melder, R. R.; Ostrovsky, Z. E.; Gervash, A. A.
1998-10-01
Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why the investigation of beryllium behaviour under the typical for fusion reactor loading, in particular under the neutron irradiation, is of a great importance. This paper presents some results of investigation of five beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia, and one (S-65) fabricated by Brush Wellman, USA. The average grain size of the investigated beryllium grades varied from 8 to 40 μm, beryllium oxide content was 0.7-3.2 wt.%, initial tensile strength 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor of 650-700°C up to the fast neutron fluence (5.5-6.2) × 10 21 cm -2 (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV. Irradiation swelling of the materials was revealed to be in the range of 0.3-1.7%. Beryllium grades TR-30 and TRR having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which did not exceed 0.3% at 700°C and fluence 5.5 × 10 21 cm -2. Mechanical properties and microstructure parameters measured before and after irradiation are also presented.
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
NASA Astrophysics Data System (ADS)
von Niessen, Konstantin; Gindrat, Malko
2011-06-01
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ctibor, Pavel; Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz; Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6
Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-raymore » diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.« less
Influence of grinding on service properties of VT-22 powder applied in additive technologies
NASA Astrophysics Data System (ADS)
Zakharov, M. N.; Rybalko, O. F.; Romanova, O. V.; Gelchinskiy, B. R.; Il'inykh, S. A.; Krashaninin, V. A.
2017-01-01
Powder of titanium alloy (VT-22) produced by plasma-spraying was subjected to grinding to obtain powder with size less 100 microns. These powders were sprayed by plasma unit using two types of gases, namely, air and air with methane (spraying in water and sputtering of coating on steel support). Influence of grinding time on yield of powder of required fraction was studied. Morphology and phase composition of the grinded powder and plasma sprayed one were under investigation. In the result of experiments, it appears that the grinding time genuinely influences the chemical and phase compositions, but there is no effect on physical-processing properties. For powders after plasma spraying some changes of non-metal elements content were detected by chemical analysis. Using gaseous mixture of air and methane in plasma spraying unit leads to formation of a new phase in the powder according X-ray diffraction data.
Mathematical simulation of surface heating during plasma spraying
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2017-02-01
A mathematical model of temperature distribution over the flat ‘coating-substrate’ system section during plasma spraying, taking into account a plasma gun travel and coating buildup has been developed. It has been shown that the temperature value in the near-surface layer of the sprayed coating during the plasma gun passage can significantly exceed the temperature values in underlayers.
A study of processing parameters in thermal-sprayed alumina and zircon mixtures
NASA Astrophysics Data System (ADS)
Li, Y.; Khor, K. A.
2002-06-01
A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
T55-L-712 turbine engine compressor housing refurbishment-plasma spray project
NASA Technical Reports Server (NTRS)
Leissler, George W.; Yuhas, John S.
1988-01-01
A study was conducted to assess the feasibility of reclaiming T55-L-712 turbine engine compressor housings with an 88 wt percent aluminum to 12 wt percent silicon alloy applied by a plasma spray process. Tensile strength testing was conducted on as-sprayed and thermally cycled test specimens which were plasma sprayed with 0.020 to 0.100 in. coating thicknesses. Satisfactory tensile strength values were observed in the as-sprayed tensile specimens. There was essentially no decrease in tensile strength after thermally cycling the tensile specimens. Furthermore, compressor housings were plasma sprayed and thermally cycled in a 150-hr engine test and a 200-hr actual flight test during which the turbine engine was operated at a variety of loads, speeds and torques. The plasma sprayed coating system showed no evidence of degradation or delamination from the compressor housings. As a result of these tests, a procedure was designed and developed for the application of an aluminum-silicon alloy in order to reclaim T55-L-712 turbine engine compressor housings.
NASA Astrophysics Data System (ADS)
Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik
2015-06-01
Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.
Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.H. Kim; C.T. Lee; C.B. Lee
2013-10-01
Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less
Gledhill, H C; Turner, I G; Doyle, C
1999-02-01
Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.
High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process
NASA Astrophysics Data System (ADS)
Tailor, Satish; Modi, Ankur; Modi, S. C.
2018-04-01
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).
Alignment Fixtures For Vacuum-Plasma-Spray Gun
NASA Technical Reports Server (NTRS)
Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.
1993-01-01
Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.
The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes
NASA Astrophysics Data System (ADS)
Poon, Michael; Kesler, Olivera
2012-07-01
Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.
Status of RF beryllium characterization for ITER Fist Wall
NASA Astrophysics Data System (ADS)
Kupriyanov, I. B.; Nikolaev, G. N.; Roedig, M.; Gervash, A. А.; Linke, I. J.; Kurbatova, L. A.; Perevalov, S. I.; Giniyatulin, R. N.
2011-10-01
The status of RF R&D activities in production and characterization of TGP-56FW beryllium grade is presented. The results of metallographic studies of microstructure and cracks morphology are reported for full-scale Be tiles (56 × 56 × 10 mm) subjected to VDE simulation tests in TSEFEY-M testing facility (VDE-10 MJ/m 2 during 0.1 s, 1 shot ) and following low cycle thermal fatigue tests (500 thermal cycles at 1.5 MW/m 2). First results of plasma disruption tests ( E = 1.2-5 MJ/m 2, 5 ms), which were obtained during the realization of Thermal Shock/VDE Qualification program of RF beryllium in JUDITH-1 facility, are also discussed.
Vapor Phase Deposition Using Plasma Spray-PVD™
NASA Astrophysics Data System (ADS)
von Niessen, K.; Gindrat, M.; Refke, A.
2010-01-01
Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.
Formation of high heat resistant coatings by using gas tunnel type plasma spraying.
Kobayashi, A; Ando, Y; Kurokawa, K
2012-06-01
Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,
Hydrogen permeation properties of plasma-sprayed tungsten*1
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.
1994-09-01
Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.
Estimates of RF-induced erosion at antenna-connected beryllium plasma-facing components in JET
Klepper, C. C.; Borodin, D.; Groth, M.; ...
2016-01-18
Radio-frequency (RF)-enhanced surface erosion of beryllium (Be) plasma-facing components is explored, for the first time, using the ERO code. We applied the code in order to measure the RF-enhanced edge Be line emission at JET Be outboard limiters, in the presence of high-power, ion cyclotronresonance heating (ICRH) in L-mode discharges. In this first modelling study, the RF sheath effect from an ICRH antenna on a magnetically connected, limiter region is simulated by adding a constant potential to the local sheath, in an attempt to match measured increases in local Be I and Be II emission of factors of 2 3.more » It was found that such increases are readily simulated with added potentials in the range of 100 200 V, which is compatible with expected values for potentials arising from rectification of sheath voltage oscillations from ICRH antennas in the scrape-off layer plasma. We also estimated absolute erosion values within the uncertainties in local plasma conditions.« less
NASA Astrophysics Data System (ADS)
Landman, I. S.; Bazylev, B. N.; Garkusha, I. E.; Loarte, A.; Pestchanyi, S. E.; Safronov, V. M.
2005-03-01
For ITER, the potential material damage of plasma facing tungsten-, CFC-, or beryllium components during transient processes such as ELMs or mitigated disruptions are simulated numerically using the MHD code FOREV-2D and the melt motion code MEMOS-1.5D for a heat deposition in the range of 0.5-3 MJ/m 2 on the time scale of 0.1-1 ms. Such loads can cause significant evaporation at the target surface and a contamination of the SOL by the ions of evaporated material. Results are presented on carbon plasma dynamics in toroidal geometry and on radiation fluxes from the SOL carbon ions obtained with FOREV-2D. The validation of MEMOS-1.5D against the plasma gun tokamak simulators MK-200UG and QSPA-Kh50, based on the tungsten melting threshold, is described. Simulations with MEMOS-1.5D for a beryllium first wall that provide important details about the melt motion dynamics and typical features of the damage are reported.
NASA Astrophysics Data System (ADS)
Mindivan, H.
2018-01-01
In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.
Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
Khor, K A; Gu, Y W; Pan, D; Cheang, P
2004-08-01
Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA, Ti alloy and YSZ components.
NASA Technical Reports Server (NTRS)
2000-01-01
A NASA SBIR contract provided the funding for a new nozzle shape to be used in plasma spray techniques. The new design, a bell shape, reduces overspray. The result is a significant decrease in the cost of plasma spraying and a higher quality, more pure coating.
Plasma-Spray Metal Coating On Foam
NASA Technical Reports Server (NTRS)
Cranston, J.
1994-01-01
Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.
Neutron counter based on beryllium activation
NASA Astrophysics Data System (ADS)
Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.
2014-08-01
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.
Structure and microhardness of the plasma sprayed composite coatings after combined treatment
NASA Astrophysics Data System (ADS)
Ivannikov, A. Yu; Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Bagmutov, V. P.; Zakharov, I. N.; Parshev, S. N.; Denisevich, D. S.
2018-04-01
The principal aim of this study was to evaluate the effect of combination of electromechanical treatment (EMT) and ultrasonic treatment on structure and microhardness of air plasma sprayed composite coatings from Ni–20Cr alloy and R6M5 high speed steel (HSS). The results of the microstructural studies showed fundamental changes of the treated by the EMT plasma sprayed coating with the formation of nanostructured crystalline phases. As a consequence of the coating thus formed, the number of pores in the coating structure reduced from 10.0±1.5% to 2.0±0.5%, the surface microhardness increased from 3100±500 MPa to 7900±400 MPa. Additional ultrasonic treatment on the selected mode decreased surface waviness, which was formed on the surface of the plasma sprayed composite coatings after the EMT. The obtained results revealed the high potential of the combined treatment for post-treatment of the plasma sprayed coatings.
NASA Astrophysics Data System (ADS)
Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian
2011-10-01
Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.
NASA Technical Reports Server (NTRS)
Bill, R. C.; Sovey, J.; Allen, G. P.
1981-01-01
The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.
NASA Astrophysics Data System (ADS)
Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.
Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.
NASA Astrophysics Data System (ADS)
Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-01-01
Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.
Yu, L-G; Khor, K A; Li, H; Cheang, P
2003-07-01
The crystalline phases and degree of crystallinity in plasma sprayed calcium phosphate coatings on Ti substrates are crucial factors that influence the biological interactions of the materials in vivo. In this study, plasma sprayed hydroxyapatite (HA) coatings underwent post-spray treatment by the spark plasma sintering (SPS) technique at 500 degrees C, 600 degrees C, and 700 degrees C for duration of 5 and 30 min. The activity of the HA coatings before and after SPS are evaluated in vitro in a simulated body fluid. The surface microstructure, crystallinity, and phase composition of each coating is characterized by scanning electron microscopy and X-ray diffractometry before, and after in vitro incubation. Results show that the plasma sprayed coatings treated for 5 min in SPS demonstrated increased proportion of beta-TCP phase with a preferred-orientation in the (214) plane, and the content of beta-TCP phase corresponded to SPS temperature, up to 700 degrees C. SPS treatment at 700 degrees C for 30 min enhanced the HA content in the plasma spray coating as well. The HA coatings treated in SPS for 5 min revealed rapid surface morphological changes during in vitro incubation (up to 12 days), indicating that the surface activity is enhanced by the SPS treatment. The thickest apatite layer was found in the coating treated by SPS at 700 degrees C for 5 min.
Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun
NASA Astrophysics Data System (ADS)
Mabey, K.; Smith, B. L.; Whichard, G.; McKechnie, T.
2011-06-01
A Coanda-assisted Spray Manipulation (CSM) collar was retrofitted to a Praxair SG-100 plasma spray gun. The CSM device makes it possible to change the direction of (vector) the plasma jet and powder without moving the gun. The two-piece retrofit device replaces the standard faceplate. Two separate collars were tested: one designed for small vector angles and one for larger vector angles. It was demonstrated that the small-angle device could modify the trajectory of zirconia powder up to several degrees. Doing so could realign the plasma with the powder resulting in increased powder temperature and velocity. The large-angle device was capable of vectoring the plasma jet up to 45°. However, the powder did not vector as much. Under large-angle vectoring, the powder velocity and temperature decreased steadily with vector angle. Both devices were tested using a supersonic configuration to demonstrate that CSM is capable of vectoring supersonic plasmas.
Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2004-01-01
Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J. F.; Tasooji, A.
1985-01-01
This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.
Plasma sprayed coatings on crankshaft used steels
NASA Astrophysics Data System (ADS)
Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.
2017-08-01
Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.
Thermophysical properties of plasma sprayed coatings
NASA Technical Reports Server (NTRS)
Wilkes, K. E.; Lagedrost, J. F.
1973-01-01
Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.
Plasma-Sprayed Fine-grained Zirconium Silicate and Its Dielectric Properties
NASA Astrophysics Data System (ADS)
Ctibor, P.; Pala, Z.; Nevrlá, B.; Neufuss, K.
2017-05-01
The article is focused on selected dielectric and electrical properties of ZrSiO4, which was plasma sprayed by a water-stabilized plasma system. A combination of two feeding distances and three spray distances was utilized for spraying and the structure and properties of samples evaluated. The coatings were tested in alternating electric field to determine capacity and loss factor with the frequency from 100 Hz to 100 kHz. Relative permittivity was calculated from the capacity. Volume resistivity and dielectric strength of ZrSiO4 were measured in a direct current regime. The aim was to test electrically this natural silicate material in the form of plasma-sprayed deposits. Microstructure was characterized by relatively large and non-globular pores. Crystallites were very small, about 10-20 nm. Dielectric losses were small, resistivity as well as strength relatively high. This silicate ceramic was recognized to be prospective for electrical engineering.
NASA Astrophysics Data System (ADS)
Joshiand, S. V.; Srivastava, M. P.
1993-06-01
WC-Co base wear-resistant coatings deposited by plasma spraying are widely used to enhance component longevity in a variety of wear environments. During spraying of WC-Co, ideally only the cobalt phase should melt and act as a binder for the WC particles. Although it is undesirable to fully melt WC because it can cause decarburization, complete melting of the cobalt phase and its satisfactory flattening on impacting the substrate is necessary to minimize porosity and achieve good substrate/coating adhesion. In this article, the influence of the primary plasma spray variables on the melting characteristics of WC-Co powders is investigated with respect to the microstructure of these coatings. This experimental work complements an analytical study on plasma spraying of WC-Co, and thus, observations are presented to support the predictions of the modeling effort.
Design of a new nozzle for direct current plasma guns with improved spraying parameters
NASA Astrophysics Data System (ADS)
Jankovic, M.; Mostaghimi, J.; Pershin, V.
2000-03-01
A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.
Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel
NASA Astrophysics Data System (ADS)
Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.
2018-03-01
Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.
Erosion and Retention Properties of Beyllium
NASA Astrophysics Data System (ADS)
Doerner, R.; Grossman, A.; Luckhardt, S.; Serayderian, R.; Sze, F. C.; Whyte, D. G.
1997-11-01
Experiments in PISCES-B have investigated the erosion and hydrogen retention characteristics of beryllium. The sputtering yield is strongly influenced by trace amounts (≈1 percent) of intrinsic plasma impurities. At low sample exposure temperatures (below 250^oC), the beryllium surface remains free of contaminants and a sputtering yield similar to that of beryllium-oxide is measured. At higher exposure temperatures, impurities deposited on the surface can diffuse into the bulk and reduce their chance of subsequent erosion. These impurities form a surface layer mixed with beryllium which exhibits a reduced sputtering yield. Depth profile analysis has determined the composition and chemical bonding of the impurity layer. The hydrogen isotope retention of beryllium under ITER first wall (temperature = 200^oC, ion flux = 1 x 10^21 m-2 s-1) and baffle (temperature = 500^oC, ion flux = 1 x 10^22 m-2 s-1) conditions has been investigated. The retained deuterium saturates above a fluence of 10^23 m-2 at about 4 x 10^20 m-2 for the 200^oC exposure and at 2 x 10^20 m-2 for the 500^oC case. The TMAP code is used to model the deuterium release characteristics.
Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.
2017-06-01
Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
Proton irradiation effects on beryllium – A macroscopic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium – A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-07-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium - A macroscopic assessment
NASA Astrophysics Data System (ADS)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-10-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Corrosion behavior of magnetic ferrite coating prepared by plasma spraying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui
Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less
NASA Astrophysics Data System (ADS)
Branland, Nadege
2002-04-01
The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.
Generator of the low-temperature heterogeneous plasma flow
NASA Astrophysics Data System (ADS)
Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.
2018-01-01
A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, A. J.; Morris, J.; Todd, T. N.
A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data tomore » produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.« less
Development & characterization of alumina coating by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Sebastian, Jobin; Scaria, Abyson; Kurian, Don George
2018-03-01
Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.
Numerical Simulation of Droplet Breakup and Collision in the Solution Precursor Plasma Spraying
NASA Astrophysics Data System (ADS)
Shan, Y.; Coyle, T. W.; Mostaghimi, J.
2007-12-01
Finely structured ceramic coatings can be obtained by solution precursor plasma spraying. The final structure of the coating highly depends on the droplet size and velocity distribution at the injection, the evolution of the spray in the jet, and droplet breakup and collision within the spray. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. O’Rourke’s droplet collision model is used to take into account the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The effects of droplet collisions and breakup on the droplet size, velocity, and temperature distribution of the solution spray are investigated. The results indicate that droplet breakup and collision play an important role in determining the final particle size and velocity distributions on the substrate.
Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation
NASA Astrophysics Data System (ADS)
Fauchais, P.; Vardelle, M.; Goutier, S.
2016-12-01
The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.
A parametric study of helium retention in beryllium and its effect on deuterium retention
NASA Astrophysics Data System (ADS)
Alegre, D.; Baldwin, M. J.; Simmonds, M.; Nishijima, D.; Hollmann, E. M.; Brezinsek, S.; Doerner, R. P.
2017-12-01
Beryllium samples have been exposed in the PISCES-B linear plasma device to conditions relevant to the International Thermonuclear Experimental Reactor (ITER) in pure He, D, and D/He mixed plasmas. Except at intermediate sample exposure temperatures (573-673 K) He addition to a D plasma is found to have a beneficial effect as it reduces the D retention in Be (up to ˜55%), although the mechanism is unclear. Retention of He is typically around 1020-1021 He m-2, and is affected primarily by the Be surface temperature during exposition, by the ion fluence at <500 K exposure, but not by the ion impact energy at 573 K. Contamination of the Be surface with high-Z elements from the mask of the sample holder in pure He plasmas is also observed under certain conditions, and leads to unexpectedly large He retention values, as well as changes in the surface morphology. An estimation of the tritium retention in the Be first wall of ITER is provided, being sufficiently low to allow a safe operation of ITER.
Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
Lu, Chun [Monroeville, PA
2012-04-24
A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
New generation of plasma-sprayed mullite coatings on silicon carbide
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.
1995-01-01
Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.
Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings
NASA Astrophysics Data System (ADS)
Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.
1997-12-01
Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.
Characterization of plasma sprayed and explosively consolidated simulated lunar soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, S.J.; Inal, O.T.; Smith, M.F.
1997-06-01
Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibitedmore » good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.« less
Study of BenW (n = 1-12) clusters: An electron collision perspective
NASA Astrophysics Data System (ADS)
Modak, Paresh; Kaur, Jaspreet; Antony, Bobby
2017-08-01
This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.
NASA Astrophysics Data System (ADS)
Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.
2014-01-01
Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.
Plasma Spray for Difficult-To-Braze Alloys
NASA Technical Reports Server (NTRS)
Brennan, A.
1982-01-01
Nickel plating on surfaces makes brazing easier for some alloys. Sometimes nickel plating may not be feasible because of manufacturing sequence, size of hardware, or lack of suitable source for nickel plating. Alternative surface preparation in such cases is to grit-blast surface lightly and then plasma-spray 1 1/2 to 2 mils of fine nickel powder or braze-alloy material directly on surface. Powder is sprayed from plasma gun, using argon as carrier gas to prevent oxidation of nickel or braze alloy.
Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys
NASA Technical Reports Server (NTRS)
Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)
1994-01-01
A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.
Monitoring Coating Thickness During Plasma Spraying
NASA Technical Reports Server (NTRS)
Miller, Robert A.
1990-01-01
High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1979-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.
NASA Astrophysics Data System (ADS)
Mohanty, M.; Smith, R. W.
1995-12-01
Lightweight coatings based on titanium and titanium carbides produced by plasma spraying can be used to improve and modify the tribomechanical properties of aerospace structural materials. Although plasma-sprayed WC/Co coatings have been applied with success in many cases, such as primary wear-re-sistant materials, their high densities preclude their use in applications that mandate reduction in weight. In the present investigation, the sliding wear resistance of plasma-sprayed, metal-bonded TiC coatings on AI 7075 substrates was studied. Coatings containing 50, 70, and 90 vol% TiC in a Ti matrix produced from physically blended powders of Ti and TiC were compared. Metallographie evaluations showed that dense coatings with good bonding to AI 7075 substrates can be obtained. Coatings from commercial pu-rity (CP) Ti powders sprayed in air under atmospheric conditions, however, indicated considerable oxi-dation of the particles. Under dry sliding conditions, the coefficient of friction (COF) values of the Ti/TiC containing/Al 7075 substrate system were lower than high-velocity oxygen fuel (HVOF) sprayed 75% Cr3C2/25%NiCr coatings on steel and were comparable to coatings of WC/Co. Vacuum plasma-sprayed TiC/Ti coatings with 90 vol% TiC also exhibited better wear resistance than HVOF sprayed 75%Cr3C2/25%NiCr.
NASA Astrophysics Data System (ADS)
Srinivasan, Vasudevan
Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.
Arc spray process for the aircraft and stationary gas turbine industry
NASA Astrophysics Data System (ADS)
Sampson, E. R.; Zwetsloot, M. P.
1997-06-01
Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.
Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying
NASA Astrophysics Data System (ADS)
Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre
2010-01-01
Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.
Advances on Propulsion Technology for High-Speed Aircraft. Volume 1
2007-03-01
sprayed Cu -3% Ag alloys , ITSC 2001 - Singapour - 6dit6e par C.C. Berndt - K.A. Khor et E.F. Lugscheider - ASM-TSS - Materials park - OH-USA, p.633... spraying of CuCrNb powder and a more advanced approach which combines the advantages of a high temperature, low density and porous carbon-fibre...physical vapour deposition (EB-PVD), vacuum plasma spraying (VPS) and solution plasma spraying (SPS) [38-41]. A segmented sub-scale model combustor with
Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray
Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad
2016-01-01
This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces. PMID:27091306
High velocity pulsed wire-arc spray
NASA Technical Reports Server (NTRS)
Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)
1999-01-01
Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2018-03-01
A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.
NASA Astrophysics Data System (ADS)
Waldbillig, D.; Kesler, O.
A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.
Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.
Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J
2015-05-01
Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.
Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.
Stengl, V; Ageorges, H; Ctibor, P; Murafa, N
2009-05-01
The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.
Automatic targeting of plasma spray gun
Abbatiello, Leonard A.; Neal, Richard E.
1978-01-01
A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.
Container Prevents Oxidation Of Metal Powder
NASA Technical Reports Server (NTRS)
Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.
1992-01-01
Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.
NASA Astrophysics Data System (ADS)
Patel, Umang; Joshipura, K. N.
2017-04-01
Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, M.; Taylor, C. N.; Pawelko, R. J.
2016-04-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less
Efficiency of surface cleaning by a glow discharge for plasma spraying coating
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.
2016-06-01
The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.
Neutron counter based on beryllium activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.
2014-08-21
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large areamore » gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.« less
Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying
NASA Astrophysics Data System (ADS)
Shan, Yanguang
2008-10-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.
Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings
NASA Astrophysics Data System (ADS)
Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee
2013-12-01
In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.
Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying
NASA Astrophysics Data System (ADS)
Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera
2012-06-01
The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.
Chow, Tze-Show
1988-04-22
A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.
High heat flux properties of pure tungsten and plasma sprayed tungsten coatings
NASA Astrophysics Data System (ADS)
Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.
2004-08-01
High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.; Caves, Robert M.
1964-01-01
An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.
NASA Technical Reports Server (NTRS)
Rashid, J. M.; Freling, M.; Friedrich, L. A.
1987-01-01
The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.
Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates
NASA Astrophysics Data System (ADS)
Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.
2018-01-01
The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.
Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying
NASA Astrophysics Data System (ADS)
An, Lian-Tong; Gao, Yang; Sun, Chengqi
2011-06-01
To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.
Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties
NASA Astrophysics Data System (ADS)
Bakan, Emine; Vaßen, Robert
2017-08-01
The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.
Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning.
Skinner, C H; Gentile, C A; Doerner, R
2012-10-01
Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.
Structures for handling high heat fluxes
NASA Astrophysics Data System (ADS)
Watson, R. D.
1990-12-01
The divertor is reconized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes > 5 MW/m 2. High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2. Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components.
Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita
2012-01-01
Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742
Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita
2012-03-01
Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. © 2012 American Chemical Society
Erosion simulation of first wall beryllium armour under ITER transient heat loads
NASA Astrophysics Data System (ADS)
Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.
2009-04-01
The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine application
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1978-01-01
Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.
Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe
2016-01-15
Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.
Phase analysis of plasma-sprayed zirconia-yttria coatings
NASA Technical Reports Server (NTRS)
Shankar, N. R.; Berndt, C. C.; Herman, H.
1983-01-01
Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.
Metallurgy and properties of plasma spray formed materials
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.
1992-01-01
Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.
Chow, Tze-Show
1989-01-01
A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.
Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei
2010-12-01
Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.
Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications
NASA Astrophysics Data System (ADS)
Bsat, Suzan; Speirs, Andrew; Huang, Xiao
2016-08-01
The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.
Improvement of wear resistance of plasma-sprayed molybdenum blend coatings
NASA Astrophysics Data System (ADS)
Ahn, Jeehoon; Hwang, Byoungchul; Lee, Sunghak
2005-06-01
The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kesler, Olivera
2012-06-01
Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.
Study of atmospheric plasma spray process with the emphasis on gas-shrouded nozzles
NASA Astrophysics Data System (ADS)
Jankovic, Miodrag M.
An atmospheric plasma spraying process is investigated in this work by using experimental approach and mathematical modelling. Emphasis was put on the gas shrouded nozzles, their design, and the protection against the mixing with the surrounding air, which they give to the plasma jet. First part of the thesis is dedicated to the analysis of enthalpy probe method, as a major diagnostic tool in this work. Systematic error in measuring the stagnation pressure, due to a big temperature difference between the plasma and the water-cooled probe, is investigated here. Parallel measurements with the enthalpy probe and an uncooled ceramic probe were performed. Also, numerical experiments were conducted, using the k-ɛ model of turbulence. Based on the obtained results, a compensating algorithm for the above error is suggested. Major objective of the thesis was to study the plasma spraying process, and potential benefits from using the gas shrouded nozzles. Mathematical modelling was used to perform the parametric study on the flow pattern inside these nozzles. Two nozzles were used: a commercial conical nozzle, and a custom-made curvilinear nozzle. The later is aimed towards elimination of the cold air entrainment, recorded for the conical nozzle. Also, parametric study on the shrouding gas and its interaction with the plasma jet was carried out. Two modes of the shrouding gas injection were tested: through sixteen injection ports, and through a continuous slot, surrounding the plasma jet. Both nozzles and both injection modes were thoroughly tested, experimentally and numerically. The curvilinear nozzle completely eliminates the cold air entrainment and yields significantly higher plasma temperature. Also, injection through the continuous slot resulted in a much better protection of the plasma jet. Both nozzles were used to perform the spraying tests. Obtained coatings were tested on porosity, adhesion strength, and micro- structure. These tests indicated better micro-structure of the coatings sprayed by the curvilinear nozzle. Also, their porosity was significantly lower, and the adhesion strength was higher for more than 25%. The overall results suggest that the curvilinear nozzles represent a much better solution for the gas shrouded plasma spraying.
Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Malzbender, Jürgen; Wakui, Takashi; Wessel, Egbert; Steinbrech, Rolf W.
Thermal barrier coatings (TBCs) of plasma sprayed yttria stabilised zirconia (YSZ) are increasingly utilised for heat exposed components of advanced gas turbines1,2. An important reason for the application of zirconia coatings is the low thermal conductivity of this ceramic material which is further diminished in a TBC by the high concentration of spraying induced microstructural defects, e.g. crack-shaped defects between and within the spraying splats. Thus with TBCs on gas cooled turbine components stiff temperature gradients can be realised as an important prerequisite for an increased thermal efficiency of the energy conversion process.
Kaminsky, Manfred S.; Das, Santosh K.; Rossing, Thomas D.
1977-01-25
Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder.
Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics
NASA Astrophysics Data System (ADS)
Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.
2008-12-01
Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.
Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique
NASA Astrophysics Data System (ADS)
Afzal, M.; Ajmal, M.; Nusair Khan, A.; Hussain, A.; Akhter, R.
2014-03-01
Tungsten carbide cermet powder with 12%Co was deposited on stainless steel substrate by air plasma spraying method. Two types of coatings were produced i.e. thick (430 µm) and thin (260 µm) with varying porosity and splat morphology. The coated samples were treated with CO2 laser under the shroud of inert atmosphere. A series of experimentation was done in this regard, to optimize the laser parameters. The plasma sprayed coated surfaces were then laser treated on the same parameters. After laser melting the treated surfaces were characterized and compared with as-sprayed surfaces. It was observed that the thickness of the sprayed coatings affected the melt depth and the achieved microstructures. It was noted that phases like Co3W3C, Co3W9C4 and W were formed during the laser melting in both samples. The increase in hardness was attributed to the formation of these phases.
Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.
Luo, David A; Barraza, Enrique T; Kudenov, Michael W
2017-12-10
Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
Removable Mandrels For Vacuum-Plasma-Spray Forming
NASA Technical Reports Server (NTRS)
Krotz, Phillip D.; Davis, William M.; Power, Christopher A.; Woodford, William H.; Todd, Douglas M.; Liaw, Yoon K.; Holmes, Richard R.; Zimmerman, Frank R.; Mckechnie, Timothy N.
1995-01-01
Improved mandrels developed for use in vacuum-plasma-spray (VPS) forming of refractory metal and ceramic furnace cartridge tubes. Designed so after tubes formed on them by VPS, mandrels shrink away from tubes upon cooling back to room temperature and simply slip out of tube.
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera
2013-06-01
Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan
2017-08-01
Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.
NASA Astrophysics Data System (ADS)
You, J. H.; Höschen, T.; Lindig, S.
2006-01-01
Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
NASA Astrophysics Data System (ADS)
Jiang, Chaoping; Chen, Hong; Wang, Gui; Chen, Yongnan; Xing, Yazhe; Zhang, Chunhua; Dargusch, Matthew
2017-04-01
Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure.
Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants.
Tufekci, E; Brantley, W A; Mitchell, J C; McGlumphy, E A
1997-01-01
The purpose of this study was to investigate the microstructure of plasma-sprayed hydroxyapatite coatings and the elemental composition near the coating-substrate interface for two commercial implants, using the scanning electron microscope. Both coating surfaces and cross-sectioned specimens were examined. The results indicated that while the surface microstructures of both implants were consistent with the plasma-spraying process, the scale of the constituents was much finer for one product. In cross-section, both coatings exhibited minimal porosity and intimate contact with the titanium alloy substrate. It was found that limited interdiffusion of titanium and calcium occurred near the interface.
NASA Astrophysics Data System (ADS)
Fan, E. S. C.; Kesler, O.
2015-08-01
Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.
Effect of plasma spraying modes on material properties of internal combustion engine cylinder liners
NASA Astrophysics Data System (ADS)
Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.; Timokhov, R. S.
2018-03-01
The paper analyses different methods of remanufacturing worn-out machine parts in order to get the best performance characteristics. One of the most promising of them is a plasma spraying method. The mathematical models presented in the paper are intended to anticipate the results of plasma spraying, its effect on the properties of the material of internal combustion engine cylinder liners under repair. The experimental data and research results have been computer processed with Statistica 10.0 software package. The pare correlation coefficient values (R) and F-statistic criterion are given to confirm the statistical properties and adequacy of obtained regression equations.
Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A
2014-11-01
A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.
Improved Small-Particle Powders for Plasma Spraying
NASA Technical Reports Server (NTRS)
Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.
2005-01-01
Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.
NASA Astrophysics Data System (ADS)
Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.
2014-11-01
Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).
Pulsed arc plasma jet synchronized with drop-on-demand dispenser
NASA Astrophysics Data System (ADS)
Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.
2017-04-01
This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.
Oxide segregation and melting behavior of transient heat load exposed beryllium
NASA Astrophysics Data System (ADS)
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2016-10-01
In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.
Determination of beryllium concentrations in UK ambient air
NASA Astrophysics Data System (ADS)
Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.
2016-12-01
Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.
Plasma sprayed Fe(76)Nd(16)B(8) permanent magnets
NASA Technical Reports Server (NTRS)
Overfelt, R. A.; Anderson, C. D.; Flanagan, W. F.
1986-01-01
Thin coatings (0.16 mm) and thick coatings (0.50 mm) of Fe(76)Nd(16)B(8) were deposited on stainless-steel substrates by low pressure plasma spraying. Microscopic examination of the coatings in a light microscope revealed excessive porosity, but good bonding to the substrate. Fracture cross sections examined in a scanning electron microscope showed the grains to be equiaxed and approximately 1 micron or less in diameter in the as-sprayed condition. The intrinsic coercivities of the as-sprayed coatings varied from 5.8 to 10.9 kOe. The effects of postspray heat treatments on the intrinsic coercivity are also given.
Studies of Be migration in the JET tokamak using AMS with 10Be marker
NASA Astrophysics Data System (ADS)
Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.
2016-03-01
The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.
Plasma cleaning of ITER first mirrors
NASA Astrophysics Data System (ADS)
Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.
2017-12-01
Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.
Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
NASA Astrophysics Data System (ADS)
Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.
2018-05-01
Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.
Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure
NASA Astrophysics Data System (ADS)
Mohd, S. M.; Abd, M. Z.; Abd, A. N.
2010-03-01
The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Mckechnie, Timothy N.
1989-01-01
Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Haifeng; Geng, Xin; Wang, Jingjing; Xiao, Jinkun; Zhu, Peizhi
2016-10-01
Hydroxyapatite (HA)-titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA-TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH- and CO3 2- was observed, which was favorable for the biomedical applications.
Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger
2012-06-01
Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.
Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.
2017-10-01
Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.
1985-01-01
Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.
Bioactive calcium silicate ceramics and coatings.
Liu, Xuanyong; Morra, Marco; Carpi, Angelo; Li, Baoe
2008-10-01
CaO-SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO-SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement under a heavy load. Plasma sprayed wollastonite, dicalcium silicate and diopside coatings have excellent bone bioactivity and high bonding strength to titanium alloys. It is possible that these plasma sprayed CaO-SiO2 based ceramic coatings will be applied in clinic after they are widely and systematically researched.
Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian
2015-01-01
Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities. PMID:25893015
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Leissler, George W.
1993-01-01
This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.
Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying
NASA Astrophysics Data System (ADS)
He, Mingtao; Meng, Huimin; Wang, Yuchao; Ren, Pengwei
2018-06-01
Lanthanide magnesium hexaaluminate (LaMgAl11O19) powders were successfully synthesized by the solid-state reaction method. The objective of this study was to investigate the synthesis mechanism of LaMgAl11O19 and prepare LaMgAl11O19 powders suitable for plasma spraying. The results show that LaAlO3 reacts with MgAl2O4 and Al2O3 to form LaMgAl11O19 at approximately 1300 °C. Single-phase LaMgAl11O19 powders were prepared successfully by solid-state reaction at a synthesis temperature of 1600 °C for 6 h. Unlike the particles in the synthesized powders, those of the centrifugally spray-dried powders have a spherical shape with uniform granularity and good flowability, density, and particle size distribution, making them suitable for plasma spraying. The synthesized powders and centrifugally spray-dried powders remained as a single phase after heat treatment at 1300 °C for 100 h, indicating that LaMgAl11O19 has excellent high-temperature stability.
Plasma tests of sprayed coatings for rocket thrust chambers
NASA Technical Reports Server (NTRS)
Curren, A. N.; Love, W. K.
1974-01-01
Several plasma-sprayed coating systems were evaluated for structural stability in hydrogen plasma and in oxygen plasma mixed with hydrogen plasma. The principal test heat flux was 15 Btu per inch squared seconds. The system consisted of a number of thin 0.002 to 0.020 in. layers of metal oxides and/or metals. The principal materials included are molybdenum nichrome, alumina, and zirconia. The study identifies important factors in coating system fabrication and describes the durability of the coating systems in the test environments. Values of effective thermal conductivity for some of the systems are indicated.
NASA Astrophysics Data System (ADS)
Petorak, Christopher
The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction in the SSA associated with void systems due to sintering, specifically the closing and healing of intralamellar cracks perpendicular to the applied stress, and (3) A compaction and closure of void systems under the applied load. These anisotropic changes in microstructure result in distinguishable changes in thermo-mechanical properties, with very minute changes to the overall bulk density.
Integration of process diagnostics and three dimensional simulations in thermal spraying
NASA Astrophysics Data System (ADS)
Zhang, Wei
Thermal spraying is a group of processes in which the metallic or ceramic materials are deposited in a molten or semi-molten state on a prepared substrate. In atmospheric plasma spray process, a thermal plasma jet is used to heat up and accelerate loading particles. The process is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated variables involved, and stochastic variability at different stages. This dissertation is aimed at understanding the in-flight particle state and plasma plume characteristics in atmospheric plasma spray process through the integration of process diagnostics and three-dimensional simulation. Effects of injection angle and carrier gas flow rate on in-flight particle characteristics are studied experimentally and interpreted through numerical simulation. Plasma jet perturbation by particle injection angle, carrier gas, and particle loading are also identified. Maximum particle average temperature and velocity at any given spray distance is systematically quantified. Optimum plasma plume position for particle injection which was observed in experiments was verified numerically along with description of physical mechanisms. Correlation of spray distance with in-flight particle behavior for various kinds of materials is revealed. A new strategy for visualization and representation of particle diagnostic results for thermal spray processes has been presented. Specifically, 1 st order process maps (process-particle interactions) have been addressed by converting the Temperature-Velocity of particles obtained via diagnostics into non-dimensional group parameters [Melting Index-Reynolds number]. This approach provides an improved description of the thermal and kinetic energy of particles and allows for cross-comparison of diagnostic data within a given process for different materials, comparison of a single material across different thermal spray processes, and detailed assessment of the melting behavior through recourse to analysis of the distributions. An additional group parameter, Oxidation Index, has been applied to relatively track the oxidation extent of metallic particles under different operating conditions. The new mapping strategies have also been proposed in circumstances where only ensemble particle diagnostics are available. Through the integration of process diagnostics and numerical simulation, key issues concerning in-flight particle status as well as the controlling physical mechanisms have been analyzed. A scientific and intellectual strategy for universal description of particle characteristics has been successfully developed.
Rugged Preheaters For Vacuum Plasma Spraying
NASA Technical Reports Server (NTRS)
Woodford, William H.; Mckechnie, Timothy N.; Sander, Lewis D.; Power, Christopher A.; Sander, Heather L.; Nguyen, Dalton D.
1994-01-01
Electric preheater units built to ensure large workpieces to be coated with metals by vacuum plasma spraying heated uniformly to requisite high temperatures by time plasma torch arrives. Units similar to electrical-resistance ribbon heaters in toasters and in some small portable electric "space" heaters. Nichrome resistance-heating ribbons wrapped around ceramic insulating spools on rings and on plates. Round workpiece placed in middle of ring preheater. Plate preheaters stacked as needed near workpiece.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis
NASA Astrophysics Data System (ADS)
Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan
2017-10-01
As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.
Tailored plasma sprayed MCrAlY coatings for aircraft gas turbine applications
NASA Technical Reports Server (NTRS)
Pennisi, F. J.; Gupta, D. K.
1981-01-01
Eighteen plasma sprayed coating systems, nine based on the NiCoCrAly chemistry and nine based on the CoCrAly composition, were evaluated to identify coating systems which provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAly and CoCrAly coatings respectively. NiCoCrAly type coatings were examined on a single crystal alloy and the CoCrAly based coatings were optimized on the B1900+ Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAly + Si coating exhibited a 2x oxidation life improvement at 1394 K (2050 F) over the vapor deposited NiCoCrAly material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAly coating was found to be more durable than the baseline vapor deposited CoCrAly coating on the B1900+ Hf alloy.
NASA Astrophysics Data System (ADS)
Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard
2012-12-01
Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.
Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.
2017-01-01
This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.
Measurements of Anisotropy in Non-LTE Low-Density, Iron-Vanadium Plasmas
NASA Astrophysics Data System (ADS)
Jarrott, L. C.; Foord, M. E.; Heeter, R. F.; Liedahl, D. A.; Barrios, M. A.; Brown, G. V.; Gray, W.; Marley, E. V.; Mauche, C. W.; Widmann, K.; Schneider, M. B.
2016-10-01
We report on Non-LTE anisotropy experiments carried out on the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY. In these experiments, a 50/50 mixture of iron and vanadium, 2000A thick and 250um in diameter is contained within a beryllium tamper, 10um thick and 1000um in diameter. Each side of the beryllium tamper is then irradiated using 52 of the 60 Omega beams with an intensity of 3e14 W/cm2 over 3ns in duration. Iron-Vanadium line ratios indicate a plasma temperature of greater than 2 keV was produced. The geometrical aspect ratio ranged from 0.8 to 4.0; allowing for the characterization of optical-depth-dependent anisotropy in the iron-vanadium line emission. Results of this characterization and its comparison with modeling will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J.
2006-01-01
Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.
Neutron irradiation effects on plasma facing materials
NASA Astrophysics Data System (ADS)
Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.
2000-12-01
This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Rupf, Stefan; Idlibi, Ahmad Nour; Marrawi, Fuad Al; Hannig, Matthias; Schubert, Andreas; von Mueller, Lutz; Spitzer, Wolfgang; Holtmann, Henrik; Lehmann, Antje; Rueppell, Andre; Schindler, Axel
2011-01-01
The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 µm) were exposed to human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 µm (24 h) to 91 µm (72 h) covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease. PMID:22016784
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1982-01-01
The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.
Gledhill, H C; Turner, I G; Doyle, C
2001-06-01
The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, V.M. Jr.; Northcutt, W.G. Jr.
The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying
NASA Astrophysics Data System (ADS)
Danroc, J.; Lacombe, J.
The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES
NASA Astrophysics Data System (ADS)
Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.
2018-02-01
Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.
NASA Astrophysics Data System (ADS)
Noguès, E.; Fauchais, P.; Vardelle, M.; Granger, P.
2007-12-01
In plasma spraying, the arc-root fluctuations, modifying the length and characteristics of the plasma jet, have an important influence on particle thermal treatment. These voltage fluctuations are strongly linked to the thickness of the cold boundary layer (CBL), surrounding the arc column. This thickness depends on the plasma spray parameters (composition and plasma forming gas mass flow rate, arc current, etc.) and the plasma torch design (anode-nozzle internal diameter and shape, etc.). In order to determine the influence of these different spray parameters on the CBL properties and voltage fluctuations, experiments were performed with two different plasma torches from Sulzer Metco. The first one is a PTF4 torch with a cylindrical anode-nozzle, working with Ar-H2 plasma gas mixtures and the second one is a 3MB torch with either a conical or a cylindrical anode-nozzle, working with N2-H2 plasma gas mixtures. Moreover, arc voltage fluctuations influence on particle thermal treatment was studied through the measurements of transient temperature and velocity of particles, issued from an yttria partially stabilized zirconia powder with a size distribution between 5 and 25 μm.
A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray.
Stott, C G; White, L; Wright, S; Wilbraham, D; Guy, G W
2013-05-01
A Phase I study to assess the single and multipledose pharmacokinetics (PKs) and safety and tolerability of oromucosally administered Δ(9)-tetrahydrocannabinol (THC)/cannabidiol (CBD) spray, an endocannabinoid system modulator, in healthy male subjects. Subjects received either single doses of THC/CBD spray as multiple sprays [2 (5.4 mg THC and 5.0 mg CBD), 4 (10.8 mg THC and 10.0 mg CBD) or 8 (21.6 mg THC and 20.0 mg CBD) daily sprays] or multiple doses of THC/CBD spray (2, 4 or 8 sprays once daily) for nine consecutive days, following fasting for a minimum of 10 h overnight prior to each dosing. Plasma samples were analyzed by gas chromatography-mass spectrometry for CBD, THC, and its primary metabolite 11-hydroxy-THC, and various PK parameters were investigated. Δ(9)-Tetrahydrocannabinol and CBD were rapidly absorbed following single-dose administration. With increasing single and multiple doses of THC/CBD spray, the mean peak plasma concentration (Cmax) increased for all analytes. There was evidence of dose-proportionality in the single but not the multiple dosing data sets. The bioavailability of THC was greater than CBD at single and multiple doses, and there was no evidence of accumulation for any analyte with multiple dosing. Inter-subject variability ranged from moderate to high for all PK parameters in this study. The time to peak plasma concentration (Tmax) was longest for all analytes in the eight spray group, but was similar in the two and four spray groups. THC/CBD spray was well-tolerated in this study and no serious adverse events were reported. The mean Cmax values (<12 ng/mL) recorded in this study were well below those reported in patients who smoked/inhaled cannabis, which is reassuring since elevated Cmax values are linked to significant psychoactivity. There was also no evidence of accumulation on repeated dosing.
Effects of plasma spray parameters on two layer thermal barrier
NASA Technical Reports Server (NTRS)
Stecura, S.
1981-01-01
The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.
Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping
2018-03-01
A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.
2016-07-01
The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.
Vacuum plasma coatings for turbine blades
NASA Technical Reports Server (NTRS)
Holmes, R. R.
1985-01-01
Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio
2016-12-01
Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.
NASA Astrophysics Data System (ADS)
Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.
2018-01-01
The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.
NASA Astrophysics Data System (ADS)
Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Illkova, Ksenia; Hlina, Michal; Chraska, Tomas; Sokolowski, Pawel; Curry, Nicholas
2017-12-01
Introduction of suspension and solution plasma spraying led to a breakthrough in the deposition of yttria-stabilized zirconia (YSZ) coatings and enabled preparation of new types of layers. However, their deposition with high feed rates needed, for example, for the deposition of thermal barrier coatings (TBCs) on large-scale components, is still challenging. In this study, possibility of high-throughput plasma spraying of YSZ coatings is demonstrated for the latest generation of high-enthalpy hybrid water-stabilized plasma (WSP-H) torch technology. The results show that microstructure of the coatings prepared by WSP-H may be tailored for specific applications by the choice of deposition conditions, in particular formulation of the liquid feedstock. Porous and columnar coatings with low thermal conductivity (0.5-0.6 W/mK) were prepared from commercial ethanol-based suspension. Dense vertically cracked coatings with higher thermal conductivity but also higher internal cohesion were deposited from suspension containing ethanol/water mixture and coarser YSZ particles. Spraying of solution formulated from diluted zirconium acetate and yttrium nitrate hexahydrate led also to the successful deposition of YSZ coating combining regions of porous and denser microstructure and providing both low thermal conductivity and improved cohesion of the coating. Enthalpy content, liquid-plasma interaction and coating buildup mechanisms are also discussed.
Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak
NASA Astrophysics Data System (ADS)
Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent
2018-02-01
First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.
NASA Astrophysics Data System (ADS)
Benoved, Nir; Kesler, O.
Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.
Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology
NASA Astrophysics Data System (ADS)
Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Chraska, Tomas; Curry, Nicholas
2017-01-01
Technology of water-stabilized plasma torch was recently substantially updated through introduction of a so-called hybrid concept that combines benefits of water stabilization and gas stabilization principles. The high-enthalpy plasma provided by the WSP-H ("hybrid") torch may be used for thermal spraying of powders as well as liquid feedstocks with high feed rates. In this study, results from three selected experiments with suspension plasma spraying with WSP-H technology are presented. Possibility of deposition of coatings with controlled microstructures was demonstrated for three different ceramics (YSZ—yttria-stabilized zirconia, YAG—yttrium aluminum garnet and Al2O3) introduced into ethanol-based suspensions. Shadowgraphy was used for optimization of suspension injection and visualization of the liquid fragmentation in the plasma jet. Coatings were deposited onto substrates attached to the rotating carousel with integrated temperature monitoring and air cooling, which provided an excellent reproducibility of the deposition process. Deposition of columnar-like YSZ and dense YAG and Al2O3 coatings was successfully achieved. Deposition efficiency reached more than 50%, as evaluated according to EN ISO 17 836 standard.
Survival and in-vessel redistribution of beryllium droplets after ITER disruptions
NASA Astrophysics Data System (ADS)
Vignitchouk, L.; Ratynskaia, S.; Tolias, P.; Pitts, R. A.; De Temmerman, G.; Lehnen, M.; Kiramov, D.
2018-07-01
The motion and temperature evolution of beryllium droplets produced by first wall surface melting after ITER major disruptions and vertical displacement events mitigated during the current quench are simulated by the MIGRAINe dust dynamics code. These simulations employ an updated physical model which addresses droplet-plasma interaction in ITER-relevant regimes characterized by magnetized electron collection and thin-sheath ion collection, as well as electron emission processes induced by electron and high-Z ion impacts. The disruption scenarios have been implemented from DINA simulations of the time-evolving plasma parameters, while the droplet injection points are set to the first-wall locations expected to receive the highest thermal quench heat flux according to field line tracing studies. The droplet size, speed and ejection angle are varied within the range of currently available experimental and theoretical constraints, and the final quantities of interest are obtained by weighting single-trajectory output with different size and speed distributions. Detailed estimates of droplet solidification into dust grains and their subsequent deposition in the vessel are obtained. For representative distributions of the droplet injection parameters, the results indicate that at most a few percents of the beryllium mass initially injected is converted into solid dust, while the remaining mass either vaporizes or forms liquid splashes on the wall. Simulated in-vessel spatial distributions are also provided for the surviving dust, with the aim of providing guidance for planned dust diagnostic, retrieval and clean-up systems on ITER.
NASA Astrophysics Data System (ADS)
Lu, Yu-Peng; Xiao, Gui-Yong; Li, Shi-Tong; Sun, Rui-Xue; Li, Mu-Sen
2006-01-01
The microstructural inhomogeneity in the plasma-sprayed hydroxyapatite (HA) coatings was characterized by using electron probe microanalyser (EPMA). A simple and artful method was developed to detect the interface characteristics. All the samples for observation were ground and polished along the direction parallel to the coating surfaces. The BSE images directly and clearly showed the inhomogeneity in the as-sprayed coatings with the amorphous regions being bright gray and crystalline regions being dark gray. X-ray diffractometer (XRD) patterns indicated that after immersion in deionized water for 20 days, bone-like apatite and α-Ca 2P 2O 7 precipitated on the polished surfaces of the as-sprayed HA coatings. The post-heat treatment could eliminate the microstructural inhomogeneity in the coatings. Only β-Ca 2P 2O 7 precipitated on the surfaces of the heat-treated HA coatings. The immersed samples were re-polished till tiny substrate was bared to investigate the effect of immersion on interface. It was shown that the immersion decreased the cohesive strength of the as-sprayed coatings. There were more and broader cracks in the splats that came into contact with the substrate and amorphous phase increased toward the coating-substrate interface. Post-heat treatment was proved to reduce the peeling off of coating during re-polishing operation. It was proposed that the distributions of amorphous phase and cracks in as-sprayed coatings are detrimental to coating properties and should be modified through improving the plasma spraying processing.
Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.
1983-01-01
In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.
Fabrication and characterization of plasma-sprayed HA/SiO(2) coatings for biomedical application.
Morks, M F
2008-01-01
Fused silica powder has been mixed with hydroxyapatite (HA) powder and plasma sprayed by using gas tunnel-type plasma jet. The influence of silica content (10 wt% and 20 wt%) on the microstructure and mechanical properties of HA-silica coatings was investigated. For investigating the microstructure and mechanical properties of HA-silica coatings, SUS 304 stainless steel was used as substrate material. The spraying was carried out on roughened substrate in an atmospheric chamber. Scanning electron microscope micrographs of cross-sectioned HA/SiO(2) coatings showed that the sprayed HA coatings with 10 and 20 wt% SiO(2) have dense structure with low porosity compared to the pure HA coatings. On the other hand, as the amount of silica was increased the coatings became denser, harder and exhibited high abrasive wear resistance. The presence of silica significantly improved the adhesive strength of HA/SiO(2) coatings mainly due to the increase in bonding strength of the coating at the interface.
Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings
NASA Technical Reports Server (NTRS)
Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.
1984-01-01
ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.
Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J
2014-01-01
Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.
Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2015-01-01
The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.
NASA Technical Reports Server (NTRS)
Raj, S. V.
2017-01-01
This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
NASA Astrophysics Data System (ADS)
Raj, S. V.
2017-11-01
This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
Preventing Clogging In A Vacuum Plasma Spray Gun
NASA Technical Reports Server (NTRS)
Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.
1994-01-01
Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.
Chang, E; Chang, W J; Wang, B C; Yang, C Y
1997-04-01
Plasma-sprayed hydroxyapatite (HA) coatings applied to metal substrates can induce a direct chemical bond with bone and hence achieve biological fixation of the implant. However, the poor bonding strength between HA and substrate has been of concern to orthopaedists. In this study, two submicrometre ZrO2 powders stabilized with both 3 and 8 mol% Y2O3 (TZ3Y and TZ8Y, respectively) were incorporated in a plasma-sprayed HA coating on Ti-6Al-4V substrate to investigate the change in phase, microstructure and bonding strength. The results show that ZrO2 composite coatings contain more unmelted particles and greater porosity. During plasma spraying, ZrO2 reacts with the CaO in HA to form CaZrO3 and accelerates HA decomposition to alpha-TCP and Ca4P2O9. Nevertheless, bonding strength increases with increase of ZrO2 content in the range 0 to 10 wt% studied. The higher Y2O3-containing TZ8Y apparently exerts a greater strengthening effect than the lower Y2O3-containing TZ3Y.
Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former
NASA Astrophysics Data System (ADS)
Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie
2015-04-01
Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.
Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C
2012-10-01
Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.
Thermal barrier coating life-prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J.
1985-01-01
Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
NASA Astrophysics Data System (ADS)
Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian
2015-01-01
Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.
Feedback enhanced plasma spray tool
Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee
2005-11-22
An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.
2002-01-01
Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
NASA Technical Reports Server (NTRS)
Sumner, I. E.; Ruckle, D. L.
1980-01-01
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1977-01-01
The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.
Ashley, Kevin; Brisson, Michael J; Howe, Alan M; Bartley, David L
2009-12-01
A collaborative interlaboratory evaluation of a newly standardized inductively coupled plasma mass spectrometry (ICP-MS) method for determining trace beryllium in workplace air samples was carried out toward fulfillment of method validation requirements for ASTM International voluntary consensus standard test methods. The interlaboratory study (ILS) was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Uncertainty was also estimated in accordance with ASTM D7440, which applies the International Organization for Standardization Guide to the Expression of Uncertainty in Measurement to air quality measurements. Performance evaluation materials (PEMs) used consisted of 37 mm diameter mixed cellulose ester filters that were spiked with beryllium at levels of 0.025 (low loading), 0.5 (medium loading), and 10 (high loading) microg Be/filter; these spiked filters were prepared by a contract laboratory. Participating laboratories were recruited from a pool of over 50 invitees; ultimately, 20 laboratories from Europe, North America, and Asia submitted ILS results. Triplicates of each PEM (blanks plus the three different loading levels) were conveyed to each volunteer laboratory, along with a copy of the draft standard test method that each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the PEMs by one of three sample preparation procedures (hotplate or microwave digestion or hotblock extraction) that were described in the draft standard. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS and to report their data in units of mu g Be/filter sample. Interlaboratory precision estimates from participating laboratories, computed in accordance with ASTM E691, were 0.165, 0.108, and 0.151 (relative standard deviation) for the PEMs spiked at 0.025, 0.5, and 10 microg Be/filter, respectively. Overall recoveries were 93.2%, 102%, and 80.6% for the low, medium, and high beryllium loadings, respectively. Expanded uncertainty estimates for interlaboratory analysis of low, medium, and high beryllium loadings, calculated in accordance with ASTM D7440, were 18.8%, 19.8%, and 24.4%, respectively. These figures of merit support promulgation of the analytical procedure as an ASTM International standard test method, ASTM D7439.
Laser cleaning of ITER's diagnostic mirrors
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Gentile, C. A.; Doerner, R.
2012-10-01
Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.
Investigation of the hydrodynamics and emission of a laser heated tamped high-Z target
NASA Astrophysics Data System (ADS)
Gray, William J.; Foord, Mark E.; Schneider, Marilyn B.; Barrios, Maria A.; Brown, Greg V.; Heeter, Robert F.; Jarrott, L. Charlie; Liedahl, Duane A.; Marley, Ed V.; Mauche, Chris W.; Widmann, Klaus
2018-06-01
We investigate the hydrodynamic expansion and x-ray emission of a laser-heated buried-layer target. This work is motivated by our interest in developing an experimental platform for probing plasma properties under relatively uniform conditions, such as ionization and equation of state. Targets consist of a few thousand angstrom-thick layer of material, embedded in a few microns of the tamper material (typically beryllium), which are irradiated on both sides by an intense few-nanosecond laser pulse. The expansion and emission of our target, composed of a homogeneous mixture of iron, vanadium, and gold, are simulated using the 2-D LASNEX code. Reasonable agreement is found with the time history of the x-ray emission traces (DANTE). Both experiments and simulations exhibit an interesting reduction in the radial size of the emission region with time, as measured using face-on imaging. This is shown to be due to the ablation of the beryllium tamper, which affects the radial confinement of the embedded target. Simulations using a larger diameter beryllium tamper are found to mitigate this effect, improving the one-dimensionality of the expansion.
Medical equipment bio-capability processes using the atmospheric plasma-sprayed titanium coating
NASA Astrophysics Data System (ADS)
Rezaei, F.; Saviz, S.; Ghoranneviss, M.
2017-12-01
Antibacterial surfaces such as titanium coatings are able to have capability in the human body environment. In this study, titanium coatings are deposited on the 316 stainless steel substrates by a handmade plasma spray system. Some mechanical, chemical properties and microstructure of the created titanium layer are determined to evaluate the quality of coating. The XRD, SEM, adhesion tests from cross cut and corrosion test by potentiodynamic are used. During the different stages, some of the parameters are changed in different samples to achieve the best quality in the coating. It is shown that by increasing the spray time, the production of nanoparticles begins. On the other hand, the best layers are created when the spray main gas flow rate has a certain amount.
Plasma Spray Synthesis Of Nanostructured V2O5 Films For Electrical Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Jagjit
We demonstrate for the first time, the synthesis of nanostructured vanadium pentoxide (V2O5) films and coatings using plasma spray technique. V2O5 has been used in several applications such as catalysts, super-capacitors and also as an electrode material in lithium ion batteries. In the present studies, V2O5 films were synthesized using liquid precursors (vanadium oxychloride and ammonium metavanadate) and powder suspension. In our approach, the precursors were atomized and injected radially into the plasma gun for deposition on the substrates. During the flight towards the substrate, the high temperature of the plasma plume pyrolyzes the precursor particles resulting into the desiredmore » film coatings. These coatings were then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Differential Scanning Calorimetry (DSC). Among the precursors, vanadium oxychloride gave the best results in terms of nanocrystalline and monophasic films. Spraying of commercial powder suspension yielded multi-phasic mixture in the films. Our approach enables deposition of large area coatings of high quality nanocrystalline films of V2O5 with controllable particle morphology. This has been optimized by means of control over precursor composition and plasma spray conditions. Initial electrochemical studies of V2O5 film electrodes show potential for energy storage studies.« less
Pakravan, N; Shokrzadeh, M; Bari, M A Khalat; Shadboorestan, Amir
2016-03-01
Accidental toxicity by organophosphate (OP) agents may occur among farmers during spraying season due to improper use and handling. Plasma cholinesterase (ChE) activity measurement is recommended to monitor the extent of exposure to the OP agent. The aim of the current study was to measure plasma ChE activity before and after exposure with OP pesticides. This was a prospective study conducted on 36 farmers working in the farm field. The plasma ChE level was measured before spraying and 2 days and 8 weeks after spraying season and exposure to OP agent. Farmers were observed for clinical signs and symptoms of toxicity after exposure. Vertimac was the most common agent used by farmers followed by diazinon and chlorpyrifos. The plasma ChE level significantly decreased after exposure by over 50%. The level returned to preexposure level after 8 weeks. Exposure to OP pesticide is a major concern in the developing countries. More than 50% reduction in the plasma ChE activity after spraying is an alarming message for health-care system and policy makers. Furthermore, workplace evaluation, serial ChE monitoring, and appropriate training and education to exposed individuals would be initial important steps to avoid the toxicity or reduce the severity of poisoning. © The Author(s) 2015.
Consolidation of Surface Coatings by Friction Stir Techniques
2010-09-01
alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments
Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor
2017-04-01
In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.
NASA Astrophysics Data System (ADS)
Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.
2013-06-01
This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.
NASA Astrophysics Data System (ADS)
Nikravech, Mehrdad; Rahmani, Abdelkader
2016-09-01
The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.
Ke, Dongxu; Robertson, Samuel F; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita
2017-08-09
Plasma-sprayed hydroxyapatite (HA)-coated titanium implants have been widely used in orthopedic applications due to their inheritance of an excellent mechanical property from titanium and great osteoconductivity from HA. However, the lack of osteoinductivity limits their further applications. In this study, 1 wt % MgO and 0.5 wt % SiO 2 were mixed with HA for making plasma-sprayed coatings on titanium implants. Plasma-sprayed HA- and MgO/SiO 2 -HA-coated titanium implants showed adhesive bond strengths of 25.73 ± 1.92 and 23.44 ± 2.89 MPa, respectively. The presence of MgO and SiO 2 significantly increased the osteogenesis, osseointegration, and bone mineralization of HA-coated titanium implants by the evaluation of their histomorphology after 6, 10, and 14 weeks of implantation in rat distal femoral defects. Implant pushout tests also showed a shear modulus of 149.83 ± 3.69 MPa for MgO/SiO 2 -HA-coated implants after 14 weeks of implantation, compared to 52.68 ± 10.41 MPa for uncoated implants and 83.92 ± 3.68 MPa for pure HA-coated implants; These are differences in the shear modulus of 96% and 56.4%, respectively. This study assesses for the first time the quality of the bone-implant interface of induction plasma-sprayed MgO and SiO 2 binary-doped HA coatings on load-bearing implants compared to bare titanium and pure HA coatings in a quantitative manner. Relating the osseointegration and interface shear modulus to the quality of implant fixation is critical to the advancement and implementation of HA-coated orthopedic implants.
Sprayed shielding of plastic-encapsulated electronic modules
NASA Technical Reports Server (NTRS)
Muller, A. N.
1969-01-01
Metallic coating directly sprayed on electronic modules provides simple and reliable lightweight protection against radio frequency interference. A plasma arc may be used. Aluminum and copper are the most effective metals.
Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method
NASA Astrophysics Data System (ADS)
Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.
2016-02-01
In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).
NASA Astrophysics Data System (ADS)
Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin
2016-09-01
The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2017-12-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2018-01-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.
Song, Bo; Zhou, Ningning; Ju, Dongying
2013-12-01
This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations
Fousova, Michaela; Vojtech, Dalibor; Jablonska, Eva; Fojt, Jaroslav; Lipov, Jan
2017-01-01
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability. PMID:28837101
Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating
NASA Astrophysics Data System (ADS)
Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei
2017-05-01
Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was <2% of that of the matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.
Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E
2001-01-01
Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.
2011-01-17
To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4%more » by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only {approx}5 x 10{sup -4} cm{sup 3}/Nm with 4% of porosity.« less
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
NASA Astrophysics Data System (ADS)
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-12-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
Faster, Less Expensive Dies Using RSP Tooling
NASA Astrophysics Data System (ADS)
Knirsch, James R.
2007-08-01
RSP Tooling is an indirect spray form additive process that can produce production tooling for virtually any forming process and from virtually any metal. In the past 24 months a significant amount of research and development has been performed. This resulted in an increase in the basic metallurgical understanding of what transpires during the rapid solidification of the metal, significant improvements in the production machine up time, ceramic developments that have improved finish, process changes that have resulted in a shorter lead time for tool delivery, and the testing of many new alloys. RSP stands for Rapid Solidification Process and is the key to the superior metallurgical properties that result from the technology. Most metals that are sprayed in the process leave the machine with the same physical properties as the same metal normally achieves through heat treatment and in some cases the properties are superior. Many new applications are being pursued including INVAR tools for aerospace composite materials, and bimetallic tools made from tool steel and beryllium copper for die casting and plastic injection molding. Recent feasibility studies have been performed with tremendous success.
Deposition stress effects on thermal barrier coating burner rig life
NASA Technical Reports Server (NTRS)
Watson, J. W.; Levine, S. R.
1984-01-01
A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.
Deposition stress effects on the life of thermal barrier coatings on burner rigs
NASA Technical Reports Server (NTRS)
Watson, J. W.; Levine, S. R.
1984-01-01
A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.
NASA Astrophysics Data System (ADS)
Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert
2018-04-01
In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.
Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.
1997-01-01
A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.
Dixon, R.D.; Smith, F.M.; O`Leary, R.F.
1997-04-01
A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.
NASA Astrophysics Data System (ADS)
Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie
2018-04-01
Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.
dc-plasma-sprayed electronic-tube device
Meek, T.T.
1982-01-29
An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.
Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.
Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Jianjun, Huang; Fan, Wang; Ying, Liu; Shishou, Jiang; Xisheng, Wang; Bing, Qi; Liang, Gao
2011-07-01
Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 μm. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.
Tamper asymmetry and its effect on transmission for x-ray driven opacity simulations
NASA Astrophysics Data System (ADS)
Morris, H. E.; Tregillis, I. L.; Hoffman, N. M.; Sherrill, M. E.; Fontes, C. J.; Marshall, A. J.; Urbatsch, T. J.; Bradley, P. A.
2017-09-01
This paper reports on synthetic transmission results from Lasnex [Zimmerman and Kruer, Comments Plasma Phys. 2, 51 (1975)] radiation-hydrodynamics simulations of opacity experiments carried out at Sandia National Laboratories' recently upgraded ZR facility. The focus is on experiments utilizing disk targets composed of a half-moon Fe/Mg mixture tamped on either end with 10-μm CH and an additional 35-μm beryllium tamper accessory on the end facing the spectrometer. Five x-ray sources with peak power ranging from 10 to 24 TW were used in the simulations to heat and backlight the opacity target. The dominant effect is that the beryllium behind the Fe/Mg mixture is denser and more opaque than the beryllium unshielded by metal during the times of greatest importance for the transmission measurement for all drives. This causes the simulated transmission to be lower than expected, and this is most pronounced for the case using the lowest drive power. While beryllium has a low opacity, its areal density is sufficiently high such that the expected reduction of the measured transmission is significant. This situation leads to an overestimate of iron opacity by 10%-215% for a photon energy range of 975-1775 eV for the 10-TW case. It is shown that if the tamper conditions are known, the transmission through each component of the target can be calculated and the resulting opacity can be corrected.
Preparation Of Sources For Plasma Vapor Deposition
NASA Technical Reports Server (NTRS)
Waters, William J.; Sliney, Hal; Kowalski, D.
1993-01-01
Multicomponent metal targets serving as sources of vapor for plasma vapor deposition made in modified pressureless-sintering process. By use of targets made in modified process, one coats components with materials previously plasma-sprayed or sintered but not plasma-vapor-deposited.
Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance
NASA Astrophysics Data System (ADS)
Belka, R.; Kowalski, S.; Żórawski, W.
2017-08-01
Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.
NASA Astrophysics Data System (ADS)
Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.
2014-01-01
Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.
40 CFR 421.154 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ore as beryllium Beryllium 1,842.000 831.000 Chromium (total) 831.000 336.900 Copper 2,875.000 1,370... pounds) of beryllium carbonate produced from beryl ore as beryllium Beryllium 180.4 81.4 Chromium (total... beryllium carbonate produced as beryllium Beryllium 175.900 79.370 Chromium (total) 79.370 32.180 Copper 274...
Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.
Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi
2014-01-01
In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.
Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.
Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping
2015-09-01
The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}<10^{-2}) and strong (Γ_{ee}>1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}<Γ_{ee}<1). We find that with increasing density of Be, the Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.
Performance of Plasma Sprayed Al2O3 Coating in Bio-Simulated Environment
NASA Astrophysics Data System (ADS)
Yıldız, F.; Yetim, A. F.; Alsaran, A.; Çelik, A.
2014-01-01
Alumina coatings deposited on the surface of stainless steel 316L by the method of plasma spraying are studied. Tests for wear and corrosion are preformed in Ringer's solution simulating a human body environment. The structure, microhardness, wear resistance and corrosion resistance of the steel are determined with and without a coating. Deposition of a coating onto the stainless steel is shown to be an effective means for protecting implants from corrosion and wear.
JT9D ceramic outer air seal system refinement program
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1982-01-01
The abradability and durability characteristics of the plasma sprayed system were improved by refinement and optimization of the plasma spray process and the metal substrate design. The acceptability of the final seal system for engine testing was demonstrated by an extensive rig test program which included thermal shock tolerance, thermal gradient, thermal cycle, erosion, and abradability tests. An interim seal system design was also subjected to 2500 endurance test cycles in a JT9D-7 engine.
NASA Astrophysics Data System (ADS)
Kolpakov, A. S.; Kardonina, N. I.
2016-02-01
The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.
NASA Astrophysics Data System (ADS)
McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron
2006-12-01
This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.
Thermal barrier coating life-prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J.; Liu, A.
1986-01-01
The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.
Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
NASA Astrophysics Data System (ADS)
Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.
2015-01-01
The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.
NASA Astrophysics Data System (ADS)
Ramlan, Nadiah; Zamri, Nazirah Wahidah Mohd; Maskat, Mohd Yusof; Hoong, Chin Oi; Theng, Lau Yen; Zubairi, Saiful Irwan
2018-04-01
A 50Hz glow discharge He/CH4 plasma was generated and applied for the modification of glass surface to reduce powder adhesion on the wall of spray dryer. The hydrophobicity of the glass samples determined by the water droplet contact angle and adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. There was a peak that appeared at 1470 cm-1 on the surface of treated glass indicating the presence of CH3 groups from ATR-FTIR data. Surface morphology analysis using scanning electron microscopy (SEM) showed changes of roughness in the surface-treated glass. The presence of alkyl group (CH3) that deposited on the glass surface is one of the factors that contribute to the increase in the surface roughness. The surface roughness will reflect the value of contact angle where hydrophobic surface are rougher compared to hydrophilic surface. The plasma treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.
NASA Astrophysics Data System (ADS)
van Every, Kent J.
The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs. The different thermal conduction behaviors were linked to the porosity and compositional properties of the coatings using immersion density, SEM, and synchrotron radiation characterization techniques.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.
2018-02-01
Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.
Technical Basis for PNNL Beryllium Inventory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michelle Lynn
2014-07-09
The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterizationmore » and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.« less
NASA Astrophysics Data System (ADS)
Hunt, Ryan Matthew
Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic Pressing (HIP) process (at a temperature between 700 °C and 750 °C for 2 hours at 103 M Pa) with 10 mu m of titanium and 20 mum of copper deposited between substrates. Without the copper and titanium interlayers, the bond formed an intermetallic that lead to fracture from internal residual stresses. Also, slowing the rate of cooling and adding an intermediate hold temperature during cool-down significantly increased bond strength. These beneficial effects were confirmed by the numerical simulations, which showed reduced residual stress resulting from all bonding techniques. Both metals interlayers, as well as the reduced cooling rate were critical in overcoming the otherwise brittle quality of the beryllium to ferritic steel joint. However, the introduced interlayers are not an ideal solution to the problem. They introduced both Be-Ti and Cu-Ti compounds, which proved to be the eventual failure location in the bond. Further optimization of this joint is necessary, and can potentially be achieved with variation of cooling rates. To make the joint ready for implementation will require larger scale fabrication to verify reliability and to test the joint under operational loads.
Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces
NASA Astrophysics Data System (ADS)
Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki
2012-08-01
We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.
Pujols, Joan; Segalés, Joaquim
2014-12-05
Bovine plasma was inoculated with porcine epidemic diarrhea virus (PEDV) at an average final titer of 4.2 log10 TCID50/mL to determine the effect of spray drying on viral inactivation. Using a laboratory scale drier, inoculated plasma was spray dried at 200 °C inlet temperature and either 70 or 80 °C throughout substance. Both liquid and dried samples were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. Results indicated liquid samples contained infective virus, but none of the spray dried samples were infectious. Also, survivability of PEDV inoculated on spray dried bovine plasma (SDBP) and stored at 4, 12 or 22 °C was determined for 7, 14 and 21 days. Commercial SDBP powder was inoculated with PEDV to an average final titer of 2.8 log10 TCID50/g. Five samples per time and temperature conditions were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. The virus was non-infectious for all samples stored at 22 °C at 7, 14 and 21 days. PEDV was infective in 1 out of 5 samples stored at 12 °C at 7 days, but none of the samples stored for 14 and 21 days were infectious in cell culture. For samples stored at 4 °C, 4 out of 5 samples were infectious at 7 days, 1 out of 5 samples were infectious at 14 days, but none were infectious at 21 days. In summary, PEDV was not infectious on cell culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Larivière, Dominic; Tremblay, Mélodie; Durand-Jézéquel, Myriam; Tolmachev, Sergei
2012-04-01
This article describes a robust methodology using the combination of instrumental design (high matrix interface-HMI), sample dilution and internal standardization for the quantification of beryllium (Be) in various digested autopsy tissues using inductively coupled plasma mass spectrometry. The applicability of rhodium as a proper internal standard for Be was demonstrated in three types of biological matrices (i.e., femur, hair, lung tissues). Using HMI, it was possible to achieve instrumental detection limits and sensitivity of 0.6 ng L(-1) and 157 cps L ng(-1), respectively. Resilience to high salt matrices of the HMI setup was also highlighted using bone mimicking solution ([Ca(2+)] = 26 to 1,400 mg L(-1)), providing a 14-fold increase in tolerance and a 2.7-fold decrease in method detection limit compared to optimized experimental conditions obtained without the HMI configuration. Precision of the methodology to detect low levels of Be in autopsy samples was demonstrated using hair and blood certified reference materials. Be concentration ranging from 0.015 to 255 μg kg(-1) in autopsy samples obtained from the U.S. Transuranium and Uranium Registries were measured using the methodology presented.
NASA Astrophysics Data System (ADS)
Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.
2018-03-01
Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.
Vacuum plasma spray applications on liquid fuel rocket engines
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.
1992-01-01
The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.
Metal alloy coatings and methods for applying
Merz, Martin D.; Knoll, Robert W.
1991-01-01
A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.
Overview of zirconia with respect to gas turbine applications
NASA Technical Reports Server (NTRS)
Cawley, J. D.
1984-01-01
Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.
In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).
High heat flux composites for plasma-facing materials
NASA Astrophysics Data System (ADS)
Ting, J.-M.; Lake, M. L.
1994-09-01
Vapor grown carbon fiber (VGCF) has been shown to have the highest thermal conductivity of all carbon fiber currently available. This property holds potential of increasing the thickness and longevity of fusion reactor plasma-facing materials. The use of VGCF as a reinforcement in carbon/carbon composites has been explored, as well as methods of joining these plasma-facing materials to copper alloy heat pipes. In extensive study of VGCF/carbon matrix composites, the influence of fiber volume fraction, density, densification method, and heat treatment on composite properties were investigated. Joining of VGCF/carbon composites to copper and beryllium to copper using a novel alloying method was studied. The joint interface was examined by RBS analysis and thermal conductance.
Beryllium fluoride film protects beryllium against corrosion
NASA Technical Reports Server (NTRS)
O donnell, P. M.; Odonnell, P. M.
1967-01-01
Film of beryllium fluoride protects beryllium against corrosion and stress corrosion cracking in water containing chloride ion concentrations. The film is formed by exposing the beryllium to fluorine gas at 535 degrees C or higher and makes beryllium suitable for space applications.
Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams
NASA Astrophysics Data System (ADS)
Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.
2016-06-01
Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.
Oxidation and particle deposition modeling in plasma spraying of Ti-6Al-4V/SiC fiber composites
NASA Astrophysics Data System (ADS)
Cochelin, E.; Borit, F.; Frot, G.; Jeandin, M.; Decker, L.; Jeulin, D.; Taweel, B. Al; Michaud, V.; Noël, P.
1999-03-01
Plasma spraying is known to be a promising process for the manufacturing of Ti/SiC long-fiber composites. However, some improvements remain for this process to be applied in an industrial route. These include: oxygen contamination of the sprayed material through that of titanium particles before and during spraying, damage to fibers due to a high level of thermal stresses induced at the spraying stage, adequate deposition of titanium-base powder to achieve a low-porosity matrix and good impregnation of the fiber array. This article deals with work that resulted in a threefold study of the process. Oxidation was studied using electron microprobe analysis of elementary particles quenched and trapped into a closed box at various given flight distances. Oxygen diffusion phenomena within the particles are discussed from a preliminary theoretical approach coupled with experimental data. Isothermal and thermomechanical calculations were made using the ABAQUS code to determine stresses arising from contact of a liquid Ti-6Al-4V particle onto a SiC fiber. On the scale of the sprayed powder flow, a two-dimensional new type of model simulating the deposition of droplets onto a substrate was developed. This new type of model is based on a lattice-gas automaton that reproduces the hydrodynamical behavior of fluids.
Beryllium Laboratory Analysis--The Regulations May Drive the Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taruru, Seuri K
Beryllium has many industry-specific applications, such as medical X-ray windows for diagnostic equipment, nuclear reactors, aerospace applications, precision instrumentation, and other consumer products for which lightness and rigidity is essential. According to the National Toxicology Program, beryllium oxide (BeO) is one of the most significant beryllium compounds in production. Although beryllium and its compounds have a wide array of beneficial uses, due to its unique properties it is not an ideal metal to be used in all situations. Exposure to beryllium is linked to beryllium sensitization and Chronic Beryllium Disease (CBD), which is incurable, debilitating, and potentially fatal. The Internationalmore » Agency for Research on Cancer classifies beryllium and beryllium compounds as “carcinogenic to humans” (Group I), and EPA classifies beryllium as a likely human carcinogen, the lung being the primary target organ. Laboratory analysis for beryllium samples has always presented a challenge to the analytical community. While most metals of interest to industrial hygienists have occupational exposure limits (OELs) in milligrams per cubic meter (mg/m 3), the beryllium OELs are in micrograms per cubic meter (μg/m3). Some regulatory agencies have recently published beryllium OELs so low that in some cases a laboratory limit of detection (LOD) in nanograms (ng) is required. For most substances, science drives the regulations, but for beryllium, regulations appear to be driving science to develop laboratory analytical methods that can adequately support the proposed OELs. (EPA has issued guidelines regarding ambient and community airborne beryllium exposure, but this article focuses on beryllium from an occupational exposure perspective.)« less
Beryllium Laboratory Analysis--The Regulations May Drive the Science
Taruru, Seuri K
2017-08-01
Beryllium has many industry-specific applications, such as medical X-ray windows for diagnostic equipment, nuclear reactors, aerospace applications, precision instrumentation, and other consumer products for which lightness and rigidity is essential. According to the National Toxicology Program, beryllium oxide (BeO) is one of the most significant beryllium compounds in production. Although beryllium and its compounds have a wide array of beneficial uses, due to its unique properties it is not an ideal metal to be used in all situations. Exposure to beryllium is linked to beryllium sensitization and Chronic Beryllium Disease (CBD), which is incurable, debilitating, and potentially fatal. The Internationalmore » Agency for Research on Cancer classifies beryllium and beryllium compounds as “carcinogenic to humans” (Group I), and EPA classifies beryllium as a likely human carcinogen, the lung being the primary target organ. Laboratory analysis for beryllium samples has always presented a challenge to the analytical community. While most metals of interest to industrial hygienists have occupational exposure limits (OELs) in milligrams per cubic meter (mg/m 3), the beryllium OELs are in micrograms per cubic meter (μg/m3). Some regulatory agencies have recently published beryllium OELs so low that in some cases a laboratory limit of detection (LOD) in nanograms (ng) is required. For most substances, science drives the regulations, but for beryllium, regulations appear to be driving science to develop laboratory analytical methods that can adequately support the proposed OELs. (EPA has issued guidelines regarding ambient and community airborne beryllium exposure, but this article focuses on beryllium from an occupational exposure perspective.)« less
Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses
NASA Astrophysics Data System (ADS)
Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai
2016-06-01
Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.
NASA Astrophysics Data System (ADS)
Zou, Binglin; Tao, Shunyan; Huang, Wenzhi; Khan, Zuhair S.; Fan, Xizhi; Gu, Lijian; Wang, Ying; Xu, Jiaying; Cai, Xiaolong; Ma, Hongmei; Cao, Xueqiang
2013-01-01
TiC-TiB2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB2. Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.
1995-06-20
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.
Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals
NASA Astrophysics Data System (ADS)
Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.
2017-02-01
The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.
NASA Technical Reports Server (NTRS)
Zimmerman, Frank
2003-01-01
Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.
Optimal Design of Nozzle for Supersonic Atmosphere Plasma Spraying
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Bai, Y.; Tan, Chao
2016-08-01
Through numerical simulation, key issues concerning the plasma jet features as well as the sizes of nozzle for supersonic atmosphere plasma spraying (SAPS) were analyzed in this paper. Numerical results were compared with the experimental measurements and a good agreement has been achieved. Due to the effect of mechanical compression, the increasing sizes of r1, r2, r3 and r4 (r1, r2, r3 and r4 are the sizes of nozzle) lead to a decrease in temperature and velocity of plasma jet. But large size of r5 can increase the external temperature and velocity of plasma jet, which benefit particles accelerating at the far downstream region. A new nozzle was designed based on the simulation results. Compared to the temperature and velocity of plasma jet in the original nozzle, the maximum temperature and velocity of plasma jet in new structure are increased by about 9.8% and 44.5%, which is a benefit to the particles to reach a higher speed and surface temperature.
Kuo, Lewis J. H.; Vora, Shailesh D.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.
Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi
NASA Astrophysics Data System (ADS)
Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.
2015-02-01
High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.
Kuo, L.J.H.; Vora, S.D.
1995-02-21
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.
Effect of particle in-flight behavior on the composition of thermal barrier coatings
NASA Astrophysics Data System (ADS)
Zhao, L.; Bai, Y.; Tang, J. J.; Liu, K.; Ding, C. H.; Yang, J. F.; Han, Z. H.
2013-12-01
In this work, 6 to 11 mol% YO1.5-stabilized zirconia (YSZ) coatings were deposited by supersonic and conventional atmospheric plasma spraying. During spraying, the surface temperature and velocity of in-flight particles were monitored by Spray Watch 2i on-line system. The phase composition of as-sprayed coatings was analyzed by X-ray diffractometry (XRD). Lattice parameters, tetragonality and the content of YO1.5 (mol%) of as-sprayed coatings were calculated according to the position of (0 0 4) and (4 0 0) diffraction peaks. It was found that the as-sprayed coatings were composed of metastable non-transformable tetragonal phase (t‧). However, the amount of YO1.5 (mol%) in the as-sprayed coatings decreased with the increase of melting index of in-flight particles due to the partial evaporation of YO1.5 during spraying.
Thermal barrier coating life-prediction model development. Annual report no. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strangman, T. E.; Neumann, J.; Liu, A.
1986-10-01
The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimenmore » procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.« less
NASA Astrophysics Data System (ADS)
Hasan, S.; Stokes, J.
2011-01-01
High Velocity Oxy-Fuel (HVOF) has the potential to produce hydroxyapatite (HA; Bio-ceramic) coatings based on its experience with other sprayed ceramic materials. This technique should offer mechanical and biological results comparable to other thermal spraying processes, such as atmospheric plasma thermal spray, currently FDA approved for HA deposition. Deposition of HA via HVOF is a new venture especially using the Sulzer Metco Diamond Jet (DJ) process, and the aim of this article was to establish this technique's potential in providing superior HA coating results compared to the FDA-approved plasma spray technique. In this research, a Design of Experiment (DOE) model was developed to optimize the Sulzer Metco DJ HVOF process for the deposition of HA. In order to select suitable ranges for the production of HA coatings, the parameters were first investigated. Five parameters (factors) were researched over two levels namely: oxygen flow rate, propylene flow rate, air flow rate, spray distance, and powder flow rate. Coating crystallinity and purity were measured at the surface of each sample as the responses to the factors used. The research showed that propylene, air flow rate, spray distance, and powder feed rate had the largest effect on the responses, and the study aimed to find the preferred optimized settings to achieve high crystallinity and purity of percentages of up to 95%. This research found crystallinity and purity values of 93.8 and 99.8%, respectively, for a set of HVOF parameters which showed improvement compared to the crystallinity and purity values of 87.6 and 99.4%, respectively, found using the FDA-approved Sulzer Metco Atmospheric Plasma thermal spray process. Hence, a new technique for HA deposition now exists using the DJ HVOF facility; however, other mechanical and biorelated properties must also be assessed.
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Leissler, George W.; Jobe, J. Marcus
1993-01-01
Initial experiments conducted on thermal barrier coatings prepared in the newly upgraded research plasma spray facility and the burner rig test facilities are discussed. Part 1 discusses experiments which establish the spray parameters for three baseline zirconia-yttria coatings. The quality of five similar coating lots was judged primarily by their response to burner rig exposure supplemented by data from other sources such as specimen characterizations and thermal diffusivity measurements. After allowing for burner rig variability, although there appears to be an optimum density (i.e., optimum microstructure) for maximum burner rig life, the distribution tends to be rather broad about the maximum. In Part 2, new hafnia-yttria-based coatings were evaluated against both baseline and alternate zirconia-yttria coatings. The hafnia-yttria coatings and the zirconia-yttria coatings that were prepared by an alternate powder vendor were very sensitive to plasma spray parameters, in that high-quality coatings were only obtained when certain parameters were employed. The reasons for this important observation are not understood. Also not understood is that the first of two replicate specimens sprayed for Part 1 consistently performed better than the second specimen. Subsequent experiments did not display this spray order affect, possibly because a chiller was installed in the torch cooling water circuit. Also, large changes in coating density were observed after switching to a new lot of electrodes. Analyses of these findings were made possible, in part, because of the development of a sensitive density measurement technique described herein in detail. The measured thermal diffusivities did not display the expected strong relationship with porosity. This surprising result was believed to have been caused by increased microcracking of the denser coatings on the stainless steel substrates.
Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes
NASA Technical Reports Server (NTRS)
Agapakis, John E.; Bolstad, Jon
1993-01-01
Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.
NASA Technical Reports Server (NTRS)
Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.
2014-01-01
Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.
Description and Operation of the Mark 1B Plasma Focus Radiation Facility,
plasma focus facility (Mk 1B) at The Aerospace Corporation produces x-ray fluences that are applicable to most radiation testing problems (e.g., integrated circuits or transistors). Although the facility has only one beryllium window for exposing 1.6-cm-dia samples to doses of 25 to 45 krad (Si) per shot, three more windows could be added and the additional samples exposed simultaneously. The facility is experiencing switch problems and is presently averaging 50 shots per week--15 shots per day for 3 or 4 days. The results of a comprehensive switch analysis should
NASA Astrophysics Data System (ADS)
Kumari, Renu; Majumdar, Jyotsna Dutta
2017-10-01
In the present study, the effect of plasma spray deposited hydroxylapatite (HA) based TiO2 dispersed (HA + 50 wt.% TiO2), coating and post spray heat treatment to be referred as HA-TiO2 (heat treated at 650 °C for 2 h) and ZrO2 dispersed (HA + 10 wt.% ZrO2), to be referred as HA-ZrO2 coating (heat treated at 750 °C for 2 h) on corrosion resistance and bioactivity of Ti-6Al-4V substrate has been undertaken. There is partial decomposition of HA to tri-calcium-phosphate (Ca3(PO4)2) and formation of CaTiO3 phase in HA-TiO2 coating and CaZrO3 phase in the HA-ZrO2 coating. Corrosion study in Hank's solution shows that there is shifting of corrosion potential (Ecorr) towards active potential (-1.1 V(SCE) for as-sprayed and post spray heat treated HA-TiO2 coating, -1.1 V(SCE) for as-sprayed HA-ZrO2 coating and -1 V(SCE) for HA-ZO2 coating after post spray heat treatment), and deterioration in pitting corrosion (Epit) resistance in as-sprayed coatings and the same after heat treatment (-0.7 V(SCE) for both HA-TiO2 and HA-ZrO2 coating as compared to as received substrate (-0.3 V(SCE)). The corrosion rate was increased for both the coatings with a maximum increase in HA-ZrO2 coating. Bioactivity test shows a higher degree of apatite deposition in as-sprayed coating and the same after heat treatment as compared to as received Ti-6Al-4V though the as-sprayed one showed a superior behavior.
Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation
NASA Astrophysics Data System (ADS)
Valensi, F.; Pellerin, S.; Castillon, Q.; Boutaghane, A.; Dzierzega, K.; Zielinska, S.; Pellerin, N.; Briand, F.
2013-06-01
The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO2 and N2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N2 and disappears in globular transfer mode when CO2 is added. Despite the temperature increase, the electron density decreases with CO2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO2. Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account.
NASA Astrophysics Data System (ADS)
Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per
2015-10-01
The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.
High-power hybrid plasma spraying of large yttria-stabilized zirconia powder
NASA Astrophysics Data System (ADS)
Huang, Heji; Eguchi, Keisuke; Yoshida, Toyonobu
2006-03-01
To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).
Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings
NASA Astrophysics Data System (ADS)
Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin
2010-12-01
In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.
Automated Plasma Spray (APS) process feasibility study
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1981-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.
AMS with light nuclei at small accelerators
NASA Astrophysics Data System (ADS)
Stan-Sion, C.; Enachescu, M.
2017-06-01
AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.
NASA Astrophysics Data System (ADS)
Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera
2013-12-01
Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.
Studies of Plasma-Sprayed Alumina
NASA Astrophysics Data System (ADS)
Ilavsky, Jan
1994-05-01
Phase transformations and porosity of the plasma sprayed alumina deposits were examined. The dependence of the phase transformations on deposit chemistry was established. Porosity changes during heat treatment were studied and a model for the porosity is proposed. A novel technique in the field of plasma sprayed deposits--small-angle neutron scattering (SANS)--was successfully applied. Deposits were manufactured using the water-stabilized plasma spray system, PAL160, with an input of 160 kW. Phase transformations of the plasma sprayed alumina deposits were studied using XRD and DTA. The deposits were manufactured from 99.9% alumina, alumina-chromia (1.5% Cr_2O_3), gray alumina (3.7% TiO_2) and alumina -titania (17% TiO_2). The addition of chromia increases the temperature of the alpha phase formation by about 40^circ C and the addition of TiO_2 reduces this temperature by about 150^circ C for gray alumina and by about 175^ circC for alumina-titania. The amount of metastable theta phase was found to depend on the chemistry of the feedstock. Porosities of the deposits, made from alumina and gray alumina, were studied using mercury intrusion porosimetry, weighing method (Archimedean porosimetry), image analysis and SANS. Samples were studied in the as -sprayed condition and after heat treatment for 2 hours at 1300^circC and 1500 ^circC. Porosity depends on the deposit chemistry and on the heat treatment and varies from 5% to about 11%. Different porosity measurement techniques yield different results. Surface areas of 1.5 to 7.5 times 10^4 cm^2 /cm^3 (times 10^6 m^{ -1}) were measured using SANS and depend on heat treatment and on the deposit chemistry. The phase transformations can be associated with an increase in pore surface area and decrease in surface area at 1500 ^circC can be associated with sintering. The effective pore radius, R_{ rm eff}, as measured by SANS is a measure of the pore sizes in the 0.08 to 10 μm size range. The R_{rm eff} depends on deposit chemistry and is about 0.7 to 0.9 μm for all deposits, but the gray alumina deposit, heat treated at 1500^ circC for 2h, exhibits an R_ {rm eff} of 2.2 mu m. This increase can be associated with sintering.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.
1982-01-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; McDonald, G.
1982-02-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.
Kreiss, K; Mroz, M M; Zhen, B; Wiedemann, H; Barna, B
1997-08-01
To describe relative hazards in sectors of the beryllium industry, risk factors of beryllium disease and sensitisation related to work process were sought in a beryllium manufacturing plant producing pure metal, oxide, alloys, and ceramics. All 646 active employees were interviewed; beryllium sensitisation was ascertained with the beryllium lymphocyte proliferation blood test on 627 employees; clinical evaluation and bronchoscopy were offered to people with abnormal test results; and industrial hygiene measurements related to work processes taken in 1984-93 were reviewed. 59 employees (9.4%) had abnormal blood tests, 47 of whom underwent bronchoscopy. 24 new cases of beryllium disease were identified, resulting in a beryllium disease prevalence of 4.6%, including five known cases (29/632). Employees who had worked in ceramics had the highest prevalence of beryllium disease (9.0%). Employees in the pebble plant (producing beryllium metal) who had been employed after 1983 also had increased risk, with a prevalence of beryllium disease of 6.4%, compared with 1.3% of other workers hired in the same period, and a prevalence of abnormal blood tests of 19.2%. Logistic regression modelling confirmed these two risk factors for beryllium disease related to work processes and the dependence on time of the risk at the pebble plant. The pebble plant was not associated with the highest gravimetric industrial hygiene measurements available since 1984. Further characterisation of exposures in beryllium metal production may be important to understanding how beryllium exposures confer high contemporary risk of beryllium disease.
Defense programs beryllium good practice guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herr, M.
1997-07-01
Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronicmore » forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to generate dusts, mists, fumes, or small particulates. A beryllium exposure control program should minimize airborne concentrations, the potential for and spread of contamination, the number of times individuals are exposed to beryllium, and the number of employees who may be potentially exposed.« less
Simulation on change of generic satellite radar cross section via artificially created plasma sprays
NASA Astrophysics Data System (ADS)
Chung, Shen Shou Max; Chuang, Yu-Chou
2016-06-01
Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P = 0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X-Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect.
Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry
NASA Astrophysics Data System (ADS)
Vega, Carolina; Spence, Corina; Zhang, Chengsen; Bills, Brandon J.; Manicke, Nicholas E.
2016-04-01
Paper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached -90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent.
Kubo–Greenwood approach to conductivity in dense plasmas with average atom models
Starrett, C. E.
2016-04-13
In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less
Searching for minimum in dependence of squared speed-of-sound on collision energy
Liu, Fu -Hu; Gao, Li -Na; Lacey, Roy A.
2016-01-01
Experimore » mental results of the rapidity distributions of negatively charged pions produced in proton-proton ( p - p ) and beryllium-beryllium (Be-Be) collisions at different beam momentums, measured by the NA61/SHINE Collaboration at the super proton synchrotron (SPS), are described by a revised (three-source) Landau hydrodynamic model. The squared speed-of-sound parameter c s 2 is then extracted from the width of rapidity distribution. There is a local minimum (knee point) which indicates a softest point in the equation of state (EoS) appearing at about 40 A GeV/ c (or 8.8 GeV) in c s 2 excitation function (the dependence of c s 2 on incident beam momentum (or center-of-mass energy)). This knee point should be related to the searching for the onset of quark deconfinement and the critical point of quark-gluon plasma (QGP) phase transition.« less
2006-12-01
properties Deposition Cu / Al in At% Roughness Ra (µm) Nano Hardness (GPa) Modulus (GPa) Thickness (µm) 1 Plasma ≈ 6 ≈ 12 ≈ 1.8 ≈ 89.6 ≈ 300 2... sprayed coatings of different copper to aluminum ( Cu / Al ) ratios and one cathodic arc coating. Bench level gross slip fretting experiments and post...some of Ti6Al4V disks were commercially grit blasted and then plasma sprayed with Al -bronze coatings 1 and 2, which have different Cu / Al
Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces
2006-09-14
low fracture strength, making it prone to cracking. It may be the best option for utility actuators that experience side loads or excessive ID wear...material than WC-12Co, but had the lowest porosity of the plasma spray coatings in initial process development tests, as well as higher fracture ...grind Adhesion Pull 0.013-0.015" 0.008-0.010" 8 microinch Residual stress Almen 0.013-0.015" no grind Strain-to- fracture 4-pt Almen 0.013-0.015
High temperature solar energy absorbing surfaces
Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.
A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.
Thermal Spraying of Bioactive Polymer Coatings for Orthopaedic Applications
NASA Astrophysics Data System (ADS)
Chebbi, A.; Stokes, J.
2012-06-01
Flame sprayed biocompatible polymer coatings, made of biodegradable and non-biodegradable polymers, were investigated as single coatings on titanium and as top coatings on plasma sprayed Hydroxyapatite. Biocompatible polymers can act as drug carriers for localized drug release following implantation. The polymer matrix consisted of a biodegradable polymer, polyhydroxybutyrate 98%/ polyhydroxyvalerate 2% (PHBV) and a non-biodegradable polymer, polymethylmethacrylate (PMMA). Screening tests were performed to determine the suitable range of spraying parameters, followed by a Design of Experiments study to determine the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), and to optimize the coating properties accordingly. Coatings characterization showed that optimized flame sprayed biocompatible polymers underwent little chemical degradation, did not produce acidic by-products in vitro, and that cells proliferated well on their surface.
Mikulski, Marek A; Sanderson, Wayne T; Leonard, Stephanie A; Lourens, Spencer; Field, R William; Sprince, Nancy L; Fuortes, Laurence J
2011-03-01
To estimate the prevalence of beryllium sensitization among former and current Department of Defense workers from a conventional munitions facility. Participants were screened by using Beryllium Lymphocyte Proliferation Test. Those sensitized were offered clinical evaluation for chronic beryllium disease. Eight (1.5%) of 524 screened workers were found sensitized to beryllium. Although the confidence interval was wide, the results suggested a possibly higher risk of sensitization among workers exposed to beryllium by occasional resurfacing of copper-2% beryllium alloy tools compared with workers with the lowest potential exposure (odds ratio = 2.6; 95% confidence interval, 0.23-29.9). The findings from this study suggest that Department of Defense workers with low overall exposure to beryllium had a low prevalence of beryllium sensitization. Sensitization rates might be higher where higher beryllium exposures presumably occurred, although this study lacked sufficient power to confirm this.
Quantitative method of determining beryllium or a compound thereof in a sample
McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.
2006-10-31
A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.
Quantitative method of determining beryllium or a compound thereof in a sample
McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.
2010-08-24
A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.
Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping
2016-09-01
The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.
Process for HIP canning of composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) metallurgy composites. The composites are made from arc sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Intergranular metal phase increases thermal shock resistance of ceramic coating
NASA Technical Reports Server (NTRS)
Carpenter, H. W.
1966-01-01
Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.
Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A
2013-12-01
The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Beryllium in the environment: a review.
Taylor, Tammy P; Ding, Mei; Ehler, Deborah S; Foreman, Trudi M; Kaszuba, John P; Sauer, Nancy N
2003-02-01
Beryllium is an important industrial metal because of its unusual material properties: it is lighter than aluminum and six times stronger than steel. Often alloyed with other metals such as copper, beryllium is a key component of materials used in the aerospace and electronics industries. Beryllium has a small neutron cross-section, which makes it useful in the production of nuclear weapons and in sealed neutron sources. Unfortunately, beryllium is one of the most toxic elements in the periodic table. It is responsible for the often-fatal lung disease, Chronic Beryllium Disease (CBD) or berylliosis, and is listed as a Class A EPA carcinogen. Coal-fired power plants, industrial manufacturing and nuclear weapons production and disposal operations have released beryllium to the environment. This contamination has the potential to expose workers and the public to beryllium. Despite the increasing use of beryllium in industry, there is surprisingly little published information about beryllium fate and transport in the environment. This information is crucial for the development of strategies that limit worker and public exposure. This review summarizes the current understanding of beryllium health hazards, current regulatory mandates, environmental chemistry, geochemistry and environmental contamination.
Plasma spray nozzle with low overspray and collimated flow
NASA Technical Reports Server (NTRS)
Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)
1996-01-01
An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.
NASA Astrophysics Data System (ADS)
Kumari, Renu; Majumdar, Jyotsna Dutta
2018-04-01
The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.
Beryllium--important for national defense
Boland, M.A.
2012-01-01
Beryllium is one of the lightest and stiffest metals, but there was little industrial demand for it until the 1930s and 1940s when the aerospace, defense, and nuclear sectors began using beryllium and its compounds. Beryllium is now classified by the U.S. Department of Defense as a strategic and critical material because it is used in products that are vital to national security. The oxide form of beryllium was identified in 1797, and scientists first isolated metallic beryllium in 1828. The United States is the world's leading source of beryllium. A single mine at Spor Mountain, Utah, produced more than 85 percent of the beryllium mined worldwide in 2010. China produced most of the remainder, and less than 2 percent came from Mozambique and other countries. National stockpiles also provide significant amounts of beryllium for processing. To help predict where future beryllium supplies might be located, U.S.Geological Survey (USGS) scientists study how and where beryllium resources are concentrated in Earth's crust and use that knowledge to assess the likelihood that undiscovered beryllium resources may exist. Techniques to assess mineral resources have been developed by the USGS to support the stewardship of Federal lands and to better evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply of, demand for, and flow of beryllium. These data are used to inform U.S. national policymaking.
NASA Astrophysics Data System (ADS)
Fleetwood, James D.
Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.
METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE
Runnals, O.J.C.
1959-02-24
The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.
Foley, Nora K.; Jaskula, Brian W.; Piatak, Nadine M.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Beryllium is a mineral commodity that is used in a variety of industries to make products that are essential for the smooth functioning of a modern society. Two minerals, bertrandite (which is supplied domestically) and beryl (which is currently supplied solely by imports), are necessary to ensure a stable supply of high-purity beryllium metal, alloys, and metal-matrix composites and beryllium oxide ceramics. Although bertrandite is the source mineral for more than 90 percent of the beryllium produced globally, industrial beryl is critical for the production of the very high purity beryllium metal needed for some strategic applications. The current sole domestic source of beryllium is bertrandite ore from the Spor Mountain deposit in Utah; beryl is imported mainly from Brazil, China, Madagascar, Mozambique, and Portugal. High-purity beryllium metal is classified as a strategic and critical material by the Strategic Materials Protection Board of the U.S. Department of Defense because it is used in products that are vital to national security. Beryllium is maintained in the U.S. stockpile of strategic materials in the form of hot-pressed beryllium metal powder.Because of its unique chemical properties, beryllium is indispensable for many important industrial products used in the aerospace, computer, defense, medical, nuclear, and telecommunications industries. For example, high-performance alloys of beryllium are used in many specialized, high-technology electronics applications, as they are energy efficient and can be used to fabricate miniaturized components. Beryllium-copper alloys are used as contacts and connectors, switches, relays, and shielding for everything from cell phones to thermostats, and beryllium-nickel alloys excel in producing wear-resistant and shape-retaining high-temperature springs. Beryllium metal composites, which combine the fabrication ability of aluminum with the thermal conductivity and highly elastic modulus of beryllium, are ideal for producing aircraft and satellite structural components that have a high stiffness-to-weight ratio and low surface vibration. Beryllium oxide ceramics are used in a wide range of applications, including missile guidance systems, radar applications, and cell phone transmitters, and they are critical to medical technologies, such as magnetic resonance imaging (MRI) machines, medical lasers, and portable defibrillators.The United States is expected to remain self-sufficient with respect to most of its beryllium requirements, based on information available at the time this chapter was prepared (2013). The United States is one of only three countries that currently process beryllium ores and concentrate them into beryllium products, and these three countries supply most of the rest of the world with these products. Exploration for new deposits in the United States is limited because domestic beryllium production is dominated by a single producer that effectively controls the domestic beryllium market, which is relatively small and specialized, and the market cannot readily accommodate new competition on the raw material supply side.
Potential exposures and risks from beryllium-containing products.
Willis, Henry H; Florig, H Keith
2002-10-01
Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.
Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings
NASA Technical Reports Server (NTRS)
Harder, Bryan J.; Zhu, Dongming
2011-01-01
In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers
Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.
2010-01-01
The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.
Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E.; Campbell, Joy M.; Crenshaw, Joe D.; Torrallardona, David; Pujols, Joan
2015-01-01
A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 105.2±0.12 tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance. PMID:26171968
Influence of Laser Glazing on the Characterization of Plasma-Sprayed YSZ Coatings
NASA Astrophysics Data System (ADS)
Wang, Yan; Liu, Jiangwei; Liao, Hanlin; Darut, Geoffrey; Stella, Jorge; Poirier, Thierry; Planche, Marie-Pierre
2017-01-01
In this study, 8 wt.% yttria-stabilized zirconia powder was deposited on the substrates by atmospheric plasma spray. The coatings were post-treated by laser glazing under different parameters in order to densify them. The characterization of the laser molten pools under different laser treatment conditions was studied. Preheating processes were also employed. Scanning electron microscopy observations of the surface and cross section of as-sprayed and laser-glazed coatings were carried out to investigate the influence of laser glazing on the microstructure on laser-glazed coatings. The results show that preheating processes improve the coating in terms of deepening the laser-glazed layer, reducing the number of vertical cracks and surface density of cracks and widening the molten pool. Finally, the influences of linear energy density on the characterization of the glazed layer are discussed.
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
Morgan, Timothy M; Soh, Bob
2017-03-01
To test the feasibility of a novel rivastigmine nasal spray as prospective treatment for dementia. A single dose, crossover absolute bioavailability and safety study was conducted with rivastigmine intravenous solution (1 mg) and nasal spray (3.126 mg) in eight healthy elderly individuals, aged 58-75 years. Absolute bioavailability (F) of the nasal spray was significant at 0.62 (0.15) for F > 0 (P < 0.001, n = 8). The systemic dose absorbed was 2.0 (0.6) mg, time to maximum plasma concentration was 1.1 (0.5) h and maximum plasma concentration was 6.9 (2.0) ng ml -1 . The NAP226-90 to rivastigmine AUC 0-∞ ratio was 0.78 (0.19). The single dose safety was good with two of five mild adverse events related to the nasal spray. Nasal and throat irritation were perceived as mild and transient, and both had resolved at 20 min post-nasal dose. An estimated dose of two or three sprays twice-daily with nasal spray would deliver comparable rivastigmine exposure and efficacy as a 6-9.7 mg day -1 oral dose and a 10 cm 2 transdermal patch, respectively. The rivastigmine nasal spray had superior absolute bioavailability compared to historical values for oral capsule and transdermal patch determined by other researchers. It had rapid onset of action, low NAP226-90 to rivastigmine exposure ratio and a favourable safety and tolerability profile. The ability to achieve adjustable, individual, twice-daily dosing during waking hours has good potential to minimise undesirable cholinergic burden and sleep disturbances whilst delivering an effective dose for the treatment of dementia associated with Alzheimer's and Parkinson's disease. © 2016 The British Pharmacological Society.
Planar controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxvlle, TN
2011-10-04
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-10-20
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Detection of beryllium treatment of natural sapphires by NRA
NASA Astrophysics Data System (ADS)
Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.
2010-06-01
Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.
Beryllium health effects in the era of the beryllium lymphocyte proliferation test.
Maier, L A
2001-05-01
The beryllium lymphocyte proliferation test (BeLPT) has revolutionized our approach to the diagnosis, screening, and surveillance of beryllium health effects. Based on the development of a beryllium-specific cell-mediated immune response, the BeLPT has allowed us to define early health effects of beryllium, including beryllium sensitization (BeS), and chronic beryllium disease (CBD) at a subclinical stage. The use of this test as a screening tool has improved our understanding of these health effects. From a number of studies it is apparent that BeS precedes CBD and develops after as little as 9 weeks of beryllium exposure. CBD occurs within 3 months and up to 30 years after initial beryllium exposure. Exposure-response variables have been associated with BeS/CBD, including work as a machinist, chemical or metallurgical operator, laboratory technician, work in ceramics or beryllium metal production, and years of beryllium exposure. Recent studies have found BeS and CBD in workplaces in which the majority of exposures were below the 2 microg/m3 OSHA time-weighted average (TWA). Ideally, the BeLPT would be used in surveillance aimed at defining other risk-related processes, determining exposure variables which predict BeS and CBD, and defining the exposure level below which beryllium health effects do not occur. Unfortunately, the BeLPT can result in false negative tests and still requires an invasive procedure, a bronchoscopy, for the definitive diagnosis of CBD. Thus, research is needed to establish new tests to be used alone or in conjunction with the BeLPT to improve our ability to detect early beryllium health effects.
10 CFR 850.20 - Baseline beryllium inventory.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the locations of beryllium operations and other locations of potential beryllium contamination, and identify the...
40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You must... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL...
NASA Astrophysics Data System (ADS)
Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.
2018-05-01
Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.
NASA Astrophysics Data System (ADS)
Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.
2011-03-01
Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.
NASA Astrophysics Data System (ADS)
Sampath, S.; Wayne, S. F.
1994-09-01
Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.
Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; Cusella De Angelis, Maria Gabriella; Mazzini, Giuliano; Benazzo, Francesco; Magenes, Giovanni
2009-06-01
Several studies suggest that the surface coating of titanium could play an important role in bone tissue engineering. In the present study, we have followed a particular biomimetic strategy where ultrasonically or electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix on a titanium plasma-spray surface. In comparison with control conditions, the ultrasonic stimulation (average power, 149 mW; frequency, 1.5 MHz) and the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation, and increased surface coating with decorin, osteocalcin, osteopontin, and type I collagen together with higher incorporation of calcium and phosphorus inside the extracellular matrix. The immunofluorescence related to the preceding bone matrix proteins showed their colocalization in the cell-rich areas. The use of the two physical stimulations aimed at obtaining the coating of the rough titanium plasma-spray surface in terms of cell colonization and deposition of extracellular matrix. The superficially cultured biomaterial could be theoretically used, in clinical applications, as an implant for bone repair.
NASA Astrophysics Data System (ADS)
Balani, Kantesh
Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (˜210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.
Method of making alloys of beryllium with plutonium and the like
Runnals, O J.C.
1959-02-24
The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.
Beryllium R&D for blanket application
NASA Astrophysics Data System (ADS)
Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.
1998-10-01
The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.
Deubner, David C; Sabey, Philip; Huang, Wenjie; Fernandez, Diego; Rudd, Abigail; Johnson, William P; Storrs, Jason; Larson, Rod
2011-10-01
Beryllium mine and ore extraction mill workers have low rates of beryllium sensitization and chronic beryllium disease relative to the level of beryllium exposure. The objective was to relate these rates to the solubility and composition of the mine and mill materials. Medical surveillance and exposure data were summarized. Dissolution of BeO, ore materials and beryllium hydroxide, Be(OH)(2) was measured in synthetic lung fluid. The ore materials were more soluble than BeO at pH 7.2 and similar at pH 4.5. Be(OH)(2) was more soluble than BeO at both pH. Aluminum dissolved along with beryllium from ore materials. Higher solubility of beryllium ore materials and Be(OH)(2) at pH 7.2 might shorten particle longevity in the lung. The aluminum content of the ore materials might inhibit the cellular immune response to beryllium.
Risk-based approach for controlling beryllium exposure in a manufacturing environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, W. E.; Clawson, C. D.; Ellis, K. K.
There are many diverse uses for beryllium in both military and industrial applications. Unfortunately, there are certain worker health risks associated with the manufacture and production of beryllium products. Respiratory illnesses due to prolonged contact with beryllium particulate are of paramount concern. However, these health risks can be controlled provided that the appropriate protective measures to prevent worker exposure from beryllium are in place. But it is no1 always a straightforward process to identify exactly what the beryllium protective measures should be in order to realize a true risk savings. Without prudent attention to a systematic inquiry and suitable evaluativemore » criteria, a program for controlling beryllium health risks can be lacking in completeness and overall effectiveness. One approach that took into account the necessary ingredients for risk-based determination of beryllium protective measures was developed for a beryllium operation at a Department of Energy (DOE) facility. The methodological framework that was applied at this facility, as well as a discussion of the final beryllium protective measures that were determined by this approach will be presented. Regulatory aspects for working with beryllium, as well as a risk-assessment strategy for ranking beryllium-handling activities with respect to exposure potential will also be discussed. The presentation will conclude with a synopsis of lessons-learned as gleaned from this case study, as well as providing the participants with a constructive blueprint that can be adapted to other processes involving beryllium.« less
Optical Emission Studies of the NRL Plasma Torch for the Shipboard Waste Treatment Program
1999-02-26
Arc Heating of Molten Steel in a Tundish", Plasma Chemistry and Plasma Processing, Vol.14, pp.361-381,1994. [3] H. Herman, "Plasma-sprayed...Treatment", Plasma Chemistry and Plasma Processing, Vol.15, pp.677-692,1995. [5] S. Paik and H.D. Nguyen, "Numerical Modeling of Multiphase Plasma/Soil Row...Gleizes, S. Vacquie and P. Brunelot, "Modeling of the Cathode Jet of a High- Power Transferred Arc", Plasma Chemistry and Plasma Processing, Vol.13
A novel method to predict the highest hardness of plasma sprayed coating without micro-defects
NASA Astrophysics Data System (ADS)
Zhuo, Yukun; Ye, Fuxing; Wang, Feng
2018-04-01
The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.
NASA Astrophysics Data System (ADS)
Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua
2015-10-01
Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.
Rygg, Alex; Hindle, Michael; Longest, P. Worth
2016-01-01
The objective of this study is to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics (CFD), to in vivo human pharmacokinetic (PK) plasma concentration profiles. This is accomplished through the use of CFD simulations coupled with compartmental PK modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all of the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long time periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics and clinical studies. PMID:27238495
NASA Astrophysics Data System (ADS)
Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay
2018-06-01
In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.
Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng
2017-02-01
Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.
Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications
NASA Astrophysics Data System (ADS)
Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu; Alpatov, A. V.; Komlev, V. S.; Mamonov, V. I.; Sevostyanov, M. A.; Baikin, A. S.
2018-04-01
The effect of pretreatment and plasma preheating of Ti-substrate on shear strength of three-dimensional capillary porous Ti-coating was studied. After sandblasting the shear strength of the plasma sprayed coating was 200 ± 2 MPa, and after additional matting it was 68 ± 4 MPa. The use of plasma preheating of the substrates for 9 seconds decreased difference between values of the shear strength to 249 ± 17 MPa and 229 ± 16 MPa, respectively. After plasma spraying the microhardness of the surface layer of the substrate was 4.34 ± 0.35 GPa, the microhardness of the boundary between the coating and the substrate was 8.08 ± 0.45 GPa, and the microhardness of the coating was 3.48 ± 0.25 GPa. High shear strength of the coating was attributed to the activation of the substrate by means of plasma preheating and hardening of the boundary between the coating and the substrate by oxides and nitrides.
Studies of the air plasma spraying of zirconia powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varacalle, D.J. Jr.; Wilson, G.C.; Crawmer, D.E.
As part of an investigation of the dynamics that occur in the air plasma spray process, an experimental and analytical study has been accomplished for the deposition of yttria-stabilized zirconia powder using argon-hydrogen and argon-helium working gases. Numerical models of the plasma dynamics and the related plasma-particle interaction are presented. The analytical studies were conducted to determine the parameter space for the empirical studies. Experiments were then conducted using a Box statistical design-of-experiment approach. A substantial range of plasma processing conditions and their effect on the resultant coating is presented. The coatings were characterized by hardness tests and optical metallographymore » (i.e., image analysis). Coating qualities are discussed with respect to hardness, porosity, surface roughness, deposition efficiency, and microstructure. Attributes of the coatings are correlated with the changes in operating parameters. An optimized coating design predicted by the SDE analysis and verified by the calculations is also presented.« less
... Newman LS. Re-examination of the blood lymphocyte transformation test in the diagnosis of chronic beryllium disease. ... et al. A study on the beryllium Lymphocyte Transformation Test and the beryllium levels in working environment. ...
Prevalence of beryllium sensitization among aluminium smelter workers
Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.
2010-01-01
Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489
Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals
NASA Technical Reports Server (NTRS)
Robards, C F; Gangler, J J
1951-01-01
High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.
Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C
2008-01-01
Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.
Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review.
McCleskey, T Mark; Buchner, Virginia; Field, R William; Scott, Brian L
2009-01-01
In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on this issue is in progress. The current Occupational Safety & Health Administration permissible exposure limit of 2 microg/m3 has failed to protect workers from BeS/CBD. As a safe exposure limit that will not lead to BeS or CBD has not yet been determined, the realization that the risk of CBD persists has led to a renaissance in research on the effects of the metal on human health. Current data support further reductions in exposure levels to help minimize the incidence of CBD. Steps that would directly impact both the power of epidemiologic studies and the cost of surveillance would be to develop and validate improved screening and diagnostic tests, and to identify more genetic factors that affect either sensitization or disease process. The major focus of this review is the recent research on the cellular and molecular basis of beryllium sensitization and disease, using a multidisciplinary approach of bioinorganic chemistry and immunology. First we present a historical background of beryllium exposure and disease, followed by occurrence of beryllium in the environment, toxicokinetics, biological effects, beryllium lung disease, and other human health effects.
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process
NASA Astrophysics Data System (ADS)
Du, Lingzhong; Coyle, Thomas W.; Chien, Ken; Pershin, Larry; Li, Tiegang; Golozar, Mehdi
2015-08-01
Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO2. The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO2 nanoparticles.
Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base
NASA Astrophysics Data System (ADS)
Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.
2016-08-01
Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.
Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals
NASA Technical Reports Server (NTRS)
Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy
1998-01-01
The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry
NASA Astrophysics Data System (ADS)
Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch
2011-01-01
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.
Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying
NASA Astrophysics Data System (ADS)
Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş
2011-01-01
Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.
Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode
NASA Astrophysics Data System (ADS)
Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong
Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.
Vacuum application of thermal barrier plasma coatings
NASA Technical Reports Server (NTRS)
Holmes, R. R.; Mckechnie, T. N.
1988-01-01
Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.
Antibacterial characteristics of thermal plasma spray system.
Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A
2018-03-15
The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an important parameter for progressing mechanical properties of the antiseptic deposition.
Viana, M; Fonseca, A S; Querol, X; López-Lilao, A; Carpio, P; Salmatonidis, A; Monfort, E
2017-12-01
Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100nm) and nanoparticles (<50nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10nm-20μm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3×10 6 /cm 3 ) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3×10 5 /cm 3 ). Environmental release of UFPs was also detected (3.9×10 5 /cm 3 , outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Dense plasma focus (DPF) accelerated non radio isotopic radiological source
Rusnak, Brian; Tang, Vincent
2017-01-31
A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.
Estimates of RF-Induced Erosion at Antenna-Connected Beryllium Plasma-Facing Components in JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodin, D.; Groth, M.; Airila, M.
2016-01-01
During high-power, ion cyclotron resonance heating (ICRH), RF sheath rectification and RF induced plasma-wall interactions (RF-PWI) can potentially limit long-pulse operation. With toroidally-spaced ICRH antennas, in an ITER-like wall (ILW) environment, JET provides an ideal environment for ITER-relevant, RF-PWI studies. JET pulses combining sequential toggling of the antennas with q95 (edge safety factor) sweeping were recently used to localize RF-enhanced Be I and Be II spectral line emission at outboard poloidal (beryllium) limiters. These measurements were carried out in the early stages of JET-ILW and in ICRF-only, L-mode discharges. The appearance of enhanced emission spots was explained by their magneticmore » connection to regions of ICRH antennas associated with higher RF-sheath rectification [1]. The measured emission lines were the same as those already qualified in ERO modelling of inboard limiter beryllium erosion in JET limiter plasmas [2]. In the present work, we revisit this spectroscopic study with the focus on obtaining estimates of the impact of these RF-PWI on sputtering and on net erosion of the affected limiter regions. To do this, the ERO erosion and re-deposition code [2] is deployed with the detailed geometry of a JET outboard limiter. The effect of RF-PWI on sputtering is represented by varying the surface negative biasing, which affects the incidence energy and the resulting sputtering yield. The observed variations in line emission, from [1], for JET pulse 81173 of about factor 3 can be reproduced with ~ 100 200 V bias. ERO simulations show that the influence of the respective E-field on the local Be transport is localized near the surface and relatively small. Still, the distribution of the 3D plasma parameters, shadowing and other geometrical effects are quite important. The plasma parameter simulated by Edge2D-EIRENE [3] are extrapolated towards the surface and mapped in 3D. These initial modelling results are consistent with the range of potentials anticipated through RF sheath rectification (see, e.g., [4]). Shortcomings from both the modelling and experimental side will be discussed, as will be plans for improvements in both areas method for the upcoming 2015 - 2016 JET campaign. [1] C.C. Klepper et al., J. Nucl. Mater. 438 (2013) S594 S598 [2] D. Borodin et al., Phys. Scr. T159 (2014) 014057 [3] M. Groth et al., Nucl. Fusion 53 (2013) 093016 [4] Jonathan Jacquot et al., Phys. Plasmas 21 (2014) 061509 *Corresponding author: presently at CCFE (UK) tel.: +44 1235 46 4304, e-mail: kleppercc@ornl.gov **See the Appendix of F. Romanelli et al., Proc. of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia Work supported, in part, by US DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.« less
NASA Astrophysics Data System (ADS)
Cannamela, Michael J., III
The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.
Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates
NASA Astrophysics Data System (ADS)
Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.
2006-06-01
Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.
Method for hot pressing beryllium oxide articles
Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.
1988-01-01
The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
Thermal conductivity of zirconia thermal barrier coatings
NASA Technical Reports Server (NTRS)
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.
Thermal conductivity of zirconia thermal barrier coatings
NASA Technical Reports Server (NTRS)
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.
Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying
NASA Astrophysics Data System (ADS)
Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.
2014-04-01
In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.
A study of beryllium and beryllium-lithium complexes in single crystal silicon
NASA Technical Reports Server (NTRS)
Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.
1972-01-01
When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.
Code of Federal Regulations, 2014 CFR
2014-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2013 CFR
2013-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2010 CFR
2010-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2012 CFR
2012-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2011 CFR
2011-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Lenling, William J.; Henfling, Joseph A.; Smith, Mark F.
1993-06-08
A method is disclosed for spray coating material which employs a plasma gun that has a cathode, an anode, an arc gas inlet, a first powder injection port, and a second powder injection port. A suitable arc gas is introduced through the arc gas inlet, and ionization of the arc gas between the cathode and the anode forms a plasma. The plasma is directed to emenate from an open-ended chamber defined by the boundary of the anode. A coating is deposited upon a base metal part by suspending a binder powder within a carrier gas that is fed into the plasma through the first powder injection port; a material subject to degradation by high temperature oxygen reactions is suspended within a carrier gas that is fed into the plasma through the second injection port. The material fed through the second injection port experiences a cooler portion of the plasma and has a shorter dwell time within the plasma to minimize high temperature oxygen reactions. The material of the first port and the material of the second port intermingle within the plasma to form a uniform coating having constituent percentages related to the powder-feed rates of the materials through the respective ports.
Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M
2017-06-01
This article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2 , for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present in workers' breathing zones. All the data thus far have shown that beryllium has been effectively managed to prevent exposures to workers during routine and non-routine work.
Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.
2017-02-28
Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present in workers' breathing zones. Finally, all the data thus far have shown that beryllium has been effectively managed to prevent exposures to workers during routine and non-routine work.« less
Release of beryllium from mineral ores in artificial lung and skin surface fluids.
Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas
2012-06-01
Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.
Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo
2017-12-01
Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.
Guipont, Vincent; Jeandin, Michel; Bansard, Sebastien; Khor, Khiam Aik; Nivard, Mariette; Berthe, Laurent; Cuq-Lelandais, Jean-Paul; Boustie, Michel
2010-12-15
An adhesion test procedure applied to plasma-sprayed hydroxyapatite (HA) coatings to measure the "LASAT threshold" (LAser Shock Adhesion test) is described. The good repeatability and minimal discrepancy of the laser-driven adhesion test data were ascertained for conventional plasma sprayed HA coatings. As a further demonstration, the procedure was applied to HA coatings with diverse characteristics on the ceramic/metal interface. Different preheating and grit blasting conditions and the presence of a thick plasma-sprayed Ti sublayer or a thin TiO(2) layer prepared by oxidation were investigated through LASAT. It was assessed that a rough surface can significantly improve the coating's bond strength. However, it was also demonstrated that a thin TiO(2) layer on a smooth Ti-6Al-4V substrate can have a major influence on adhesion as well. Preheating up to 270°C just prior to the first HA spraying pass had no effect on the adhesion strength. Further development of the procedure was done to achieve an in situ LASAT with in vitro conditions applied on HA coatings. To that end, different crystalline HA contents were soaked in simulated body fluid (SBF). Beyond the demonstration of the capability of this laser-driven adhesion test devoted to HA coatings in dry or liquid environment, the present study provided empirical information on pertinent processing characteristics that could strengthen or weaken the HA/Ti-6Al-4V bond. Copyright © 2010 Wiley Periodicals, Inc.
Fabrication of ceramic substrate-reinforced and free forms
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.
1985-01-01
Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.
NASA Astrophysics Data System (ADS)
Lay, E.; Metcalfe, C.; Kesler, O.
2012-11-01
The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.
Plasma-sprayed zirconia gas path seal technology: A state-of-the-art review
NASA Technical Reports Server (NTRS)
Bill, R. C.
1979-01-01
The benefits derived from application of ceramic materials to high pressure turbine gas path seal components are described and the developmental backgrounds of various approaches are reviewed. The most fully developed approaches are those employing plasma sprayed zirconium oxide as the ceramic material. Prevention of cracking and spalling of the zirconium oxide under cyclic thermal shock conditions imposed by the engine operating cycle is the most immediate problem to be solved before implementation is undertaken. Three promising approaches to improving cyclic thermal shock resistance are described and comparative rig performance of each are reviewed. Advanced concepts showing potential for performance improvements are described.
NASA Astrophysics Data System (ADS)
Al-Ammar, Assad S.; Gupta, Rajesh K.; Barnes, Ramon M.
2000-06-01
Injection of 10-20 ml/min of ammonia gas into an inductively coupled plasma-mass spectrometry (ICP-MS) spray chamber during boron determination eliminates the memory effect of a 1 μg/ml B solution within a 2-min washing time. Ammonia gas injection also reduces the boron blank by a factor of four and enhances the sensitivity by 33-90%. Boron detection limits are improved from 12 and 14 to 3 and 4 ng/ml, respectively, for two ICP-MS instruments. Trace boron concentrations in certified reference materials agree well using ammonia gas injection.
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2017-12-01
This paper outlines the results of analysis and describes the structure of the thermal protection coatings formed by atomic ion stream deposition in vacuum, and plasma thermal spraying method. Crystallite structure features are considered along with the crystallite dimensions, spatial orientation, and position of the boundaries between separate crystallites. Discontinuity, volume, and morphology of the pores has been evaluated. Experimental studies have been accomplished using various fractions of the powder-like material ZrO2 - 8%Y2O3. The influence of the coating microstructure on the coating performance has been analyzed, such as adhesive strength, thermal stability, and thermal conductivity.
Thermal barrier coating life prediction model
NASA Technical Reports Server (NTRS)
Hillery, R. V.; Pilsner, B. H.; Cook, T. S.; Kim, K. S.
1986-01-01
This is the second annual report of the first 3-year phase of a 2-phase, 5-year program. The objectives of the first phase are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consists of an air plasma sprayed ZrO-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene' 80 substrate. Task I was to evaluate TBC failure mechanisms. Both bond coat oxidation and bond coat creep have been identified as contributors to TBC failure. Key property determinations have also been made for the bond coat and the top coat, including tensile strength, Poisson's ratio, dynamic modulus, and coefficient of thermal expansion. Task II is to develop TBC life prediction models for the predominant failure modes. These models will be developed based on the results of thermmechanical experiments and finite element analysis. The thermomechanical experiments have been defined and testing initiated. Finite element models have also been developed to handle TBCs and are being utilized to evaluate different TBC failure regimes.
Performance of vacuum plasma spray and HVOF bond coatings at 900° and 1100 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Haynes, James A.; Pint, Bruce A.
The effects of Ti and B additions to a vacuum plasma sprayed (VPS) NiCoCrAlYHfSi bond coating on thermal barrier coating (TBC) performance were studied at 1100 °C and 900 °C and compared to high-velocity oxy-fuel (HVOF) bond coatings. Using alloy 247 substrates and air plasma sprayed Y2O3-stabilized ZrO2 top coatings, additions of B or Ti + B did not improve the average TBC lifetime in 1-h cycles at 1100 °C in air with 10% H2O. The addition of Ti resulted in a decrease in lifetime. Photo-stimulated luminescence spectroscopy was used to map residual stresses in the thermally-grown Al2O3 scale. Atmore » 900 °C, closer to a typical land based turbine operating bond coating temperature, specimens were examined after ten 500-h cycles in laboratory air and air with 10%H2O to study the effect of H2O. The addition of water vapor had little effect on the measured parabolic rate constants at 900 °C and a comparison of the oxide microstructures in both environments is reported.« less
Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating
NASA Astrophysics Data System (ADS)
Tailor, Satish; Mohanty, R. M.; Sharma, V. K.; Soni, P. R.
2014-10-01
6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.
Sanal, Hasan; Güler, Zehra; Park, Young W
2011-01-01
The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.
Extended Analysis of the Spectrum and Term System of Be III
NASA Astrophysics Data System (ADS)
Jupén, C.; Meigs, A.; von Hellermann, M.; Morsi, H. W.; Beringer, M.; Mannervik, S.; Martinson, I.
We report an extended and partly revised analysis of doubly ionized beryllium, Be III. Spectra of Be were recorded at the JET fusion facility where beryllium was used as surface material in the divertor. Observations of the divertor plasma have revealed many previously unknown Be lines, of which 28 (in the range 2100-5300 Å) have been classified as Be III transitions. We have also reanalyzed beam-foil spectra of Be (1900-5500 Å), recorded during a study of inner-shell excited levels in Be II. This yielded 7 additional Be III lines. These data, together with 32 previously known lines now represent an observed term system comprising 46 levels, with relative energy value uncertainties of around 1 cm-1. The ionization energy of 1s2 1S has been determined to 1,241,243.5 ± 14 cm-1 with an estimated Lamb shift of -43 ± 14 cm-1. A complete description of the term scheme deduced from polarization and Ritz formulae is presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbonate produced from bertrandite ore as beryllium Beryllium 2,763.000 1,235.000 Chromium (total) 988.200... as beryllium Beryllium 270.6 121.0 Chromium (total) 96.8 39.6 Copper 418.0 220.0 Cyanide (total) 63.8... Beryllium 263.800 118.000 Chromium (total) 94.380 38.610 Copper 407.600 214.500 Cyanide (total) 62.210 25...
Mineral resource of the month: beryllium
,
2013-01-01
The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.
Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.
Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L
2006-03-01
Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity.
Rygg, Alex; Hindle, Michael; Longest, P Worth
2016-06-01
The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Heimann, Robert B.
2016-06-01
This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.
10 CFR 850.34 - Medical surveillance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... beryllium-related health effects. (ii) The responsible employer must provide to beryllium-associated workers... physician who is familiar with the health effects of beryllium. (4) The responsible employer must establish... beryllium-related health effects. (2) Periodic evaluation. (i) The responsible employer must provide to...
10 CFR 850.33 - Beryllium emergencies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all other...
40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming...
40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming...
Method of making crack-free zirconium hydride
Sullivan, Richard W.
1980-01-01
Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.
In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.
Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M
2014-01-01
Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.
Young's Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings
NASA Technical Reports Server (NTRS)
Raj, S. V.; Pawlik, R.; Loewenthal, W.
2009-01-01
Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using the impulse excitation technique. The Young's moduli decreased almost linearly with increasing temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where deviations from linearity were observed above a critical temperature. It was observed that the Young's moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu- 8%Cr significantly increased its Young's modulus by 12 to 17% presumably due to a solid solution effect. Comparisons of the Young s moduli data between two different measurements on the same CS Cu- 23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than those in the second run. It is suggested that this observation is due to annealing of the initial cold work microstructure resulting form the cold spray deposition process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarici, G.; Klepper, C Christopher; Colas, L.
A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less
Soh, Bob
2016-01-01
Aims To test the feasibility of a novel rivastigmine nasal spray as prospective treatment for dementia. Methods A single dose, crossover absolute bioavailability and safety study was conducted with rivastigmine intravenous solution (1 mg) and nasal spray (3.126 mg) in eight healthy elderly individuals, aged 58–75 years. Results Absolute bioavailability (F) of the nasal spray was significant at 0.62 (0.15) for F > 0 (P < 0.001, n = 8). The systemic dose absorbed was 2.0 (0.6) mg, time to maximum plasma concentration was 1.1 (0.5) h and maximum plasma concentration was 6.9 (2.0) ng ml−1. The NAP226–90 to rivastigmine AUC0–∞ ratio was 0.78 (0.19). The single dose safety was good with two of five mild adverse events related to the nasal spray. Nasal and throat irritation were perceived as mild and transient, and both had resolved at 20 min post‐nasal dose. An estimated dose of two or three sprays twice‐daily with nasal spray would deliver comparable rivastigmine exposure and efficacy as a 6–9.7 mg day–1 oral dose and a 10 cm2 transdermal patch, respectively. Conclusions The rivastigmine nasal spray had superior absolute bioavailability compared to historical values for oral capsule and transdermal patch determined by other researchers. It had rapid onset of action, low NAP226–90 to rivastigmine exposure ratio and a favourable safety and tolerability profile. The ability to achieve adjustable, individual, twice‐daily dosing during waking hours has good potential to minimise undesirable cholinergic burden and sleep disturbances whilst delivering an effective dose for the treatment of dementia associated with Alzheimer's and Parkinson's disease. PMID:27639640
NASA Astrophysics Data System (ADS)
Krachler, Michael; Rausch, Nicole; Feuerbacher, Helmut; Klemens, Patrick
2005-07-01
The use of a new HF-resistant tandem spray chamber arrangement consisting of a cyclonic spray chamber and a Scott-type spray chamber made from PFA and PEEK provides a straightforward approach for improving the performance of inductively coupled-mass spectrometry (ICP-MS). The characteristics of the tandem spray chamber were critically evaluated against a PEEK cyclonic and a PFA Scott-type spray chamber, respectively. Sensitivity across the entire mass range was increased by about three times compared to the conventional setup utilizing only one spray chamber. Precision of the results, especially at low signal intensities, improved by 160% and 31% compared to the cyclonic and Scott-type spray chamber, respectively. Using the tandem spray chamber, the oxide formation rate was lowered by about 50%. Signals as low as 30 counts could be determined under routine measurement conditions with a RSD of 2.4% thus allowing to precisely quantify small concentration differences at the ng l - 1 concentration level. The excellent precision (0.02-0.07%) of 206Pb / 207Pb and 206Pb / 208Pb ratios determined in pore water samples was rather limited by the instrumental capabilities of the single collector ICP-MS instrument than by the performance of the tandem spray chamber.
NASA Technical Reports Server (NTRS)
Prentice, J. L.
1972-01-01
A two-year study of the combustion efficiency of single beryllium droplets burning in a variety of oxidizers (primarily mixtures of oxygen/argon and oxygen/nitrogen) is summarized. An advanced laser heating technique was used to acquire systematic quantitative data on the burning of single beryllium droplets at atmospheric pressure. The research confirmed the sensitivity of beryllium droplet combustion to the chemistry of environmental species and provides experimental documentation for the nitrogen-induced droplet fragmentation of burning beryllium droplets.
Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN
NASA Astrophysics Data System (ADS)
Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.
2017-12-01
Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.
Properties of spray-deposited liquid-phase exfoliated graphene films
NASA Astrophysics Data System (ADS)
Sales, Maria Gabriela C.; Dela Vega, Ma. Shanlene D. C.; Vasquez, Magdaleno R., Jr.
2018-01-01
In this study, we demonstrate the feasibility of spray-depositing exfoliated graphene on flexible polyimide (PI) and rigid (soda lime glass) substrates for optoelectronic applications. The water contact angles of the substrates increased by 13% (for PI) and 49% (for glass) when the surfaces are pretreated with hexamethyldisiloxane, which significantly improved the adhesion of the films. Raman spectral analyses confirmed a minimum of 15 and a maximum of 23 layers of exfoliated graphene deposited on the substrates. After deposition, the films were exposed to 13.56 MHz radio-frequency plasma containing an admixture of argon and nitrogen gases. Plasma treatment modified the electrical properties with a response analogous to that of a rectifier. A 39% increase in transmittance in the visible region was also observed especially for glass substrates after plasma treatment without a significant change in film electrical conductivity.
NASA Astrophysics Data System (ADS)
Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.
2017-11-01
Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.
Validation of cleaning method for various parts fabricated at a Beryllium facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Cynthia M.
This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less
Use of 41Ar production to measure ablator areal density in NIF beryllium implosions
Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...
2017-02-06
For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.
Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present in workers' breathing zones. Finally, all the data thus far have shown that beryllium has been effectively managed to prevent exposures to workers during routine and non-routine work.« less
NASA Astrophysics Data System (ADS)
Lorenz, Christiane; Hagendorfer, Harald; von Goetz, Natalie; Kaegi, Ralf; Gehrig, Robert; Ulrich, Andrea; Scheringer, Martin; Hungerbühler, Konrad
2011-08-01
Consumer spray products are already on the market in the cosmetics and household sector, which suggest by their label that they contain engineered nanoparticles (ENP). Sprays are considered critical for human health, because the lungs represent a major route for the uptake of ENP into the human body. To contribute to the exposure assessment of ENP in consumer spray products, we analyzed ENP in four commercially available sprays: one antiperspirant, two shoe impregnation sprays, and one plant-strengthening agent. The spray dispersions were analyzed by inductively coupled plasma mass spectrometry (ICPMS) and (scanning-) transmission electron microscopy ((S)TEM). Aerosols were generated by using the original vessels, and analyzed by scanning mobility particle sizer (SMPS) and (S)TEM. On the basis of SMPS results, the nanosized aerosol depositing in the respiratory tract was modeled for female and male consumers. The derived exposure levels reflect a single spray application. We identified ENP in the dispersions of two products (shoe impregnation and plant spray). Nanosized aerosols were observed in three products that contained propellant gas. The aerosol number concentration increased linearly with the sprayed amount, with the highest concentration resulting from the antiperspirant. Modeled aerosol exposure levels were in the range of 1010 nanosized aerosol components per person and application event for the antiperspirant and the impregnation sprays, with the largest fraction of nanosized aerosol depositing in the alveolar region. Negligible exposure from the application of the plant spray (pump spray) was observed.
Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing
NASA Astrophysics Data System (ADS)
Becker, N. M.
2003-12-01
A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.
Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia
NASA Astrophysics Data System (ADS)
Lima, Rogerio Soares
Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings with different levels of non-molten particles in the coating microstructure; from 25 to 50%. The presence of non-molten and molten phases in the coating microstructure, results in an unique mechanical behavior. The nanostructured coatings present a bimodal distribution with respect to the mechanical properties; each mode has origin from one of the phases. The phases were carefully mapped via scanning electron microscopy and microhardness measurements. These results enabled us to create a model for mechanical properties prediction. This finding is considered one of the most important achievements of this work.
Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.
2000-01-01
OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession. METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B). RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in subjects of group A. Cytogenetic investigations showed normal values which were independent of the duration of beryllium exposure. In one subject, the BeLT was positive. Beryllium stimulation indices were significantly higher in subjects with detectable beryllium in the urine than in those with beryllium concentrations below the detection limit (p<0.05). In one factory, two out of four measurements of airborne beryllium concentrations were well above the German threshold limit value of 2 µg/m3 (twofold and 10-fold), and all gemstone cutters working in this factory had measurable beryllium concentrations in urine. CONCLUSION—No adverse clinical health effects were found in this cross sectional investigation of gemstone cutters working with beryls. However, an improvement in workplace hygiene is recommended, accompanied by biological monitoring of beryllium in urine. Keywords: gemstone cutter; beryllium in urine; lymphocyte transformation test PMID:10711282
Beryllium Manufacturing Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A
2006-06-30
This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product.more » Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.« less
Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet
NASA Astrophysics Data System (ADS)
Shan, Y.; Coyle, T. W.; Mostaghimi, J.
2010-01-01
Solution precursor plasma spraying (SPPS) is a novel technology with great potential for depositing finely structured ceramic coatings with nano- and sub-micrometric features. The solution is injected into the plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interact with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream. Solid particles are finally formed, and the particle are heated up and accelerated to the substrate to generate the coating. The deposition process and the properties of coatings obtained are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This article numerically investigates the effect of injection modes, a liquid stream injection and a gas-blast injection, on the size distribution of injected droplets. The particle/droplet size, temperature, and position distributions on the substrate are predicted for different injection modes.
Beryllium disease among construction trade workers at Department of Energy nuclear sites.
Welch, Laura S; Ringen, Knut; Dement, John; Bingham, Eula; Quinn, Patricia; Shorter, Janet; Fisher, Miles
2013-10-01
A medical surveillance program was developed to identify current and former construction workers at significant risk for beryllium related disease from work at the DOE nuclear weapons facilities, and to improve surveillance among beryllium exposed workers. Medical examinations included a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, trade, and reported work in buildings where beryllium was used. After adjusting for covariates, the risk of BeS was significantly higher among boilermakers, roofers, and sheet metal workers, as suggested in the stratified analyses. Workers identified as sensitized to beryllium were interviewed to determine whether they had been subsequently diagnosed with chronic beryllium disease. Between 1998 and December 31, 2010 13,810 workers received a BeLPT through the BTMed program; 189 (1.4%) were sensitized to beryllium, and 28 reported that they had had a compensation claim accepted for CBD. These data on former construction workers gives us additional information about the predictive value of the blood BeLPT test for detection of CBD in populations with lower total lifetime exposures and more remote exposures than that experienced by current workers in beryllium machining operations. Through this surveillance program we have identified routes of exposures to beryllium and worked with DOE site personnel to identity and mitigate those exposures which still exist, as well as helping to focus attention on the risk for beryllium exposure among current demolition workers at these facilities. Copyright © 2013 Wiley Periodicals, Inc.
5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...
5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
Multiphase-Multifunctional Ceramic Coatings
2013-06-30
were conducted at 1200-1600° C from 10-24 h. Densification of powders in the pyrochlore-fuorite system was also performed by Spark Plasma Sintering ...capability with emphasis on improving toughness and phase stability. The primary goal was clearly accomplished by developing an instrumented air plasma ...composition. Coating compositions were synthesized by atmospheric plasma spray (APS) at CINVESTAV facilities, and dense monolithic counterparts were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa
2007-01-19
When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.
Suman, Julie D; Laube, Beth L; Dalby, Richard
2006-01-01
This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.
Use of Iba Techniques to Characterize High Velocity Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Trompetter, W.; Markwitz, A.; Hyland, M.
Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO2/CrO3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.
NASA Astrophysics Data System (ADS)
Lyasnikova, A. V.; Markelova, O. A.; Lyasnikov, V. N.; Dudareva, O. A.
2016-01-01
The method of synthesis of a zinc-substituted hydroxyapatite powder is presented, and the technology of creating coatings by its spraying is described. The results of studies on the morphological, physical, and chemical parameters of a zinc-substituted hydroxyapatite coating by using X-ray analysis, infrared spectroscopy, transmission electron microscopy, optical microscopy, SEM, and other methods are given.
NASA Astrophysics Data System (ADS)
Marr, Michael; Kesler, Olivera
2012-12-01
Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.
NASA Astrophysics Data System (ADS)
Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng
2017-12-01
The effect of heat treatment on the microstructure and mechanical properties of Al2O3-TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.
NASA Astrophysics Data System (ADS)
Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri
2011-01-01
Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.
NASA Astrophysics Data System (ADS)
Zeng, Zhensu; Kuroda, Seiji; Kawakita, Jin; Komatsu, Masayuki; Era, Hidenori
2010-01-01
The oxidation behavior of iron binary powders with addition of Si (1, 4 wt.%) and B (1, 3 wt.%) and that of a Ni-Cr based alloy powder with Si (4.3 wt.%), B (3.0 wt.%), and C (0.8 wt.%) additions during atmosphere plasma spray (APS) have been investigated. Analysis of the chemical composition and phases of oxides in the captured in-flight particles and deposited coatings was carried out. The results show that the addition of Si and B to iron effectively reduced the oxygen contents in the coatings, especially during the in-flight period at higher particles temperature. Ni-Cr based alloy powder with Si, B, and C additions reduced the oxidation of the base alloys significantly. Preferential oxidation and subsequent vaporization of Si, B, and C from the surface of the sprayed particles are believed to play a major role in controlling oxidation in the APS process.
Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.; Hissam, David A.; Gerrish, Harold P.; Davis, William M.
1999-01-01
The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorber cavity for a fully-functioning, ground test unit of a solar then-nal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (greater than 25000 C [greater than 4530 F]) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.
Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation
NASA Astrophysics Data System (ADS)
Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian
2017-10-01
During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.
NASA Astrophysics Data System (ADS)
Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.
In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.
Systematization of material consumption norms in spray-coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelyukh, I.M.
1995-03-01
Regulating the consumption of materials is particularly important in the economics and organization of spray-coating operations. Three main factors are taken into account when establishing norms for the consumption of the materials of the coating: the physicomechanical and chemical properties of the particles; the shape of the substrate; the dimensions of the substrate. The most important parameters of the spraying regime are the velocity and temperature of the particles. Given the same velocity, the optimum particle kinetic energy for producing a strong bond with the substrate depends on particle shape and size and the density of the materials being spray-coated.more » These parameters determine the heating of the particles in the plasma jet or, in the case of the use of a detonation gun, during collision with the surface of the part. Powders of fragmented or drop shape are used to obtain coatings by spraying.« less
Code of Federal Regulations, 2014 CFR
2014-04-01
... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...
Code of Federal Regulations, 2010 CFR
2010-04-01
... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...
Code of Federal Regulations, 2011 CFR
2011-04-01
... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...
Code of Federal Regulations, 2012 CFR
2012-04-01
... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...
Code of Federal Regulations, 2013 CFR
2013-04-01
... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...
METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE
Sturm, B.J.
1963-08-13
High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, M.R.; Kominsky, J.R.; Rossman, M.D.
1987-01-01
Five workers at a precious metal refinery developed granulomatous lung disease between 1972 and 1985. The original diagnosis was sarcoidosis, but 4 of the workers were subsequently proved to have hypersensitivity to beryllium by in vitro proliferative responses of lymphocytes obtained by bronchoalveolar lavage. Review of medical records of coworkers and extensive industrial hygiene surveillance of the plant demonstrated that 4 cases occurred in the furnace area where air concentrations of beryllium fume were consistently below the permissible exposure limit of 2 micrograms/M3. A single case has been recognized from parts of the refinery where exposures to cold beryllium dustmore » often exceeded the standard by as much as 20-fold. These data demonstrate that chronic beryllium disease still occurs and confirm the importance of specific immunologic testing in patients suspected of having sarcoidosis but with potential exposure to beryllium. The data raise concern about the adequacy of modern industrial controls, especially in the setting of exposure to highly respirable beryllium fumes.« less
Implanted Deuterium Retention and Release in Carbon-Coated Beryllium
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.
1997-06-01
Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.
Coating with overlay metallic-cermet alloy systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
Program for plasma-sprayed self-lubricating coatings
NASA Technical Reports Server (NTRS)
Walther, G. C.
1979-01-01
A method for preparing composite powders of the three coating components was developed and a procedure that can be used in applying uniform coatings of the composite powders was demonstrated. Composite powders were prepared by adjusting particle sizes of the components and employing a small amount of monoaluminum phosphate as an inorganic binder. Quantitative microscopy (image analysis) was found to be a convenient method of characterizing the composition of the multiphase plasma-sprayed coatings. Area percentages and distribution of the components were readily obtained by this method. The adhesive strength of the coating to a nickel-chromium alloy substrate was increased by about 40 percent by a heat treatment of 20 hours at 650 C.
NASA Astrophysics Data System (ADS)
Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.
2016-12-01
This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.
Welch, Laura; Ringen, Knut; Bingham, Eula; Dement, John; Takaro, Tim; McGowan, William; Chen, Anna; Quinn, Patricia
2004-09-01
To determine whether current and former construction workers are at significant risk for occupational illnesses from work at the Department of Energy's (DOE) nuclear weapons facilities, screening programs were undertaken at the Hanford Nuclear Reservation, Oak Ridge Reservation, and the Savannah River Site. Medical examination for beryllium disease used a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, sex, trade, duration of DOE employment, reported work in buildings where beryllium was used, and time since last DOE site employment. Of the 3,842 workers included in this study, 34% reported exposure to beryllium. Overall, 2.2% of workers had at least one abnormal BeLPT test, and 1.4% were also abnormal on a second test. Regression analyses demonstrated increased risk of having at least one abnormal BeLPT to be associated with ever working in a site building where beryllium activities had taken place. The prevalence of beryllium sensitivity and chronic beryllium disease (CBD) in construction workers is described and the positive predictive value of the BeLPT in a population with less intense exposure to beryllium than other populations that have been screened is discussed. The BeLPT findings and finding of cases of CBD demonstrate that some of these workers had significant exposure, most likely, during maintenance, repair, renovation, or demolition in facilities where beryllium was used.
Beryllium Metal II. A Review of the Available Toxicity Data
Strupp, Christian
2011-01-01
Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation between beryllium exposure and carcinogenicity, even including the soluble compounds, remains under discussion in the scientific community and active research is continuing. PMID:21196456
Strupp, Christian
2011-01-01
The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral toxic properties.
Bishop, C A; Van Der Kraak, G J; Ng, P; Smits, J E; Hontela, A
1998-12-25
To investigate the effects of pesticides on wild birds, sex (17beta-estradiol; testosterone) and thyroid (triiodothyronine (T3) hormone concentrations, body mass, and testes mass were measured and the development of testes was evaluated in wild tree swallows (Tachycineta bicolor) nesting in four sprayed apple orchards and three nonsprayed sites in southern Ontario, Canada, in 1995-1996. In orchards, birds were exposed to asmany as 11 individual spray events and five sprays of mixtures of chemicals. Residues of organochlorine pesticides, PCBs, lead, and arsenic concentrations were low and not variable among sites except p,p'-DDE concentrations, which ranged from 0.36 to 2.23 microg/g wet weight in eggs. These persistent compounds were not correlated with any endocrine response measured in tree swallows. In 16-d-old male tree swallow chicks, body mass and concentrations of 17beta-estradiol (estradiol), testosterone, and T3 in plasma showed no significant differences between sprayed and nonsprayed groups and among sites within those groups. However, T3 concentrations were slightly elevated in the sprayed group compared to the nonsprayed group, and there was a significant and positive correlation between T3 and the number of mixtures of sprays applied during egg incubation through chick rearing. In 16-d-old female chicks, there were no significant differences among spray treatments or sites and no correlations with spray exposure for testosterone, estradiol, or T3 in plasma. Body mass was correlated positively with T3 and negatively with estradiol but showed no differences among spray exposure groups or sites. Histology of testes of 16-d-old male chicks indicated there were no significant differences among sprayed and nonsprayed birds in testes mass, area, or diameter, or the presence of Leydig cells in the interstitium, the distribution of the Sertoli cells, or the occurrence of heterophils in the testicular interstitium. For the percentage of spermatogonia present on the basement membrane, there were significant differences among sites, but these differences were not specifically associated with spray exposure. However, there was a marginally significant trend between increasing occurrence of a disrupted Sertoli cell population on the seminiferous tubular basement membranes as the number of mixtures of pesticides sprayed during chick rearing increased. In adult male and female parent tree swallows, there were no differences in hormone concentrations between birds from sprayed and nonsprayed sites. Nor were there any significant correlations between the concentration of any hormone and collection date, body mass, or any type of spray exposure for adults. The correlations between increasing pesticide exposure and abnormal thyroid hormone and testes development in male chicks indicate that further reductions of pesticide use in orchards may benefit the health of birds that nest there. However, it is unclear which of these pesticides or spray mixtures are responsible for these effects, and this needs to be examined in future studies.
Abraham, Jerrold L.; Chandra, Subhash; Agrawal, Anoop
2014-01-01
Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease (CBD) from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water, and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry (SIMS) instrument, CAMECA IMS 3f SIMS ion microscope. The beryllium content of shrapnel (~100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (~25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y-and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (~0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either present in an immobile form or its mobilization into the food product was prevented by a polymer coating on the inside of cans, a practice used in food industry to prevent contamination of food products. The lack of such coating in retained shrapnel fragments renders their surface a possible source of contamination for long-term exposure of tissues and fluids and induction of disease, as characterized in a recent study. Methodological developments reported here can be extended to studies of beryllium in electronics devices and components. PMID:25146877
Abraham, J L; Chandra, S; Agrawal, A
2014-11-01
Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry instrument, CAMECA IMS 3f secondary ion mass spectrometry ion microscope. The beryllium content of shrapnel (∼100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (∼25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y- and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (∼0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either present in an immobile form or its mobilization into the food product was prevented by a polymer coating on the inside of cans, a practice used in food industry to prevent contamination of food products. The lack of such coating in retained shrapnel fragments renders their surface a possible source of contamination for long-term exposure of tissues and fluids and induction of disease, as characterized in a recent study. Methodological developments reported here can be extended to studies of beryllium in electronics devices and components. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng
2011-09-01
Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.
High-rate deposition of LiNb 1- xTa xO 3 films by thermal plasma spray CVD
NASA Astrophysics Data System (ADS)
Majima, T.; Yamamoto, H.; Kulinich, S. A.; Terashima, K.
2000-12-01
LiNb 1- xTa xO 3 films were prepared by a thermal plasma spray CVD method using liquid source materials. Preferentially (0 0 1)-oriented LiNb 1- xTa xO 3 films with satisfactory in-plane and out-of-plane alignment were fabricated on sapphire (0 0 1) substrates. The full-width at half-maximum (FWHM) of the (0 0 6) rocking curve could achieve 0.12°, which was comparable with those of LiNbO 3 and LiTaO 3 films prepared by other conventional vapor-phase deposition methods. The deposition rate was up to 0.07 μm/min, which was 5-40 times faster than those for most other conventional vapor-phase deposition methods. From inductively coupled plasma atomic emission spectroscopy analysis, x values of these films were estimated to be 0.36-0.49.
Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability
NASA Astrophysics Data System (ADS)
Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.
2013-05-01
This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.
10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...
10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...
10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...
10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...
10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed...
Measuring soil moisture near soil surface...minor differences due to neutron source type
Robert R. Ziemer; Irving Goldberg; Norman A. MacGillivray
1967-01-01
Moisture measurements were made in three media?paraffin, water, saturated sand?with four neutron miusture meters, each containing 226-radium-beryllium, 227-actinium-beryllium, 238-plutonium-beryllium, or 241-americium-beryllium neutron sources. Variability in surface detection by the different sources may be due to differences in neutron sources, in length of source,...
Measuring soil moisture near soil surface ... minor differences due to neutron source type
Robert R. Ziemer; Irving Goldberg; Norman A. MacGillivray
1967-01-01
Abstract - Moisture measurements were made in three media--paraffin, water, saturated sand--with four neutron moisture meters, each containing 226-radium-beryllium, 227-actinium-beryllium, 239-plutonium-beryllium, or 241-americium-beryllium neutron sources. Variability in surface detection by the different sources may be due to differences in neutron sources, in...
Method for fabricating beryllium-based multilayer structures
Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.
2003-02-18
Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).
[Application of plasma sprayed zirconia coating in dental implant: study in implant].
Huang, Z F; Wang, Z F; Li, C H; Hao, D; Lan, J
2018-04-09
Objective: To investigate the osseointegration of a novel coating-plasma-sprayed zirconia in dental implant. Methods: Zirconia coating on non-thread titanium implant was prepared using plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo , zirconia coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by push-out test. The osseointegration was observed by scanning electron microscopy (SEM), micro CT and histological analyses. Quantified parameters including removal torque, and bone-implant contact (BIC) percentage were calculated. Results: The surface roughness (1.6 µm) and wettability (54.6°) of zirconia coated implant was more suitable than those of titanium implant (0.6 µm and 74.4°) for osseointegration. At 12 weeks, the push-out value of zirconia coated implant and titanium implant were (64.9±3.0) and (50.4±2.9) N, and BIC value of these two groups were (54.7±3.6)% and (41.5±3.6)%. All these differences had statistical significance. Conclusions: The surface characters of zirconia coated implant were more suitable for osseointegration and present better osseointegration than smooth titanium implant in vivo , especially at early stage.
Lu, Zhe; Myoung, Sang-Won; Jung, Yeon-Gil; Balakrishnan, Govindasamy; Lee, Jeongseung; Paik, Ungyu
2013-01-01
The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. PMID:28811441
NASA Astrophysics Data System (ADS)
Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.
2018-04-01
Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.
Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings
NASA Astrophysics Data System (ADS)
Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.
2017-03-01
Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.
Development of improved high temperature coatings for IN-792 + HF
NASA Technical Reports Server (NTRS)
Profant, D. D.; Naik, S. K.
1981-01-01
The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.
NASA Astrophysics Data System (ADS)
Lasa, A.; Borodin, D.; Canik, J. M.; Klepper, C. C.; Groth, M.; Kirschner, A.; Airila, M. I.; Borodkina, I.; Ding, R.; Contributors, JET
2018-01-01
Experiments at JET showed locally enhanced, asymmetric beryllium (Be) erosion at outer wall limiters when magnetically connected ICRH antennas were in operation. A first modeling effort using the 3D erosion and scrape-off layer impurity transport modeling code ERO reproduced qualitatively the experimental outcome. However, local plasma parameters—in particular when 3D distributions are of interest—can be difficult to determine from available diagnostics and so erosion / impurity transport modeling input relies on output from other codes and simplified models, increasing uncertainties in the outcome. In the present contribution, we introduce and evaluate the impact of improved models and parameters with largest uncertainties of processes that impact impurity production and transport across the scrape-off layer, when simulated in ERO: (i) the magnetic geometry has been revised, for affecting the separatrix position (located 50-60 mm away from limiter surface) and thus the background plasma profiles; (ii) connection lengths between components, which lead to shadowing of ion fluxes, are also affected by the magnetic configuration; (iii) anomalous transport of ionized impurities, defined by the perpendicular diffusion coefficient, has been revisited; (iv) erosion yields that account for energy and angular distributions of background plasma ions under the present enhanced sheath potential and oblique magnetic field, have been introduced; (v) the effect of additional erosion sources, such as charge-exchange neutral fluxes, which are dominant in recessed areas like antennas, has been evaluated; (vi) chemically assisted release of Be in molecular form has been included. Sensitivity analysis highlights a qualitative effect (i.e. change in emission patterns) of magnetic shadowing, anomalous diffusion, and inclusion of neutral fluxes and molecular release of Be. The separatrix location, and energy and angular distribution of background plasma fluxes impact erosion quantitatively. ERO simulations that include all features described above match experimentally measured Be I (457.3 nm) and Be II (467.4 nm) signals, and erosion increases with varying ICRH antenna’s RF power. However, this increase in erosion is only partially captured by ERO’s emission measurements, as most contributions from plasma wetted surfaces fall outside the volume observed by sightlines. ).