Science.gov

Sample records for plasma study applications

  1. Application of nonlinear methods to the study of ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  2. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  3. Methods of Plasma Turbulence Analysis: Application to Shock Studies

    SciTech Connect

    Balikhin, M.A.; Walker, S.N.

    2005-08-01

    The availability of multisatellite observations (e.g. ISEE, AMPTE, and Cluster) has triggered the development of new methods of analysis to shed light on the complex dynamics inherent in the solar wind and magnetosphere. This paper looks at the results of two such methods. Firstly, the phase differencing method is used to determine the properties of waves observed upstream of a quasiperpendicular bow shock. The resulting dispersion relation is then interpreted as evidence that the waves are generated as a result of the dynamics of the shock front. The second, NARMAX, is used to investigate the linear and nonlinear processes if the plasma observed at a antiparallel shock. The results show that for a small amplitude whistler wavetrain, third order nonlinear interactions are only important at the interface between the shocklet and the wavetrain. For higher amplitude wavetrains, the phase of the linear term describing the plasma is shifted.

  4. Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications

    DTIC Science & Technology

    2011-12-01

    future. The combustion process in these engines typically involves highly turbulent reactive flow conditions, often beyond the limits of our...electric field gives rise to new electron and ion impact processes which can enhance the propagation and branching of radicals and ultimately...is generated separately and the flame is ignited as the gases pass over the plasma region. The actual oxidation process occurs further downstream

  5. Application of optical emission spectroscopy for the SNS H- ion source plasma studies

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Stockli, M. P.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.

    2015-04-01

    The SNS H- ion source is a dual-frequency RF-driven (13.56-MHz low power continuous RF superimposed by 2-MHz high power pulsed RF with ˜1.0 ms pulse length at 60 Hz), Cs-enhanced ion source. This paper discusses the applications of optical emission spectroscopy for the ion source plasma conditioning, cesiation, failure diagnostics, and studies of plasma build-up and outage issues.

  6. Plasma pharmacy - physical plasma in pharmaceutical applications.

    PubMed

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  7. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    SciTech Connect

    Jahanbakhsh, Sina Satir, Mert; Celik, Murat

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  8. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications.

    PubMed

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  9. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  10. Laser-based diagnostics applications for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    van der Meiden, H. J.; van den Berg, M. A.; Brons, S.; Ding, H.; van Eck, H. J. N.; 't Hoen, M. H. J.; Karhunen, J.; de Kruif, T. M.; Laan, M.; Li, C.; Lissovski, A.; Morgan, T. W.; Paris, P.; Piip, K.; van de Pol, M. J.; Scannell, R.; Scholten, J.; Smeets, P. H. M.; Spork, C.; Zeijlmans van Emmichoven, P. A.; Zoomers, R.; De Temmerman, G.

    2013-11-01

    Several laser based diagnostics are implemented on to the linear plasma generator Magnum-PSI, wherein ITER divertor relevant plasma-wall conditions are realized. Laser Induced Desorption Quadrupole Mass Spectroscopy (LID-QMS) and Laser Induced Breakdown Spectroscopy (LIBS) are installed to measure deuterium retention in plasma facing components. Combined with Thermal Desorption Spectroscopy, LID-QMS can be used to measure lateral retention profiles. LIBS is used to measure the surface composition qualitatively, after plasma exposure. An advanced Thomson Scattering (TS) system measures electron density, neutral density and electron temperature profiles (spatial resolution < 2 mm) across the maximum 100 mm plasma diameter. Very low electron density (9 × 1018 m-3) can be measured within seconds with accuracies better than 6%. The minimum measurable electron density and temperature are ~ 1 × 1017 m-3 and ~ 0.07 eV, respectively. By virtue of the high system sensitivity, single pulse TS can be performed on high density pulsed plasmas (used for replicating ELMs). For measuring the ion temperature and flow velocity of the plasma a Collective TS system (CTS) is being built: the small Debye length of the Magnum-PSI plasma enables application of this method at relatively short laser wavelength. In a feasibility study it was shown that forward CTS with a seeded Nd:YAG laser operating at 1064 nm, can be applied at Magnum-PSI to measure ion temperature and axial velocity with an accuracy of < 8% and < 15%, respectively. Two high spectral resolution ( ~ 0.005 nm) detection schemes are applied simultaneously: an Echelle grating spectrometer (enabling profile measurements) and a system based on a Fabry-Perot etalon that enables wavelength scanning over its free spectral range, by tilting the device. The status and performance of the various laser based plasma and surface diagnostics will be reported along with experimental results.

  11. Validated HPLC method for determination of caffeine level in human plasma using synthetic plasma: application to bioavailability studies.

    PubMed

    Alvi, Syed N; Hammami, Muhammad M

    2011-04-01

    Several high-performance liquid chromatography (HPLC) methods have been described for the determination of caffeine in human plasma. However, none have been cross validated using synthetic plasma. The present study describes a simple and reliable HPLC method for the determination of the caffeine level in human plasma. Synthetic plasma was used to construct calibration curves and quality control samples to avoid interference by caffeine commonly present in donor's human plasma. After deproteination of plasma samples with perchloric acid, caffeine and antipyrine (internal standard, IS) were separated on a Waters Atlantis C18 column using a mobile phase of 15 mM potassium phosphate (pH 3.5) and acetonitrile (83:17, v/v), and monitored by photodiode array detector, with the wavelength set at 274 nm. The relationship between caffeine concentrations and peak area ratio (caffeine-IS) was linear over the range of 0.05-20 μg/mL. Inter-run coefficient of variation was ≤ 5.4% and ≤ 6.0% and bias was ≤ 3% and ≤ 7% using human and synthetic plasma, respectively. Mean extraction recovery from human plasma of caffeine and the IS was 91% and 86%, respectively. Caffeine in human plasma was stable for at least 24 h at room temperature or 12 weeks at -20 °C, and after three freeze-thaw cycles. The method was successfully applied to monitor caffeine levels in healthy volunteers with correction of caffeine levels using the mean ratio of the slopes of the calibration's curves constructed using human and synthetic plasma.

  12. Applications of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Oldham, Christopher John

    Surface modification techniques using plasmas have historically been completed in a low pressure environment due to Pd (pressure x gap distance) considerations influencing the behavior of plasma generation. Generally, plasmas produced in a low pressure environment are of a non-thermal or cold nature. The basic feature of non-thermal plasmas is the majority of electrical energy used to generate the plasma is primarily used to produce energetic electrons for generating chemical species. Low pressure plasmas serve many purposes for materials processing. Since the plasma environment is contained within a closed vessel, the plasma can be controlled very easily. Low pressure plasmas have been used in many industries but the complexity associated with the large pumping stations and limitation to batch processing has motivated new work in the area of atmospheric plasmas. Atmospheric plasmas offer both economic and technical justification for use over low pressure plasmas. Since atmospheric plasmas can be operated at ambient conditions, lower costs associated with continuous processing and a decrease in the complexity of equipment validate atmospheric plasma processing as a next generation plasma-aided manufacturing process. In an effort to advance acceptance of atmospheric plasma processing into industry, a process was developed, the dielectric barrier discharge (DBD), in order to generate a homogeneous and non-thermal plasma discharge at ambient conditions. The discharge was applied to the reduction of known food borne pathogens, deposition of thin film materials, and modification of lignocellulosic biomass.

  13. Study of Organosilicon Plasma Polymer Used in Composite Layers with Biomedical Application

    SciTech Connect

    Radeva, E.; Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Iacob, E.; Vanzetti, L.; Dimitrova, R.; Krasteva, N.; Spassov, T.

    2010-01-21

    In this work we study the ability of plasma polymer (PP) films obtained from hexamethyldisiloxane (HMDS) on silica glass (SG) to induce hydroxyapatite (HA)-based composite layers from a mixture of simulated body fluid (SBF) and clear solution of detonation nanodiamond (DND) by a biomimetic process. The grown composites (PPHMDS/HADND) were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Rutherford backscattering (RBS) techniques. FTIR spectra of the PPHMDS indicated diminishing of the polymer characteristic bands when the polymer is immersed in DND clear solution. Furthermore, after sample immersion in the SBF-DND mixture, the FTIR spectra showed the presence of carbonate-containing HA through the characteristic vibration modes of P-O in the phosphate group and C-O in the carbonate group. The formation of HA layers, rich in silica and/or carbon was confirmed by RBS and SEM. The cell viability measured after 7 days on the polymer surface is more then 95% for all samples. The results show that the PPHMDS is promising as a substrate for growing HA/DND layers and that the materials obtained are biocompatible. The variations of plasma polymerization conditions and modification of the composite layers will aid in using such materials for biomedical applications.

  14. Comparative study of CF4- and CHF3-based plasmas for dry etching applications

    NASA Astrophysics Data System (ADS)

    Efremov, A.; Kwon, K.-H.; Morgunov, A.; Shabadarova, D.

    2016-12-01

    The influence of O2/Ar mixing ratio on plasma characteristics, densities and fluxes of active species determining the dry etching kinetics in both CF4/O2/Ar and CHF3/O2/Ar plasmas was studied. The investigation combined plasma diagnostics by Langmuir probes and zero-dimensional plasma modeling. It was found that the substitution of O2 for Ar at constant fraction of CF4 or CHF3 in a feed gas noticeably changes electron temperature and electron density, but does not result in the non-monotonic behavior of F atom density. The differences between two gas systems were discussed in details from the point of view of plasma chemistry.

  15. Plasma core reactor applications

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1976-01-01

    Analytical and experimental investigations were conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration. Axial working fluid channels are located along a fraction of each cavity peripheral wall. Results of calculations for outward-directed radiant energy fluxes corresponding to radiating temperatures of 2000 to 5000 K indicate total operating pressures from 80 to 650 atm, centerline temperatures from 6900 to 30,000 K, and total radiated powers from 25 to 2500 MW, respectively. Applications are described for this type of reactor such as (1) high-thrust, high specific impulse space propulsion, (2) highly efficient systems for generation of electricity, and (3) hydrogen or synthetic fuel production systems using the intense radiant energy fluxes.

  16. Plasma core reactor applications

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1976-01-01

    Analytical and experimental investigations were conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration. Axial working fluid channels are located along a fraction of each cavity peripheral wall. Results of calculations for outward-directed radiant energy fluxes corresponding to radiating temperatures of 2000 to 5000 K indicate total operating pressures from 80 to 650 atm, centerline temperatures from 6900 to 30,000 K, and total radiated powers from 25 to 2500 MW, respectively. Applications are described for this type of reactor such as (1) high-thrust, high specific impulse space propulsion, (2) highly efficient systems for generation of electricity, and (3) hydrogen or synthetic fuel production systems using the intense radiant energy fluxes.

  17. A comprehensive investigation of halogenated plasmas: From mechanistic studies to applications

    NASA Astrophysics Data System (ADS)

    Martin, Ina Taylor

    2005-12-01

    Octafluoropropane (C3F8) and octafluorocyclobutane (C4F8) plasmas were used to deposit thin fluorocarbon (FC) films on Si substrates. The effects of applied rf power (P), substrate position and pulsing the plasma on film composition and thickness were studied. Plasma parameters that limited ion bombardment of the substrate during film deposition, such as pulsing the plasma, and placing the substrate downstream from the source, resulted in more F rich, less crosslinked materials. After developing the FC deposition systems, a C3F8 plasma treatment was chosen to modify polymer microfluidic devices, with the intent of coating the device with a non-ionizable film to reduce the electroosmotic flow (EOF). Acrylic acid (AA) plasmas were also used to treat the microfluidic devices. Both treatments resulted in modified EOF flow values compared to untreated devices. Plasma treated substrates were analyzed using FTIR, X-ray photoelectron spectroscopy (XPS), scanning Auger microcopy (SAM), scanning electron microscopy (SEM), and ellipsometry. Gas-phase studies were performed using laser-induced fluorescence (LIF) and mass spectrometry with energy analysis capabilities. Gas-surface interaction studies of CF2 molecules in these FC systems were performed using our imaging of radicals interacting with surfaces (IRIS) technique, with an emphasis on ion effects. High scattering coefficients (S > 1) indicate CF2 molecules are generated at the surface. Ions were found to contribute to the surface production of CF2 during FC plasma treatment of Si. Specifically, a linear correlation exists between CF2 surface production and the mean energy of ions produced in the plasma. There is also a linear correlation present between S (CF2) values measured and the degree of crosslinking in the deposited FC materials. Additionally, relative density measurements and rotational temperature studies of CF are discussed. This dissertation also summarizes preliminary work involving tetrachlorosilane (Si

  18. Laboratory study of pulsed regimes of electron cyclotron instabilities in a mirror-confined plasma for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Izotov, Ivan; Gospodchikov, Egor; Shalashov, Alexander; Demekhov, Andrei

    2014-05-01

    We discuss the use of a mirror-confined plasma of the electron cyclotron resonance discharge for modeling of burst processes in the inner magnetosphere of the Earth associated with the implementation of the plasma cyclotron maser. Heating under the electron cyclotron resonance conditions allows to create two component plasma which is typical for the inner magnetosphere of the Earth. One of the most interesting electron cyclotron resonance manifestations is the generation of bursts of electromagnetic radiation that are related to the explosive growth of cyclotron instabilities of the magnetoactive plasma confined in magnetic traps of various kinds and that are accompanied by particle precipitations from the trap. We investigate several regimes of cyclotron maser which are realized in dense and rarefied plasma, in the presence and absence of a permanent powerful gyrotron microwave radiation as a source of nonequilibrium particles in the plasma. Using the new technique for detection of microwave radiation we studied the dynamical spectrum and the intensity of stimulated electromagnetic radiation from the plasma in a wide frequency band covering all types of cyclotron instabilities. Also possible applications for astrophysical plasma are discussed.

  19. Application of the coded long-pulse technique to plasma line studies of the ionosphere

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Sulzer, Michael P.; Elder, John H.

    1994-01-01

    Recently, the coded long-pulse radar technique was tested at Arecibo Observatory, Puerto Rico using photoelectron-enhanced plasma lines in the daytime ionosphere. The technique immediately proved to be a powerful diagnostic tool for studying natural ionospheric phenomena. Our initial observations indicate that extremely accurate measurements of absolute electron density (0.01 to 0.03% error bars) can be achieved with an altitude resolution of 150 m and a temporal resolution of approx. 2 s. In addition, the technique provides information about electron density structure within a 150-m altitude cell and yields parameters from which the energy spectrum of suprathermal electrons (equal to or greater than 5 eV) can be deduced. Our earliest measurements are used to illustrate applications of the coded long-pulse technique to several aeronomic/ionsospheric areas of current interest. These include studies of neutral wave motions in the lower thermosphere, measurements of ion composition in the F(sub 1) region/upper ionosphere, and investigations of electron-gas thermal balance and photoelectron energy loss processes. The technique can be utilized to examine irregularity formation in the F region, probe electron acceleration processes in ionospheric modification experiments, verify the magnetic field dependence of Langmuir wave damping, and more generally test higher order corrections suggested for the Langmuir dispersion relation. It is anticipated that the latter tests will facilitate measurements of ionospheric currents.

  20. Application of the coded long-pulse technique to plasma line studies of the ionosphere

    SciTech Connect

    Djuth, F.T.; Elder, J.H.; Sulzer, M.P.

    1994-12-01

    Recently, the coded long-pulse radar technique was tested at Arecibo Observatory, Puerto Rico using photoelectron-enhanced plasma lines in the daytime ionosphere. The technique immediately proved to be a powerful diagnostic tool for studying natural ionospheric phenomena. The authors initial observations indicate that extremely accurate measurements of absolute electron density (0.01 to 0.03% error bars) can be achieved with an altitude resolution of 150 m and a temporal resolution of {approximately} 2 s. In addition, the technique provides information about electron density structure within a 150-m altitude cell and yields parameters from which the energy spectrum of suprathermal electrons ({ge} 5 eV) can be deduced. The earliest measurements are used to illustrate applications of the coded long-pulse technique to several aeronomic/ionospheric areas of current interest. These include studies of neutral wave motions in the lower thermosphere, measurements of ion composition in the F{sub 1} region/upper ionosphere, and investigations of electron-gas thermal balance and photoelectron energy loss processes. The technique can be utilized to examine irregularity formation in the F region, probe electron acceleration processes in ionospheric modification experiments, verify the magnetic field dependence of Langmuir wave damping, and more generally test higher order corrections suggested for the Langmuir dispersion relation. It is anticipated that the latter tests will facilitate measurements of ionospheric currents. 14 refs., 4 figs., 1 tab.

  1. Surface plasma wave applications

    SciTech Connect

    Fontana, E.

    1989-01-01

    Surface plasma waves (SPWs) are electromagnetic oscillations that occur at the interface between a metal and a dielectric medium. The wave amplitude reaches a maximum at the interface and decays exponentially along the normal direction within each medium, with a decaying length on the order of a wavelength. Because SPW excitation is a resonant phenomenon which is strongly dependent on the boundary conditions, SPWs are sensitive probes of optical and structural properties of the interface, allowing, by means of visible light, the detection of changes of sub-angstrom dimensions in thin films covering a metal surface. The resonant nature of the excitation also leads to a wave intensity two to three orders of magnitude higher than the intensity produced by a conventional electromagnetic wave striking a metal surface. Therefore, light scattering from surface irregularities can be enhanced by the same factor under SPW excitation, and structural information can be obtained. Measurement of SPW basic parameters such as amplitude, velocity and damping is achieved using simple optical procedures. These procedures are described and applied in this thesis for the characterization of multilayer rough surfaces and for the simultaneous determination of coating thickness and substrate optical constants of dielectric-coated, metal mirrors. These applications are relevant in the diagnosis of optical and structural properties of thin films. We also use the high sensitivity of SPWs to the presence of very thin coatings to design a surface plasmon immunoassay (SPI) for monitoring immunochemical reactions occurring nearby a metal surface. In particular, the SPI can be used as a simple and rapid procedure to determine antibody levels in blood serum, which is of interest in the field of immunology.

  2. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application

    NASA Astrophysics Data System (ADS)

    Ulliac, G.; Calero, V.; Ndao, A.; Baida, F. I.; Bernal, M.-P.

    2016-03-01

    Lithium Niobate (LN) exhibits unique physical properties such as remarkable electro-optical coefficients and it is thus an excellent material for a wide range of fields like optic communications, lasers, nonlinear optical applications, electric field optical sensors etc. In order to further enhance the optical device performance and to be competitive with silicon photonics, sub-micrometric thickness lithium niobate films are crucial. A big step has been achieved with the development of LN thin films by using smart cut technology and wafer bonding and these films are nowadays available in the market. However, it is a challenge to obtain the requirements of the high quality thin LN film waveguide. In this letter, we show smooth ridge waveguides fabricated on 700 nm thickness thin film lithium niobate (TFLN). The fabrication has been done by developing and optimizing three steps of the technological process, the mask fabrication, the plasma etching, and a final cleaning wet etching step in order to remove the lithium niobate redeposition on the side walls. We have obtained single mode propagation with light overall losses of only 5 dB/cm.

  3. Application of the floating-potential probe for studies of low frequency oscillations in a plasma

    NASA Technical Reports Server (NTRS)

    Dzhakov, B. Y.

    1973-01-01

    The proper interpretation of the results obtained from measurements of the floating potential of an electrostatic probe may cause difficulties in time varying plasmas. The following limitations of the method are considered: the charge separation in the plasma, the influence of the input capacity of the measuring circuit, and the influence of the layer capacity near the probe. A detailed analysis is carried out in the cases of moving striations and ion acoustic waves. A simple measuring technique is suggested for ion acoustic studies, giving detailed information about ion density oscillations.

  4. Studies of ionospheric plasma and electrodynamics and their application to ionosphere-magnetosphere coupling

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1988-01-01

    The contribution of the Dynamics Explorer (DE) program to the study of small-scale structure in the equatorial ionospheric number density and the bulk motion of the plasma in the equatorial ionosphere is considered. DE results have helped elucidate the role of E region and F region winds in decreasing the magnitude of variations in the east-west plasma drift at night, as a function of magnetic flux tube apex height, with increasing height above the altitude of the peak F region concentration. Other results concern the ionospheric convection pattern at high latitudes during periods of southward IMF, the magnetosphere/solar-wind interaction that may be involved in the production of the convection pattern, and the characteristics of the high-latitude ionospheric plasma motion during periods of northward IMF.

  5. Experimental and Theoretical Studies of Laser - Argon Plasmas for Application to Laser-Supported Rocket Propulsion.

    NASA Astrophysics Data System (ADS)

    Glumb, Ronald J.

    Laser propulsion is a revolutionary new form of rocket propulsion in which a remote high-power laser is used to heat hydrogen propellant to extremely high temperatures. This approach has important advantages over existing propulsion systems, and is being explored for use in advanced orbital transfer vehicles. The key problem encountered is how to efficiently convert the laser energy into the thermal energy of the propellant. At this time, high-temperature laser-sustained plasmas appear to be the most efficient conversion mechanism. A comprehensive study of argon laser-sustained plasmas has been conducted using the University's 110 kW CO(,2) laser facility. It has been found that the plasmas are stable phenomena which will adjust to variations in laser power or flow velocity. Calorimetric studies have shown that the plasma can absorb up to 80 percent of the incident laser energy in extremely short distances. The dependence of absorption on power, pressure, flow rate, and beam optics has been examined. The fraction of the laser energy retained by the gas as thermal energy has also been measured under a range of flow and power conditions; efficiencies as high as 40 percent have been demonstrated. A laser-induced fluorescence diagnostic system using atomic seedants has been developed to obtain more acurate efficiency measurements. A two-dimensional numerical model of the plasma has also been developed, which includes real argon properties and accurate absorption and emission coefficients. Excellent agreement with the experimental results has been demonstrated, specifically with regard to plasma size, peak temperatures, absorption fractions, minimum maintenance powers, blowout velocities, and conversion efficiencies. The model also predicts that efficiencies as high as 75 percent should be achievable at high f numbers, a prediction now being tested experimentally.

  6. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  7. Aerospace applications of pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  8. Enantioselective analysis of 4-hydroxycyclophosphamide in human plasma with application to a clinical pharmacokinetic study.

    PubMed

    de Castro, Francine Attié; Scatena, Gabriel dos Santos; Rocha, Otávio Pelegrino; Marques, Maria Paula; Cass, Quézia Bezerra; Simões, Belinda Pinto; Lanchote, Vera Lucia

    2016-02-01

    Cyclophosphamide (CY) is one of the most common immunosuppressive agents used in autologous hematopoietic stem cell transplantation. CY is a prodrug and is metabolized to active 4-hydroxycyclophosphamide (HCY). Many authors have suggested an association between enantioselectivity in CY metabolism and treatment efficacy and/or complications. This study describes the development and validation of an analytical method of HCY enantiomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) that can be applied to pharmacokinetic studies, filling this gap in the literature. HCY enantiomers previously derivatized with phenylhydrazine were extracted from 200-μL plasma aliquots spiked with antipyrine as internal standard and a mixture of hexane and dichloromethane (80:20, v/v) was used as the extraction solvent. The derivatized HCY enantiomers were resolved on a Chiracel(®) OD-R column using water:acetonitrile:formic acid (55:45:0.2, v/v) as the mobile phase. No matrix effect was observed and the analysis of HCY enantiomers was linear for plasma concentrations of 5-5000ng of each enantiomer/mL plasma. The coefficients of variation and inaccuracy calculated in precision and accuracy assessments were less than 15%. HCY was stable in human plasma after three successive freeze/thaw cycles, during 3h at room temperature, and in the autosampler at 4°C for 24h after processing, with deviation values less than 15%. The method was applied to evaluate the kinetic disposition of HCY in a patient with multiple sclerosis who was pretreated with intravenous racemic CY for stem cell transplantation. The clinical study showed enantioselectivity in the pharmacokinetics of HCY. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Study of a cesium plasma as a selective emitter for thermophotovoltaic applications

    NASA Technical Reports Server (NTRS)

    Lowe, R.; Goradia, C.; Goradia, M.; Chubb, Donald L.

    1990-01-01

    This experimental study evaluates the potential of a cesium plasma as an emitter for a thermophotovoltaic (TPV) energy conversion system. A cesium plasma, as a result of the ground-state transitions of its single outer-shell electron, produces large amounts of radiation in the 850-890-nm wavelength region. This would provide excellent coupling to silicon, gallium arsenide, and indium phosphide photovoltaic cells. Measurements of the radiative efficiency, the sum of the power at the 852 and 894 nm wavelengths relative to the total emitted power, were made and correlated to the plasma operating variables. It was determined that, for atomic density in the range (3-6) x 10 exp 21/cu cm and electron temperature in the range 2000-3000 K, radiative efficiencies in excess of 70 percent are attainable. This would indicate that a cesium plasma with its selective emission characteristics and low electron operating temperatures of 2000-3000 K would be an excellent candidate as an emitter in a TPV system.

  10. Application of spectral line shapes to the study of high density ICF plasmas

    SciTech Connect

    Keane, C.J.; Hammel, B.A.; Langer, S.H.; Lee, R.W.; Calisti, A.; Godbert, L.; Stamm, R.; Talin, B.

    1994-09-01

    Spectral line broadening manifests itself in the study of high density inertial confinement fusion (ICF) plasmas in two important ways. First, comparison between measured and calculated lineshapes of individual spectral lines or groups of lines is used to diagnose plasma conditions in dense ICF plasmas, particularly in implosions. Secondly, through the emission and absorption coefficients spectral lineshapes serve as important inputs to plasma spectroscopy simulation codes which calculate simulated spectra from ICF targets. We discuss recent results from each of these areas. With regard to lineshape diagnostics, the advent of generalized line broadening codes has allowed the line profiles of complex multielectron emitters to be considered for diagnostic purposes. Particular example of this is the use of Ar He-{beta} and its associated dielectronic satellites as a diagnostic of T{sub e} and N{sub e}, as well as the development of Ne-like Xe line broadening as a density diagnostic. With respect to simulation codes, the implementation of detailed lineshapes in calculations of this type is in many ways in its infancy. We present here examples of cases where effects related to spectral lineshapes such as continuum lowering and line transfer of Stark broadened lines are important so as to provide a stimulus for future work in this field. 34 refs., 9 figs., 1 tab.

  11. High-Performance Liquid Chromatographic Determination of Rivastigmine in Human Plasma for Application in Pharmacokinetic Studies

    PubMed Central

    Amini, Hossein; Ahmadiani, Abolhassan

    2010-01-01

    A simple and reproducible HPLC method with spectrophotometric detection was developed for determination of rivastigmine in human plasma. Liquid-liquid extraction of rivastigmine and donepezil (as internal standard) from plasma samples was performed with 1-butanol/n-hexane (2:98 v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a Silica column (250 mm × 4.6 mm, 5 μm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (17: 83 v/v, pH 3.1. Analyses were run at a flow-rate of 1.3 mL/min at of 50°C. The recovery was 90.8% and 95.7% for rivastigmine and the internal standard donepezil, respectively. The precision of the method was 2.6% to 9.1% over the concentration range of 0.5-16 ng/mL for rivastigmine in plasma with a linearity greater than 0.999. The method was specific and sensitive, with a quantification limit of 0.5 ng/mL and a detection limit of 0.2 ng/mL in plasma. The method was used for a bioequivalence study in healthy subjects. PMID:24363716

  12. Quantitation of metformin in human plasma and urine by hydrophilic interaction liquid chromatography and application to a pharmacokinetic study.

    PubMed

    Nielsen, Flemming; Christensen, Mette M H; Brøsen, Kim

    2014-04-01

    We describe an analytical method for the quantification of the widely used antihyperglycemic agent, metformin, in human plasma and urine. The separation was performed using isocratic hydrophilic interaction liquid chromatography on a Luna hydrophilic interaction liquid chromatography column (125 × 4.6 mm, 3 μm). The sample preparation was accomplished by solid-phase extraction. Validation of the method was performed in the range 10-2000 ng/mL for plasma and 5-30 mcg/mL for urine. The methods were linear within the investigated range (r(2) > 0.988). Within-day repeatability ranged from 3.1% to 7.5% in plasma and 1.6% to 6.2% in urine. Between-day reproducibility ranged from 2.9% to 5.3% in plasma and 0.6% to 1.8% in urine. The inaccuracy expressed as bias ranged from -3.1% to 1.9% in plasma and from -7.2% to 0.7% in urine. The lower limit of quantification for metformin in plasma was 5 ng/mL and in urine was 40 ng/mL. The method was therefore considered to be precise, accurate, reproducible, and sensitive enough to be appropriate for pharmacokinetic studies of metformin. The applicability of the method for human pharmacokinetic studies was demonstrated by dosing a healthy male volunteer with 500-mg metformin hydrochloride as a single oral dose; plasma and urine concentrations were measured for 24 hours.

  13. [Application of atomic emission spectroscopy analysis in the atmospheric pressure plasma polishing process study].

    PubMed

    Wang, Bo; Zhang, Ju-Fan; Dong, Shen

    2008-07-01

    The atmospheric pressure plasma polishing (APPP) is a novel precision machining technology. It performs the atom scale material removal based on low temperature plasma chemical reactions. As the machining process is chemical in nature, it avoids the surface/subsurface defects usually formed in conventional mechanical machining processes. APPP firstly introduces a capacitance coupled radio frequency (RF) plasma torch to generate reactive plasma and excite chemical reactions further. The removal process is a complicated integrating action which tends to be affected by many factors, such as the gas ratio, the RF power and so on. Therefore, to improve the machining quality, all the aspects should be considered and studied, to establish the foundation for further model building and theoretical analysis. The atomic emission spectroscopy analysis was used to study the process characteristics. A commercial micro spectrometer was used to collect the spectrograms under different parameters, by comparing which the influence of the RF power and gas ratio was initially studied. The analysis results indicate that an increase in RF power results in a higher removal rate within a certain range. The gas ratio doesn't show obvious influence on the removal rate and surface roughness in initial experiments, but the element compositions detected by X-ray photoelectron spectroscopy technology on the machined surfaces under different ratios really indicate distinct difference. Then the theoretical analysis revealed the corresponding electron transition orbits of the excited reactive fluorine atoms, which is necessary for further mechanism research and apparatus improvement. Then the initial process optimization was made based on the analysis results, by which the Ra 0.6 nm surface roughness and 32 mm3 x min(-1) removal rate were achieved on silicon wafers.

  14. Numerical study of capacitive coupled HBr/Cl2 plasma discharge for dry etch applications

    NASA Astrophysics Data System (ADS)

    Gul, Banat; Ahmad, Iftikhar; Zia, Gulfam; Aman-ur-Rehman

    2016-09-01

    HBr/Cl2 plasma discharge is investigated to study the etchant chemistry of this discharge by using the self-consistent fluid model. A comprehensive set of gas phase reactions (83 reactions) including primary processes such as excitation, dissociation, and ionization are considered in the model along with 24 species. Our findings illustrate that the densities of neutral species (i.e., Br, HCl, Cl, H, and H2) produced in the reactor are higher than charged species (i.e., Cl2+, Cl-, HBr+, and Cl+). Density profile of neutral and charged species followed bell shaped and double humped distributions, respectively. Increasing Cl2 fraction in the feedback gases (HBr/Cl2 from 90/10 to 10/90) promoted the production of Cl, Cl+, and Cl2+ in the plasma, indicating that chemical etching pathway may be preferred at high Cl-environment. These findings pave the way towards controlling/optimizing the Si-etching process.

  15. Comparative study of non-thermal atmospheric pressure discharge plasmas for life science applications

    NASA Astrophysics Data System (ADS)

    Koga, Kazunori; Katayama, Ryu; Sarinont, Thapanut; Seo, Hyunwoong; Itagaki, Naho; Attri, Pankaj; Leal-Quiros, Edbertho; Tanaka, Akiyo; Shiratani, Masaharu

    2016-09-01

    We are comparing several non-thermal atmospheric pressure discharge plasmas for life science applications. Here we measured discharge period dependence of pH value and 750 nm absorbance of KI-starch solution of deionized water after plasma irradiation with two discharge devices; a dielectric barrier discharge (DBD) jet device and a scalable DBD device. The pH and the absorbance of KI-starch solution are useful indicator of their oxidizability. We have obtained a map of the absorbance and proton concentration [H+] which is deduced from pH value. For the scalable DBD, the range of the absorbance is between 0.7 and 1.3 and that of [H+] is between 10-7 and 10-5 mol/L. For the DBD jet, the range of the absorbance and [H+] are 2.0-3.2 and 10-4-10-3 mol/L, respectively. Measured data for both devices shows same tendency in the map, while the range of values for the scalable DBD is smaller than that for the DBD jet. The results indicate the oxidazability for the scalable DBD is much weaker than that for the DBD jet.

  16. High-performance liquid chromatographic assay for metamizol metabolites in rat plasma: application to pharmacokinetic studies.

    PubMed

    Domínguez-Ramírez, Adriana Miriam; Calzadilla, Patricia Carrillo; Cortés-Arroyo, Alma Rosa; Hurtado Y de la Peña, Marcela; López, José Raúl Medina; Gómez-Hernández, Martín; López-Muñoz, Francisco Javier

    2012-12-01

    In order to evaluate the pharmacokinetics of metamizol in the presence of morphine in arthritic rats, after subcutaneous administration of the drugs, an easy, rapid, sensitive and selective analytical method was proposed and validated. The four main metamizol metabolites (4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoantipyrine) were extracted from plasma samples (50-100μl) by a single solid-phase extraction method prior to reverse-phase high performance liquid chromatography with diode-array detection. Standard calibration graphs for all metabolites were linear within a range of 1-100μg/ml (r(2)≥0.99). The intra-day coefficients of variation (CV) were in the range of 1.3-8.4% and the inter-day CV ranged from 1.5 to 8.4%. The intra-day assay accuracy was in the range of 0.6-9.6% and the inter-day assay accuracy ranged from 0.9 to 7.5% of relative error. The lower limit of quantification was 1μg/ml for all metabolites using a plasma sample of 100μl. Plasma samples were stable at least for 4 weeks at -20°C. This method was found to be suitable for studying metamizol metabolites pharmacokinetics in arthritic rats, after simultaneous administration of metamizol and morphine, in single dose. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. HPLC-UV determination of metformin in human plasma for application in pharmacokinetics and bioequivalence studies.

    PubMed

    Porta, Valentina; Schramm, Simone Grigoleto; Kano, Eunice Kazue; Koono, Eunice Emiko; Armando, Yara Popst; Fukuda, Kazuo; Serra, Cristina Helena Dos Reis

    2008-01-07

    In this study, a simple, rapid and sensitive HPLC method with UV detection is described for determination of metformin in plasma samples from bioequivalence assays. Sample preparation was accomplished through protein precipitation with acetonitrile and chromatographic separation was performed on a reversed-phase phenyl column at 40 degrees C. Mobile phase consisted of a mixture of phosphate buffer and acetonitrile at flow rate of 1.0 ml/min. Wavelength was set at 236 nm. The method was applied to a bioequivalence study of two drug products containing metformin, and allowed determination of metformin at low concentrations with a higher throughput than previously described methods.

  18. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  19. [Plasma determination of paracetamol using high performance liquid chromatography. Application to a pharmacokinetic study].

    PubMed

    Demotes-Mainard, F; Vinçon, G; Jarry, C; Albin, H

    1984-01-01

    A plasma assay for paracetamol by HPLC is described. Paracetamol is extracted with diethyl ether in the presence of an internal standard, beta- hydroxyethyltheophylline . The extracts are analysed using reversed phase chromatography (Radial Pak C18 column), the mobile phase consisting of a buffer mixture of 0.01 mol/l acetate (pH 4)-acetonitrile (920-80, v/v). The method is simple, rapid, precise and sensitive (lower level of sensitivity 0.13 mumol/l). It was used in a pharmacokinetic study in twelve volunteers.

  20. [Plasma technology for biomedical material applications].

    PubMed

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  1. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-06-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  2. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  3. Quantification of mesembrine and mesembrenone in mouse plasma using UHPLC-QToF-MS: Application to a pharmacokinetic study.

    PubMed

    Manda, Vamshi K; Avula, Bharathi; Ashfaq, Mohammad K; Abe, Naohito; Khan, Ikhlas A; Khan, Shabana I

    2017-03-01

    Sceletium tortuosum, is an indigenous herb of South Africa which is widely used as an herbal supplement in the treatment of anxiety and stress. Mesembrenone and mesembrine are the two main pharmacologically active alkaloids present in the extract. Despite the wide therapeutic applications of Sceletium extract, there are no reports of in vivo pharmacokinetic properties or analytical methods to quantify these two important alkaloids in plasma. Therefore, the current study aimed to develop and validate a simple and sensitive analytical method for simultaneous quantification of mesembrenone and mesembrine in mouse plasma. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC/QToF-MS) was employed to achieve our objectives. The compounds were extracted using protein precipitation by methanol (100%) with quinine as an internal standard. The lower limit of quantification for both the compounds was 10 ng/mL. The extraction recovery was between 87 and 93% for both compounds with no matrix effects on the analysis. The accuracy was between 89.5 and 106% and precision was <12.6% for all quality control samples. This validated method was successfully applied to evaluate the i.v. plasma pharmacokinetics of mesembrine and mesembrenone in mouse. However, the oral bioavailability of these alkaloids was poor and the plasma levels were below the detection limits.

  4. Determination of dimenhydrinate in human plasma by liquid chromatography-electrospray tandem mass spectrometry: application to a relative bioavailability study.

    PubMed

    Tavares, V; Macedo, C C; Montanhez, L; Barros, F A P; Meurer, E C; Campos, D R; Coelho, E C; Calaffati, S A; Pedrazzoli, J

    2007-06-15

    Here we present a sensitive and specific liquid chromatography-tandem mass spectrometric method for the quantification of dimenhydrinate (I) in human plasma. Sample preparation is conducted using citalopram (II) addition as an internal standard (IS), liquid-liquid extraction with basified plasma using a mixture hexane/acetate (1:1, v/v) as the extracting solvent, and the final extract reconstituted in the mobile phase. I and II (IS) were injected in a C8 column with the mobile phase composed of methanol:isopropanol:water:formic acid (78.00:19.92:2.00:0.08, v/v/v/v) and monitored using a positive electrospray source with tandem mass spectrometry analyses. The selected reaction monitoring (SRM) was set using precursor ion and product ion combinations of m/z 256.0>167.0 and m/z 325.0>109.0 for I and II, respectively. The limit of quantification (LOQ) was 0.4 ng/mL, the dynamic range being 0.4-200 ng/mL. Validation results on linearity, specificity, accuracy, precision and stability, as well as on application to the analysis of plasma samples taken up to 24 h after oral administration of 100 mg of dimenhydrinate in healthy volunteers demonstrated its applicability to bioavailability studies.

  5. A chamber experiment for the feasibility study of an artificial plasma reflector for OTH radar applications

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Ji, Q. H.; Miller, P. E.; Tiong, K. K.

    1989-01-01

    The feasibility of using two intersecting beams for plasma generation in the upper atmosphere as an over-the-horizon radar reflector was investigated. A cube was filled with dry air to a pressure corresponding to the simulated altitude, and two components of a split microwave beam were fed into the cube at right angles. Plasma layers were generated where the two beams intersected. Three critical issues were addressed: (1) reflectivity of the generated plasma layers; (2) propagation of high power microwave pulses; and (3) lifetime of the plasma.

  6. Analysis of nabumetone in human plasma by HPLC. Application to single dose pharmacokinetic studies.

    PubMed

    Kobylińska, Kamila; Barlińska, Małgorzata; Kobylińska, Maria

    2003-06-01

    A simple and sensitive high performance liquid chromatography method for the determination of nabumetone in human plasma is described. The procedure involves liquid-liquid extraction with ethyl acetate and reversed-phase chromatography with fluorimetric detection (excitation 230 nm, emission 356 nm). The chromatographic conditions and the extraction procedure gave a clean chromatogram for the compound. The limit of quantitation was established as 0.313 ng/ml and the calibration curve was linear up to 20 ng/ml. The within-day and between-day relative standard deviations were less than 10% and the accuracy of the assay was in the range of 99-104%. The suitability of the method is shown for pharmacokinetic studies.

  7. HPLC method for the determination of fluvoxamine in human plasma and urine for application to pharmacokinetic studies.

    PubMed

    Ulu, Sevgi Tatar

    2007-03-12

    A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the assay of fluvoxamine in human plasma and urine. The method was based on reaction of fluvoxamine with 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS) forming orange colored product. The fluvoxamine-NQ derivative was separated by isocratic reversed-phase HPLC and detected at 450 nm. The chromatographic conditions were as follows: Phenomenex C(18) (250 mm x 4.6 mm i.d., 5 microm) column, mobile phase consisting of acetonitrile/water (80:20 v/v) at a flow rate of 1 ml/min. Tryptamine was selected as an internal standard. The assay was linear over the concentration range of 5-145 and 2-100 ng/ml for plasma and urine, respectively. The limits of detection (LOD) were 1.4 and 1 ng/ml for plasma and urine estimation at a signal-to-noise (S/N) ratio of 3. The limits of quantification (LOQ) were 5 and 2 ng/ml for plasma and urine, respectively. The extraction recoveries were found to be 96.66+/-0.69 and 96.73+/-2.17% for plasma and urine, respectively. The intra-day and inter-day standard deviations (S.D.) were less than 1. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay was demonstrated to be applicable for clinical pharmacokinetic studies.

  8. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  9. Quantification of Paclitaxel and Polyaspartate Paclitaxel Conjugate in Beagle Plasma: Application to a Pharmacokinetic Study.

    PubMed

    Gao, Yangyang; Chen, Junying; Zhang, Xiqian; Xie, Huiru; Wang, Yanran; Guo, Shuquan

    2017-03-01

    An LC-MS/MS method for the determination of polyaspartate paclitaxel conjugate (PASP-PTX) and paclitaxel (PTX) in dog plasma with cephalomannine (Internal Standard for PASP-PTX, IS-I) and clopidogrel bisulfate (Internal Standard for PTX, IS-II) as the internal standards was developed and validated. Plasma samples of PASP-PTX were extracted by ethyl acetate following the hydrolysis reaction, while protein precipitation was used for the extraction of PTX using acetonitrile. Analytes were separated by a CAPCELL PAK C18 MG II column using a gradient elution with the mobile phase (A) 5 mM ammonium containing 0.1% formic acid, and (B) acetonitrile. Quantification was performed by monitoring the m/z transitions of 286.2/105.0 for PASP-PTX, 264.2/83.0 for IS-I, 854.4/286.0 for PTX, and 322.1/184.1 for IS-II in the ESI positive mode. This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification was 0.15 µg/mL for PASP-PTX and 0.01 µg/mL for PTX, and the calibration curves were linear over 0.15-300 µg/mL for PASP-PTX and over 0.01-10 µg/mL for PTX. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetic profiles of PASP-PTX and PTX in beagles following intravenous administration of PASP-PTX. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Plasma focus: Present status and potential applications

    SciTech Connect

    Brzosko, J.S.; Nardi, V.; Powell, C.

    1997-12-01

    Initially, dense plasma focus (DPF) machines were constructed independently by Filippov in Moscow and Mather in Los Alamos at the end of the 1950s. Since then, more than 30 laboratories have carried vigorous DPF programs, oriented mainly toward the studies of physics of ion acceleration and trapping in the plasma focus environment. Applications of the DPF as intense neutron and X-ray sources have been recognized since its discovery but not implemented for various reasons. Recently, some groups (including AES) addressed the issue of DPF applications, and some of them are briefly discussed in this paper.

  11. Novel LC- ESI-MS/MS method for desvenlafaxine estimation human plasma: application to pharmacokinetic study.

    PubMed

    Kancharla, Pushpa Kumari; Kondru, Venu Gopal Raju; Dannana, Gowri Sankar

    2016-02-01

    A simple, sensitive and specific liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the quantification of desvenlafaxine in human plasma using desvenlafaxine d6 as an internal standard (IS). Chromatographic separation was performed using a Thermo-BDS hypersil C8 column (50 × 4.6 mm, 3 µm) with an isocratic mobile phase composed of 5 mM ammonium acetate buffer: methanol (20:80, v/v), at a flow rate of 0.80 mL/min. Desvenlafaxine and desvenlafaxine d6 were detected with proton adducts at m/z 264.2/58.1 and 270.2/ 64.1 in multiple reaction monitoring positive mode, respectively. Liquid-liquid extraction was used to extract the drug and the IS. The method was linear over the concentration range 1.001-400.352 ng/mL with a correlation coefficient of ≥0.9994. This method demonstrated intra and inter-day precision within 0.7-5.5 and 1.9-6.8%, and accuracy within 95.3-107.4 and 93.4-99.5%. Desvenlafaxine was found to be stable throughout the freeze-thaw cycles, bench-top and long-term matrix stability studies. The developed and validated method can be successfully applied for the bioequivalence/pharmacokinetic studies of desvenlafaxine in pharmaceutical dosage forms. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Application of liquid chromatography method with electrochemical detection for bioequivalence study of trimetazidine in human plasma.

    PubMed

    Grabowski, Tomasz; Swierczewska, Anna; Borucka, Beata; Sawicka, Renata; Sasinowska-Motyl, Małgorzata; Gumułka, Stanisław Witold

    2012-01-01

    A method to estimate trimetazidine (CAS: 13171-25-0) levels in human plasma by means of HPLC with electrochemical detection was developed. Trimethoprim (CAS: 26807-65-8) was used as an internal standard. This method of analysis was fully validated according to the guidelines of the United States Food and Drug Administration, European Medicines Agency and Organization for Economic Co-operation and Development and Good Laboratory Practice rules. The accuracy and precision of the developed method were found to be satisfactory and stability studies showed acceptable variation (below 15%) of trimetazidine concentrations when samples were stored frozen at -75 degrees C for 54 days. The developed method was successfully used for a comparative 2 x 2 period, crossover bioequivalence study of two extended-release preparations of trimetazidine performed on 24 healthy volunteers at the steady state after multiple dosing of 35 mg twice daily for 4 days and a single 35 mg dose on the 5th day and after a single dose of 35 mg under fasting or postprandial conditions.

  13. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    NASA Astrophysics Data System (ADS)

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-03-01

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  14. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    SciTech Connect

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-03-15

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  15. Determination of levocetirizine in human plasma by liquid chromatography-electrospray tandem mass spectrometry: application to a bioequivalence study.

    PubMed

    Morita, M R; Berton, D; Boldin, R; Barros, F A P; Meurer, E C; Amarante, A R; Campos, D R; Calafatti, S A; Pereira, R; Abib, E; Pedrazolli, J

    2008-02-01

    We describe a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for levocetirizine quantification (I) in human plasma. Sample preparation was made using a fexofenadine (II) addition as internal standard (IS), liquid-liquid extraction using cold dichloromethane, and dissolving the final extract in acetonitrile. I and II (IS) were injected in a C18 column and the mobile phase composed of acetonitrile:water:formic acid (80.00:19.90:0.10, v/v/v) and monitored using positive electrospray source with tandem mass spectrometry analyses. The selected reaction monitoring (SRM) was set using precursor ion and product ion combinations of m/z 389>201 for I and m/z 502>467 for II. The limit of quantification and the dynamic range achieved were 0.5ng/mL and 0.5-500.0ng/mL. Validation results on linearity, specificity, accuracy, precision and stability, as well as its application to the analysis of plasma samples taken up to 48h after oral administration of 5mg of levocetirizine dichloridrate in healthy volunteers demonstrate its applicability to bioavailability studies.

  16. Application of Laser-Generated Ion Beams for Isochoric Heating to Study Plasma Mix at Interfaces

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Fernández, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.; Hegelich, B. M.; Dyer, G.; Roycroft, R.

    2015-11-01

    The evolution and mixing of high-Z/low-Z interfaces in plasma media is of profound importance to high energy density physics and inertial fusion experiments. Recent experiments performed at the LANL Trident laser facility as part of the Plasma Interfacial Mix project have applied novel, laser-generated ion beams created under conditions of relativistic induced transparency to the heating of solid-density, multi-material targets isochorically and uniformly (over a few tens of ps), attaining plasma temperatures of several eV. Measurements have been made of the evolving plasma, including location of the material interface and the time-history of the temperature of the medium. Recent data and associated radiation hydrodynamic modeling from our Trident campaigns will be reported. Complementary kinetic simulations of interface evolution, showing anomalously rapid atomic mixing under conditions relevant to ICF experiments, will also be discussed. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  17. Atmospheric pressure plasma jet applications

    SciTech Connect

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S.

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  18. Development and validation of RP-HPLC method for sildenafil citrate in rat plasma-application to pharmacokinetic studies

    PubMed Central

    Tripathi, A.S.; Sheikh, I.; Dewani, A.P.; Shelke, P.G.; Bakal, R.L.; Chandewar, A.V.; Mazumder, P.M.

    2012-01-01

    Sildenafil citrate (SIL) is used in the treatment of erectile dysfunction and other chronic disorders. For the pharmacokinetic investigation of SIL we developed a simple and sensitive method for the estimation of SIL in rat plasma by reverse phase high-performance liquid chromatography (RP-HPLC). The drug samples were extracted by liquid–liquid extraction with 300 μl of acetonitrile and 5 ml of diethyl ether. Chromatographic separation was achieved on C18 column using methanol:water (85:15 v/v) as mobile phase at a flow rate of 1 ml/min and UV detection at 230 nm. The retention time of SIL was found to be 4.0 min having a separation time less than 5 min. The developed method was validated for accuracy, precision, linearity and recovery. Linearity studies were found to be acceptable over the range of 0.1–6 μg/ml. The method was successfully applied for the analysis of rat plasma sample for the application in pharmacokinetic study, drug interaction, bioavailability and bioequivalence. PMID:23960848

  19. Development and validation of RP-HPLC method for sildenafil citrate in rat plasma-application to pharmacokinetic studies.

    PubMed

    Tripathi, A S; Sheikh, I; Dewani, A P; Shelke, P G; Bakal, R L; Chandewar, A V; Mazumder, P M

    2013-07-01

    Sildenafil citrate (SIL) is used in the treatment of erectile dysfunction and other chronic disorders. For the pharmacokinetic investigation of SIL we developed a simple and sensitive method for the estimation of SIL in rat plasma by reverse phase high-performance liquid chromatography (RP-HPLC). The drug samples were extracted by liquid-liquid extraction with 300 μl of acetonitrile and 5 ml of diethyl ether. Chromatographic separation was achieved on C18 column using methanol:water (85:15 v/v) as mobile phase at a flow rate of 1 ml/min and UV detection at 230 nm. The retention time of SIL was found to be 4.0 min having a separation time less than 5 min. The developed method was validated for accuracy, precision, linearity and recovery. Linearity studies were found to be acceptable over the range of 0.1-6 μg/ml. The method was successfully applied for the analysis of rat plasma sample for the application in pharmacokinetic study, drug interaction, bioavailability and bioequivalence.

  20. An UPLC-MS/MS method for the quantitation of vortioxetine in rat plasma: Application to a pharmacokinetic study.

    PubMed

    Gu, Er-min; Huang, Chengke; Liang, Bingqing; Yuan, Lingjing; Lan, Tian; Hu, Guoxin; Zhou, Hongyu

    2015-08-01

    In this work, a simple, sensitive and fast ultra performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitative determination of vortioxetine in rat plasma. Plasma samples were processed with a protein precipitation. The separation was achieved by an Acquity UPLC BEH C18 column (2.1mm×50mm, 1.7μm) column with a gradient mobile phase consisting of 0.1% formic acid in water and acetonitrile. Detection was carried out using positive-ion electrospray tandem mass spectrometry via multiple reaction monitoring (MRM). The validated method had an excellent linearity in the range of 0.05-20ng/mL (R(2)>0.997) with a lower limit of quantification (0.05ng/mL). The extraction recovery was in the range of 78.3-88.4% for vortioxetine and 80.3% for carbamazepine (internal standard, IS). The intra- and inter-day precision was below 8.5% and accuracy was from -11.2% to 9.5%. No notable matrix effect and astaticism was observed for vortioxetine. The method has been successfully applied to a pharmacokinetic study of vortioxetine in rats for the first time, which provides the basis for the further development and application of vortioxetine. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. LC-MS/MS determination of etravirine in rat plasma and its application in pharmacokinetic studies.

    PubMed

    Abobo, Cyril V; Wu, Lei; John, Jyothy; Joseph, Mathew K; Bates, Theodore R; Liang, Dong

    2010-11-15

    Etravirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) that is active against NNRT-resistant HIV-1. A simple, sensitive, and specific LC-MS/MS method was developed and validated for the analysis of etravirine in rat plasma using itraconazole as the internal standard. The analytes were extracted with ethyl acetate and chromatographed on a reverse-phase XTerra MS C₁₈ column. Elution was achieved with a mobile phase gradient varying the proportion of a 2 mM ammonium acetate aqueous solution containing 0.1% formic acid (solvent A) and a 0.1% formic acid in methanol solution (solvent B) at a flow rate of 300 μL/min. The analytes were monitored by tandem-mass spectrometry with positive electrospray ionization. The precursor/product transitions (m/z) in the positive ion mode were 435.9→163.6 and 706.7→392.6 for etravirine and the internal standard, respectively. Calibration curves were linear over the etravirine rat plasma concentration range of 1-100 ng/mL. The inter- and intra-day accuracy and precision were within ±10%. The assay has been successfully used for pharmacokinetic evaluation of etravirine using the rat as an animal model.

  2. LC-MS/MS determination of etravirine in rat plasma and its application in pharmacokinetic studies

    PubMed Central

    Abobo, Cyril; Wu, Lei; John, Jyothy; Joseph, Mathew K.; Bates, Theodore R.; Liang, Dong

    2010-01-01

    Etravirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) that is active against NNRT-resistant HIV-1. A simple, sensitive, and specific LC-MS/MS method was developed and validated for the analysis of etravirine in rat plasma using itraconazole as the internal standard. The analytes were extracted with ethyl acetate and chromatographed on a reverse-phase XTerra MS C18 column. Elution was achieved with a mobile phase gradient varying the proportion of a 2 mM ammonium acetate aqueous solution containing 0.1% formic acid (solvent A) and a 0.1% formic acid in methanol solution (solvent B) at a flow rate of 300 μL/min. The analytes were monitored by tandem-mass spectrometry with positive electrospray ionization. The precursor/product transitions (m/z) in the positive ion mode were 435.9→163.6 and 706.7→392.6 for etravirine and the internal standard, respectively. Calibration curves were linear over the etravirine rat plasma concentration range of 1 ng/mL to 100 ng/mL. The inter- and intra-day accuracy and precision were within ±10%. The assay has been successfully used for pharmacokinetic evaluation of etravirine using the rat as an animal model. PMID:20965798

  3. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, 'Laboratory and Space Plasma Studies,' Contract Number N00014-93-C-2178, SAIC Project Number 01-0157-03-6984, encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by subcontracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  4. Studies of inductive plasmas and their application to theta-pinch devices via numerical modeling

    NASA Astrophysics Data System (ADS)

    Meeks, Warner Charles

    First, a globally-averaged RF plasma model is used to investigate exit conditions immediately following a RF pre-ionization stage. Analysis shows that reducing pulse duration from 10-6 to 10-7 seconds increases peak ion energy fraction by 17% (from 16 to 33%) and doubles final conductivity. Pulse waveforms are square in nature, and ion energy fraction is defined in this work as the percentage of total input energy entrained in ions. Increasing total energy deposition from 5 to 160 mJ increases ion energy fraction from 33% to 58% at a 200 ns pulse duration. This increase is not linear however, showing instead a diminishing return with a peak fraction plateau estimated at 65% to 70%. A constant (time-average) power analysis reveals that, across all power levels (10 to 100 kW), energies (5 mJ to 1 joule), and durations (0.05 to 10 µs), peak ion energy fraction consistently occurs approximately 1 to 2 µs before peak conductivity. Second, single particle and particle-in-cell simulations are used to elucidate breakdown physics in a ringing theta-pinch with bias magnetic field. The analyses presented here agree with previously conducted experimental results showing that gas breakdown occurs only upon approximate nullification of the bias magnetic field by the pulsed theta-pinch magnetic field. Parametric analysis of the peak electron energy as a function of the bias and pre-ionization magnetic fields reveals that; 1.) when bias magnetic field is ≈ 97% of the pre-ionization magnetic field the peak electron energy is highly erratic, and 2.) high electron energy levels require a pre-ionization to bias magnetic field ratio of 2 to 1 or higher. This second work went on to be published in the Phys. of Plasmas Journal, Vol. 19 (2012, http://link.aip.org/link/doi/10.1063/1.4717731).

  5. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  6. Low temperature plasma applications in medicine

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; Metelmann, H.-R.; von Woedtke, Th.

    2016-11-01

    The main field of plasma medicine is the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. CAP is effective both to inactivate a broad spectrum of microorganisms including multiple drug resistant ones and to stimulate proliferation of mammalian cells. Clinical application has started in the field of wound healing and treatment of infective skin diseases.

  7. Industrial Applications of Low Temperature Plasmas

    SciTech Connect

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  8. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  9. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  10. Application of bicoherence analysis in study of wave interactions in space plasma

    SciTech Connect

    Lagoutte, D.; Lefeuvre, F. ); Hanasz, J. )

    1989-01-01

    A spectral analysis at the second order (power spectrum) loses the phase information among the different Fourier components. To retain this information, the bispectrum (third order) and/or the bicoherence (normalized bispectrum) are calculated. Application to simulated data, shows the dependence of the bispectrum to amplitudes of involved waves and of the bicoherence to signal-to-noise ratio. Bicoherence technique is applied in the analysis of harmonics produced by an electronic receiver, as well as in the investigation of phase coherence between a ground-transmitter signal, a natural ELF emission near the proton gyrofrequency, and the sidebands around the carrier. Strong arguments are provided that the sidebands are generated by a parametric interaction between the transmitter signal and the ELF emission.

  11. Application of capillary gas chromatography to the study of hydrolysis of the nerve agent VX in rat plasma.

    PubMed

    Bonierbale, E; Debordes, L; Coppet, L

    1997-01-24

    We present here a gas chromatography technique allowing the detection and quantification of VX [O-ethyl S-(2-diisopropylaminoethyl)methylphosphonothiolate] as well as its P-S bond hydrolysis product diisopropylaminoethanethiol directly from spiked rat plasma. This technique was applied to study VX hydrolysis in rat plasma. We observed that 53 +/- 4% of 374 microM VX disappeared from spiked plasma after 2 h. VX disappearance was mainly related to enzymatic cleavage of the P-S bond (Km = 2.5 mM and Vmax = 13.3 nmol min-1 ml-1 of rat plasma). The activity was totally inhibited by 1 mM Hg2+ and was also inhibited by metal chelators.

  12. The diverse applications of plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  13. The diverse applications of plasma

    SciTech Connect

    Sharma, Mukul Darwhekar, Gajanan; Dubey, Shivani; Jain, Sudhir Kumar

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  14. Bodies in flowing plasmas - Laboratory studies

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, U.

    1981-01-01

    A brief review of early rudimentary laboratory studies of bodies in flowing, rarefied plasmas is presented (e.g., Birkeland, 1908), along with a discussion of more recent parametric studies conducted in steady plasma wind tunnels, which includes the study by Hall et al. (1964), in which a strong ion density enhancement in the center of the ion void created downstream from the body was observed. Good agreement was found between the experimental results and theoretical calculations which omit ion thermal motion. Examples in which in situ data on the interaction between satellites and the ionospheric plasma have been elucidated by the laboratory results are presented, and include evidence for a midwake axial ion peak, and ion current density in the near-wake region. The application of the ionospheric laboratory to basic space plasma physics is discussed, and its application to some types of solar system plasma phenomena is illustrated.

  15. Fundamental processes of fuel removal by cyclotron frequency range plasmas and integral scenario for fusion application studied with carbon co-deposits

    NASA Astrophysics Data System (ADS)

    Möller, S.; Wauters, T.; Kreter, A.; Petersson, P.; Carrasco, A. G.

    2015-08-01

    Plasma impact removal using radio frequency heated plasmas is a candidate method to control the co-deposit related tritium inventory in fusion devices. Plasma parameters evolve according to the balance of input power to losses (transport, radiation, collisions). Material is sputtered by the ion fluxes with impact energies defined by the plasma sheath. H2, D2 and 18O2 plasmas are produced in the carbon limiter tokamak TEXTOR. Pre-characterised a-C:D layers are exposed to study local removal rates. The D2 plasma exhibits the highest surface release rate of 5.7 ± 0.9 ∗ 1019 D/m2s. Compared to this the rate of the O2 plasma is 3-fold smaller due to its 11-fold lower ion flux density. Re-deposition of removed carbon is observed, indicating that pumping and ionisation are limiting the removal in TEXTOR. Presented models can explain the observations and allow tailoring removal discharges. An integral application scenario using ICWC and thermo-chemical removal is presented, allowing to remove 700 g T from a-C:DT co-deposits in 20 h with fusion compatible wall conditions using technical specifications similar to ITER.

  16. Study of nanosecond discharges in different H2 air mixtures at atmospheric pressure for plasma-assisted applications

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne; Kobayashi, Sumire; Bonaventura, Zdenek; Tholin, Fabien; Popov, Nikolay

    2016-09-01

    This paper presents 2D simulations of nanosecond pulsed discharges between two point electrodes in different H2/air mixtures and in air at atmospheric pressure. A fluid model is coupled with detailed kinetic schemes for air and different H2/air mixtures to simulate the discharge dynamics. First, as the positive and negative ionization waves propagate in the interelectrode gap, it has been observed that in H2/air mixtures with equivalence ratios between 0.3 and 2, major positive ions produced by the nanosecond discharge are N2+,O2+and HN2+.The discharge dynamics is shown to vary only slightly for equivalence ratios of the H2/air mixture between 0.3 and 2. Then, as the discharge transits to a nanosecond spark discharge, we have studied the different chemical reactions that lead to fast gas heating and to the production of radicals, as O,H and OH. Both thermal and chemical effects of the nanosecond spark discharge are of interest for plasma assisted combustion applications. This work has been supported by the project DRACO (Grant No. ANR-13-IS09-0004) and the french russian LIA Kappa.

  17. Novel and sensitive UPLC-MS/MS method for quantification of sofosbuvir in human plasma: application to a bioequivalence study.

    PubMed

    Rezk, Mamdouh R; Basalious, Emad B; Amin, Mohammed E

    2016-09-01

    A novel and sensitive LC-MS/MS method was developed and validated for determination of sofosbuvir (SF) using eplerenone as an internal standard. The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Extraction with tert-butyl methyl ether was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column by pumping 0.1% formic acid and acetonitrile in an isocratic mode at a flow rate of 0.35 mL/min. Method validation was performed as per the US Food and Drug Administration guidelines and the standard curves were found to be linear in the range of 0.25-3500 ng/mL for SF. The intra- and inter-day precision and accuracy results were within the acceptable limits. A very short run time of 1 min made it possible to analyze more than 500 human plasma samples per day. A very low quantification limit of SF allowed the applicability of the developed method for determination of SF in a bioequivalence study in human volunteers. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Development and validation of a quantification method for cucurbitacins E and I in rat plasma: Application to population pharmacokinetic studies.

    PubMed

    Fiori, Giovana Maria Lanchoti; D'Agate, Salvatore; Rocha, Adriana; Pereira, Ana Maria Soares; Pasqua, Oscar Della; Lopes, Norberto Peporine

    2017-02-20

    Cucurbitacin E is a potential drug candidate due to its anticancer activity, recognition of its molecular targets, and synergism with other drugs used for cancer treatment. However, the use of cucurbitacin E in clinical practice is not possible because of important knowledge gaps in its preclinical and clinical pharmacokinetic characteristics. Cucurbitacin E is hydrolyzed to cucurbitacin I in plasma and in human liver microsomes. The aim of this study was to evaluate the population pharmacokinetics of cucurbitacin E and of its metabolite cucurbitacin I in rats. The method for the sequential analysis of cucurbitacins E and I in rat plasma was developed using LC-MS/MS. Plasma aliquots of 50μL were deproteinized with acetonitrile and clobazam was added as internal standard. The extracts were injected into an RP-18 column and eluted with a mobile phase consisting of a mixture of acetonitrile:water:methanol (32:35:33, v/v/v). The method was precise and accurate, showing linearity in the range of 1-100ng cucurbitacin E/mL plasma and of 0.4-200ng cucurbitacin I/mL plasma. The method was applied to the pharmacokinetic evaluation of cucurbitacin E administered intravenously to male Wistar rats (1mg/kg). Serial blood samples were collected up to 24h after administration. The plasma concentrations of cucurbitacin E were quantified up to 16h, while the plasma concentrations of cucurbitacin I remained below the limit of quantification. A population pharmacokinetic model was developed for cucurbitacin E using the NONMEM program, with adequate goodness of fit and predictive performance. The following pharmacokinetic parameters were obtained: release time of 0.45h, volume of distribution of 27.22L, clearance of 4.13L/h, and elimination half-life of 4.57h.

  19. Determination of roxithromycin in human plasma by HPLC with fluorescence and UV absorbance detection: application to a pharmacokinetic study.

    PubMed

    Główka, Franciszek K; Karaźniewicz-Łada, Marta

    2007-06-01

    A selective HPLC method with fluorescence detection for the determination of roxithromycin (ROX) in human plasma was described. After solid-phase extraction (SPE), ROX and erythromycin (internal standard, I.S.) were derivatized by treatment with 9-fluorenylmethyl chloroformate (FMOC-Cl). Optimal resolution of fluorescence derivatives of ROX and I.S. was obtained during one analytical run using reversed phase, C(18) column. The mobile phase was composed of potassium dihydrogenphosphate solution, pH 7.5 and acetonitrile. Fluorescence of the compounds was measured at the maximum excitation, 255 nm and emission, 313 nm, of ROX derivatives. Validation parameters of the method were also established. After SPE, differences in recoveries of ROX and erythromycin from human plasma were observed. The linear range of the standard curve of ROX in plasma was 0.5-10.0 mg/l. The validated method was successfully applied for pharmacokinetic studies of ROX after administration of a single tablet of ROX.

  20. Clinical applications of plasma based electrosurgical systems

    NASA Astrophysics Data System (ADS)

    Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.

    2013-02-01

    Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.

  1. Large area cold plasma applicator for decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, G. A.

    2008-04-01

    Cold plasma applicators have been used in the Medical community for several years for uses ranging from hemostasis ("stop bleeding") to tumor removal. An added benefit of this technology is enhanced wound healing by the destruction of infectious microbial agents without damaging healthy tissue. The beam is typically one millimeter to less than a centimeter in diameter. This technology has been adapted and expanded to large area applicators of potentially a square meter or more. Decontamination applications include both biological and chemical agents, and assisting in the removal of radiological agents, with minimal or no damage to the contaminated substrate material. Linear and planar multiemitter array plasma applicator design and operation is discussed.

  2. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  3. Determination of dexmedetomidine in children's plasma by ultra-performance liquid chromatography tandem mass spectrometry and application to pharmacokinetic study.

    PubMed

    Liu, Hua-Cheng; Sun, Wei; Wang, Cheng-Yu; Ying, Wei-Yang; Zheng, Li-Dan; Zeng, Rui-Feng; Wang, Zhe; Ge, Ren-Shan

    2016-06-15

    A rapid, sensitive, and selective ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed and validated for the determination and pharmacokinetic investigation of dexmedetomidine in children's plasma. Sample preparation was accomplished through a simple one-step deproteinization procedure with 0.2mL of acetonitrile to a 0.1mL plasma sample. Plasma samples were separated by UPLC on an Acquity UPLC BEH C18 column using a mobile phase consisting of acetonitrile-0.1% formic acid in water with gradient elution. The total run time was 3.1min and the elution of dexmedetomidine was at 1.24min. The detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction-monitoring mode using the respective transitions m/z 201.3→95.1 for dexmedetomidine and m/z 204.2→98.0 for the internal standard, respectively. The calibration curve was linear over the range of 0.05-10ng/mL with a lower limit of quantitation of 0.05ng/mL. Mean recovery rate of dexmedetomidine in plasma was in the range of 86.7-89.1%. Intra-day and inter-day precision were both <11.6%. This method was successfully applied in pharmacokinetic study after commencement of 1.0μg/kg dexmedetomidine infusion in children.

  4. Biomedical applications and diagnostics of atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj; Puač, N.; Lazović, S.; Maletić, D.; Spasić, K.; Malović, G.

    2012-03-01

    Numerous applications of non-equilibrium (cold, low temperature) plasmas require those plasmas to operate at atmospheric pressure. Achieving non-equilibrium at atmospheric pressure is difficult since the ionization growth is very fast at such a high pressure. High degree of ionization on the other hand enables transfer of energy between electrons and ions and further heating of the background neutral gas through collisions between ions and neutrals. Thus, all schemes to produce non-equilibrium plasmas revolve around some form of control of ionization growth. Diagnostics of atmospheric pressure plasmas is difficult and some of the techniques cannot be employed at all. The difficulties stem mostly from the small size. Optical emission spectroscopy and laser absorption spectroscopy require very high resolution in order to resolve the anatomy of the discharges. Mass analysis is not normally applicable for atmospheric pressure plasmas, but recently systems with triple differential pumping have been developed that allow analysis of plasma chemistry at atmospheric pressures which is essential for numerous applications. Application of such systems is, however, not free from problems. Applications in biomedicine require minimum heating of the ambient air. The gas temperature should not exceed 40 °C to avoid thermal damage to the living tissues. Thus, plasmas should operate at very low powers and power control is essential. We developed unique derivative probes that allow control of power well below 1 W and studied four different sources, including dielectric barrier discharges, plasma needle, atmospheric pressure jet and micro atmospheric pressure jet. The jet operates in plasma bullet regime if proper conditions are met. Finally, we cover results on treatment of bacteria and human cells as well as treatment of plants by plasmas. Localized delivery of active species by plasmas may lead to a number of medical procedures that may also involve removal of bacteria, fungi and

  5. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  6. Feasibility study to evaluate plasma quench process for natural gas conversion applications. [Quarterly report], July 1, 1993--September 30, 1993

    SciTech Connect

    Thomas, C.P.; Kong, P.C.; Detering, B.A.

    1993-12-31

    The objective of this work was to conduct a feasibility study on a new process, called the plasma quench process, for the conversion of methane to acetylene. FY-1993 efforts were focused on determining the economic viability of this process using bench scale experimental data which was previously generated. This report presents the economic analysis and conclusions of the analysis. Future research directions are briefly described.

  7. Study of plasma modified-PTFE for biological applications: relationship between protein resistant properties, plasma treatment, surface composition and surface roughness.

    PubMed

    Vandencasteele, Nicolas; Nisol, Bernard; Viville, Pascal; Lazzaroni, Roberto; Castner, David G; Reniers, François

    2008-09-15

    PTFE samples were treated by low-pressure, O2 RF plasmas. The adsorption of BSA was used as a probe for the protein resistant properties. The exposure of PTFE to an O2 plasma leads to an increase in the chamber pressure. OES reveals the presence of CO, CO2 and F in the gas phase, indicating a strong etching of the PTFE surface by the O2 plasma. Furthermore, the high resolution C1s spectrum shows the appearance of CF3, CF and C-CF components in addition to the CF2 component, which is consistent with etching of the PTFE surface. WCA as high as 160° were observed, indicating a superhydrophobic behaviour. AFM Images of surfaces treated at high plasma power showed a increase in roughness. Lower amounts of BSA adsorption were detected on high power, O2 plasma-modified PTFE samples compared to low power, oxygen plasma-modified ones.

  8. Determination of Acyclovir in Human Plasma Samples by HPLC Method with UV Detection: Application to Single-Dose Pharmacokinetic Study

    PubMed Central

    Zendelovska, Dragica; Simeska, Suzana; Atanasovska, Emilija; Georgievska, Kalina; Kikerkov, Igor; Labachevski, Nikola; Jakovski, Krume; Balkanov, Trajan

    2015-01-01

    BACKGROUND: The aim of this study is estimation of pharmacokinetic parameters: Cmax, tmax, t1/2, AUC0-t and AUC0-∞ with the two-way analysis of variance, single observation (ANOVA) for two preparations containing acyclovir. OBJECTIVE: In order to evaluate pharmacokinetic study of acyclovir, method for quantitative determination of acyclovir in human plasma should be simple, rapid and reproducible. Therefore, the method is developed, validated and applied for analysis of acyclovir in plasma samples obtained from healthy volunteers. MATERIAL AND METHODS: High performance liquid chromatographic (HPLC) method with UV-detection for the determination of acyclovir in human plasma is presented. This method involves protein precipitation with 20 % (V/V) perchloric acid. The chromatographic separation was accomplished on a reversed phase C8 column with a mobile phase composed of 0.1 % (V/V) triethylamine in water (pH 2.5). No internal standard is required. UV detection was set at 255 nm. The method was successfully applied for the evaluation of pharmacokinetic profiles of acyclovir tablets in 24 healthy volunteers. RESULTS: The validation results shows that proposed method is rugged, precise (RSDs for intra- and inter-day precision ranged from 1.02 to 8.37 %) and accurate (relative errors are less than 6.66 %). The calibration curve was linear in the concentration range of 0.1-2.0 µg/ml and the limit of quantification was 0.1 µg/ml. The Cmax, tmax and AUCs for the two products were not statistically different (p>0.05), suggesting that the plasma profiles generated by Zovirax were comparable to those produced by acyclovir manufactured by Jaka 80 company. CONCLUSION: Good precision, accuracy, simplicity, sensitivity and shorter time of analysis of the method makes it particularly useful for processing of multiple samples in a limited period of time for pharmacokinetic study of acyclovir. PMID:27275193

  9. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  10. Quantitative determination of pimozide in human plasma by liquid chromatography-mass spectrometry and its application in a bioequivalence study.

    PubMed

    Yan, Miao; Li, Huan-De; Chen, Ben-Mei; Liu, Xiao-Lei; Xu, Ping; Zhu, Yun-Gui

    2010-04-06

    A simple, sensitive and specific LC-ESI/MS method was developed for the determination of pimozide in human plasma. Pimozide and cinnarizine (internal standard) were isolated from plasma samples by liquid-liquid extraction. The chromatographic separation was accomplished on a Thermo Hypersil-HyPURITY C18 reversed-phase column (150mmx2.1mm, i.d., 5microm) with the mobile phase consisting of 5mM ammonium acetate (pH 3.5, adjusted with acetic acid)-methanol-acetonitrile (39:5:56, v/v/v). The lower limit of quantification was 0.02ng/mL, and the assay exhibited a linear range of 0.025-12.800ng/mL. The established method has been successfully applied to a bioequivalence study of 2 pimozide formulations in 32 healthy male Chinese volunteers.

  11. Quantification of Lumefantrine in Human Plasma Using LC-MS/MS and Its Application to a Bioequivalence Study.

    PubMed

    Pingale, Satish G; Mangaonkar, Kiran V

    2013-01-01

    An analytical method based on protein precipitation has been developed and validated for analysis of lumefantrine in human plasma. Artesunate was used as an internal standard for lumefantrine. Inertsil ODS column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode using an API-3000 system. The total run time was 2.5 minutes. The proposed method has been validated with linear range of 200-20000 ng/mL for lumefantrine. The intrarun and interrun precision values are within 6.66% and 5.56%, respectively, for lumefantrine at the lower limit of quantification level. The overall recovery for lumefantrine and artesunate was 93.16% and 91.05%, respectively. This validated method was used successfully for analysis of plasma samples from a bioequivalence study.

  12. HPLC analysis of plasma 9-methoxycanthin-6-one from Eurycoma longifolia and its application in a bioavailability/pharmacokinetic study.

    PubMed

    Tan, Saadiah; Yuen, Kah-Hay; Chan, Kit-Lam

    2002-04-01

    A new and simple HPLC method using fluorescence detection was developed to determine 9-methoxycanthin-6-one, an active compound of Eurycoma longifolia Jack in rat and human plasma. The method entailed direct injection of plasma sample after deproteinization using acetonitrile. The mobile phase comprised acetonitrile and distilled water (55 : 45, v/v). Analysis was run at a flow rate of 1.0 ml/min with the detector operating at an excitation wavelength of 371 nm and emission wavelength of 504 nm. The method was specific and sensitive with a detection limit of 0.6 ng/ml and a quantification limit of approximately 1.6 ng/ml. The method was applied in a pilot pharmacokinetic/bioavailability study of the compound in rats. Less than 1 % of the compound was found to be absorbed orally.

  13. A rapid LC-MS/MS method for quantitation of eszopiclone in human plasma: application to a human pharmacokinetic study.

    PubMed

    Hotha, Kishore Kumar; Vijaya Bharathi, D; Jagadeesh, B; Ravindranath, L K; Jaya Veera, K N; Venkateswarulu, V

    2012-02-01

    A highly reproducible, specific and cost-effective LC-MS/MS method was developed for simultaneous estimation of eszopiclone (ESZ) with 50 μL of human plasma using paroxetine as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode using the electrospray ionization technique. A simple liquid-liquid extraction process was used to extract ESZ and IS from human plasma. The total run time was 1.5 min and the elution of ESZ and IS occurred at 0.90 min; this was achieved with a mobile phase consisting of 0.1% formic acid-methanol (15:85, v/v) at a flow rate of 0.50 mL/min on a Discover C(18) (50 × 4.6 mm, 5 µm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.1 ng/mL for ESZ. A linear response function was established for the range of concentrations 0.10-120 ng/mL (r > 0.998) for ESZ. The intra- and inter-day precision values for ESZ were acceptable as per FDA guidelines. Eszopiclone was stable in the battery of stability studies, viz. bench-top, autosampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.

  14. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

    PubMed

    Lahna, Kurnia; Idroes, Rinaldi; Idris, Nasrullah; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Pardede, Marincan; Kagawa, Kiichiro

    2016-03-01

    Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.

  15. Reversed phase liquid chromatography method with fluorescence detection of gemifloxacin in rat plasma and its application to the pharmacokinetic study.

    PubMed

    Kaiser, Moacir; Grünspan, Lauren D; Costa, Teresa Dalla; Tasso, Leandro

    2011-11-15

    A simple, accurate and precise high-performance liquid chromatographic method with fluorescence detection was developed and validated for the determination of gemifloxacin (GEM) in rat plasma using furosemide as internal standard (I.S.). Plasma samples were pretreated by direct deproteinization and all samples and standard solutions were chromatographed at 45°C using triethylamine solution (0.5%, v/v, pH 3.0±0.1), methanol and acetonitrile (63:30:7, v/v/v) as the mobile phase. Chromatographic resolution was achieved using a RP-C(18) column (Atlantis, Waters, 150 mm × 4.6 mm, 5 μm) at a flow rate of 1.0 mL min(-1) and an injection volume of 30 μL. The analytes were measured by fluorescence detection with excitation and emission wavelengths of 344 nm and 399 nm, respectively. The retention times for GEM and I.S. were approximately 7.5 and 12.6 min, respectively. The lower limit of quantitation (LLOQ) was 20 ng mL(-1) and the calibration curves were linear over a concentration range of 20-5000 ng mL(-1). The intra- and inter-day precisions, expressed by relative standard deviation (R.S.D.) were lower than 6.24% and 4.49%, respectively. The accuracy ranged from 91.3% to 112% and from 98.8% to 106% for the lower and upper limit of quantitation of the calibration curve, respectively. Ratio of peak area of analyte to I.S. was used for quantification of plasma samples. No interferences from endogenous substances were found. The recovery of GEM and I.S. from plasma was greater than 90%. Drug stability in plasma was shown at room temperature for 4h, after three freeze-thaw cycles for 24h, in freezer at -80°C for 60 days, and in the autosampler after processing for 12h. The utility of the assay was confirmed by the successful analysis of plasma samples from GEM pharmacokinetics studies in the rats after intravenous administration. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Overview of current applications in plasma medicine

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Stalder, Kenneth R.

    2017-02-01

    Plasma medicine is a rapidly growing field of treatment, with the number and type of medical applications growing annually, such as dentistry, cancer treatment, wound treatment, Antimicrobial (bacteria, biofilm, virus, fungus, prions), and surface sterilization. Work promoting muscle and blood vessel regeneration and osteointegration is being investigated. This review paper will cover the latest treatments using gas-based plasmas in medicine. Disinfection of water and new commercial systems will also be reviewed, as well as vaccine deactivation. With the rapid increase in new investigators, development of new devices and systems for treatment, and wider clinical applications, Plasma medicine is becoming a powerful tool in in the field of medicine. There are a wide range of Plasma sources that allows customization of the effect. These variations include frequency (DC to MHz), voltage capacity (kV), gas source (He, Ar; O2, N2, air, water vapor; combinations), direct/indirect target exposure, and water targets.

  17. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  18. A high-performance liquid chromatographic method for determination of scopolin in rat plasma: application to pharmacokinetic studies.

    PubMed

    Xia, Yu-Feng; Dai, Yue; Wang, Qiang; Cai, Fei

    2008-10-01

    An analytical method based on high-performance liquid chromatographic (HPLC) with ultraviolet (UV) detection was developed for determination of scopolin in rat plasma using aesculin as internal standard (IS). After protein precipitation of plasma sample with methanol, the supernatant was directly injected and analyzed. Chromatographic separation was achieved on a C18 column using methanol and distilled water (22:78, v/v) containing 0.2% (v/v) glacial acetic acid as mobile phase with a column temperature of 30 degrees C. The UV detector was set at 338 nm. The calibration curve was linear over the range of 0.105-13.125 microg/mL with a correlation coefficient of 0.9998. The retention times of aesculin and scopolin were 10.4 and 12.8 min, respectively. The recoveries for plasma samples of 0.105, 4.725 and 13.125 microg/mL were 91.08, 95.30 and 96.10%, respectively. The RSD of intra- and inter-day assay variations was less than 7.35%. The lower limit of detection was 0.03 microg/mL .This HPLC assay is a simple, sensitive and accurate and was successfully applied to the pharmacokinetic study of scopolin in rats.

  19. Determination of pinocembrin in human plasma by solid-phase extraction and LC/MS/MS: application to pharmacokinetic studies.

    PubMed

    Yan, Bei; Cao, Guoying; Sun, Taohua; Zhao, Xi; Hu, Xin; Yan, Jiling; Peng, Yueying; Shi, Aixin; Li, Yang; Xue, Wei; Li, Min; Li, Kexin; Liu, Yingfa

    2014-12-01

    A sensitive, fast and specific method for the quantitation of pinocembrin in human plasma based on high-performance liquid chromatography-tandem mass spectrometry (LC/MS/MS) was developed and validated. Clonazepam was used as the internal standard (IS). After solid-phase extraction of 500 μL plasma, pinocembrin and the IS were separated on a Luna C8 column using the mobile phase composed of acetonitrile-0.3 mm ammonium acetate solution (65:35, v/v) at a flow rate of 0.25 mL/min in isocratic mode. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source in negative mode by AB SCIEX Qtrap 5500. The assay was linear from 1 to 400 ng/mL, with within- and between-run accuracy (relative error) from -1.82 to 0.54%, and within- and between-run precision (CV) below 5.25%. The recovery was above 88% for the analyte at 1, 50 and 300 ng/mL. This analytical method was successful for the determination of pinocembrin in human plasma and applied to a pharmacokinetic study of pinocembrin injection in healthy volunteers after intravenous drip administration. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Determination of salvianolic acid C in rat plasma using liquid chromatography-mass spectrometry and its application to pharmacokinetic study.

    PubMed

    Song, Junke; Zhang, Wen; Sun, Jialin; Zhang, Xue; Xu, Xiaona; Zhang, Li; Feng, Zhangying; Du, Guanhua

    2016-03-01

    A sensitive and reliable LC-ESI-MS method for the determination of salvianolic acid C in rat plasma has been developed and validated. Plasma samples were prepared by liquid-liquid extraction with ethyl acetate and separated on a Zorbax SB-C18 column (3.5 µm, 2.1 × 100 mm) at a flow rate of 0.3 mL/min using acetonitrile-water as mobile phase. The detection was carried out by a single quadrupole mass spectrometer with electrospray ionization source and selected ion monitoring mode. Linearity was obtained for salvianolic acid C ranging from 5 to 1000 ng/mL. The intra- and inter-day precisions (RSD, %) didn't exceed 9.96%, and the accuracy (RE, %) were all within ±3.64%. The average recoveries of the analyte and internal standard were >89.13%. Salvianolic acid C was proved to be stable during all sample storage, preparation and analytic procedures. The validated method was successfully applied to pharmacokinetic study after oral and intravenous administration of salvianolic acid C to rats. The absolute oral bioavailability of salvianolic acid C was 0.29 ± 0.05%. This method was further applied to simultaneous determination of salvianolic acid A, salvianolic acid B and salvianolic acid C in rat plasma and showed good practicability. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Determination and validation of chikusetsusaponin IVa in rat plasma by UPLC-MS/MS and its application to pharmacokinetic study.

    PubMed

    Wang, Ying; Liu, Shi-Ping; Guo, Mei-Hua; Wang, Zhuo

    2016-09-01

    A novel, sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometric method for the quantification of chikusetsusaponin IVa (CHS-IVa) in rat plasma was established and validated. Plasma samples were pre-treated by precipitation of protein with acetonitrile and chromatographed on a Waters Symmetry C18 analytical column (4.6 × 50 mm, i.d., 3.5 μm) using a mobile phase consisting of methanol and water containing 0.05% formic acid (55:45, v/v) at a flow rate of 0.4 mL/min. The deprotonated molecular ions [M - H](-) were employed in electrospray negative ionization mode and selected reaction monitoring transitions were performed for detection. The calibration curves exhibited good linearity (r > 0.99) over the range of 0.5-1000 ng/mL for CHS-IVa. The recoveries of CHS-IVa were >92.5% and exhibited no severe matrix effect. This method was successfully applied in the pharmacokinetic study of CHS-IVa in rats. For oral administration, the plasma concentrations of CHS-IVa increased to a peak value at 0.35 ± 0.14 h, followed by a gradual decrease to the lower limit of quantitation in 24 h. For intravenous administration, the plasma concentrations of CHS-IVa decreased quickly (t1/2 , 1.59 ± 0.25 h). The absolute bioavailability of CHS-IVa in rats was 8.63%. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Beam Plasma Turbulence Study.

    DTIC Science & Technology

    1983-05-01

    Ney, and J . F. Karczewski, Spae Sci. Instrum ., 4, 143 (1978). -- ’.. ...... .. " ’- -’ ... -,,, ,i, ,, - . --. : s v.-’ Z XW , - .. . Ř ’ - ’ " p...interactions with the able plasma theorists, Dr. J . R. Jasperse at the Air Force Geophysics Laboratory, Drs. B. Basu and J . Retterer of the Space Data Analysis...Drs. J . D. Winningham and J . Burch at the Southwest Research Institute, Dr. D. Klumpar of the University of Texas at Dallas, Dr. P. Kintner of the

  3. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  4. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study.

    PubMed

    Zhang, Lin; Zhang, Zhi-Qing; Dong, Wei-Chong; Jing, Shao-Jun; Zhang, Jin-Feng; Jiang, Ye

    2013-11-29

    In present study, accuracy assessment on the analysis of unbound drug in plasma was made by comparing traditional centrifugal ultrafiltration (CF-UF) with hollow fiber centrifugal ultrafiltration (HFCF-UF). We used metformin (MET) as a model drug and studied the influence of centrifugal time, plasma condition and freeze-thaw circle times on the ultrafiltrate volume and related effect on the measurement of MET. Our results demonstrated that ultrafiltrate volume was a crucial factor which influenced measurement accuracy of unbound drug in plasma. For traditional CF-UF, the ultrafiltrate volume cannot be well-controlled due to a series of factors. Compared with traditional CF-UF, the ultrafiltrate volume by HFCF-UF can be easily controlled by the inner capacity of the U-shaped hollow fiber inserted into the sample under enough centrifugal force and centrifugal time, which contributes to a more accurate measurement. Moreover, the developed HFCF-UF method achieved a successful application in real plasma samples and exhibited several advantages including high precision, extremely low detection limit and perfect recovery. The HFCF-UF method offers the advantage of highly satisfactory performance in addition to being simple and fast in pretreatment, with these characteristics being consistent with the practicability requirements in current scientific research.

  5. Simultaneous analysis of thiamphenicol and its prodrug thiamphenicol glycinate in human plasma and urine by high performance liquid chromatography: application to pharmacokinetic study.

    PubMed

    Chen, Xijing; Yang, Bing; Ni, Liang; Wang, Guangji

    2006-06-07

    A simple and sensitive method for simultaneous determination of the active compound, thiamphenicol (TAP) and its prodrug, thiamphenicol glycinate (TG) in human plasma and urine is described. The procedure involved extraction of TG and TAP with ethyl acetate (plasma) or 100-fold dilution with the mobile phase (urine) followed by determination by reversed-phase high performance liquid chromatography (HPLC) with UV detection at 224 nm. Separation of the compounds was achieved on a column packed with Hypersil ODS2. The mobile phase consisted of acetonitrile-water containing 0.003 M tetrabutyl ammonium bromide and 0.056 M ammonium acetate (87:13, v/v) with a flow rate of 1.0 ml/min. The chromatograms did not contain interfering peaks due to the suitable extraction procedure and chromatographic conditions. The calibration curves of TG and TAP were linear ranging from 0.78 to 100 microg/ml in plasma and in urine. The intra-day and inter-day relative standard deviations (S.D.) were less than 10%. The recoveries of TG and TAP in plasma and urine were above 80%. TG was not stable in plasma samples and after extraction at ambient temperature or in freeze-thaw cycles, and hence the samples for injection on HPLC column should be stored in refrigerator or under ice cooling prior to analysis, and the plasma samples should not experience the freeze-thaw cycle more than one time. Unlike TAP, TG could not be detected in most urine samples. Application of this method demonstrated that it was feasible for the clinical pharmacokinetic study.

  6. Sports medicine applications of platelet rich plasma.

    PubMed

    Mishra, Allan; Harmon, Kimberly; Woodall, James; Vieira, Amy

    2012-06-01

    Platelet rich plasma (PRP) is a powerful new biologic tool in sports medicine. PRP is a fraction of autologous whole blood containing and increased number of platelets and a wide variety of cytokines such as platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta-1 (TGF-B1), fibroblast growth factor (FGF), Insulin-like growth factor-1 (IGF-1) among many others. Worldwide interest in this biologic technology has recently risen sharply. Basic science and preclinical data support the use of PRP for a variety of sports related injuries and disorders. The published, peer reviewed, human data on PRP is limited. Although the scientific evaluation of clinical efficacy is in the early stages, elite and recreational athletes already use PRP in the treatment of sports related injuries. Many questions remain to be answered regarding the use of PRP including optimal formulation, including of leukocytes, dosage and rehabilitation protocols. In this review, a classification for platelet rich plasma is proposed and the in-vitro, preclinical and human investigations of PRP applications in sports medicine will be reviewed as well as a discussion of rehabilitation after a PRP procedure. The regulation of PRP by the World Anti-Doping Agency will also be discussed. PRP is a promising technology in sports medicine; however, it will require more vigorous study in order to better understand how to apply it most effectively.

  7. Determination of quetiapine in human plasma by LC-MS/MS and its application in a bioequivalence study.

    PubMed

    Li, Min; Zhang, Shuo; Shi, Aixin; Qi, Wenyuan; Liu, Yao

    2017-08-15

    A selective, sensitive and simple high performance liquid chromatography tandem mass spectrometric (HPLC-MS/MS) method for determining quetiapine in human plasma was developed and validated. One-step protein precipitation with acetonitrile was used to pretreat plasma samples. Carbamazepine was used as internal standard. An automated liquid handling workstation with 96-well protein precipitate plate was used to facilitate the process. The chromatographic separation was achieved on a Waters Xbridge C18 column (3.5μm, 2.1mm×50mm). Gradient elution was set with a mobile phase of acetonitrile/water (containing 10mM ammonium acetate and 0.1% formic acid).The flow rate was 0.4mL/min and total analytical run time was 3min. The analysis was conducted using a triple quadrupole tandem mass spectrometer with an electrospray ionization source operating in positive ion mode. The multiple reaction monitoring of transition were m/z 384.2→253.1 for quetiapine and m/z 237.0→194.0 for carbamazepine, respectively. The linear concentration range for the standard curve of quetiapine was 0.5-400ng/mL for a 5μL injection of the pretreated sample (original plasma sample, 50μL). The intra-day and inter-day accuracy and precision were all less than 15%. The method was successfully used in a bioequivalence study comparing two quetiapine extended-release tablets in Chinese volunteers. Copyright © 2017. Published by Elsevier B.V.

  8. Simultaneous Quantification of Baricitinib and Methotrexate in Rat Plasma by LC-MS/MS: Application to a Pharmacokinetic Study

    PubMed Central

    Veeraraghavan, Sridhar; Thappali, Satheeshmanikandan R. S.; Viswanadha, Srikant; Vakkalanka, Swaroop; Rangaswamy, Manivannan

    2016-01-01

    Efficacy assessments using a combination of baricitinib and methotrexate necessitate the development of an analytical method for the determination of both drugs in plasma with precision. A high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of baricitinib and methotrexate in rat plasma. Extraction of baricitinib, methotrexate, and tolbutamide (internal standard; IS) from 50 µL of rat plasma was carried out by protein precipitation with methanol. Chromatographic separation of the analytes was performed on the YMC pack ODS AM (150 mm × 4.6 mm, 5 µm) column under gradient conditions with methanol: 2.0 mM ammonium acetate buffer as the mobile phases at a flow rate of 1 mL/min. The precursor ion and product ion transition for both analytes and IS were monitored on a triple quadrupole mass spectrometer, operated with selective reaction monitoring in positive ionization mode. The method was validated over a concentration range of 0.5–250.00 ng/mL for baricitinib and methotrexate. Mean extraction recoveries for baricitinib, methotrexate, and IS of 86.8%, 89.4%, and 91.8% were consistent across low, medium, and high QC levels, respectively. Precision and accuracy at low, medium, and high quality control levels were less than 15% across the analytes. Benchtop, wet, freeze-thaw, and long-term stability were evaluated for both of the analytes. The analytical method was applied to support the pharmacokinetic study of simultaneous estimation of baricitinib and methotrexate in Wistar rats. Assay reproducibility was demonstrated by reanalysis of 18 incurred samples PMID:27222609

  9. Determination of free and glucuronidated kaempferol in rat plasma by LC-MS/MS: application to pharmacokinetic study.

    PubMed

    Zhang, Wei-Dong; Wang, Xiao-Juan; Zhou, Si-Yuan; Gu, Yi; Wang, Rong; Zhang, Tao-Li; Gan, Hong-Quan

    2010-08-01

    Flavanoid kaempferol is mainly present as glucuronides and sulfates in rat plasma, and small amounts of the intact aglycone are also detected. In the this study, a rapid, specific and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry method (HPLC-MS/MS) was developed and validated for determination of kaempferol and its major metabolite glucuronidated kaempferol in rat plasma. A liquid-liquid extraction with acetic ether was involved for the extraction of kaempferol and internal standard. Analytes were separated on a C18 column (150 mm x 2.1 mm, 4.5 microm, Waters Corp.) with isocratic elution at a flow-rate of 0.3 ml min(-1). The mobile phase was consisted of 0.5% formic acid and acetonitrile (50:50, v/v). The Quattro Premier HPLC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. The method was validated according to the FDA guidelines for validation of bioanalytical method. The validated method was successfully applied to the study of the pharmacokinetics in rats after oral administration of kaempferol with different doses.

  10. Determination of endogenous glycosaminoglycans derived disaccharides in human plasma by HPLC: validation and application in a clinical study.

    PubMed

    Upreti, Vijay V; Khurana, Manoj; Cox, Donna S; Eddington, Natalie D

    2006-02-02

    SB-424323 is a new, orally active anti-thrombotic agent presently in phase-II clinical development, with limited hemorrhagic risk and a unique mechanism of action involving the induction of glycosaminoglycans (GAGs) biosynthesis. The objective of the present study was to develop a simple and rapid high performance liquid chromatography (HPLC) method for determination of endogenous GAGs derived disaccharides in plasma samples from a phase-II clinical study of SB-424323. Sample preparation was a simple heat treatment of the diluted plasma followed by digestion of endogenous GAGs with chondroitinase ABC to yield unsaturated disaccharides, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (DeltaDi-0S), 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose (DeltaDi-4S), and 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose (DeltaDi-6S). These disaccharides were recovered and purified using centrifugal filtration through a filter with 3000 molecular weight cut-off along with externally added internal standard 2-acetamido-2-deoxy-3-O-(2-O-sulfo-beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (DeltaDi-UA2S). A gradient reverse phase HPLC separation was developed on a Waters Symmetry C(18) column (4.6 mm x 150 mm, 5 microm) with a gradient mobile phase system consisting of 0.8 mM tetrabutylammonium hydrogen sulfate and 2mM sodium chloride and acetonitrile at a flow rate of 1.0 mL/min. The eluate was monitored with an ultraviolet detector set at 230 nm. Plasma standard curves were linear (r(2)> or =0.994) in the concentration range 1.0-20 microg/mL with a lower limit of quantification (LLOQ) of 1.0 microg/mL for each of the disaccharide. The mean measured quality control (QC) concentrations for the disaccharides deviated from the nominal concentrations in the range of -8.92 to 5.61% and -16.3 to 16.7%, for inter and intra-day, respectively. The inter and intra-day precision

  11. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  12. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  13. Simultaneous determination of amoxicillin and ambroxol in human plasma by LC-MS/MS: validation and application to pharmacokinetic study.

    PubMed

    Wen, Aidong; Hang, Taijun; Chen, Suning; Wang, Zhirui; Ding, Likun; Tian, Yun; Zhang, Meng; Xu, Xinxin

    2008-11-04

    A rapid, simple and sensitive LC-MS/MS method was developed for simultaneous determination of amoxicillin and ambroxol in human plasma using clenbuterol as internal standard (IS). The plasma samples were subjected to a simple protein precipitation with methanol. Separation was achieved on a Lichrospher C(18) column (150 mm x 4.6mm ID, dp 5 microm) using methanol (containing 0.2% of formic acid) and water (containing 0.2% of formic acid) as a mobile phase by gradient elution at a flow rate of 1.0 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring (MRM) mode by monitoring the ion transitions from m/z 365.9-->348.9 (amoxicillin), m/z 378.9-->263.6 (ambroxol) and m/z 277.0-->203.0 (IS). Calibration curves were linear in the concentration range of 5-20,000 ng/mL for amoxicillin, and 1-200 ng/mL for ambroxol, with the intra- and inter-run precisions of <9% and the accuracies of 100+/-7%. The method has been validated and applied to pharmacokinetic studies of compound amoxicillin and ambroxol hydrochloride tablets in healthy Chinese volunteers.

  14. Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma using HPLC coupled with tandem mass spectrometry: Application to bioequivalence studies.

    PubMed

    Tutunji, Lara F; Tutunji, Maha F; Alzoubi, Mamoun I; Khabbas, Manal H; Arida, Adi I

    2010-03-11

    A sensitive, specific and selective liquid chromatography/tandem mass spectrometric method has been developed and validated for the simultaneous determination of irbesartan and hydrochlorothiazide in human plasma. Plasma samples were prepared using protein precipitation with acetonitrile, the two analytes and the internal standard losartan were separated on a reverse phase C(18) column (50mmx4mm, 3microm) using water with 2.5% formic acid, methanol and acetonitrile (40:45:15, v/v/v (%)) as a mobile phase (flow rate of 0.70mL/min). Irbesartan and hydrochlorothiazide were ionized using ESI source in negative ion mode, prior to detection by multiple reaction monitoring (MRM) mode while monitoring at the following transitions: m/z 296-->269 and m/z 296-->205 for hydrochlorothiazide, 427-->175 for irbesartan. Linearity was demonstrated over the concentration range 0.06-6.00microg/mL for irbesartan and 1.00-112.00ng/mL for hydrochlorothiazide. The developed and validated method was successfully applied to a bioequivalence study of irbesartan (300mg) with hydrochlorothiazide (12.5mg) tablet in healthy volunteers (N=36).

  15. Highly sensitive LC-MS/MS method for determination of galantamine in rat plasma: application to pharmacokinetic studies in rats.

    PubMed

    Suresh, P S; Mullangi, Ramesh; Sukumaran, Sathesh Kumar

    2014-12-01

    A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves a simple liquid-liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra- and inter-day precision were in the ranges of 4.73-11.7 and 5.83-8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats.

  16. Characterization of a compact ECR plasma source and its applications to studies of helium ion damage to tungsten

    NASA Astrophysics Data System (ADS)

    Donovan, D.; Buchenauer, D.; Whaley, J.; Friddle, R.

    2016-02-01

    Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting in the growth of tungsten tendrils. Tendril formation can lead to non-sputtered erosion and dust formation. Here we report on characterization of a compact electron cyclotron resonance (ECR) He plasma source with an ion flux of ˜2.5 × 1019 ions m-2 s-1, average fluence of 3 × 1024 ions m-2, and the surface morphology changes seen on the exposed tungsten surfaces. Exposures of polished tungsten disks at temperatures up to 1270 K have been performed and characterized using scanning electron microscopy and atomic force microscopy (AFM) scans. Bubbles and craters have been seen on the exposed tungsten surface growing to up to 150 nm in diameter. The ECR source has been tested for eventual use on a scanning tunneling microscopy experiment intended to study the early stages of surface morphology change due to He ion exposure.

  17. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  18. Simple and Robust Analysis of Cefuroxime in Human Plasma by LC-MS/MS: Application to a Bioequivalence Study.

    PubMed

    Hu, Xingjiang; Huang, Mingzhu; Liu, Jian; Chen, Junchun; Shentu, Jianzhong

    2014-01-01

    A simple, robust LC-MS/MS assay for quantifying cefuroxime in human plasma was developed. Cefuroxime and tazobactam, as internal standard (IS), were extracted from human plasma by methanol to precipitate protein. Separation was achieved on a Zorbax SB-Aq (4.6 × 250 mm, 5  μ m) column under isocratic conditions. The calibration curve was linear in the concentration range of 0.0525-21.0  μ g/mL (r = 0.9998). The accuracy was higher than 90.92%, while the intra- and interday precision were less than 6.26%. The extraction procedure provides recovery ranged from 89.44% to 92.32%, for both analyte and IS. Finally, the method was successfully applied to a bioequivalence study of a single 500 mg dose of cefuroxime axetil in 22 healthy Chinese male subjects under fasting condition. Bioequivalence was determined by calculating 90% Cls for the ratios of C max, AUC0-t , and AUC0-∞ values for the test and reference products, using logarithmic transformed data. The 90% Cls for the ratios of C max (91.4%~104.2%), AUC0-t (97.4%~110.9%), and AUC0-∞ (97.6%~111.1%) values were within the predetermined range. It was concluded that the two formulations (test for capsule, reference for tablet) analyzed were bioequivalent in terms of rate and extent of absorption and the method met the principle of quick and easy clinical analysis.

  19. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  20. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  1. Chlorpromazine quantification in human plasma by UPLC-electrospray ionization tandem mass spectrometry. Application to a comparative pharmacokinetic study.

    PubMed

    Borges, Ney Carter; Rezende, Vinicius Marcondes; Santana, Jose Marcos; Moreira, Ricardo Pereira; Moreira, Roberto Fernandes; Moreno, Patrícia; Borges, Diego Carter; Donato, José Luiz; Moreno, Ronilson Agnaldo

    2011-12-01

    In the present study a method to quantify chlorpromazine in human plasma using cyclobenzaprine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a liquid-liquid extraction with diethyl ether/dichloromethane (70/30, v/v) and analyzed by an ultra performance liquid chromatography (UPLC) coupled to an electrospray tandem triple quadrupole mass spectrometer in positive mode (UPLC-ES(+)-MS/MS). Chromatography was performed isocratically on an Aquity UPLC BEH C18 1.7 μm (50 mm × 2.1 mm i.d.) operating at 40°C. The mobile phase was a mixture of 65% water+1% formic acid and 35% of acetonitrile at a flow-rate of 0.5 mL/min. The lowest concentration quantified was 0.5 ng/mL and a linear calibration curve over the range 0.5-200 ng/mL was obtained, showing intra-assay precisions from 2.4 to 5.8%, and inter-assay precisions from 3.6 to 9.9%. The intra-assay accuracies ranged from 96.9 to 102.5%, while the inter-assay accuracies ranged from 94.1 to 100.3%. This analytical method was applied in a relative bioavailability study in order to compare a test chlorpromazine 100 mg simple dose formulation versus a reference in 57 volunteers of both sexes. The study was conducted in an open randomized two-period crossover design and with a fourteen days washout period. Plasma samples were obtained over a 144-h interval. Since the 90% CI for both C(max), AUC(last) and AUC(0-inf) were within the 80-125% interval proposed by the Food and Drug Administration and ANVISA, it was concluded that chlorpromazine 100 mg/dose was bioequivalent to the reference formulation, according to both the rate and extent of absorption. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Short-term stability studies of ampicillin and cephalexin in aqueous solution and human plasma: Application of least squares method in Arrhenius equation.

    PubMed

    do Nascimento, Ticiano Gomes; de Jesus Oliveira, Eduardo; Basílio Júnior, Irinaldo Diniz; de Araújo-Júnior, João Xavier; Macêdo, Rui Oliveira

    2013-01-25

    A limited number of studies with application of the Arrhenius equation have been reported to drugs and biopharmaceuticals in biological fluids at frozen temperatures. This paper describes stability studies of ampicillin and cephalexin in aqueous solution and human plasma applying the Arrhenius law for determination of adequate temperature and time of storage of these drugs using appropriate statistical analysis. Stability studies of the beta-lactams in human plasma were conducted at temperatures of 20°C, 2°C, -20°C and also during four cycles of freeze-thawing. Chromatographic separation was achieved using a Shimpak C(18) column, acetonitrile as organic modifier and detection at 215nm. LC-UV-MS/MS was used to demonstrate the conversion of ampicillin into two diastereomeric forms of ampicilloic acid. Stability studies demonstrated degradation greater than 10% for ampicillin in human plasma at 20°C, 2°C and -20°C after 15h, 2.7days, 11days and for cephalexin at the same temperatures after 14h, 3.4days and 19days, respectively, and after the fourth cycle of freezing-thawing. The Arrhenius plot showed good prediction for the ideal temperature and time of storage for ampicillin (52days) and cephalexin (151days) at a temperature of -40°C, but statistical analysis (least squares method) must be applied to avoid incorrect extrapolations and estimated values out uncertainty limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Plasmas as Antennas - Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Borg, Gerard

    1999-11-01

    A variety of antennas are employed in telecommunications and radar systems. Some applications pose special problems. Large structures are easily detected by hostile radar. The performance of multi-element HF-VHF arrays is complicated by mutual coupling between large radiating elements. High speed data communications and radar can be limited by signal decay and ringing. A novel solution is an antenna made of plasma that can be made to disappear on microsecond time scales. Recent experiments at the Australian National University (G.G. Borg et. al. App. Phys. Letts. Vol. 74, 3272-3274 [1999]), have shown that highly efficient (25 - 50radiating elements for the range 3 - 300 MHz can be formed using low power (10 - 50 W average) plasma surface waves launched at one end of a tube containing a suitable gas. Only a single capacitive coupler is needed to launch the waves - there is no electrical connection to the other end of the tube. The regimes of wave propagation correlate with expectations from plasma surface wave theory. Actual communications experiments have shown that these plasma antennas can have surprisingly low noise provided they are excited by the rf surface waves and not by a low frequency or DC ohmic current. Applications to HF-VHF communications and radar are being developed. These include both single ruggedised plasma elements and multi-element arrays.

  4. Quantitation of eleven active compounds of Aidi injection in rat plasma and its application to comparative pharmacokinetic study.

    PubMed

    Liu, Ran; Ma, Ran; Yu, Chunyu; Bi, Cathy Wenchuan; Yin, Yidi; Xu, Huarong; Shang, Hongwei; Bi, Kaishun; Li, Qing

    2016-07-15

    Aidi injection has been widely used for the treatment of colorectal cancer. The purpose of this study was to develop a sensitive and reliable method for simultaneous quantitation of 11 main active ingredients in Aidi injection and to compare the pharmacokinetics of these ingredients in normal and colorectal model cancer rats after tail vein injection. After being extracted by isopropanol-ethyl acetate (1:1, v/v), the plasma samples were analyzed with domperidone as internal standard. Then the analytes were separated on a Venusil MP C18 column with 0.15% formic acid and methanol. The detection was performed on HPLC-MS/MS system with turbo ion spray source in the positive ion and multiple reaction-monitoring mode. The assay was shown to be linear over the range of 0.004-4.0μgmL(-1) of syringin B, astragaloside II and isofraxidin; 0.01-10.0μgmL(-1) of calycosin-7-O-β-d-glucoside and astragaloside IV; 0.02-20.0μgmL(-1) of ginsenoside Rg1, Rb1, Rc and Rd; 0.04-40.0μgmL(-1) of syringin E; 0.06-60.0μgmL(-1) of ginsenoside Re. And the validated method has been successfully applied to compare pharmacokinetic profiles of the 11 ingredients in plasma. The pharmacokinetic results showed here were significant differences in pharmacokinetic parameters for eight analytes between two groups after injection, while no significant differences for astragaloside II, astragaloside IV and ginsenoside Rc. The present study has the advantages of short analysis time and easy sample preparation, which could more comprehensively reflect the quality of Aidi injection in single run. The method proposed could be of great use for pharmacokinetics, bioavailability or bioequivalence studies of Aidi injection in biological samples.

  5. Determination of levocetirizine in human plasma by LC-MS-MS: validation and application in a pharmacokinetic study.

    PubMed

    Wichitnithad, Wisut; Jithavech, Ponsiree; Sanphanya, Kingkan; Vicheantawatchai, Petploy; Rojsitthisak, Pornchai

    2015-01-01

    A fast and simple sample cleanup approach for levocetirizine in human was developed using protein precipitation coupled with LC-MS-MS. Samples were treated with 6% trichloroacetic acid in water prior to LC-MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of acetonitrile and 10 mM ammonium formate pH 3.5 (80:20, v/v) at a flow rate of 1.0 mL/min. The run time was 3.5 min. Mass parameters were optimized to monitor transitions at m/z [M+H](+) 389.0→201.0 for levocetirizine and m/z [M+H](+) 375.3→201.0 for hydroxyzine as internal standard. The lower limit of quantification and the dynamic range were 1.00 and 1.00-500 ng/mL, respectively. Linearity was good for intraday and interday validations (r(2) ≥ 0.995). The mean recoveries were 59 and 69% for levocetirizine and hydroxyzine, respectively. Matrix effect was acceptable with %CV < 15. Hemolytic effect was negligible. Levocetirizine was stable in human plasma for 27 h at room temperature (25°C), for 16 weeks frozen at -70°C, 4 weeks frozen at -20°C, for 24 h in an autosampler at 15°C and for three freeze/thaw cycles. The validated method was applied in a pharmacokinetic study to determine the concentration of levocetirizine in plasma samples. The study provides a fast and simple bioanalytical method for routine analysis and may be particularly useful for bioequivalence studies.

  6. Compact plasma focus devices: Flexible laboratory sources for applications

    SciTech Connect

    Lebert, R.; Engel, A.; Bergmann, K.; Treichel, O.; Gavrilescu, C.; Neff, W.

    1997-05-05

    Small pinch plasma devices are intense sources of pulsed XUV-radiation. Because of their low costs and their compact sizes pinch plasmas seem well suited to supplement research activities based on synchrotrons. With correct optimisation, both continuous radiation and narrowband line radiation can be tailored for specific applications. For the special demand of optimising narrowband emission from these plasmas the scaling of K-shell line emission of intermediate atomic number pinch plasmas with respect to device parameters has been studied. Scaling laws, especially taking into account the transient behaviour of the pinch plasma, give design criteria. Investigations of the transition between column and micropinch mode offer predictable access to shorter wavelengths and smaller source sizes. Results on proximity x-ray lithography, imaging and contact x-ray microscopy, x-ray fluorescence (XFA) microscopy and photo-electron spectroscopy (XPS) were achieved.

  7. HPLC fluorescence method for the determination of nizatidine in human plasma and its application to pharmacokinetic study.

    PubMed

    Çakar, Mahmut B; Ulu, Sevgi T

    2014-06-01

    A sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of nizatidine in human plasma. Nizatidine was derivatized by 4-fluoro-7-nitrobenzofurazan (NBD-F). Chromatographic separation was performed on a Inertsil C18 column (150 mm × 4.6 mm, 5 µm) using isocratic elution by a mobile phase consisting of methanol/water (55:45) at a flow rate of 1.2 mL/min. Amlodipine was used as the internal standard (IS). Fluorescence detector was used operated at 461 nm (excitation) and 517 nm (emission), respectively. The calibration curve was linear over the range of 50-2000 ng/mL. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (150 mg) of nizatidine.

  8. Computational studies of nonlinear dispersive plasma systems

    NASA Astrophysics Data System (ADS)

    Qian, Xin

    Plasma systems with dispersive waves are ubiquitous. Dispersive waves have the property that their wave velocity depends on the wave number of the wave. These waves show up in weakly as well as strongly coupled plasmas, and play a significant role in the underlying plasma dynamics. Dispersive waves bring new challenges to the computer simulation of nonlinear phenomena. The goal of this thesis is to discuss two computational studies of plasma phenomena, one drawn from strongly coupled complex or dusty plasmas, and the other from weakly coupled hydrogen plasmas. In the realm of dusty plasmas, we focus on the problem of three-dimensional (3D) Mach cones which we study by means of Molecular Dynamics (MD) simulations, assuming that the dust particles interact via a Yukawa potential. While laboratory and MD simulations have explored thoroughly the properties of Mach cones in 2D, elucidating the important role of dispersive waves in the formation of multiple cones, the simulations presented in this thesis represent the first 3D MD studies of Mach cones in strongly coupled dusty plasmas. These results have qualitative similarities with experimental observations on 3D Mach cones from the PK-3 plus project, which studies complex plasmas under microgravity conditions aboard the International Space station. In the realm of weakly coupled plasmas, we present results on the application of non-oscillatory central schemes to Hall MHD reconnection problems, in which the presence of dispersive whistler waves presents a formidable challenge for numerical algorithms that rely on explicit time-stepping schemes. In particular, we focus on the semi-discrete central formulation of Kurganov and Tadmor (2000), which has the advantage that it allow for larger time steps, and with significantly smaller numerical viscosity, than fully discrete schemes. We implement the Hall MHD equations through the CentPACK software package that implements the Kurganov-Tadmor formulation for a wide range of

  9. Determination of chlorpheniramine in human plasma by HPLC-ESI-MS/MS: application to a dexchlorpheniramine comparative bioavailability study.

    PubMed

    Moreno, Ronilson Agnaldo; Oliveira-Silva, Diogo; Sverdloff, Carlos Eduardo; Borges, Bruno Carter; Rebelo Galvinas, Paulo Alexandre; Astigarraga, Rafael Barrientos; Borges, Ney Carter

    2010-07-01

    In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether-dichloromethane, 80:20, v/v) and analyzed by HPLC-ESI-MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH(4)OH on a Gemini Phenomenex C(8) 5 microm column (50 x 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05-10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra-batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter-batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine, Schering-Plough). The study was conducted using an open, randomized, two-period crossover design with a 2 week washout interval. Since the 90% confidence interval for C(max) and AUC ratios were all within the 80-125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption.

  10. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  11. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  12. Dust Accelerators And Their Applications In High-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Ticoş, Cǎtǎlin M.; Wang, Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  13. Simultaneous determination of erlotinib and tamoxifen in rat plasma using UPLC-MS/MS: Application to pharmacokinetic interaction studies.

    PubMed

    Maher, Hadir M; Alzoman, Nourah Z; Shehata, Shereen M

    2016-08-15

    Tamoxifen (TAM) is a non-steroidal estrogen receptor antagonist that enhances erlotinib (ERL)-induced cytotoxicity in the treatment of NSCLC. ERL and TAM are metabolized by CYP3A4 enzymes. In addition, both drugs have the potential of altering the enzymatic activity through either inhibition (ERL) or induction (TAM). Thus it was expected that pharmacokinetics (PK) drug-drug interactions (DDIs) could be encountered following their co-administration. In this respect, a bioanalytical UPLC-MS/MS method has been developed and validated for the simultaneous determination of ERL and TAM in rat plasma samples, using ondansetron (OND) as an internal standard (IS). Plasma samples were prepared using mixed mode cationic solid phase extraction (SPE) STRATA™ -X-C 33μm cartridges with good extraction recovery of both drugs from rat plasma (Er% from -13.92 to -3.32). The drugs were separated on a Waters BEH™ C18 column with an isocratic elution using a mobile phase composed of a mixture of acetonitrile and water, each with 0.15% formic acid, in the ratio of 80: 20, v/v. Quantitation was carried out using the positive ionization mode with multiple reaction monitoring (MRM) at m/z 394.20>278.04 (ERL), m/z 372.25>72.01 (TAM), and m/z 294.18>170.16 (OND). The method was fully validated as per the FDA guidelines over the concentration range of 0.2-50ng/mL with very low lower limit of quantification (LLOQ) of 0.2ng/mL for both ERL and TAM. The intra- and inter-day assay precision (in terms of relative standard deviation, RSD) and accuracy (in terms of percentage relative error, % Er) were evaluated for both drugs and the calculated values evaluated at four different concentration levels were within the acceptable limits (<15%) for concentrations other than LLOQ and 20% for LLOQ. The method was successfully applied to the study of possible PK-DDI following the oral administration of ERL and TAM in a combination, compared to their single administration.

  14. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    NASA Astrophysics Data System (ADS)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-12-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter ξ, we find that on average there is about 30% deviation between the codes in ξ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in ξ is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at log ξ 1 to 2, reducing to about 20% deviation at log ξ 3. We also simulate spectra of the ionised outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionisation codes, which is about 10 to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena.

  15. Determination of glibenclamide and puerarin in rat plasma by UPLC-MS/MS: application to their pharmacokinetic interaction study.

    PubMed

    Li, Ning; Deng, Ying; Wang, Dan; Qiao, Ying; Li, Famei

    2013-01-30

    In the treatment of diabetes mellitus, glibenclamide and puerarin may be co-administered unwittingly or wittingly. An ultra performance liquid chromatography-tandem mass spectrometry method was developed to determine the concentrations of glibenclamide and puerarin in rat plasma for the study of pharmacokinetic interaction between them. Analytes were extracted using liquid-liquid extraction. The separation was achieved on a Waters BEH C18 column using 5 mmol/L ammonium acetate solution (containing 0.1% formic acid) and methanol as mobile phase with a linear gradient program. Electrospray ionization source was applied and operated in the multiple reaction monitoring positive mode. The proposed method was proved simple, specific and reliable. Glibenclamide, Pueraria lobata extract and glibenclamide in combination with P. lobata extract were orally administered to rats, respectively. Pharmacokinetic parameters were estimated by Microsoft Excel software and analyzed by SPSS 12.0 software. Compared with glibenclamide group, pharmacokinetic parameters of glibenclamide in the co-administration group such as area under the curve and mean residence time were increased while clearance was decreased. Pharmacokinetic parameters of puerarin in the co-administration group such as peak concentration and area under the curve were enlarged while clearance and apparent volume of distribution were reduced compared with P. lobata extract group. These changes could enhance drug efficacy, but could also make drug accumulation to increase adverse effects, so it was suggested that the dosage should be adjusted or the drug concentration in plasma should be monitored if glibenclamide and puerarin were co-administered. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    NASA Technical Reports Server (NTRS)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  17. Determination of levetiracetam in human plasma by liquid chromatography/electrospray tandem mass spectrometry and its application to bioequivalence studies.

    PubMed

    Jain, Deepak S; Subbaiah, Gunta; Sanyal, Mallika; Pal, Usha; Shrivastav, Pranav S

    2006-01-01

    The first liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of levetiracetam, an antiepileptic drug, in human plasma is described. The plasma filtrate obtained after solid-phase extraction (SPE), using a polymer-based, hydrophilic-lipophilic balanced (HLB) cartridge, was submitted directly to a short column LC/MS/MS assay. There was no significant matrix effect on the analysis. For validation of the method, the recovery of the free analytes was compared to that from an optimized extraction method, and the analyte stability was examined under conditions mimicking sample storage, handling, and analytical procedures. The extraction procedure yielded extremely clean extracts with a recovery of 79.95% and 89.02% for levetiracetam and the internal standard (IS), respectively. The intra-assay and inter-assay precision for the samples at the lower limit of quantitation (LLOQ) were 6.33 and 6.82%, respectively. The calibration curves were linear for the dynamic range of 0.5 to 50 microg/mL with a correlation coefficient r >/= 0.9971. The intra-assay accuracy at LLOQ, LQC, MQC, and HQC levels ranged from 81.60 to 95.40, 93.00 to 103.47, 95.97 to 104.09, and 91.15 to 95.18%, respectively, while the inter-assay accuracy at LLOQ, LQC, MQC and HQC levels varied from 80.20 to 95.40, 88.53 to 107.53, 95.97 to 108.45, and 91.15 to 112.70%, respectively. The method is rugged and fast with a total instrumental run time of 2 min. The method was successfully applied for bioequivalence studies in human subject samples after oral administration of 1000 mg immediate release (IR) formulations.

  18. Enantiospecific determination of arotinolol in rat plasma by LC-MS/MS: application to a stereoselective pharmacokinetic study.

    PubMed

    Qian, Zheyuan; Xu, Yanhai; Zheng, Leyi; Zhang, Jingbo; Hong, Zhanying; Shen, Xiaohang

    2015-01-01

    A highly sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and fully validated for quantification of arotinolol enantiomers in rat plasma using haloperidol as the internal standard. After solid phase extraction of 50.0 μL rat plasma in 96 well plate, a baseline resolution of arotinolol enantiomers was achieved on a CHIRALPAK AD-H column using the mobile phase of n-hexane and ethanol in 0.02% diethylamine (20:80, v/v) at a flow rate of 0.550 mL/min within 11.0 min. Acquisition of mass spectrometric data was performed on a triple-quadrupole mass spectrometer in multiple-reaction-monitoring (MRM) mode with an ESI source using the transition m/z 372.1 → 316.1 for (±)-arotinolol and m/z 376.1 → 165.1 for haloperidol. The calibration curves of both enantiomers were linear over the range of 1.00-200.0 ng/mL (r(2)>0.992) and the lower limit of quantification was 1.00 ng/mL. Intra- and inter-day precision ranged from 5.6% to 8.9% for R-(-)-arotinolol and 4.6-7.4% for S-(+)-arotinolol. Accuracy varied from 0.0% to 7.0% for R-(-)-arotinolol and 5.0-10.0% for S-(+)-arotinolol. For R-(-)-arotinolol, the recovery ranged from 87.2% to 99.2% and the matrix factor was 1.03-1.09; for S-(+)-arotinolol, the recovery ranged from 88.0% to 92.4% and the matrix factor was 0.84-0.95, both were not concentration dependent. The method was demonstrated with acceptable accuracy, precision and specificity for the determination of arotinolol enantiomers and has been successfully applied to a stereoselective pharmacokinetic study.

  19. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    SciTech Connect

    Macheret, Sergey

    2005-05-16

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the 'reverse energy bypass' scheme. MHD power generation on board reentry vehicles is also discussed.

  20. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  1. Spectrofluorometric determination of olanzapine and fluphenazine hydrochloride in pharmaceutical preparations and human plasma using eosin: application to stability studies.

    PubMed

    Belal, Fathalla; El-Brashy, Amina; El-Enany, Nahed; El-Bahay, Nihal

    2008-01-01

    A simple, rapid, and sensitive spectrofluorometric method has been developed for the determination of olanzapine (OLZ) and fluphenazine hydrochloride (FPZ HCI). The proposed method is based on the quantitative quenching effect of the studied drugs on the native fluorescence of eosin at pH 3.4 and 3.2 for OLZ and FPZ HCI, respectively. The fluorescence was measured at 547 nm after excitation at 323 nm. The fluorescence-concentration plots were rectilinear over the range of 0.05-1.0 and 0.10-1.0 microg/mL, with lower detection limits of 1.8 x 10(-3) and 1.2 x 10(-3) microg/mL, for OLZ and FPZ HCI, respectively. The proposed method was successfully applied to the analysis of commercial tablets and ampules containing the drugs, and the results were in good agreement with those obtained with reference methods. The proposed method was further applied to the determination of OLZ in spiked human plasma. The mean recovery was 98.62 +/- 0.24% (n = 4). The method was also used for stability studies of FPZ HCI upon oxidation with hydrogen peroxide, and the kinetics of the reaction were studied. A proposal for the reaction pathway was postulated.

  2. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  3. Diagnostics and biomedical applications of radiofrequency plasmas

    NASA Astrophysics Data System (ADS)

    Lazović, Saša

    2012-11-01

    In this paper we present spatial profiles of ion and atomic oxygen concentrations in a large scale cylindrical 13.56 MHz capacitively coupled plasma low pressure reactor suitable for indirect biomedical applications (like treatment of textile to increase antibacterial properties) and direct (treatment of seeds of rare and protected species). Such reactor can easily be used for the sterilization of medical instruments by removing bacteria, spores, prions and fungi as well. We also discuss electrical properties of the system based on the signals obtained by the derivative probes and show the light emission profiles close to the sample platform. In the case of seeds treatment, the desired effect is to plasma etch the outer shell of the seed which will lead to the easier nutrition and therefore increase of the germination. In the case of textile treatment the functionalization is done by bounding atomic oxygen to the surface. It appears that antibacterial properties of the textile are increased by incorporating nanoparticles to the fibres which can successfully be done after the plasma treatment. From these two examples it is obvious that the balance of ion and atomic oxygen concentrations as well as proper choice of ion energy and power delivered to the plasma direct the nature of the plasma treatment.

  4. Novel application of plasma treatment for pharmaceutical and biomedical engineering.

    PubMed

    Kuzuya, Masayuki; Sasai, Yasushi; Kondo, Shin-Ichi; Yamauchi, Yukinori

    2009-06-01

    The nature of plasma-induced surface radicals formed on a variety of organic polymers has been studied by electron spin resonance (ESR), making it possible to provide a sound basis for future experimental design of polymer surface processing using plasma treatment. On the basis of the findings from such studies, several novel bio-applications in the field of drug- and biomedical- engineering have been developed. Applications for drug engineering include the preparation of reservoir-type drug delivery system (DDS) of sustained- and delayed-release, and floating drug delivery system (FDDS) possessing gastric retention capabilities, followed by preparation of "Patient-Tailored DDS". Furthermore, the preparation of composite powders applicable to matrix-type DDS was developed by making a mechanical application to the surface radical-containing polymer powders with drug powders. In applications for biomedical engineering, the novel method to introduce the durable surface hydrophilicity and lubricity on hydrophobic biomedical polymers was developed by plasma-assisted immobilization of carboxyl group-containing polymer on the polymer substrate. The surfaces thus prepared were further used for the covalent immobilization of oligo-nucleotides (DNA) onto the polymer surfaces applicable to constructing DNA diagnosis system, and also plasma-assisted preparation of functionalized chemo-embolic agent of vinyl alcohol-sodium acrylate copolymer (PVA- PAANa).

  5. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  6. Simultaneous determination of sildenafil and N-desmethyl sildenafil in human plasma by high-performance liquid chromatography method using electrochemical detection with application to a pharmacokinetic study.

    PubMed

    Al-Ghazawi, M; Tutunji, M; Aburuz, S

    2007-01-17

    A method which employed high-performance liquid chromatography coupled with electrochemical detection was developed for the simultaneous determination of sildenafil and its metabolite, N-desmethyl sildenafil, in human plasma has. The method was developed and validated for purposes of its application to a pharmacokinetic study in healthy volunteers after an oral dose of 50mg/tablet under fasting conditions. High precision and accuracy were demonstrated. A one-step liquid-liquid extraction further provides a simple and practical way to process plasma samples containing sildenafil with good quantitative recovery. Sampling lasted for 24h after dosing; consequently a limit of quantitation (LOQ) of 7.858 ng/mL was achieved for sildenafil whereas a LOQ of 8.675 ng/mL was obtained for N-desmethyl sildenafil. The mobile phase consisted of acetonitrile, methanol and phosphate buffer (0.05 M) (18.5:34.5:47.0, v/v/v) pH 7.68. The stationary phase was a C(8) (150 mm x 4.6 mm), 5 microm particle size operated at 27 degrees C. All analytes were stable at the pH of the supernatant, and during the analytical time window. At the applied potential of +1.20 V versus Ag/AgCl, no interferences from endogenous plasma compounds were recorded at the retention times of sildenafil, N-desmethyl sildenafil. High resolution was obtained between the analytes and the employed internal standards.

  7. Validated LC-MS/MS assay for the quantitative determination of vardenafil in human plasma and its application to a pharmacokinetic study.

    PubMed

    Lake, Simon T; Altman, Phillip M; Vaisman, Jack; Addison, Russell S

    2010-08-01

    A sensitive high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) assay has been developed for the quantitative analysis of vardenafil in human plasma. Vardenafil and the internal standard, alprazolam, were extracted from 0.2 mL aliquots of alkalinized plasma by a single solvent extraction into hexane : dichloromethane. Reversed-phase chromatographic separation was affected by gradient elution with mobile phases consisting of 10 mM ammonium formate pH 7.0 (solvent A) and methanol (100%, solvent B), delivered at a flow rate of 0.4 mL/min. The analytes were detected by using an electrospray ion source on a 4000 QTrap triple quadrupole mass spectrometer operating in positive ionization mode. The mass transitions were m/z 489.3 --> 312.2 for vardenafil and m/z 309.2 --> 281.0 for alprazolam. The assay was linear over the concentration range of 0.2-100 ng/mL, with correlation coefficients > or = 0.995. The intra- and inter-day precision was less than 5.4% in terms of relative standard deviation and the accuracy was within 12.7% in terms of relative error. The lower limit of quantitation was set at 0.2 ng/mL. The high sensitivity and acceptable performance of the assay allowed its application to the analysis of plasma samples obtained following the oral administration of vardenafil to healthy male volunteers in a pharmacokinetic study.

  8. Reliable LC-MS/MS assay for the estimation of rilpivirine in human plasma: application to a bioequivalence study and incurred sample reanalysis.

    PubMed

    Gupta, Ajay; Guttikar, Swati; Patel, Yogesh; Shrivastav, Pranav S; Sanyal, Mallika

    2015-04-01

    A simple, precise, and rapid stable isotope dilution liquid chromatography-tandem mass spectrometry method has been developed and validated for the quantification of rilpivirine, a non-nucleoside reverse transcriptase inhibitor in human plasma. Rilpivirine and its deuterated analogue, rilpivirine-d6, used as an internal standard (IS) were quantitatively extracted by liquid-liquid extraction with methyl-tert-butyl ether and diethyl ether solvent mixture from 50 μL plasma. The chromatography was achieved on Gemini C18 (150 × 4.6 mm, 5 µm) analytical column in a run time of 2.2 min. The precursor → product ion transitions for rilpivirine (m/z 367.1 → 128.0) and IS (m/z 373.2 → 134.2) were monitored on a triple quadrupole mass spectrometer in the positive ionization mode. The linearity of the method was established in the concentration range of 0.5-200 ng/mL. The mean extraction recovery for rilpivirine (94.9%) and IS (99.9%) from spiked plasma samples was consistent and reproducible. The IS-normalized matrix factors for rilpivirine ranged from 0.98 to 1.02 across three quality controls. Bench top, freeze-thaw, wet extract, and long-term stability of rilpivirine was examined in spiked plasma samples. The application of the method was demonstrated by a bioequivalence study with 25 mg rilpivirine tablet formulation in 40 healthy subjects. The assay reproducibility was shown by reanalysis of 200 study samples and the % change in the concentration of repeat values from the original values was within ±15%.

  9. Simple and Sensitive High-Performance Liquid Chromatography (HPLC) Method with UV Detection for Mycophenolic Acid Assay in Human Plasma. Application to a Bioequivalence Study

    PubMed Central

    Danafar, Hossein; Hamidi, Mehrdad

    2015-01-01

    Purpose: A simple and available reversed-phase high performance liquid chromatography (HPLC) method with UV detection has been developed and validated for mycophenolic acid (MPA) assay in human plasma. Methods: MPA was extracted from plasma with protein precipitation method by acetonitrile: percholeric acid: methanol (75:5:20 v/v/v). The drug separation was achieved using a C8 analytical column and a mobile phase of 0.1M triethylammonium phosphate (pH=5.4)-acetonitril (65:35, v/v), with a flow rate of 1.5 ml/min. The detection wavelength was 304 nm. Limit of detection (LOD) of the method was determined as the lowest MPA concentration producing a signal-to-noise (S/N) ratio of about 3. Limit of quantitation (LOQ) was determined as the lowest MPA concentration capable of being quantitated with enough accuracy and precision. Results: The method showed significant linear response-concentration relationship throughout the MPA concentration range of 0.2-10 µg/ml. A typical linear regression equation of the method was: y = 8.5523 x + 0.094, with x and y representing MPA concentration (in µg/ml) and peak height respectively, and the regression coefficient (r) of 0.9816. The average within-run and between-run variations of 7.81 and 4.78 percent. The average drug recovery from plasma was 95.24 percent throughout the linear concentration range. The limits of detection (LOD) and quantitation (LOQ) of the method were 0.05 and 0.2 µg/ml, respectively. The practical applicability of the method was proven throughout a bioequivalence study. Conclusion: The results showed the acceptable degree of linearity, sensitivity, precision, accuracy and recovery for the method. The method was used successfully for quantitation of MPA in plasma samples of healthy volunteers throughout a bioequivalence study. PMID:26819930

  10. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  11. UPLC-MS/MS determination of phentolamine in human plasma and its application to a pharmacokinetic study.

    PubMed

    Kan, X; Zheng, S-L; Zhou, C-Y

    2014-11-01

    A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed to determine phentolamine in human plasma. Sample preparation was accomplished through a simple liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and 1% formic acid in water (33:67, v/v) at a flow rate of 0.45 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 282.1 → 212.0 and m/z 237.1 → 194.2 were used to quantify for phentolamine and carbamazepine (internal standard, IS), respectively. The linearity of this method was found to be within the concentration range of 0.5-100.0 ng/mL with a lower limit of quantification of 0.5 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 60 mg phentolamine to 20 Chinese healthy male volunteers.

  12. Determination of Sertraline in Human Plasma by UPLC-MS/MS and its Application to a Pharmacokinetic Study.

    PubMed

    Yue, Xiao-Hong; Wang, Zhen; Tian, Dong-Dong; Zhang, Jian-Wei; Zhu, Kang; Ye, Qiang

    2016-02-01

    A sensitive and rapid ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS) method was developed to determine sertraline in human plasma. Sample preparation was accomplished through a simple liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using a gradient mobile phase system composed of acetonitrile and 1% formic acid in water at a flow rate of 0.40 mL/min. Mass spectrometric analysis was performed using a XEVO TQD mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 306.3 → 275.2 and 326.2 → 291.1 were used to quantify for sertraline and midazolam (internal standard), respectively. The linearity of this method was found to be within the concentration range of 1.0-100.0 ng/mL with a lower limit of quantification of 1.0 ng/mL. Only 2.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after an oral administration of 100 mg sertraline to 20 Chinese healthy male volunteers. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Simultaneous determination of doxorubicin and curcumin in rat plasma by LC-MS/MS and its application to pharmacokinetic study.

    PubMed

    Ma, Wenzhuan; Wang, Jinling; Guo, Qiang; Tu, Pengfei

    2015-01-01

    A specific, sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for simultaneous quantification of doxorubicin and curcumin in rat plasma after intravenous administration. The analytes of doxorubicin and curcumin were extracted with methanol precipitation using glibenclamide as internal standard (IS). The chromatographic separation was performed on a C18 column with acetonitrile and 0.1% formic acid water as mobile phase and with gradient elution at a flow rate of 0.2 mL/min. Calibration curves were linear over the ranges of 2-8000 ng/mL for doxorubicin and 5-2000 ng/mL for curcumin (r > 0.99). The lower limit of quantification (LLOQ) was 2 ng/mL for DOX and 5 ng/mL for Cur. Finally, this developed method was successfully applied in the pharmacokinetic study of doxorubicin and curcumin in rats and evaluated the effects of curcumin on the absorption of doxorubicin after intravenous administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. LC-MS/MS method for determination of megestrol in human plasma and its application in bioequivalence study.

    PubMed

    Li, Fan; Zou, Xiao-juan; Zheng, Heng; Xiang, Yi

    2013-12-01

    A rapid and highly selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the determination of megestrol in human plasma was described using medrysone as internal standard (IS). Blood samples were collected from 20 healthy volunteers after oral administration of 160 mg megestrol acetate dispersible tablets. The analytes were extracted by liquid-liquid extraction procedure and separated on a hanbon lichrospher column with the mobile phase of methanol and water containing 0.1% formic acid and 20 mmol/L ammonium acetate (5:1, v/v). Positive ion electrospray ionization with multiple reaction-monitoring mode (MRM) was employed by monitoring the transitions m/z 385.5-325.4 and m/z 387.5-327.4 for megestrol and medrysone, respectively. Under the isocratic separation conditions, the chromatographic run time was approximately 2.54 min for megestrol and 2.59 min for medrysone. The calibration curve range was from 0.5 to 200.0 ng/mL. The inter-batch and intra-batch precision and accuracy were less than 5.2% relative standard deviation (RSD) and 6.4% relative error (RE). The proposed method was successfully applied in the bioequivalence study of megestrol acetate dispersible tablets.

  15. Seminal plasma hormone concentration after oral application of progesterone.

    PubMed

    Feuring, M; Bertsch, T; Tran, B M; Rossol-Haseroth, K; Losel, R; Tillmann, H C; Schultz, A; Weigel, M; Wehling, M

    2002-02-01

    Previous studies have revealed beneficial in vitro effects of progesterone on sperm function. The aim of this pilot study was to prove if orally given micronized progesterone leads to elevations in progesterone and/or 17alpha-hydroxyprogesterone levels in seminal plasma, since higher seminal plasma levels of these hormones could possibly have a beneficial effect on sperm function as seen in in vitro investigations. Multiple application of micronized progesterone given over 4 days (daily dose 400 mg) to 6 healthy subjects resulted in elevated seminal plasma levels of progesterone (10.90 +/- 9.02 nmol/l vs. 1.43 +/- 0.56 nmol/l, p = 0.04) and 17alpha-hydroxyprogesterone (3.09 +/- 1.72 nmol/l vs. 1.62 +/- 1.26 nmol/l, p = 0.04) whereas no significant difference could be found in testosterone levels (34.82 +/- 13.00 vs. 30.91 +/- 8.56 nmol/l, p = 0.43). In contrast, androstendione levels in seminal plasma were reduced (2.68 1.28 nmol/l vs. 3.65 +/- 1.36 nmol/l, p = 0.01). Although micronized progesterone is rapidly metabolized, oral application resulted in pronounced elevations of progesterone and 17alpha-hydroxyprogesterone in seminal plasma. Further studies will show if oral application of micronized progesterone can induce beneficial effects on sperm function such as those seen in in vitro investigations.

  16. Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy

    NASA Astrophysics Data System (ADS)

    Sreekumar, K. P.; Saxena, S. K.; Kumar, Yogendra; Thiyagarajan, T. K.; Dash, Ashutosh; Ananthapadmanabhan, P. V.; Venkatesh, Meera

    2010-02-01

    Plasma spheroidization exploits the high temperature and high enthalpy available in the thermal plasma jet to melt irregularly shaped powder particles and quench them to get dense spherical particles. Plasma spheroidization is a versatile process and can be applied to metals, ceramics, alloys and composites to obtain fine spherical powders. Radioactive microspheres incorporated with high energetic beta emitting radioisotopes have been reported to be useful in the palliative treatment of liver cancer. These powders are to be prepared in closer range of near spherical morphology in the size range 20-35 microns. Inactive glass samples were prepared by heating the pre-calculated amount of glass forming ingredients in a recrystallized alumina crucible. The glass was formed by keeping the glass forming ingredients at 1700°C for a period of three hours to form a homogeneous melt. After cooling, the glass was recovered from the crucible by crushing and was subsequently powdered mechanically with the help of mortar and pestle. This powder was used as the feed stock for plasma spheroidization using an indigenously developed 40 kW plasma spray system. Experiments were carried out at various operating parameters. The operating parameters were optimised to get spheroidised particles. The powder was sieved to get the required size range before irradiation.

  17. CTR plasma engineering studies

    SciTech Connect

    Miley, G.H.

    1991-01-01

    Ash (e.g. thermalized helium from D-T) buildup in a tokamak can potentially prevent ignition and seriously degrade the fusion energy gain from driven system. This problem is most pronounced as the ratio of particle/energy confinement time increases towards the neoclassical limit. Yet much improved confinement of the fuel ions is desirable for a fusion reactor. The goals of the work described here were two fold: to study the effect of helium buildup on the energy balance for a tokamak, and consider methods of active control that might be employed to alleviate the problem. We examine ash buildup effect for both D-T and D-{sup 3}He systems. Most examples used apply to the ARIES 1 D-T reactor design and to the ARIES 3 D-{sup 3}He design since part of this was in support of these two designs. Then we report on brief studies of two potentially attractive control methods, namely controlled sawtooth and fishbone instabilities. The concept is that sawteeth or fishbones would be used on purpose periodically in order to flush'' out excess ash from the fusion core. Both methods are shown to feasible and attractive. More study is needed, however, since the phenomenona in which are physically complex. Still the pay off, namely, reduced ash buildup, is exceedingly important so that such studies desires strong attention.

  18. Laboratory Plasma Studies

    DTIC Science & Technology

    1989-05-23

    Amplifier Q. On Certain Theoretical Aspects of Relativistic Klystron Amplifiers R. Simulation Studies of Particle Acceleration Powered by Modulated...undriven cavities downstream from the initial externally driven cavity. Many aspects of these experiments are now understood as a result of theoretical and...tube. Many nonlinear aspects of the problem have also been explored and verified in the simulations. Among these are the strong current modulation

  19. Numerical Study on Plasma Jet and Particle Behavior in Multi-arc Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.

    2017-06-01

    Plasma jet and particle behavior in conventional single-arc plasma spraying has been subject to intensive numerical research. However, multi-arc plasma spraying is a different case which has yet to be investigated more closely. Numerical models developed to investigate the characteristics of multi-arc plasma spraying (plasma generator, plasma jet, and plasma-particle interaction models) were introduced in previous publications by the authors. The plasma generator and plasma jet models were already validated by comparing calculated plasma temperatures with results of emission spectroscopic computed tomography. In this study, the above-mentioned models were subjected to further validation effort. Calculated particle in-flight characteristics were compared with those determined by means of particle diagnostics and high-speed videography. The results show very good agreement. The main aim of the current publication is to derive conclusions regarding the general characteristics of plasma jet and particle in-flight behavior in multi-arc plasma spraying. For this purpose, a numerical parameter study is conducted in which the validated models are used to allow variations in the process parameters. Results regarding plasma jet/particle in-flight temperatures and velocities are presented. Furthermore, the general characteristics of plasma jet and particle behavior in multi-arc plasma spraying are discussed and explained. This contributes to better understanding of the multi-arc plasma spraying process, in particular regarding the injection behavior of particles into hot regions of the plasma jet. Finally, an example test case showing a possible practical application area of the models is introduced.

  20. Clinical application of plasma thermograms. Utility, practical approaches and considerations

    PubMed Central

    Garbett, Nichola C.; Mekmaysy, Chongkham S.; DeLeeuw, Lynn; Chaires, Jonathan B.

    2014-01-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modifications underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. PMID:25448297

  1. Clinical application of plasma thermograms. Utility, practical approaches and considerations.

    PubMed

    Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B

    2015-04-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article.

  2. Plasma in dentistry: a review of basic concepts and applications in dentistry.

    PubMed

    Kim, Jae-Hoon; Lee, Mi-Ae; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-01-01

    Plasma-related technologies are essential in modern industries. Recently, plasma has attracted increased attention in the biomedical field. This paper provides a basic knowledge of plasma and a narrative review of plasma applications in dentistry. To review plasma applications in dentistry, an electronic search in PubMed, SCOPUS and Google scholar up to December 2012 was done. This was followed by extensive hand searching using reference lists from relevant articles. There have been attempts to apply plasma technology in various fields of dentistry including surface modifications of dental implants, adhesion, caries treatment, endodontic treatment and tooth bleaching. Although many studies were in early stages, the potential value of plasma for dental applications has been demonstrated. To enlarge the scope of plasma applications and put relevant research to practical use, interdisciplinary research with participation of dental professionals is required.

  3. HPLC method for determination of atenolol in human plasma and application to a pharmacokinetic study in Turkey.

    PubMed

    Yilmaz, Bilal; Arslan, Sakir; Asci, Ali

    2012-01-01

    This paper describes a high-performance liquid chromatography method for the determination of atenolol in human plasma. Atenolol and the internal standard, metoprolol, were extracted from plasma by using a liquid-liquid extraction method. The method was developed on an Ace C18 reverse-phase column using a mobile phase of methanol-water (50:50, v/v) containing 0.1% trifluoroacetic acid. The calibration curve was linear within the concentration range of 5-150 ng/mL. Intra-day and inter-day precision values for atenolol in plasma were less than 6.1, and accuracy (relative error) was better than 5.5%. The mean recovery of atenolol was 98.4% for plasma. The limits of detection and quantification of atenolol were 1.5 and 5 ng/mL, respectively. Also, this assay was successfully applied to six patients with hypertension who had been given an oral tablet of 50 mg atenolol.

  4. Fluorescence detection of Zabofloxacin, a novel fluoroquinolone antibiotic, in plasma, bile, and urine by HPLC: the first oral and intravenous applications in a pharmacokinetic study in rats.

    PubMed

    Jin, Hyo Eon; Kang, In Hyul; Shim, Chang Koo

    2011-01-01

    To develop an HPLC method using fluorescence detection for the pharmacokinetic evaluation of levels of zabofloxacin, a novel broad spectrum fluoroquinolone antibiotic, in the plasma, bile and urine of rats. A simple reversed-phase HPLC method using a C18 column with fluorescence detection was developed and validated for the simultaneous determination of zabofloxain and enrofloxacin as an internal standard. The plasma sample was treated with methanol for protein precipitation, and treatment of the bile and urine samples included deproteinization and extraction using chloroform. The applicability of the developed assay method to pharmacokinetic studies of zabofloxacin in rats was examined. Zabofloxacin was intravenously and orally administered to rats at a dose of 20 mg/kg. The limits of quantification (LOQ) was determined to be 50 ng/mL for the plasma with acceptable linearity ranging from 50 to 25,000 ng/mL (R>0.999), and 0.5 μg/mL for the bile and urine samples with acceptable linearity ranging from 0.5 to 100 μg/mL (R>0.999). The validation parameters for zabofloxacin were found to be acceptable according to FDA assay validation (2001). While zabofloxacin in plasma and urine has been stable in all tested handling conditions, it has been unstable in bile during freeze-thaw cycles for 24 h at room temperature. Following intravenous and oral administration of zabofloxacin to rats at a dose of 20 mg/kg, concentration was quantifiable in plasma for up to 8 h. The bioavailability of zabofloxacin was 27.7%, and it was excreted into bile and urine at about 8% each per oral administration. These observations suggest that a validated assay can be used in pharmacokinetic studies of zabofloxacin in small animals. Due to the limited stability of zabofloxcin in rat bile, freeze-thaw cycles or prolonged handling at room temperature is not recommended. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on

  5. Frugal Biotech Applications of Low-Temperature Plasma.

    PubMed

    Machala, Zdenko; Graves, David B

    2017-09-01

    Gas discharge low-temperature air plasma can be utilized for a variety of applications, including biomedical, at low cost. We term these applications 'frugal plasma' - an example of frugal innovation. We demonstrate how simple, robust, low-cost frugal plasma devices can be used to safely disinfect instruments, surfaces, and water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development and validation of sensitive LC/MS/MS method for quantitative bioanalysis of levonorgestrel in rat plasma and application to pharmacokinetics study.

    PubMed

    Ananthula, Suryatheja; Janagam, Dileep R; Jamalapuram, Seshulatha; Johnson, James R; Mandrell, Timothy D; Lowe, Tao L

    2015-10-15

    Rapid, sensitive, selective and accurate LC/MS/MS method was developed for quantitative determination of levonorgestrel (LNG) in rat plasma and further validated for specificity, linearity, accuracy, precision, sensitivity, matrix effect, recovery efficiency and stability. Liquid-liquid extraction procedure using hexane:ethyl acetate mixture at 80:20 v:v ratio was employed to efficiently extract LNG from rat plasma. Reversed phase Luna column C18(2) (50×2.0mm i.d., 3μM) installed on a AB SCIEX Triple Quad™ 4500 LC/MS/MS system was used to perform chromatographic separation. LNG was identified within 2min with high specificity. Linear calibration curve was drawn within 0.5-50ng·mL(-1) concentration range. The developed method was validated for intra-day and inter-day accuracy and precision whose values fell in the acceptable limits. Matrix effect was found to be minimal. Recovery efficiency at three quality control (QC) concentrations 0.5 (low), 5 (medium) and 50 (high) ng·mL(-1) was found to be >90%. Stability of LNG at various stages of experiment including storage, extraction and analysis was evaluated using QC samples, and the results showed that LNG was stable at all the conditions. This validated method was successfully used to study the pharmacokinetics of LNG in rats after SubQ injection, providing its applicability in relevant preclinical studies.

  7. Development and validation of an indirect competitive ELISA for quantification of recombinant staphylokinase in rabbit plasma: Application to pharmacokinetic study.

    PubMed

    Kumar, Anmol; Pulicherla, K K; Sambasiva Rao, K R S

    2016-01-01

    The relatively short circulatory half-life (2-3 min) of staphylokinase is a major drawback in the development of SAK- (staphylokinase) based thrombolytic drug. A rapid and sensitive method, based on indirect competitive ELISA, was developed and validated for quantitative determination of SAK in rabbit plasma. The dynamic range of the assay varied between 0.41 ± 0.16 μg/L and 9.03 ± 0.38 μg/L (R(2) = 0.98) for SAK in rabbit plasma. There were no dilution linearity issues apparent with this assay. The precision (% CV) ranged from 4.6-9.7% for the intraassay and from 17.1-19.3% for interassay. This validated method was successfully employed for evaluation of various pharmacokinetic parameters of SAK in rabbit.

  8. Determination of the unstable drug otilonium bromide in human plasma by LC-ESI-MS and its application to a pharmacokinetic study.

    PubMed

    Zhao, Yan-Rong; Ding, Li; Fan, Hong-Wei; Yu, Yong; Qi, Xie-Min; Leng, Ye; Rao, Ya-Kun

    2010-10-15

    Otilonium bromide (OB) degrades rapidly in plasma and readily undergoes hydrolysis by the plasma esterase. In this paper, an LC-ESI-MS method has been developed for the determination of OB in human plasma. The rapid degradation of OB in plasma was well prevented by immediate addition of potassium fluoride (KF, an inhibitor of plasma esterase) to the freshly collected plasma before prompt treatment with acetonitrile. The method was validated over the concentration range of 0.1-20ng/ml. The data of intra-run and inter-run precision and accuracy were within ±15%. The mean extraction recoveries for OB and the internal standard were higher than 93.0% and the matrix effects were negligible. The method has been successfully used in a pharmacokinetic study. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Electroreflectance and the problem of studying plasma-surface interactions

    SciTech Connect

    Preppernau, B.L.

    1995-12-31

    A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques.

  10. Study of selective chemical downstream plasma etching of silicon nitride and silicon oxide for advanced patterning applications

    NASA Astrophysics Data System (ADS)

    Prévost, Emilie; Cunge, Gilles; De-Buttet, Côme; Lagrasta, Sebastien; Vallier, Laurent; Petit-Etienne, Camille

    2017-03-01

    The evolution of integrated components in the semiconductors industry is nowadays looking for ultra-high selective etching processes in order to etch high aspect ratio structures in complicated stacks of ultrathin layers. For ultra-high selective processes, typical plasma etching show limitations, while wet etching processes reach limitations due to capillary forces. For these reasons there is a great regain of interest today in chemical downstream etching systems (CDE), which combine the advantages of plasma and wet treatments. The absence of photons and ions allow to minimize damages and to achieve very high selectivity (in isotropic etching). In this work we investigated the parameters enabling to etch selectively the Si3N4 to the SiO2 by CDE. We shown that the correlation between the gas mixture and the wafer temperature is the key to obtain the desired selectivity. In order to optimize the processing window, the mixture composition (NF3/N2/O2/He) and the temperatures were screened by several DOE (Designs Of Experiments). Conditions are found in which the etching selectivity between the two silicon alloys is higher than 100, which allowed us to clean out sacrificial Si3N4 layers in very high aspect ratio (about 100) silicon trenches of nanometric size (60nm) without damaging the 10nm thin SiO2 caping layer (between the Si and the Si3N4). This demonstrates that downstream plasma etching can perform better than wet treatments in this case.

  11. HPLC method for naproxen determination in human plasma and its application to a pharmacokinetic study in Turkey.

    PubMed

    Yilmaz, Bilal; Asci, Ali; Erdem, Ali Fuat

    2014-08-01

    A simple high-performance liquid chromatography method has been developed for the determination of naproxen in human plasma. The method was validated on an Ace C18 column using ultraviolet detection. The mobile phase consisted of 20 mM phosphate buffer (pH 7) containing 0.1% trifluoroacetic acid-acetonitrile (65:35, v/v). The calibration curve was linear between the concentration ranges of 0.10 and 5.0 µg/mL. Intra-day and inter-day precision values for naproxen in plasma were less than 4.84, and accuracy (relative error) was better than 3.67%. The extraction recovery values of naproxen from human plasma were between 91.0 and 98.9%. The limits of detection and quantification of naproxen were 0.03 and 0.10 µg/mL, respectively. Also, this assay was applied to determine the pharmacokinetic parameters of naproxen in six healthy Turkish volunteers who had been given 220 mg of naproxen. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Applications of the concept of generalized vorticity to space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Edwards, W. F.; Rasmussen, C.; Thompson, R. C.

    1981-01-01

    A reformulation of the momentum equation for electrons or ions in a collisionless plasma leads to an equation which describes the behavior of the plasma in terms of a generalized vorticity. This vorticity is both divergence-free and conserved along plasma flow streamlines. When the plasma has zero vorticity, a special relation is established which appears to have application to small scale magnetic features within both conventional space plasmas and superconductors.

  13. Development and validation of sensitive and rapid UPLC-MS/MS method for quantitative determination of daclatasvir in human plasma: Application to a bioequivalence study.

    PubMed

    Rezk, Mamdouh R; Bendas, Ehab R; Basalious, Emad B; Karim, Iman A

    2016-09-05

    A rapid and sensitive UPLC-MS/MS method was developed and validated for determination of daclatasvir (DAC) in human plasma using sofosbuvir (SOF) as an internal standard (IS). The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Precipitation with acetonitrile was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC HSS C18 (50×2.1mm, 1.8μm) column by pumping 10mM ammonium formate (pH 3.5) and acetonitrile in an isocratic mode at a flow rate of 0.30ml/min. Method validation was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 5-4000ng/ml for DAC. The intra-day and inter-day precision and accuracy results were within the acceptable limits. A very short run time of 1.2min made it possible to analyze more than 500 human plasma samples per day. The wider range of quantification of DAC allowed the applicability of the developed method for its determination in a bioequivalence study in human volunteers. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Plasma Studies in Ion Diodes.

    DTIC Science & Technology

    1984-09-01

    high power pulse, with a typical rise time of 10 ns, to a pulsed high current vacuum diode (also variously referred to as an explosive emission , field...instantaneous event. One motivation for such studies was the developement of high voltage devices, such as x - ray tubes. for which vacuum breakdown was...Sources of high current , high voltage particle beams rely on the intermedi- ate phase of vacuum breakdown, between initial plasma formation and gap clo

  15. Validated LC-MS/MS Method for the Determination of Scopoletin in Rat Plasma and Its Application to Pharmacokinetic Studies.

    PubMed

    Zeng, Yingchun; Li, Sha; Wang, Xiaohong; Gong, Tao; Sun, Xun; Zhang, Zhirong

    2015-10-19

    A rapid, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometric method was developed and validated for the quantification of scopoletin in rat plasma. After the addition of the internal standard xanthotoxin, plasma samples were pretreated by a simple one-step protein precipitation with acetonitrile-methanol (2:1, v/v). Chromatographic separation was achieved on a Diamonsil ODS chromatography column using gradient elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. The determination was performed by positive ion electrospray ionization in multiple reaction monitoring mode. The calibration curve was linear over the concentration range of 5-1000 ng/mL (r = 0.9996). The intra- and inter-day precision (RSD%) was less than 6.1%, and the accuracy (RE%) was from -3.0%-2.5%. This method was successfully applied to the pharmacokinetic research of scopoletin in rats after intravenous (5 mg/kg) or oral (5, 10 and 20 mg/kg) administration. The result showed that oral bioavailability with a dose of 5 mg/kg was 6.62% ± 1.72%, 10 mg/kg, 5.59% ± 1.16%, and 20 mg/kg, 5.65% ± 0.75%.

  16. RF generated atmospheric pressure plasmas and applications

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Herrmann, Hans W.; Henins, Ivars; Gautier, Donald C.

    2001-10-01

    RF generated atmospheric pressure plasma sources have been developed for various materials applications. They operate with rf power and produce a α-mode capacitive discharge that is stable, steady-state, non-thermal, and volumetric. The plasma parameters of this source have been measured: electron densities of 10^11 cm-3 and electron temperatures of 2 eV by using neutral bremsstrahlung emission. Localized electron heating near the sheath boundary has been observed and is related to the discharge stability and α to γ mode (or arcing) transition using 1D fluid model. The discharge stability improves with increase in rf frequency. The electrode surface property such as the secondary electron emission coefficient also plays a significant role in determining α to γ mode transition. For example, a stable α-mode air discharge is produced using 100 MHz rf power with the use of a boron nitride cover on one of the electrodes. In comparison, an air discharge becomes unstable at a lower rf frequency (e.g. 13.56 MHz) or with an alumina cover. Similar results were obtained with various feedgas such as steam, CO_2, and hydrocarbon containing gases. Further characterization of this high frequency source is under progress. For its applications, we have successfully demonstrated the effective neutralization of actual chemical warfare agents such as VX, GD and HD. In addition, significant progresses have been made in the area of etching of organic and metal film etching, and production of novel materials.

  17. Cold plasma: overview of plasma technologies and applications

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is a novel nonthermal food processing technology. It is based on energetic, reactive gases which inactivate contaminating microbes on meats, poultry and fruits and vegetables. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization pro...

  18. Determination of amine and aldehyde surface densities: application to the study of aged plasma treated polyethylene films.

    PubMed

    Ghasemi, Mahsa; Minier, Michel; Tatoulian, Michaël; Arefi-Khonsari, Farzaneh

    2007-11-06

    The aim of this work was to test and to compare different methods reported in the literature to quantify amine and aldehyde functions on the surface of polyethylene (PE) films treated by ammonia plasma and to specify their stability against time. A low pressure ammonia plasma reactor was used to functionalize PE films with amine groups, which could be subsequently used for further immobilization of biomolecules. In order to determine the density of amine groups on the surface of treated films, various molecule probes and spectrophotometric analytical methods have been investigated. Two methods using (i) sulfosuccinimidyl 6-[3'-(2-pyridyldithio)-propionamido] hexanoate (sulfo-LC-SPDP) and (ii) 2-iminothiolane (ITL) associated with bicinchoninic acid (BCA) have been proved to be reliable and sensitive enough to estimate the surface concentration of primary amine functions. The amount of primary amino groups on the functionalized polyethylene films was found to be between 1.2 and 1.4 molecules/nm2. In a second step, the surface concentration of glutaraldehyde (GA), which is currently used as a spacer arm before immobilization of biomolecules, has been assessed: two methods were used to determine the surface density of available aldehyde functions, after the reaction of GA with the aminated polyethylene film. The concentration of GA was found to be in the same range as primary amine concentration. The influence of aging time on the density of available amino and aldehyde groups on the surfaces were evaluated under different storage conditions. The results showed that 50% of the initial density of primary amine functions remained available after storage during 6 days of the PE samples in PBS (pH 7.6) at 4 degrees C. In the case of aldehyde groups, the same percentage of the initial density (50%) remained active after storage in air at RT over a longer period, i.e., 15 days.

  19. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    PubMed

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient.

    PubMed

    Goutal, Sébastien; Auvity, Sylvain; Legrand, Tiphaine; Hauquier, Fanny; Cisternino, Salvatore; Chapy, Hélène; Saba, Wadad; Tournier, Nicolas

    2016-05-10

    In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 μg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Rapid and sensitive ultra-high-pressure liquid chromatography method for quantification of antichagasic benznidazole in plasma: application in a preclinical pharmacokinetic study.

    PubMed

    Davanço, Marcelo Gomes; de Campos, Michel Leandro; Peccinini, Rosângela Gonçalves

    2015-07-01

    Benznidazole (BNZ) and nifurtimox are the only drugs available for treating Chagas disease. In this work, we validated a bioanalytical method for the quantification of BNZ in plasma aimed at improving sensitivity and time of analysis compared with the assays already published. Furthermore, we demonstrated the application of the method in a preclinical pharmacokinetic study after administration of a single oral dose of BNZ in Wistar rats. A Waters® Acquity UHPLC system equipped with a UV-vis detector was employed. The method was established using an Acquity® UHPLC HSS SB C18 protected by an Acquity® UHPLC HSS SB C18 VanGuard guard column and detection at 324 nm. The mobile phase consisted of ultrapure water-acetonitrile (65:35), and elution was isocratic. The mobile phase flow rate was 0.55 mL/min, the volume of injection was 1 μL, and the run time was just 2 min. The samples were kept at 25°C until injection and the column at 45°C for the chromatographic separation. The sample preparation was performed by a rapid protein precipitation with acetonitrile. The linear concentration range was 0.15-20 µg/mL. The pharmacokinetic parameters of BNZ in rats were determined and the method was considered sensitive, fast and suitable for application in pharmacokinetic studies.

  2. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    NASA Astrophysics Data System (ADS)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  3. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  4. Some studies of whistler mode propagation in the magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Sazhin, S. S.

    1981-02-01

    Limits in the application of a cold plasma model to whistler propagation in the magnetospheric plasma are studied. It is pointed out that finite anisotropy of magnetospheric plasma can compensate for the influence of finite temperature on whistler propagation so that the cold plasma model can be applied. An approximate formula is obtained for whistler refractive index for the case of oblique propagation in a hot anisotropic plasma with a loss cone. This formula is applied to the problem of whistler energy focusing along the magnetic field in the homogeneous plasma and whistler mode propagation in magnetospheric ducts. The possibility of whistler trapping in ducts formed by temperature gradients in the magnetospheric plasma is pointed out.

  5. A validated LC-MS/MS method for quantitative analysis of curcumin in mouse plasma and brain tissue and its application in pharmacokinetic and brain distribution studies.

    PubMed

    Ramalingam, Prakash; Ko, Young Tag

    2014-10-15

    Curcumin is a well-known multitherapeutic agent widely employed in neurodegenerative disorders and cancer. A selective, fast, and sensitive method employing liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of curcumin in mouse plasma and brain tissue, by using salbutamol as an internal standard. Triple quadrupole mass detection with multiple reaction monitoring (MRM) mode was used to monitor the ion transitions, m/z of 369>285 for curcumin, and m/z of 240>148 for salbutamol. The method was validated for recovery, accuracy, precision, linearity, and applicability. The lower limits of quantification (LLOQ) in both matrices were 2.5ng/mL. The inter-day and intra-day precisions and accuracy values were within the Food and Drug Administration (FDA) acceptance criteria, for both matrixes. The method was successfully applied in pharmacokinetics and brain distribution studies of curcumin after intravenous administration of free curcumin and curcumin-loaded solid lipid nanoparticles to mice. Furthermore, the application of this method along with serial blood sampling in mice has led to significant reduction in animal use and dosage and drastic improvement in speed, throughput, and quality of pharmacokinetic parameters.

  6. Development and validation of a liquid chromatography-tandem mass spectrometry method for the assay of tafamidis in rat plasma: Application to a pharmacokinetic study in rats.

    PubMed

    Hyun, Hun-Chan; Jeong, Jong-Woo; Kim, Hye-Rim; Oh, Ji-Hoon; Lee, Jong-Hwa; Choi, Sungwook; Kim, Yeon-Soo; Koo, Tae-Sung

    2017-04-15

    Tafamidis is a first-in-class inhibitor of transthyretin amyloid fibril formation. It has been available in Argentina, Japan, and Mexico for the treatment of transthyretin amyloidosis in adult patients with early-stage symptomatic polyneuropathy. In this study, a rapid and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for the assay of tafamidis in rat plasma. The method was also assessed for its applicability to pharmacokinetic studies in rats. Tafamidis was extracted from rat plasma by the liquid-liquid extraction method using hydrochloric acid and ethyl acetate. A reversed-phase C18 column and a mobile phase consisting of 10mM ammonium formate and acetonitrile were used to achieve chromatographic separation. The flow rate for the mobile phase was set at 0.3mL/min. Tafamidis and 2-CBC, which was used as the internal standard (IS), were analyzed by multiple reaction monitoring in negative ESI mode at m/z transitions of 305.4→261.4 for tafamidis and 271.7→227.8 for the IS. The lower limit of quantification of tafamidis was obtained as 3ng/mL, and the calibration curve was linear over a concentration range of 3-3000ng/mL (R(2)>0.99). The validation parameters investigated, which were specificity, precision, accuracy, matrix effect, recovery, and stability, were well within acceptable limits. The method was successfully used for the evaluation of the pharmacokinetics of tafamidis in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Pulse-discharge plasmas for plasma-accelerator applications

    SciTech Connect

    Clayton, C. E.; Joshi, C.; Lopes, N. C.

    2012-12-21

    For particle-beam-driven plasma wakefield accelerators, a long and fully-ionized plasma is desirable. We describe an experiment at UCLA to develop a prototype of such plasma using a pulsed-current discharge. Scaling of the plasma density with glass-tube diameter and with discharge-circuit parameters is currently underway. We have found that 4 Torr of Argon can be fully ionized to a density of about 1.3 Multiplication-Sign 10{sup 17} cm{sup -3} when the current density in the 1 inch diameter, 1.2 meter-long tube is around 2 kA/cm{sup 2}, at least at one point along the discharge. The homogeneity of the plasma density in the longitudinal direction is crucial to prevent slippage of the driven plasma structures with the particles. Equally important are the transverse gradients since any dipole asymmetry in the transverse direction can lead to 'steering' of the particle beam. The longitudinal and transverse gradients may be a function of time into the discharge, the shape of the electrodes, the tube size, and the fractional ionization for a given fill pressure. These issues are currently under investigation.

  8. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 4. Destruction of Weeds by High Voltage Discharge

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira

    In an attempt to replace chemicals for weed control, high voltage spark discharge has been applied. With the application of high voltage, discharge takes place, and current flows through the stem and root. Microscopic observation indicates that cells are damaged. The electrical resistance of the damage plant’s stems and roots decreased significantly. Several different types of apparatus were constructed, and field test results show the effectiveness of electrical discharge for weed control.

  9. LIBS plasma enhancement for standoff detection applications

    NASA Astrophysics Data System (ADS)

    Killinger, Dennis K.; Allen, Susan D.; Waterbury, Robert D.; Stefano, Chris; Dottery, Edwin L.

    2008-04-01

    We have used a simultaneous 10.6 micron CO II laser pulse to enhance the Laser Induced Breakdown Spectroscopy (LIBS) emission from a 1.064 micron Nd:YAG laser induced plasma on a hard target. The enhancement factor was found to be one or two orders of magnitude, depending upon the emission lines observed and the target composition. The output energy of the 5 ns Nd:YAG laser pulse was about 50 mJ and was focused to a 1 mm diameter spot to produce breakdown. The CO II laser pulse (100 ns spike, 5 microsec tail) had a similar energy density on target (0.06 J/mm2). Timing overlap of the two laser pulses within 1 microsecond was important for enhancement to be observed. Enhancement of neutral atomic emission was usually on the order of 5-20X, while enhancement of ionized species tended to be higher, 10-200X. We attribute the increase in both the atmospheric components and the +1 and +2 ionic emission to heating of the Nd:YAG plasma by the coincident CO II laser. Such inverse bremsstrahlung absorption of CO II laser radiation by the free electrons of plasma is well known. We are conducting additional studies to better quantify the effects of laser beam mode, pulse-to-pulse jitter, temporal pulse shaping, and optimization of these parameters for different LIBS target compositions.

  10. Plasma-based localized defect for switchable coupling applications

    SciTech Connect

    Varault, Stefan; Gabard, Benjamin; Sokoloff, Jerome; Bolioli, Sylvain

    2011-03-28

    We report in this paper experimental measurements in order to validate the concept of switchable electromagnetic band gap filters based on plasma capillaries in the microwave regime. The plasma tube is embedded inside the structure to create a bistable (plasma on or off) punctual defect. We first investigate two kinds of discharge tubes: Ar-Hg and pure Ne, which we then use to experimentally achieve plasma-based reconfigurable applications, namely, a two-port coupler and a two-port demultiplexer.

  11. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  12. Applications of plasma sources for nitric oxide medicine

    NASA Astrophysics Data System (ADS)

    Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander

    2013-09-01

    Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.

  13. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    NASA Astrophysics Data System (ADS)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  14. An HPLC-MS method for the quantification of new acetylcholinesterase inhibitor PC 48 (7-MEOTA-donepezil like compound) in rat plasma: Application to a pharmacokinetic study.

    PubMed

    Mzik, Martin; Korabecny, Jan; Nepovimova, Eugenie; Voříšek, Viktor; Palička, Vladimir; Kuca, Kamil; Zdarova Karasova, Jana

    2016-05-01

    A simple, rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative determination in rat plasma of a new candidate for AD treatment, namely PC 48 (a 7-MEOTA-donepezil like compound) in rat plasma. Sample preparation involved pH adjustment with sodium hydroxide followed by solvent extraction with ethyl acetate:dichloromethane (80:20, v/v). The chromatographic separation was achieved on an Ascentis Express RP-Amide column (75 mm × 2.1mm, 2.7 μm) with a gradient mobile phase consisting of 0.05 M aqueous formic acid and acetonitrile. Detection was carried out using positive-ion electrospray tandem mass spectrometry on an LTQ XL system using the MS/MS CID (collision-induced dissociation) mode. The method was linear in the range 0.1-1000 ng/ml (r(2)=0.999) with a lower limit of quantitation of 0.1 ng/mL. Extraction recovery was in the range 63.5-72.1% for PC 48 and 70.5% for reserpine (internal standard, IS). Intra- and inter-day precisions measured as relative standard deviation were below 10.8% and accuracy was from -7.2% to 7.4%. The method was successfully applied to a pharmacokinetic study involving intramuscular application of 3.86 mg/kg PC 48 to rats for the first time. Pharmacokinetic parameters for PC 48 include Cmax 39.09 ± 4.45 ng/mL,Tmax 5.00 ± 3.08 min, AUC0-t 23374 ± 4045 min ng/mL and t1/2 1065 ± 246 min.

  15. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    PubMed

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  16. Plasma medicine—current state of research and medical application

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  17. Application of nonlinear dynamic techniques to high pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Das, A. K.

    2010-02-01

    Arcs and arc plasmas have been known and used for welding, cutting, chemical synthesis and multitude of other industrial applications for more than hundred years. Though a copious source of heat, light and active species, plasma arc is inherently unstable, turbulent and difficult to control. During recent years, primarily driven by the need of new and energy efficient materials processing, various research groups around the world have been studying new and innovative ways of looking at the issues related to arc dynamics, arc stabilization, species non equilibrium, flow and heat transfer in a stabilized arc plasma device. In this context, experimental determination of nature of arc instabilities using tools of non-linear dynamics, theoretical model formulation, prediction of instability behavior under given operating conditions and possible control methods for the observed instabilities in arcs are reviewed. Space selective probing of the zones inside arc plasma devices without disturbing the system is probably the best way to identify the originating zone of instabilities inside such devices. Existence of extremely high temperature and inaccessibility to direct experimentations due to mechanical obstructions make this task extremely difficult. Probing instabilities in otherwise inaccessible inner regions of the torches, using binary gas mixture as plasma gas is a novel technique that primarily rests on a process known as demixing in arcs. Once a binary gas mixture enters the constricted plasma column, the demixing process sets in causing spatial variations for each of the constituent gases depending on the diffusion coefficients and the gradient of the existing temperature field. By varying concentrations of the constituent gases in the feeding line, it is possible to obtain spatial variations of the plasma composition in a desired manner, enabling spatial probing of the associated zones. Detailed compositional description of different zones inside the torch may be

  18. Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications

    PubMed Central

    Joslin, Jessica M.; McCall, James R.; Bzdek, Justin P.; Johnson, Derek C.; Hybertson, Brooks M.

    2017-01-01

    Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment. PMID:28428835

  19. Fundamental studies of fusion plasmas. Final report

    SciTech Connect

    Aamodt, R.E.

    1998-01-30

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.

  20. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  1. A Survey of Plasmas and Their Applications

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Grabbe, C. (Editor)

    2006-01-01

    Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).

  2. Atmospheric pressure non-thermal plasma: Sources and applications

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.

    2008-07-01

    Non-thermal plasma at atmospheric pressure is an inherently unstable object. Nature of discharge plasma instabilities and conditions for observation of uniform non-thermal plasma at atmospheric pressure in different environments will be discussed. Various discharge techniques have been developed, which could support uniform non-thermal plasma with parameters varied in a wide range. Time limitation by plasma instabilities can be overcome by shortening pulse length or by restriction of plasma plug residence time with a fast gas flow. Discharge instabilities leading to formation of filaments or sparks are provoked by a positive feedback between the electric field and plasma density, while the counteracting process is plasma and thermal diffusion. With gas pressure growth the size of plasma fluctuation, which could be stabilized by diffusion, diminishes. As a result, to have long lived uniform plasma one should miniaturize discharge. There exist a number of active methods to organize negative feedback between the electric field and plasma density in order to suppress or, at least, delay the instability. Among them are ballast resistors in combination with electrode sectioning, reactive ballast, electronic feedback, and dielectric barrier across the electric current. The last methods are relevant for ac discharges. In the lecture an overview will be given of different discharge techniques scalable in pressure up to one atmosphere. The interest in this topic is dictated by a potential economic benefit from numerous non-thermal plasma technologies. The spectrum of non-thermal plasma applications is continuously broadening. An incomplete list of known applications includes: plasma-assisted chemical vapor deposition, etching, polymerization, gas-phase synthesis, protective coating deposition, toxic and harmful gas decomposition, destruction of warfare agents, electromagnetic wave shielding, polymer surface modifications, gas laser excitation, odor control, plasma assisted

  3. Determination of manassantin B in rat plasma using a high performance liquid chromatography with fluorescence detection and its quantitative application to pharmacokinetic study.

    PubMed

    Lee, Jae-Young; Song, Jae-Hyoung; Yoon, In-Soo; Ko, Hyun-Jeong; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-02-01

    A simple, sensitive, rapid, and reproducible analytical method of manassantin B in rat plasma by high performance liquid chromatography with fluorescence detection (HPLC-FL) was developed for its application to pharmacokinetic study in rats. Valsartan (VST) was used as an internal standard (IS) in this quantitative analytical method. Manassantin B and VST were extracted by simple and efficient protein precipitation method. Manassantin B was detected at 282/322nm (excitation/emission) wavelengths using FL detector. The chromatographic separation was obtained with reverse phase C18 column and the mobile phase composed of potassium phosphate buffer containing 0.025% trifluoroacetic acid (pH 2.5; 5mM) and acetonitrile including 0.025% trifluoroacetic acid (20:80, v/v) at 1.0mL/min flow rate. The linearity was established at 25.0-10000ng/mL and the lower limit of detection (LLOD) was 7ng/mL. The intra- and inter-day accuracy and precision values of manassantin B were within±15% of the theroretical values and <9% from the nominal concentrations, respectively. Accuracy and precision values of manassantin B after stability tests were also within the acceptable ranges. Developed assay was also successfully applied to pharmacokinetic study after intravenous administration of manassantin B in rats.

  4. The study of helicon plasma source

    SciTech Connect

    Miao Tingting; Shang Yong; Zhao Hongwei; Liu Zhanwen; Sun Liangting; Zhang Xuezhen; Zhao Huanyu

    2010-02-15

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10{sup 13} cm{sup -3} have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10{sup -3} Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  5. The study of helicon plasma source.

    PubMed

    Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu

    2010-02-01

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  6. Plasma Detachment Study in VASIMR

    NASA Astrophysics Data System (ADS)

    Ilin, A. V.; Díaz, F. R. Chang; Squire, J. P.; Breizman, B. N.; Novakovski, S. V.; Sagdeev, R. Z.

    2000-10-01

    We present kinetic and MHD simulations of plasma detachment in the exhaust of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR). The detachment is associated with a transition from subalfvenic to superalfvenic plasma flow in the magnetic nozzle. As a result, the kinetic energy of the outgoing plasma flow is greater than the magnetic field energy in the exhaust area, so that the plasma is no longer confined by the magnetic field. We model the outgoing plasma flow under the assumptions that the plasma is collisionless and has a constant electron temperature. Particle simulations show that the ion motion may become nonadiabatic in the exhaust area as the magnetic field decreases downstream. This effect should facilitate the detachment.

  7. Applicability of moire deflection tomography for diagnosing arc plasmas

    SciTech Connect

    Chen Yunyun; Song Yang; He Anzhi; Li Zhenhua

    2009-01-20

    The argon arc plasma whose central temperature, 1.90x10{sup 4} K, is used as a practical example for an experiment to research the applicability of moire deflection tomography in arc plasma flow-field diagnosis. The experimental result indicates that moire deflection of the measured argon arc plasma is very small, even smaller than that of a common flame with the maximal temperature of nearly 1.80x10{sup 3} K. The refractive-index gradient in moire deflection tomography mainly contributes to the temperature gradient in essence when the probe wavelength and pressure are certain in plasma diagnosis. The applicable temperature ranges of moire deflection tomography in the argon arc plasma diagnosis are given with the probe wavelength 532 nm at 1 atm in certain measuring error requirements. In a word, the applicable temperature range of moire deflection tomography for arc plasma diagnosis is intimately related to the probe wavelength and the practical measuring requirements.

  8. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 5. Effects of High Electric Fields on Animals

    NASA Astrophysics Data System (ADS)

    Isaka, Katsuo

    The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.

  9. The Study on Inhibition of Planktonic Bacterial Growth by Non-Thermal Atmospheric Pressure Plasma Jet Treated Surfaces for Dental Application.

    PubMed

    Yoo, Eun-Mi; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Hye-Sook; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Investigation of the effects by non-thermal atmospheric pressure plasma jet (NTAPPJ) treatment on the titanium dental implant surfaces for the inhibition of two common pathogens related with dental infections, Streptococcus mutans and Staphylococcus aureus, was carried out in this study. The commercially pure titanium was used as specimen, which were irradiated by NTAPPJ for 30, 60 and 120 seconds. Specimen without being treated with NTAPPJ was assigned as the control group. The X-ray photoelectron spectroscope and surface contact angle goniometer were used to analyze the effects of NTAPPJ treatment on surface chemistry and hydrophilicity of the specimen. The effects of the NTAPPJ treatment on surfaces, in terms of bacterial attachment, growth, morphology and structural changes were evaluated by the number of colony forming units (CFU) and scanning electron microscopy (SEM) observations. The results showed that there was a reduction of CFUs and the significant change in morphology of bacteria as they were cultured on the titanium surfaces treated with NTAPPJ. These results were related to surface chemical changes and hydrophilicity changes by NTAPPJ. The NTAPPJ treatment is very effective on the dental implant titanium surface treatment that resulted in the inhibition of bacteria and has a great potential to be a promising technique in various clinical dental applications.

  10. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies

    PubMed Central

    Rezazadeh, Mahboubeh; Emami, Jaber

    2016-01-01

    High-performance liquid chromatography (HPLC) methods employing ultraviolet (UV) detector are not sufficiently sensitive to measure the low plasma concentrations following single oral dose of imipramine. Therefore, in the present study a simple, rapid and yet sensitive HPLC method with UV detection was developed and validated for quantitation of imipramine in human plasma samples. An efficient liquid-liquid extraction (LLE) of imipramine from plasma with the mixture of hexane/isoamyl alcohol (98:2) and back extraction of the drug in acidic medium concomitant with evaporation of organic phase allowed the use of UV detector to conveniently measure plasma levels of this compound as low level as 3 ng/ml. Separation was achieved on a μ-Bondapak C18 HPLC column using sodium hydrogen phosphate solution (0.01 M)/acetonitrile (60/40 v/v) at pH 3.5 ± 0.1 at 1.5 ml/min. Trimipramine was used as the internal standard for analysis of plasma samples. The retention times for imipramine and trimipramine were 4.3 and 5.2 min, respectively. Calibration curve was linear in the range of 3-40 ng/ml using human plasma with the average extraction recovery of 85 ± 5%. Imipramine was found to be stable in plasma samples with no evidence of degradation during three freeze-thaw cycles and three months storage at -70°C. The current validated method was finally applied in bioequivalence studies of two different imipramine products according to a standard two-way crossover design with a two weeks washout period. PMID:27168757

  11. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies.

    PubMed

    Rezazadeh, Mahboubeh; Emami, Jaber

    2016-01-01

    High-performance liquid chromatography (HPLC) methods employing ultraviolet (UV) detector are not sufficiently sensitive to measure the low plasma concentrations following single oral dose of imipramine. Therefore, in the present study a simple, rapid and yet sensitive HPLC method with UV detection was developed and validated for quantitation of imipramine in human plasma samples. An efficient liquid-liquid extraction (LLE) of imipramine from plasma with the mixture of hexane/isoamyl alcohol (98:2) and back extraction of the drug in acidic medium concomitant with evaporation of organic phase allowed the use of UV detector to conveniently measure plasma levels of this compound as low level as 3 ng/ml. Separation was achieved on a μ-Bondapak C18 HPLC column using sodium hydrogen phosphate solution (0.01 M)/acetonitrile (60/40 v/v) at pH 3.5 ± 0.1 at 1.5 ml/min. Trimipramine was used as the internal standard for analysis of plasma samples. The retention times for imipramine and trimipramine were 4.3 and 5.2 min, respectively. Calibration curve was linear in the range of 3-40 ng/ml using human plasma with the average extraction recovery of 85 ± 5%. Imipramine was found to be stable in plasma samples with no evidence of degradation during three freeze-thaw cycles and three months storage at -70°C. The current validated method was finally applied in bioequivalence studies of two different imipramine products according to a standard two-way crossover design with a two weeks washout period.

  12. Applications of quantum cascade lasers in plasma diagnostics: a review

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Davies, P. B.; Lang, N.; Rousseau, A.; Welzel, S.

    2012-10-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics.

  13. Platelet-rich plasma: applications in dermatology.

    PubMed

    Conde Montero, E; Fernández Santos, M E; Suárez Fernández, R

    2015-03-01

    In recent years, the use of platelet-rich plasma has increased notably in a range of diseases and settings. Uses of these products now go beyond skin rejuvenation therapy in patients with facial ageing. Good outcomes for other dermatological indications such as skin ulcers and, more recently, alopecia have been reported in case series and controlled studies. However, these indications are not currently included in the labeling given that stronger scientific evidence is required to support their real benefits. With the increased use of these products, dermatologists need to become familiar with the underlying biological principles and able to critically assess the quality and outcomes of the studies of these products in different skin diseases.

  14. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  15. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  16. Determination of flunarizine in plasma by a new high-performance liquid chromatography method. Application to a bioavailability study in the rat.

    PubMed

    Aparicio, X; Gras, J; Campos, A; Fernandez, E; Gelpí, E

    1988-01-01

    A reversed-phase high performance liquid chromatographic (HPLC) method is described for the study of the pharmacokinetics of flunarizine. The method involves selective liquid-solid extraction of flunarizine and meclizine (as internal standard) from samples of rat plasma. The optimization of the extraction and HPLC separation parameters are discussed. Recoveries were satisfactory and the relative standard deviation for replicate assays was below 10%. The sensitivity of the method would allow the detection of flunarizine in plasma at 13 ng ml(-1). Kinetic parameters for a bioequivalency study between flunarizine and a liquid formulation (oral drops) have been evaluated; the relative bioavailability was 88%.

  17. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching applications: Numerical investigation by fluid model

    SciTech Connect

    Gul, Banat; Aman-ur-Rehman

    2015-10-15

    Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBr by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.

  18. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching applications: Numerical investigation by fluid model

    NASA Astrophysics Data System (ADS)

    Gul, Banat; Aman-ur-Rehman

    2015-10-01

    Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr+, Br+, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBr by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.

  19. Plasma Science and Applications at the Intel

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2006-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the annual Intel International Science and Engineering Fair (ISEF). The 2006 prize was awarded for a project that investigated the correlation of GPS errors with various measures of near-earth plasma activity. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas. In addition, the CPS has begun as effort to examine the plasma content of state education standards with the goal of promoting the adoption of standards with appropriate plasma conten; e.g. are there three or four states of matter. The success of this and other activities depend on the voluntary labor of CPS members and associates. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  20. Application of Plasma Technology in the Life Sciences

    NASA Astrophysics Data System (ADS)

    Short, Robert

    2002-10-01

    This paper explores the versatility of plasma polymerization in the fabrication of surfaces for use in the Life Sciences and Tissue Engineering, highlighting three successful applications of plasma polymerized surfaces. 1. Plasma polymerized acrylic acid surfaces have been used as substrates for the culture and delivery of keratinocytes (skin cells) to chronic wounds. In proof of concept studies weekly delivery of keratinocytes have promoted healing in previously non-healing wounds. These include diabetic foot ulcers and wounds where skin grafts would normally be considered, but were contra-indicated. 2. Surface chemical patterning on the micrometer scale- length, by use of pre-fabricated masks, has been used to control the spatial binding of proteins and cells. This technology makes possible a significant reduction in size of biological assays, reducing the amount of material (e.g. antibody) or cells required. 3. Surface chemical potential gradients, from a few tens of micrometers to a few centrimeters, have been fabricated by "plasma writing", a technique currently being developed in Sheffield. These gradients are being developed to separate mixtures of biomolecules or cells.

  1. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    SciTech Connect

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  2. Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source

    SciTech Connect

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

  3. Plasma chemistry study of PLAD processes

    SciTech Connect

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang Maoying

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{sub 4} and GeH{sub 4} are studied and demonstrated.

  4. Plasma chemistry study of PLAD processes

    NASA Astrophysics Data System (ADS)

    Qin, Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang, Maoying

    2012-11-01

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B2H6, BF3, AsH3, and PH3, and two non-dopant plasmas including CH4 and GeH4 are studied and demonstrated.

  5. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  6. LC-MS/MS determination of cinacalcet enantiomers in rat plasma on Chirobiotic V column in polar ionic mode: application to a pharmacokinetic study.

    PubMed

    Ramisetti, Nageswara Rao; Bompelli, Sravan

    2014-12-01

    A simple and selective polar ionic liquid chromatography-tandem mass spectrometric method for separation and determination of cinacalcet enantiomers in rat plasma was developed and validated. The chromatographic separation was accomplished on a Chirobiotic V column packed with vancomycin as a chiral stationary phase using 2.5 mm ammonium formate in 100% methanol as a mobile phase in an isocratic mode of elution at a flow rate of 1.0 mL/min. The analytes were extracted from rat plasma by precipitating the proteins with acetonitrile. The developed method exhibited a linear dynamic range over 0.5-500 ng/mL in rat plasma for both enantiomers. The method was successfully applied to study the pharmacokinetics after a single dose by oral administration of 10 mg/kg of cinacalcet enantiomers to healthy male Wistar rats.

  7. Plasma Tunable LC Resonator for High-Power Electromagnetic Applications

    NASA Astrophysics Data System (ADS)

    Semnani, Abbas; Macheret, Sergey; Peroulis, Dimitrios

    2015-09-01

    High-power tunable filters are in high demand in transmitters found in radars and many communication systems such as satellite and broadcasting stations. Limited power handling renders most semiconductor technologies inherently suboptimal options for these systems. Therefore, mechanically-tunable cavity-based filters are often employed in such cases, resulting in bulky, slow, and heavy systems. In this work, we study the application of plasma as an alternative frequency tuning mechanism for high-power applications even in environmentally and/or mechanically harsh conditions. For a given gas type and pressure, the real and imaginary parts of the dielectric permittivity of a plasma can be varied by changing the electron density, which, depending on the discharge regime, can be implemented by changing the discharge current, voltage, or the magnitude of an auxiliary electric field. In this work, a simple LC resonator tuned to several hundred MHz was fabricated and tested. The tunable capacitor of the resonator was implemented by a commercially available gas discharge tube (GDT), a mm-scale plasma device with gas pressure of 100s of mTorr. Measurement results reveal a continuous tuning range of more than 50% when the applied discharge current is increased from zero to 90 mA.

  8. Advanced simulations of application plasmas: Comparisons with experiments and validations

    NASA Astrophysics Data System (ADS)

    Lee, Jae Koo

    2005-10-01

    Continuum-fluid and particle-in-cell models are the numerical simulation techniques commonly used for simulating low-temperature plasmas for plasma technology applications. Simulations can often identify research guidelines and propose novel designs leading to performance improvements in different plasma systems. We present an overview of the principles, strengths and limitations of the these. These modeling results are benchmarked by comparing in different plasma systems (capacitively and inductively coupled plasmas) with experimentally measured data and with other numerical results. The potential profile and the electron/ion kinetic information such as electron/ion energy distributions and temperatures are important for understanding the plasma phenomena. Kinetic 1d particle-in-cell/Monte-Carlo-collision and fluid modelings of Ar-oxygen plasma sources are carried out in the wide parameter range.

  9. Preface to Special Topic: Plasmas for Medical Applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  10. Preface to Special Topic: Plasmas for Medical Applications

    SciTech Connect

    Keidar, Michael; Robert, Eric

    2015-12-15

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  11. Assessing the Plasma-Liquid Interface Using Single Bubble Studies

    NASA Astrophysics Data System (ADS)

    Foster, John; Sagadevan, Athena; Gucker, Sarah

    2014-10-01

    Interaction physics and chemistry between a plasma in contact with liquid water occurs at the interface. Energy transport as well as radical species production occurs in this region. An understanding of the physical processes occurring in this region is key to elucidating the effect that plasma has on water chemistry well beyond the interface. Such an understanding has implications in application areas such as plasma medicine and water purification. Here, we present preliminary results from a 2-D system aimed at elucidating the plasma-liquid interface through the study of the interfacial response under the influence of plasma produced in a single, trapped bubble. The spatial extent and associated reactivity of this active layer associated with the interface region is interrogated with chemical probes and optical imaging. Results from these studies are presented. This work is supported by NSF CBET 1336375.

  12. Study of Photoemissive Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Gavrikov, A. V.; Fortov, V. E.; Petrov, O. F.; Babichev, V. N.; Filippov, A. V.; Pal', A. F.; Starostin, A. N.

    2008-09-01

    The present work deals with the experimental and theoretical investigation of photoemissive charging of polydisperse dust particles. The characteristic size of dust particles under consideration was 0.1-25 mkm. The experimental part of this work was devoted to the study of positive charging of macroparticles under UV-radiation that acted on dusty formations. Investigations were carried out in argon at normal pressure with particles of different materials. Dust structure was subjected to radiation. The power and frequency spectrum of this radiation was close to corresponding parameters of sun radiation near the top layers of Earth atmosphere. Owing to electron photoemission the macroparticles became positively charged. On the basis of experimental data the estimation of this charge was performed. It was about 500 elementary charges for micron particles. The theoretical part of present work included the numerical simulation of photoemissive dusty plasma decay in a drift-diffusion approximation. The model included equilibrium equation for positively charged macroparticles (in experiment, the percent of these particles was about 90), negatively charged dust particles (about 10%), positive ions (those were born by electron strike of buffered gas atoms) and electrons. Also the model included the Poisson equation for determination of potential distribution in the discharge region. The results of numerical calculations were in a satisfactory correspondence with experimental data both for time dependences of positively and negatively charged macroparticles concentrations and for their velocities.

  13. Study of Photoemissive Dusty Plasma

    SciTech Connect

    Gavrikov, A. V.; Fortov, V. E.; Petrov, O. F.; Babichev, V. N.; Filippov, A. V.; Pal', A. F.; Starostin, A. N.

    2008-09-07

    The present work deals with the experimental and theoretical investigation of photoemissive charging of polydisperse dust particles. The characteristic size of dust particles under consideration was 0.1-25 mkm. The experimental part of this work was devoted to the study of positive charging of macroparticles under UV-radiation that acted on dusty formations. Investigations were carried out in argon at normal pressure with particles of different materials. Dust structure was subjected to radiation. The power and frequency spectrum of this radiation was close to corresponding parameters of sun radiation near the top layers of Earth atmosphere. Owing to electron photoemission the macroparticles became positively charged. On the basis of experimental data the estimation of this charge was performed. It was about 500 elementary charges for micron particles. The theoretical part of present work included the numerical simulation of photoemissive dusty plasma decay in a drift-diffusion approximation. The model included equilibrium equation for positively charged macroparticles (in experiment, the percent of these particles was about 90), negatively charged dust particles (about 10%), positive ions (those were born by electron strike of buffered gas atoms) and electrons. Also the model included the Poisson equation for determination of potential distribution in the discharge region. The results of numerical calculations were in a satisfactory correspondence with experimental data both for time dependences of positively and negatively charged macroparticles concentrations and for their velocities.

  14. Development and validation of an UPLC-Q/TOF-MS assay for the quantitation of neopanaxadiol in beagle dog plasma: Application to a pharmacokinetic study.

    PubMed

    Geng, Cong; Wang, Chun-Hong; Hu, Hong; Gao, Xiao-Ping; Gong, Ai-Hua; Lin, Ying-Wei; Fan, Xiu-Shuang; Li, Heng; Yin, Jian-Yuan

    2016-10-27

    Neopanaxadiol (NPD), the main panaxadiol constituent of Panax ginseng C. A. Meyer (Araliaceae), has been regarded as the active component for the treatment of Alzheimer's disease. However, few references are available about pharmacokinetic evaluation for NPD. Accordingly, a rapid and sensitive method for quantitative analysis of NPD in beagle dog plasma based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry was developed and validated. Analytes were extracted from plasma by liquid-liquid extraction and chromatographic separation was achieved on an Agilent Zorbax Stable Bond C18 column. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions both at m/z 461.4 → 425.4 for NPD and internal standard of panaxadiol. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for multitude sample determination. After oral intake, NPD was slowly absorbed and eliminated from circulatory blood system and corresponding plasma exposure was low. Application of this quantitative method will yield the first pharmacokinetic profile after oral administration of NPD to beagle dog. The information obtained here will be useful to understand the pharmacological effects of NPD.

  15. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  16. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  17. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  18. Laser-induced plasma spectroscopy: principles, methods and applications

    SciTech Connect

    Lazic, Violeta; Colao, Francesco; Fantoni, Roberta; Spizzichino, Valeria; Jovicevic, Sonja

    2006-12-01

    Principles of the Laser Induced Plasma Spectroscopy and its advances are reported. Methods for obtaining quantitative analyses are described, together with discussion of some applications and the specific problems.

  19. Investigations of microwave plasmas - Applications in electrothermal thruster systems

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.

    1989-01-01

    Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.

  20. Investigations of microwave plasmas - Applications in electrothermal thruster systems

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.

    1989-01-01

    Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.

  1. Development, diagnostic and applications of radio-frequency plasma reactor

    NASA Astrophysics Data System (ADS)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  2. Determination of Cefalothin and Cefazolin in Human Plasma, Urine and Peritoneal Dialysate by UHPLC-MS/MS: application to a pilot pharmacokinetic study in humans.

    PubMed

    Parker, Suzanne L; Guerra Valero, Yarmarly C; Roberts, Darren M; Lipman, Jeffrey; Roberts, Jason A; Wallis, Steven C

    2016-06-01

    An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the analysis of cefazolin and cefalothin in human plasma (total and unbound), urine and peritoneal dialysate has been developed and validated. Total plasma concentrations are measured following protein precipitation and are suitable for the concentration range of 1-500 µg/mL. Unbound concentrations are measured from ultra-filtered plasma acquired using Centrifree(®) devices and are suitable for the concentration range of 0.1-500 µg/mL for cefazolin and 1-500 µg/mL for cefalothin. The urine method is suitable for a concentration range of 0.1-20 mg/mL for cefazolin and 0.2-20 mg/mL for cefalothin. Peritoneal dialysate concentrations are measured using direct injection, and are suitable for the concentration range of 0.2-100 µg/mL for both cefazolin and cefalothin. The cefazolin and cefalothin plasma (total and unbound), urine and peritoneal dialysate results are reported for recovery, inter-assay precision and accuracy, and the lower limit of quantification, linearity, stability and matrix effects, with all results meeting acceptance criteria. The method was used successfully in a pilot pharmacokinetic study with patients with peritoneal dialysis-associated peritonitis, receiving either intraperitoneal cefazolin or cefalothin. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Determination of Sodium Tanshinone IIA Sulfonate in human plasma by LC-MS/MS and its application to a clinical pharmacokinetic study.

    PubMed

    Qin, WeiWei; Wang, Bin; Lu, XiaoPei; Liu, HaiMing; Wang, Li; Qi, WeiLin

    2016-03-20

    An assay based on protein precipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative analysis of Sodium Tanshinone IIA Sulfonate (STS) in human plasma. After the addition of dehydroepiandrosterone-D5-3-sulfate sodium salt (DHEAS-D5) as internal standard (IS) and formic acid, plasma samples were prepared by one-step protein precipitation with a mixture of acetonitrile and methanol. Isocratic mobile phase consisted of 0.4 mmol/L ammonium formate buffer (16 ppm formic acid)/acetonitrile (40/60, v/v) on a XSELECT™ HSS T3 column. Detection was performed on a triple-quadrupole mass spectrometer utilizing an electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 373.3→357.1 for STS and m/z 373.0→97.8 for the IS. Calibration curves of STS in human plasma were linear (r=0.9957-0.9998) over the concentration range of 2-1000 ng/mL with acceptable accuracy and precision. The lower limit of quantification in human plasma was 2 ng/mL. The validated LC-MS/MS method has been successfully applied to a pharmacokinetic study of STS in Chinese healthy male volunteers.

  4. A sensitive and selective UPLC-MS/MS method for simultaneous determination of 10 alkaloids from Rhizoma Menispermi in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Wei, Jinxia; Fang, Linlin; Liang, Xinlei; Su, Dan; Guo, Xingjie

    2015-11-01

    A sensitive and selective liquid chromatography-tandem mass spectrometry method has been developed and validated for simultaneous quantitation of 10 alkaloids (dauricine, daurisoline, N-desmethyldauricine, dauricicoline, dauriporphinoline, bianfugecine, dauricoside, stepholidine, acutumine and acutumidine) from Rhizoma Menispermi in rat plasma. After addition of internal standard (verapamil), plasma samples were pretreated by a single-step protein precipitation with acetonitrile. Chromatographic separation was performed on a Waters BEH C18 column with gradient elution using a mobile phase composed of acetonitrile and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. The analytes were detected without interference in the multiple reaction monitoring (MRM) mode with positive electrospray ionization. The validated method exhibited good linearity over a wide concentration range (r≥0.9914), and the lower limits of quantification were 0.01-5.0 ng/mL for all the analytes. The intra-day and inter-day precisions (RSD) at three different levels were both less than 13.4% and the accuracies (RE) ranged from -12.8% to 13.5%. The mean extraction recoveries of analytes and IS from rat plasma were all more than 77%. The validated method was successfully applied to a comparative pharmacokinetic study of 10 alkaloids in rat plasma after oral administration of Rhizoma Menispermi extract.

  5. Development and validation of an RP-HPLC method for the quantitation of odanacatib in rat and human plasma and its application to a pharmacokinetic study.

    PubMed

    Police, Anitha; Gurav, Sandip; Dhiman, Vinay; Zainuddin, Mohd; Bhamidipati, Ravi Kanth; Rajagopal, Sriram; Mullangi, Ramesh

    2015-11-01

    A simple, specific, sensitive and reproducible high-performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of odanacatib in rat and human plasma. The bioanalytical procedure involves extraction of odanacatib and itraconazole (internal standard, IS) from a 200 μL plasma aliquot with simple liquid-liquid extraction process. Chromatographic separation was achieved on a Symmetry Shield RP18 using an isocratic mobile phase at a flow rate of 0.7 mL/min. The UV detection wave length was 268 nm. Odanacatib and IS eluted at 5.5 and 8.6 min, respectively with a total run time of 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 50.9-2037 ng/mL (r(2) = 0.994). The intra- and inter-day precisions were in the range of 2.06-5.11 and 5.84-13.1%, respectively, in rat plasma and 2.38-7.90 and 6.39-10.2%, respectively, in human plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats.

  6. Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma by ultra high performance liquid chromatography tandem mass spectrometry and its application to a bioequivalence study.

    PubMed

    Qiu, Xiangjun; Wang, Zhe; Wang, Bing; Zhan, Hui; Pan, Xiaofeng; Xu, Ren-ai

    2014-04-15

    An ultra high performance liquid chromatography tandem mass spectrometry (U-HPLC-MS/MS) method was developed and validated to determine irbesartan (IRB) and hydrochlorothiazide (HCTZ) in human plasma simultaneously. Plasma samples were prepared using protein precipitation with acetonitrile, the two analytes and the internal standard losartan were separated on an Acquity U-HPLC BEH C18 column and mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electro-spray ionization (ESI) source in the negative ion mode. The MRM transitions of m/z 427.2→206.9 and m/z 296.1→204.9 were used to quantify for IRB and HCTZ, respectively. The linearity of this method was found to be within the concentration range of 5-3000ng/mL for IRB, and 0.5-300ng/mL for HCTZ in human plasma, respectively. The lower limit of quantification (LLOQ) was 5ng/mL and 0.5ng/mL for IRB and HCTZ in human plasma, respectively. The relative standard deviations (RSD) of intra and inter precision were less than 12% for both IRB and HCTZ. The analysis time of per sample was 2.5min. The developed and validated method was successfully applied to a bioequivalence study of IRB (300mg) with HCTZ (12.5mg) tablet in Chinese healthy volunteers (N=20).

  7. Rapid simultaneous determination of codeine and morphine in plasma using LC-ESI-MS/MS: application to a clinical pharmacokinetic study.

    PubMed

    Liao, Qiongfeng; Deng, Yating; Xie, Zhiyong; Pan, Biyan; Zhang, Lei

    2009-01-01

    A rapid and sensitive high-performance LC-MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid-liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C(18 )column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H](+ )ions, mass-to-charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2-100/0.5-250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC-MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.

  8. Air Plasma Source for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Gordiets, B.; IPFN-IST, 1049-001 LX, Portugal Team; Lebedev Physical Institute of the Russian Academy of Sciences Team

    2011-10-01

    Plasma interactions with living matter are presently at the frontiers of plasma research and development. Plasmas contain numerous agents that influence biological activity. They provide essentially two types of biocidal species: reactive species, such as oxygen atoms that lead to lethality of micro-organisms through erosion, and UV radiation that can damage the DNA strands. In this work we investigate a surface wave (2.45 GHz) driven discharge plasma in air, with a small admixture of water vapor, as a source of ground state O(3P) oxygen atoms, NO molecules and UV radiation. A theoretical model describing both the wave driven discharge zone and its flowing afterglow is used to analyze the performance of this plasma source. The predicted plasma-generated NO(X) and O(3P) concentrations and NO(γ) radiation intensity along the source are presented and discussed as a function of the microwave power and water vapor percentage in the gas mixture. To validate the theoretical predictions, the relative concentrations of species have been determined by Mass Spectrometry, Fourier Transform Infrared Spectroscopy and Optical Spectroscopy. Acknowledgment: This work was funded by the Portuguese Foundation for Science and Technology, under research contract PTDC/FIS/108411/2008.

  9. High voltage AC plasma torches with long electric arcs for plasma-chemical applications

    NASA Astrophysics Data System (ADS)

    Surov, A. V.; Popov, S. D.; Serba, E. O.; Pavlov, A. V.; Nakonechny, Gh V.; Spodobin, V. A.; Nikonov, A. V.; Subbotin, D. I.; Borovskoy, A. M.

    2017-04-01

    Powerful AC plasma torches are in demand for a number of advanced plasma chemical applications, they can provide high enthalpy of the working gas. IEE RAS specialists have developed a number of models of stationary thermal plasma torches for continuous operation on air with the power from 5 to 500 kW, and on mixture of H2O, CO2 and CH4 up to 150 kW. AC plasma torches were tested on the pilot plasmachemical installations. Powerful AC plasma torch with hollow electrodes and the gas vortex stabilization of arc in cylindrical channels and its operation characteristics are presented. Lifetime of its continuous operation on air is 2000 hours and thermal efficiency is about 92%, the electric arc length between two electrodes of the plasma torch exceeds 2 m.

  10. Coblation technology: plasma-mediated ablation for otolaryngology applications

    NASA Astrophysics Data System (ADS)

    Woloszko, Jean; Gilbride, Charles

    2000-05-01

    Coblation is a unique method of delivering radio frequency energy to soft tissue for applications in Otolaryngology (ENT). Using radio frequency in a bipolar mode with a conductive solution, such as saline, Coblation energizes the ions in the saline to form a small plasma field. The plasma has enough energy to break the tissue's molecular bonds, creating an ablative path. The thermal effect of this process is approximately 45 - 85 degrees Celsius, significantly lower than traditional radio-frequency techniques. Coblation has been used for Otolaryngological applications such as Uvulopalatopharyngoplasty (UPPP), tonsillectomy, turbinate reduction, palate reduction, base of tongue reduction and various Head and Neck cancer procedures. The decreased thermal effect of Coblation anecdotally has led to less pain and faster recovery for cases where tissue is excised. In cases where Coblation is applied submucosally to reduce tissue volume (inferior turbinate, soft palate), the immediate volume reduction may lead to immediate clinical benefits for the patient. Coblation is currently being tested in various clinical studies to document the benefits for otolaryngological applications.

  11. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2010-08-17

    Abdus Salam International Centre for Theoretical Physics, Trieste, Italy). 2. Conference Proceedings 1. J. Kubota, C. Kojima, W. Sekine and O...Cutting Edge Plasma Physics (24-28 August, 2009, ICTP(The Abdus Salam International Centre for Theoretical Physics), Trieste, Italy) 6. W. Sekine

  12. Medical applications of non-thermal atmospheric pressure plasma

    PubMed Central

    Tanaka, Hiromasa; Hori, Masaru

    2017-01-01

    An innovative approach for producing reactive oxygen and nitrogen species is the use of non-thermal atmospheric pressure plasma. The technique has been applied in a wide variety of fields ranging from the micro-fabrication of electric devices to the treatment of disease. Although non-thermal atmospheric pressure plasmas have been shown to be clinically beneficial for wound healing, blood coagulation, and cancer treatment, the underlying molecular mechanisms are poorly understood. In this review, we describe the current progress in plasma medicine, with a particular emphasis on plasma-activated medium (PAM), which is a solution that is irradiated with a plasma and has broadened the applications of plasmas in medicine. PMID:28163379

  13. Simultaneous determination of leucine, isoleucine and valine in Beagle dog plasma by HPLC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Wang, Ting; Xie, Huiru; Chen, Xu; Jiang, Xuehua; Wang, Ling

    2015-10-10

    Leucine (Leu), isoleucine (Ile) and valine (Val) are three branched-chain amino acids (BCAAs), which have been widely used as dietary supplements for professional athletes and patients with liver failure or catabolic diseases. To date, no pharmacokinetic studies of BCAAs in vivo useful for the assessment of clinical effect following daily intake has been reported. Thus in this study, an HPLC-MS/MS method for simultaneous determination of Leu, Ile and Val in Beagle dog plasma using homoarginine as the internal standard was developed and validated in terms of specificity, linearity, precision, accuracy, and stability. This assay method was then applied to a pharmacokinetic study of BCAAs in dogs following oral administration of 0.25 g/kg and 0.50 g/kg BCAAs. The HPLC-MS/MS method was found to be sensitive and reproducible for quantification of BCAAs in dog plasma and successfully applied to the pharmacokinetic study. All these BCAAs were well absorbed with a substantial increase in the plasma concentration after a baseline modification. No statistical significance was identified in different gender group and no drug accumulation was observed following multiple doses.

  14. Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Nastuta, Andrei

    A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

  15. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion: Laminar Flow Reactor and Nanoparticle Studies at Low to Intermediate Temperatures. Program Overview

    DTIC Science & Technology

    2009-11-04

    dip asma   ue  ox at on an   gn t on mec an sms,  nc u ng  surrogate fuels ‐Development of reduced plasma chemical fuel oxidation...Studies will be conducted to investigate the effects of nanoparticles th l h t i ti d ti ki ti l ion e p asma c arac er s cs an reac on ne cs, e.g

  16. Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas

    SciTech Connect

    Wang Zhehui; Ticos, Catalin M.; Wurden, Glen A.

    2007-10-15

    Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 10{sup 15} m{sup -3} electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas ({approx}10 eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.

  17. Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to an in vivo study.

    PubMed

    Kovaríková, Petra; Klimes, Jirí; Stĕrba, Martin; Popelová, Olga; Mokrý, Milan; Gersl, Vladimír; Ponka, Premysl

    2005-08-01

    An analytical methodology appropriate for the determination of the novel drug candidate salicylaldehyde isonicotinoyl hydrazone (SIH) in rabbit plasma has been developed and validated. Desirable chromatographic separation was achieved on a C18 column employing a mixture of phosphate buffer (0.01 M NaH2PO4 x 2 H2O with 2 mM EDTA, pH 6.0) and methanol (53:47; v/v) as the mobile phase. In order to develop a suitable sample preparation procedure, different methods have been tested (solid-phase extraction, liquid-liquid extraction, and protein precipitation). Protein precipitation using 0.1 M HClO4 and acetonitrile allowed the highest recoveries of the analyte to be reproducibly attained. The analytical methodology developed in this study was validated with respect to linearity (0.26-30.0 microg/mL), accuracy, precision, selectivity, recovery, and stability. A concentration of 0.26 microg/mL was determined as the LLOQ. The chromatographic method was applied to a preliminary plasma pharmacokinetic study. This study has provided the first information about the concentrations of SIH in plasma of a living subject. These results could have a significant impact on further progress in the development of this promising compound.

  18. Optimization and validation of RP-HPLC-UV method with solid-phase extraction for determination of buparvaquone in human and rabbit plasma: application to pharmacokinetic study.

    PubMed

    Venkatesh, Gantala; Majid, M I A; Ramanathan, S; Mansor, S M; Nair, N K; Croft, Simon L; Navaratnam, V

    2008-05-01

    A simple, sensitive and specific reversed-phase high-performance liquid chromatographic method with UV detection at 251 nm was developed for quantitation of buparvaquone (BPQ) in human and rabbit plasma. The method utilizes 250 microL of plasma and sample preparation involves protein precipitation followed by solid-phase extraction. The method was validated on a C18 column with mobile phase consisting of ammonium acetate buffer (0.02 m, pH 3.0) and acetonitrile in the ratio of 18:82 (v/v) at a flow rate of 1.1 mL/min. The calibration curves were linear (correlation coefficient>or=0.998) in the selected range. The method is specific and sensitive with limit of quantitation of 50 ng/mL for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and BPQ was found to be stable. Partial validation studies were carried out using rabbit plasma and intra- and inter-day precision and accuracy were within 7%. This method is simple, reliable and can be routinely used for preclinical pharmacokinetic studies for BPQ.

  19. Dust Particle Growth and Application in Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Boufendi, L.

    2008-09-01

    Dust particle nucleation and growth has been widely studied these last fifteen years in different chemistries and experimental conditions. This phenomenon is correlated with various electrical changes at electrodes, including self-bias voltage and amplitudes of the various harmonics of current and voltage [1]. Some of these changes, such as the appearance of more resistive plasma impedance, are correctly attributed to loss of electrons in the bulk plasma to form negative molecular ions (e.g. SiH3-) and more precisely charged nanoparticles. These changes were studied and correlated to the different phases on the dust particle formation. It is well known now that, in silane argon gas mixture discharges, in the first step of this particle formation we have formation of nanometer sized crystallites. These small entities accumulate and when their number density reaches a critical value, about 1011 to 1012 cm-1, they start to aggregate to form bigger particles. The different phases are well defined and determined thanks to the time evolution of the different electrical parameter changes. The purpose of this contribution is to compare different chemistries to highlight similarities and/or differences in order to establish possible universal dust particle growth mechanisms. The chemistries we studied concern SiH4-Ar, CH4, CH4-N2 and Sn(CH3)4 [2]. We also refer to works performed in other laboratories in different discharge configurations [3]. Different applications have already developed or are foreseen for these nanoparticles. The first application concerns the inclusion of nanosized dust crystallites in an amorphous matrix in order to modify the optoelectronic and mechanical properties [4-5]. At the present time a very active research programs are devoted towards single electron devises where nanometer sized crystallites play a role of quantum dots. These nanoparticles can be produced in low pressure cold plasmas.

  20. Plasma process optimization for N-type doping applications

    SciTech Connect

    Raj, Deven; Persing, Harold; Salimian, Siamak; Lacey, Kerry; Qin Shu; Hu, Jeff Y.; McTeer, Allen

    2012-11-06

    Plasma doping (PLAD) has been adopted across the implant technology space and into high volume production for both conventional DRAM and NAND doping applications. PLAD has established itself as an alternative to traditional ion implantation by beamline implantation. The push for high doping concentration, shallow doping depth, and conformal doping capability expand the need for a PLAD solution to meet such requirements. The unique doping profile and doping characteristics at high dose rates allow for PLAD to deliver a high throughput, differentiated solution to meet the demand of evolving transistor technology. In the PLAD process, ions are accelerated to the wafer as with a negative wafer bias applied to the wafer. Competing mechanisms, such as deposition, sputtering, and etching inherent in plasma doping require unique control and process optimization. In this work, we look at the distinctive process tool control and characterization features which enable an optimized doping process using n-type (PH{sub 3} or AsH{sub 3}) chemistries. The data in this paper will draw the relationship between process optimization through plasma chemistry study to the wafer level result.

  1. Development of atmospheric pressure plasma needle jet for sterilization applications

    NASA Astrophysics Data System (ADS)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Wibowo, Kusnanto Mukti; Bakar, Ahmad Shuhaimi Abu; Arshad, Mohd Khairuddin Md; Hashim, Uda; Nayan, Nafarizal

    2017-09-01

    Inactivation of bacteria or sterilization has been a major issue in the medical field, especially regarding of human safety, whereby, in a huge scenario fatality can be caused by hazardous bacteria. Often, E-coli as gram-negative bacteria are selected as a key indicator of proper sterilization process as E-coli is tough and dormant bacteria. The technology in sterilization has moved on from chemical, wet and irradiation sterilization to a high promising device such as atmospheric pressure plasma needle jet (APPNJ). It has been reported that atmospheric pressure plasma has provided bundle of advantages over earlier sterilization process. The APPNJ is developed in our lab using high frequency and high voltage neon transformer power supply connected to copper needle and copper sheet electrodes. The gas discharge is Ar gas flowing at 40 L/min through a quartz glass tube. The E-coli bacteria are self-cultured from waste water and then treated with APPNJ. The treatment processes are run into two difference gaps between the plasma orifice and sample with various treatment times. Only 40s is required by direct treatment to achieve 100% killing of E-coli. On the other hand, indirect treatment has inactivated 50% of the E-coli in 40s. In this study, direct and indirect effect of APPNJ to the E-coli can be observed which can be utilized into sterilization of bio-compatible material applications.

  2. Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: Application to a population pharmacokinetics study in children with severe malnutrition

    PubMed Central

    Muchohi, Simon N.; Thuo, Nahashon; Karisa, Japhet; Muturi, Alex; Kokwaro, Gilbert O.; Maitland, Kathryn

    2011-01-01

    Clinical pharmacokinetic studies of ciprofloxacin require accurate and precise measurement of plasma drug concentrations. We describe a rapid, selective and sensitive HPLC method coupled with fluorescence detection for determination of ciprofloxacin in human plasma. Internal standard (IS; sarafloxacin) was added to plasma aliquots (200 μL) prior to protein precipitation with acetonitrile. Ciprofloxacin and IS were eluted on a Synergi Max-RP analytical column (150 mm × 4.6 mm i.d., 5 μm particle size) maintained at 40 °C. The mobile phase comprised a mixture of aqueous orthophosphoric acid (0.025 M)/methanol/acetonitrile (75/13/12%, v/v/v); the pH was adjusted to 3.0 with triethylamine. A fluorescence detector (excitation/emission wavelength of 278/450 nm) was used. Retention times for ciprofloxacin and IS were approximately 3.6 and 7.0 min, respectively. Calibration curves of ciprofloxacin were linear over the concentration range of 0.02–4 μg/mL, with correlation coefficients (r2) ≥ 0.998. Intra- and inter-assay relative standard deviations (SD) were <8.0% and accuracy values ranged from 93% to 105% for quality control samples (0.2, 1.8 and 3.6 μg/mL). The mean (SD) extraction recoveries for ciprofloxacin from spiked plasma at 0.08, 1.8 and 3.6 μg/mL were 72.8 ± 12.5% (n = 5), 83.5 ± 5.2% and 77.7 ± 2.0%, respectively (n = 8 in both cases). The recovery for IS was 94.5 ± 7.9% (n = 15). The limits of detection and quantification were 10 ng/mL and 20 ng/mL, respectively. Ciprofloxacin was stable in plasma for at least one month when stored at −15 °C to −25 °C and −70 °C to −90 °C. This method was successfully applied to measure plasma ciprofloxacin concentrations in a population pharmacokinetics study of ciprofloxacin in malnourished children. PMID:21185790

  3. A new quantitation method of protodioscin by HPLC–ESI-MS/MS in rat plasma and its application to the pharmacokinetic study

    PubMed Central

    Zhang, Xinxin; Guo, Zengjun; Li, Jing; Ito, Yoichiro; Sun, Wenji

    2016-01-01

    A specific high performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS method) was established for determining the concentration of protodioscin (PG) in rat plasma after intragastric administration of its standard form. Ginsenoside Rb1 was selected as the internal standard (IS). The plasma sample was prepared using one-step deproteinization procedure by adding three parts of acetonitrile to precipitate proteins. The chromatographic separation was accomplished on an Inersil ODS-3 C18 column (250 × 4.6 mm, 5 μm) with a mobile phase composed with acetonitrile and water containing 0.1% formic acid under a gradient elution mode at a flow rate of 1 mL min−1. A 3:1 portion of the eluent after a microsplit was detected on a triple quadrupole tandem mass spectrometer coupled with electrospray ionization (ESI) in positive ion and multiple reaction monitoring (MRM) scanning modes. The mass transitions were selected as 888.1 → 1050.2 for PG and 948.2 → 1110.3 for IS, respectively. After careful validation, the plasma samples were always stable under different storage conditions. These analytical results rendered sensitive, selective, and reliable values by this established method which displayed high accuracy, adequate extracted recoveries, and almost negligible matrix effects. This method was applied to the pharmacokinetic studies on PG level in the rat plasma and its pharmacokinetic effect. The results of our studies suggest that the present method may be a useful tool for further clinical study of PG. PMID:26703445

  4. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  5. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  6. Determination of scopoletin in rat plasma by high performance liquid chromatographic method with UV detection and its application to a pharmacokinetic study.

    PubMed

    Xia, Yufeng; Dai, Yue; Wang, Qiang; Liang, Huizheng

    2007-10-01

    A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed and validated for determination of scopoletin in rat plasma using psoralen as internal standard. Chromatographic separation was achieved on a C(18) column using methanol and distilled water (49:51, v/v) containing 0.05% (v/v) phosphoric acid as mobile phase. The UV detector was set at 345 nm. The calibration curve was linear over the range of 0.165-9.90 microg/ml with a correlation coefficient of 0.9994. The recovery for plasma samples of 0.165, 1.32 and 6.60 microg/ml was 93.2%, 95.9% and 95.5%, respectively. The RSD of intra- and inter-day assay variations was less than 6.7%. This HPLC assay is a precise and reliable method for the analysis of scopoletin in pharmacokinetic studies.

  7. Determination of a potential antitumor quassinoid in rat plasma by UPLC-MS/MS and its application in a pharmacokinetic study.

    PubMed

    Zhang, Qiang; Yuan, Yonghui; Cui, Jianchun; Xiao, Tingting; Deng, Zhipeng; Jiang, Daqing

    2016-05-30

    A sensitive UPLC-MS/MS method was developed and validated for the determination of brusatol in rat plasma. Chromatographic separation was carried out on a C18 column using methanol and 10mM ammonium acetate containing 0.1% (v/v) formic acid (55:45, v/v). The lower limit of quantification (LLOQ) was 1.0 ng/mL for brusatol in plasma. The intra- and inter-day precision for the analyte ranged from 3.2% to 9.2% and 1.3% to 7.8%, and the accuracy was between 97.3% and 108.5%. The method was successfully applied in a pharmacokinetic study of brusatol following intravenous injection (0.5, 1.0, and 2.0mg/kg) of brusatol. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development of a method for the determination of ibafloxacin in plasma by HPLC with flourescence detection and its application to a pharmacokinetic study.

    PubMed

    Marín, Pedro; Cárceles, Carlos M; Escudero, Elisa; Bermejo, Ruperto; Fernández-Varón, Emilio

    2007-01-01

    A simple, rapid, and sensitive high-performance liquid chromatographic method is developed for the determination of ibafloxacin in rabbit plasma. Plasma proteins are precipitated with acetonitrile, and after extraction with methylene chloride followed by desecation, ibafloxacin is determined by reversed-phase chromatography with fluorescence detection exciting at 330 nm and emission at 368 nm. Peaks corresponding to ibafloxacin and the internal standard (salycilic acid) are obtained at 9.8 and 5.2 min, respectively. The method is validated for a limit of quantitation of 10 ng/mL. The intraday relative standard deviation ranges from 4.78-7.15%, and the interday precision ranges from 1.32-4.03%. The method shows linearity for the two calibration curves used (10-100 ng/mL and 100-2000 ng/mL). The procedure described is applied successfully to a pharmacokinetics study of ibafloxacin in rabbits.

  9. Development and validation of a liquid chromatography-tandem mass spectrometry method for topotecan determination in beagle dog plasma and its application in a bioequivalence study.

    PubMed

    Ye, Ling; Shi, Jian; Wan, Shanhe; Yang, Xiaoshan; Wang, Ying; Zhang, Jiajie; Zheng, Dayong; Liu, Zhongqiu

    2013-11-01

    Topotecan (TPT) is an important anti-cancer drug that inhibits topoisomerase I. A sensitive and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that potentially determines TPT in beagle dog plasma is needed for a bioequivalence study of TPT formulations. We developed and validated LC-MS/MS to evaluate TPT in beagle dog plasma in terms of specificity, linearity, precision, accuracy, stability, extraction recovery and matrix effect. Plasma samples were treated with an Ostro(TM) sorbent plate (a robust and effective tool) to eliminate phospholipids and proteins before analysis. TPT and camptothecin (internal standard) were separated on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) with 0.1% formic acid and methanol as the mobile phase at a flow rate of 0.25 mL/min. TPT was analyzed using positive ion electrospray ionization in multiple-reaction monitoring mode. The obtained lower limit of quantitation was 1 ng/mL (signal-to-noise ratio > 10). The standard calibration curve for TPT was linear (correlation coefficient > 0.99) at the concentration range of 1-400 ng/mL. The intra-day and inter-day precision, accuracy, stability, extraction recovery and matrix effect of TPT were within the acceptable limits. The validated method was successfully applied in a bioequivalence study of TPT in healthy beagle dogs.

  10. Development and validation of a highly sensitive LC-MS/MS method for quantitation of dexlansoprazole in human plasma: application to a human pharmacokinetic study.

    PubMed

    Hotha, Kishore Kumar; Vijaya Bharathi, D; Jagadeesh, B; Ravindranath, L K; Jaya Veera, K N; Venkateswarulu, V

    2012-02-01

    A highly sensitive, specific and simple LC-MS/MS method was developed for the simultaneous estimation of dexlansoprazole (DEX) with 50 μL of human plasma using omeprazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under multiple reaction-monitoring mode using electrospray ionization. A simple liquid-liquid extraction process was used to extract DEX and IS from human plasma. The total run time was 2.00 min and the elution of DEX and IS occurred at 1.20 min. This was achieved with a mobile phase consisting of 0.2% ammonia-acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X-terra RP 18 (50 × 4.6 mm, 5 µm) column. The developed method was validated in human plasma with a lower limit of quantitation of 2 ng/mL for DEX. A linear response function was established for the range of concentrations 2.00-2500.0 ng/mL (r > 0.998) for DEX. The intra- and inter-day precision values for DEX met the acceptance criteria as per FDA guidelines. DEX was stable in the battery of stability studies, viz. bench-top, auto-sampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Determination of ginsenoside Rd in dog plasma by liquid chromatography-mass spectrometry after solid-phase extraction and its application in dog pharmacokinetics studies.

    PubMed

    Wang, Wei; Wang, Guang-Ji; Xie, Hai-Tang; Sun, Jian-Guo; Zhao, Shuai; Jiang, Xi-ling; Li, Hao; Lv, Hua; Xu, Mei-Juan; Wang, Rui

    2007-06-01

    A sensitive liquid chromatography-mass spectrometric (LC/MS) method for the quantification of ginsenoside Rd in dog plasma was developed and validated after solid-phase extraction (SPE). Chromatographic separation was achieved on a reversed-phase Cromosil C(18) column with the mobile phase of acetonitrile-ammonium chloride (500 micromol/L) and step gradient elution resulted in a total run time of about 5.5 min. The analytes were detected by using an electrospray negative ionization mass spectrometry in the selected ion monitoring (SIM) mode. A good linear relationship was obtained in the concentration range studied (0.005-2.500 microg/mL) (r=0.9998). Lower limit of quantification (LLOQ) was 5 ng/mL by using 500 microL plasma sample. Average recoveries ranged from 70.71 to 75.89% in plasma at the concentrations of 0.010, 0.100 and 2.500 microg/mL. Intra- and inter-day relative standard deviations were 8.49-11.71 and 5.71-16.48%, respectively. This method was successfully applied to the pharmacokinetic studies on dogs. The absolute bioavailability of Rd in dogs was 0.26%.

  12. A rapid and simple UPLC-MS-MS method for determination of glipizide in human plasma and its application to bioequivalence study.

    PubMed

    Qiu, Xiangjun; Zheng, Shuang-li; Wang, Yingfei; Wang, Rong; Ye, Lei

    2015-01-01

    In this study, a simple, rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry method is described for the determination of glipizide in human plasma samples using carbamazepine as the internal standard (IS) from bioequivalence assays. Sample preparation was accomplished through protein precipitation with methanol, and chromatographic separation was performed on an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with gradient profile at a flow rate of 0.4 mL/min. Mass spectrometric analysis was performed using an QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 446.1 → 321.0 and m/z 237.1 → 194.2 were used to quantify for glipizide and IS. The linearity of this method was found to be within the concentration range of 10-1,500 ng/mL for glipizide in human plasma. Only 1.0 min was needed for an analytical run. The method was applied to a bioequivalence study of two drug products containing glipizide in human plasma samples.

  13. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2008-10-27

    technique of a prism-mirror method with a prism placed under the glass tube as shown in Fig. 1 is established to observe dust particles illuminated by a...We presented our findings at the international conference in October, 2007 in Nara. The technique developed in the room temperature is used to...Australia and the other in the Summer College on Plasma Physics at Abdus Salam International Centre for Theoretical Physics in Italy. Analytical

  14. Simultaneous determination of nimesulide and its four possible metabolites in human plasma by LC-MS/MS and its application in a study of pharmacokinetics.

    PubMed

    Sun, Xiao; Xue, Kai-Lu; Jiao, Xin-Yue; Chen, Qian; Xu, Li; Zheng, Heng; Ding, Yu-Feng

    2016-08-01

    In this study, it was the first time that we simultaneously quantified nimesulide and its possible metabolites M1, M2, M3 and M4 by employing liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nimesulide-d5 was used as internal standard (IS) for validation. Analytes and IS were recovered from human plasma by protein precipitation with acetonitrile. Prepared plasma samples were analyzed under the same LC-MS/MS conditions, and chromatographic separation was realized by using an Ultimate C18 column, with run time being 5min for each sample. Our results showed that various analytes within their concentration ranges could be quantified accurately by using the method. Mean intra- and inter-day accuracies ranged from -4.8% to 4.8% (RE), and intra- and inter-assay precision ≤6.2% (RSD). The following parameters were validated: specificity, recovery, matrix effects, dilution integrity, carry-over, sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw and post-preparative) and stock solution stability. Pharmacokinetics of nimesulide and its metabolites were calculated based on the analysis of samples collected from twelve Chinese healthy volunteers after single oral dose of 100mg nimesulide tablets. By applying the pharmacokinetic determination into human samples, we preliminarily detected a new metabolite of nimesulide (M4*), and the concentration of M4* was relatively higher in plasma. Furthermore, we predicted part of conceivable metabolism pathway in plasma of after oral administration of 100mg nimesulide tablets. This research provided an experimental basis for further studies on metabolic activation and biotransformation of nimesulide, and for more comprehensive conjecture of its metabolic pathways.

  15. Plasma Functionalized Nanocarbon Materials and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng

    2015-09-01

    The plasma treatment method is important for modifying carbon nanomaterials since it has the advantage of being nonpolluting. It has the possibility of scaling up to produce large quantities necessary for commercial use. The liquid-related plasma is especially advantageous in avoiding use of toxic stabilizers and reducing agents during the nanoparticle formation process. In this work, both gas phase and liquid phase plasmas are used to modify nanocarbon materials including graphene and carbon nanotubes. The synthesis of metal nanoparticles functionalized nanocarbon materials including carbon nanotubes and graphene has been realized by an environmentally-friendly gas-liquid interfacial method. Furthermore, the new catalysts based on hybrid of nanocarbon materials and metal nanoparticles have been proved to be stable and high catalytic performance in organic molecule transformation reactions. In addition, the modification of few-layer graphene grown by chemical vapour deposition via the nitrogen plasma ion irradiation has been performed, and the modified graphene sheets as counter electrodes in bifacial dye-sensitized solar cells exhibit high performance.

  16. Development and validation of RP-HPLC method for simultaneous estimation of glimepiride and sildenafil citrate in rat plasma-application to pharmacokinetic studies.

    PubMed

    Tripathi, A S; Dewani, A P; Shelke, P G; Bakal, R L; Chandewar, A V; Mazumder, P M

    2013-10-01

    A simple and sensitive method was developed for simultaneous estimation of Glimepiride (GLIM) and Sildenafil citrate (SIL) in rat Plasma by reverse phase high performance liquid chromatography (RP-HPLC). The drug samples were extracted by liquid-liquid extraction with 300 µl of acetonitrile and 5 ml of diethyl ether. Chromatographic separation was achieved on C18 column using methanol: water (85:15 v/v) as mobile phase at a flow rate of 1 ml/min and UV detection at 230 nm. The retention time of GLIM and SIL was found to be 2.5 and 4.0 min respectively with total run time of 7 min. The developed method was validated for accuracy, precision, linearity and recovery. The method was linear and found to be acceptable over the range of 100-12 000 ng/ml. The method was successfully applied for the analysis of rat plasma sample for application to pharmacokinetic. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  18. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  19. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  20. Quantitative determination of isorhamnetin, quercetin and kaempferol in rat plasma by liquid chromatography with electrospray ionization tandem mass spectrometry and its application to the pharmacokinetic study of isorhamnetin.

    PubMed

    Lan, Ke; Jiang, Xuehua; He, Jianling

    2007-01-01

    A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of quercetin, kaempferol and isorhamnetin in rat plasma. After being treated with beta-glucuronidase and sulfatase, the analytes were extracted by liquid/liquid extraction with the internal standard (IS; baicalein). The chromatographic separation was performed on a Diamonsil C(18) column with a mobile phase consisting of 2% formic acid/methanol (10:90, v/v) at a flow rate of 1.00 mL/min, with a split of 200 microL to the mass spectrometer. Validation results indicated that the lower limit of quantification (LLOQ) was 1 ng . mL(-1). The assay exhibited a linear range of 1-200 ng . mL(-1) and gave a correlation coefficient of 0.9980 or better for each analyte. Quality control samples (1, 5, 20 and 100 ng . mL(-1)) in six replicates from each of three different runs demonstrated an intra-assay precision (RSD) of 1.1-8.9%, an inter-assay precision of 1.6-10.8%, and an overall accuracy (bias) of <13.4%. The extraction recovery of each analyte and internal standard was 70-80%. In the present study, we have investigated the pharmacokinetic profiles of isorhamnetin after oral application in rats equipped with a jugular catheter. After oral dosing of isorhamnetin, the mean values (n = 10) of C(max) were 57.8, 64.8 and 75.2 ng . mL(-1) which were achieved at a T(max) of 8.0, 6.4 and 7.2 h for oral doses of 0.25, 0.5 and 1.0 mg . kg(-1) body weight, respectively. The corresponding mean values for isorhamnetin area under the curver (AUC) from 0 to 60 h were 838.2, 1262.8, 1623.4 ng . h . mL(-1). Our results further demonstrated that the samples analyzed showed isorhamnetin could not be transformed into quercetin or kaempferol in rats, indicating that the demethylation of the 3'-oxymethyl group of isorhamnetin does not occur in Wistar rats.

  1. Simultaneous analysis of isomers of escin saponins in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study after oral administration.

    PubMed

    Wu, Xiujun; Liu, Lidong; Zhang, Mengliang; Wu, Dan; Wang, Yingwu; Sun, Yantong; Fawcett, J Paul; Gu, Jingkai; Zhang, Jiwen

    2010-04-01

    A rapid and sensitive bioassay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of four isomeric escin saponins (escin Ia, escin Ib, isoescin Ia and isoescin Ib) in human plasma has been developed and validated. Sample preparation of plasma after addition of telmisartan as internal standard (I.S.) involved solid-phase extraction (SPE) on C18 cartridges. Separation was based on reversed phase chromatography using gradient elution with methanol-acetonitrile (50:50, v/v) and 10 mM ammonium acetate solution (pH 6.8). MS/MS detection in the positive ion mode used multiple reaction monitoring of the transition at m/z 1113.8-->807.6. Stability issues with the four saponins required the addition of formic acid to plasma samples prior to storage at -80 degrees C and analysis within 30 days. The method was linear at concentrations up to 10 ng/mL with correlation coefficients>0.996 for all analytes. The lower limit of quantitation (LLOQ) for all four saponins was 33 pg/mL. Intra- and inter-day precisions (as relative standard deviation) were all <15% and accuracies (as relative error) in the range -5.3% to 6.1%. The method was successfully applied to a pharmacokinetic study of escins in healthy volunteers after oral administration of sodium aescinate tablets containing 60 mg escin saponins. 2010 Elsevier B.V. All rights reserved.

  2. Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress.

    PubMed

    Nolin, Thomas D; McMenamin, M Elizabeth; Himmelfarb, Jonathan

    2007-06-01

    A sensitive, reproducible, and robust high-performance liquid chromatography (HPLC) method has been validated for simultaneously determining total concentrations of the aminothiols homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma. Plasma aminothiols are reduced via incubation with tris-(2-carboxyethyl)-phosphine hydrochloride, followed by protein precipitation with trichloroacetic acid and derivatization with ammonium-7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonic acid. Separation of aminothiols and the internal standard mercaptopropionylglycine is achieved using reversed-phase HPLC conditions and fluorescence detection. Excellent linearity is observed for all analytes over their respective concentration ranges with correlation coefficients (r) > 0.99. The intra- and inter-day precision and accuracy were within +/-10%. This method utilizes an internal standard, employs phosphate buffered saline-based standards and quality controls, and demonstrates excellent plasma recovery and improved sensitivity. This assay is well suited for high-throughput quantitative determination of aminothiols in clinical studies, and is currently being used to support investigations of oxidative stress in patients with chronic kidney disease.

  3. Concurrent determination of olanzapine, risperidone and 9-hydroxyrisperidone in human plasma by ultra performance liquid chromatography with diode array detection method: application to pharmacokinetic study.

    PubMed

    Siva Selva Kumar, M; Ramanathan, M

    2016-02-01

    A simple and sensitive ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of olanzapine (OLZ), risperidone (RIS) and 9-hydroxyrisperidone (9-OHRIS) in human plasma in vitro. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP18 column maintained at 40°C. Quantification was performed on a photodiode array detector set at 277 nm and clozapine was used as internal standard (IS). OLZ, RIS, 9-OHRIS and IS retention times were found to be 0.9, 1.4, .1.8 and 3.1 min, respectively, and the total run time was 4 min. The method was validated for selectivity, specificity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 1-100 ng/mL for OLZ, RIS and 9-OHRIS. Intra- and inter-day precisions for OLZ, RIS and 9-OHRIS were found to be good with the coefficient of variation <6.96%, and the accuracy ranging from 97.55 to 105.41%, in human plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of RIS and 9-OHRIS in human plasma. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Quantification of carbamazepine and its 10,11-epoxide metabolite in rat plasma by UPLC-UV and application to pharmacokinetic study.

    PubMed

    Beig, Avital; Dahan, Arik

    2014-07-01

    A rapid, selective and sensitive UPLC-UV method was developed and validated for the quantitative analysis of carbamazepine and its epoxide metabolite in rat plasma. A relatively small volume of plasma sample (200 μL) is required for the described analytical method. The method includes simple protein precipitation, liquid-liquid extraction, evaporation, and reconstitution steps. Samples were separated on a Waters Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 100 mm) with a gradient mobile phase consisted of 60:40 going to 40:60 (v/v) water-acetonitrile at a flow rate of 0.5 mL/min. The total run time was as low as 6 min, representing a significant improvement in comparison to existing methods. Excellent linearity (r(2)  > 0.999) was achieved over a wide concentration range. Close to complete recovery, short analysis time, high stability, accuracy, precision and reproducibility, and low limit of quantitation were demonstrated. Finally, we successfully applied this analytical method to a pre-clinical oral pharmacokinetic study, revealing the plasma profiles of both carbamazepine and carbamazepine-10,11-epoxide following oral administration of carbamazepine to rats. The advantages demonstrated in this work make this analytical method both time- and cost-efficient approach for drug and metabolite monitoring in the pre-clinical/clinical laboratory.

  5. Simultaneous determination of four secoiridoid and iridoid glycosides in rat plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application to a comparative pharmacokinetic study.

    PubMed

    Wu, Yun; Ai, Yu; Wang, Fenrong; Ma, Wen; Bian, Qiaoxia; Lee, David Y-W; Dai, Ronghua

    2016-02-01

    A simple, reliable and rapid ultra-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of four secoiridoid (gentiopicroside, swertiamarin, sweroside) and iridoid glycosides (loganic acid), the bio-active ingredients in rat plasma. After liquid-liquid extraction, chromatographic separation was accomplished on a Shim-pack XR-ODS column with a mobile phase consisting of methanol and 0.1% formic acid in water. A triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source was used as detector operating both in positive and negative ionization mode and operated by multiple-reaction monitoring scanning. The lower limits of quantitation were 0.25-30 ng/mL for all the analytes. Both intra-day and inter-day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean extraction recoveries of analytes and internal standard (amygdalin) from rat plasma were all >71.4%. The validated method was successfully applied to a comparative pharmacokinetic study of four analytes in rat plasma between normal and arthritic rats after oral administration of Huo Luo Xiao Ling Dan and Gentiana macrophylla extract, respectively. Results showed significant differences in pharmacokinetic properties of the analytes among the different groups. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Development and validation of high-performance liquid chromatography/electrospray ionization mass spectrometry for assay of madecassoside in rat plasma and its application to pharmacokinetic study.

    PubMed

    Han, Wen-Jing; Xia, Yu-Feng; Dai, Yue

    2012-01-01

    A rapid, sensitive and specific high-performance liquid chromatography/electrospray ionization mass spectrometric (LC-ESI-MS) method was developed and validated for the quantification of madecassoside, a major active constituent of Centella asiatica (L.) Urb. herbs, in rat plasma. With paeoniflorin as an internal standard (IS), a simple liquid-liquid extraction process was employed for the plasma sample preparation. Chromatographic separation was achieved within 6 min on a Shim-pack CLC-ODS column using acetonitrile and water (60:40, v/v) containing 0.1% (v/v) formic acid as the mobile phase. The detection was performed by MS with electrospray ionization interface in negative selected ion monitoring (SIM) mode. The linear range was 11-5500 ng/mL with the square regression coefficient (r(2) ) of 0.9995. The lower limit of quantification was 11 ng/mL. The intra- and inter- day precision ranged from 4.99 to 9.03%, and the accuracy was between 95.82 and 111.80%. The average recoveries of madecassoside and IS from spiked plasma samples were >92%. The developed method was successfully applied to the pharmacokinetic study of madecassoside in rats after an oral administration. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Determination of the novel antiarrhythmic drug sulcardine sulfate in human plasma by liquid chromatography tandem mass spectrometry and its application in a clinical pharmacokinetic study.

    PubMed

    Jia, Jingying; Liu, Gangyi; Zhang, Mengqi; Lu, Youli; Lu, Chuan; Liu, Yun; Zheng, Hongcao; Wang, Wei; Gui, Yuzhou; Yu, Chen; Li, Shuijun; Wang, Yiping

    2016-08-01

    Sulcardine sulfate (Sul), a novel antiarrhythmic agent, is currently in phase I and phase II clinical trials. To elucidate its clinical pharmacokinetic characteristics, a rapid and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the quantification of Sul in human plasma. Plasma samples were precipitated by acetonitrile and isotope-labeled sulcardine was added as internal standard. The analysis was carried out on a Capcell Pak C18 MG III column (100 × 2.0 mm, 5 μm) with 0.1% formic acid in acetonitrile solution and water (17:83, v/v) as mobile phase. The linear range was 5.0-1000 ng/mL for Sul, with a lower limit of quantification of 5.0 ng/mL. The intra- and inter-batch CVs were within ±11.0% and the accuracies were 4.9-107.3%. Our method, for the first time, allows the rapid (only 3.0 min) and accurate quantification of Sul in human plasma. The method has been successfully applied in the pharmacokinetic study of Sul in a clinical trial following oral administration of Sul to healthy volunteers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Determination of ketotifen and its conjugated metabolite in human plasma by liquid chromatography/tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Chen, Xiaoyan; Zhong, Dafang; Liu, Dan; Wang, Yingwu; Han, Ying; Gu, Jingkai

    2003-01-01

    A sensitive and specific liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the investigation of the pharmacokinetics of ketotifen and its major metabolite, ketotifen N-glucuronide, in human plasma. The plasma samples were treated by liquid-liquid extraction and analyzed using LC/MS/MS with an electrospray ionization interface. Diphenhydramine was used as the internal standard. The method had a lower limit of quantitation of 10 pg/mL for ketotifen, which offered increased sensitivity, selectivity and speed of analysis, compared with existing methods. The intra- and inter-day precision were measured to be below 8.2% and accuracy between -2.4% and 3.4% for all QC samples. Incubation of the plasma samples with beta-glucuronidase allowed the quantitation of ketotifen N-glucuronide. This quantitation method was successfully applied to a pharmacokinetic study of ketotifen and its major metabolite after oral administration of 2 mg ketotifen fumarate to 16 healthy volunteers.

  9. Development and validation of a sensitive LC-MS/MS assay for the quantification of nizatidine in human plasma and urine and its application to pharmacokinetic study.

    PubMed

    Shang, De-Wei; Wang, Zhan-Zhang; Ni, Xiao-Jia; Zhang, Ming; Hu, Jin-Qing; Qiu, Chang; Wen, Yu-Guan

    2015-08-15

    We developed and validated a high performance liquid chromatographic method coupled with triple quadrupole mass spectrometry for analysis of nizatidine in human plasma and urine. The biological samples were precipitated with methanol before separation on an Agilent Eclipse Plus C18 column (100mm×46mm, 5μm) with a mixture of methanol and water (95:5, plus 5mM ammonium formate) as the mobile phase at 0.5mL/min. Detection was performed using multiple reaction monitoring modes via electrospray ionization (ESI) at m/z 332.1→155.1 (for nizatidine) and m/z 335.1→155.1 (for [(2)H3]-nizatidine, the internal standard). The linear response range was 5-2000ng/mL and 0.5-80μg/mL for human plasma and urine, with the lower limits of quantification of 5ng/mL and 0.5μg/mL, respectively. The method was validated according to the biological method validation guidelines of the Food and Drug Administration and proved acceptable. This newly developed analytical method was successfully applied in a pharmacokinetic study following single oral administration of a 150mg nizatidine capsule in to 16 healthy Chinese subjects. Maximum and endpoint concentrations in plasma and urine were quantifiable, suggesting our method is appropriate for routine pharmacokinetic analysis.

  10. Quantitation of niflumic acid in human plasma by high-performance liquid chromatography with ultraviolet absorbance detection and its application to a bioequivalence study of talniflumate tablets.

    PubMed

    Lee, H W; Won, K J; Cho, S H; Ha, Y H; Park, W S; Yim, H T; Baek, M; Rew, J H; Yoon, S H; Yim, S V; Chung, J H; Lee, K T

    2005-07-25

    A rapid and simple HPLC method with UV detection (288 nm) was developed and validated for quantitation of niflumic acid in human plasma, the active metabolite of talniflumate. After precipitation with 100% methanol containing the internal standard, indomethacin, the analysis of the niflumic acid level in the plasma samples was carried out using a reverse phase C18 CAPCELL PAK (5 microm, 4.6 mm x 250 mm) column. The chromatographic separation was accomplished with an isocratic mobile phase consisting of a mixture of 0.1M sodium acetate in water and acetonitrile (37:63, v/v), adjusted to pH 6.4. This HPLC method was validated by examining its precision and accuracy for inter- and intra-day runs in a linear concentration range of 0.02-5.00 microg/mL. Stability of niflumic acid in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days storage in a freezer. This validated method was successfully applied to the bioequivalence study of talniflunate in healthy volunteers.

  11. Quantitative determination of lisinopril in human plasma by high performance liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study.

    PubMed

    Qin, Feng; Wang, Dan; Yang, Shuyan; Jing, Lijuan; Xiong, Zhili; Li, Famei

    2012-06-01

    A rapid, selective and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to determine lisinopril in human plasma. Sample pretreatment involved a one-step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on an Inertsil ODS-3 column (2.1 × 50 mm i.d., 3 µm) with mobile phase consisting of methanol-water (containing 0.2% formic acid; 55:45, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via an electrospray ionization source. Each plasma sample was chromatographed within 2.5 min. The linear calibration curves for lisinopril were obtained in the concentration range of 1.03-206 ng/mL (r(2)  ≥ 0.99) with a lower limit of quantification of 1.03 ng/mL. The intra- and inter-day precisions (relative standard deviation) were not higher than 11%, and accuracy (relative error) was within ±6.8%, determined from quality control samples for lisinopril, which corresponded to the guidance of the Food and Drug Administration. The method described herein was fully validated and successfully applied to the pharmacokinetic study of lisinopril tablets in healthy male volunteers after oral administration. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Quantification of sofosbuvir and ledipasvir in human plasma by UPLC-MS/MS method: Application to fasting and fed bioequivalence studies.

    PubMed

    Rezk, Mamdouh R; Bendas, Ehab R; Basalious, Emad B; Karim, Iman A

    2016-08-15

    A rapid and sensitive LC-MS/MS method was developed, optimized and validated for quantification of sofosbuvir (SF) and ledipasvir (LD) in human plasma using eplerenone as an internal standard (IS). Analytes and IS were extracted from plasma by simple liquid-liquid extraction technique using methyl tertiary butyl ether. The prepared samples were chromatographed on Acquity UPLC BEH C18 column. Separation was done using a mobile phase formed of 0.1% formic acid and acetonitrile (50:50, v/v) in an isocratic mode at a flow rate of 0.4ml/min. The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. A full validation of the method was performed according to the FDA guidelines. Linearity was found to be in the range of 0.25-3500ng/ml for SF and 5-2000ng/ml for LD. The intra-day and inter-day precision and accuracy results were within the acceptable limits. A short run time of 2min allows analysis of more than 400 plasma samples per day. The developed method was successfully applied to both fasting and fed bioequivalence studies in healthy human volunteers.

  13. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    SciTech Connect

    Vautherin, B.; Planche, M.-P.; Montavon, G.; Lapostolle, F.; Quet, A.; Bianchi, L.

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy (i.e., 381.9 kJ·mol⁻¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy (i.e., 563.6 kJ·mol⁻¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure (i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited in the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable α-Ti, Al and metastable α₂-Ti₃Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.

  14. Optimizing high-performance liquid chromatography method for quantification of glucosamine using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization in rat plasma: application to a pharmacokinetic study.

    PubMed

    Wang, Xianhuo; Chen, Xiang; Chen, Lijuan; Wang, Biqin; Peng, Cheng; He, Chunmei; Tang, Minghai; Zhang, Fan; Hu, Jia; Li, Rui; Zhao, Xia; Wei, Yuquan

    2008-11-01

    A sensitive and reliable HPLC method with fluorescence detection based on the precolumn derivatization of glucosamine with 6-aminoquinolyl-N-hydroxylsuccinimidyl carbamate (AQC) was established for the quantitative determination of glucosamine in rat plasma. The plasma protein was precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was divided into the organic layer and aqueous layer by adding sodium chloride, and then the aqueous layer was derivatized with AQC in 0.2 M borate buffer of pH 8.8 before the HPLC analysis. An amino acid analysis column (3.9 x 150 mm, 4 microm) was applied, with 140 mM sodium acetate buffer (pH = 5.25) and acetonitrile as mobile phase at a flow rate of 1 mL/min. A linear correlation coefficient of 0.9987 was calculated within the range of 0.1-30 microg/mL of the standard curve for glucosamine. The limit of detection was 30 ng/mL. The intra- and inter-day precisions (as RSD) were less than 7.38 and 12.72%, respectively. The intra- and inter-day accuracy ranged from 91.8 to 110.0%. Extraction recoveries of glucosamine in plasma were more than 90%. The validated method was successfully applied for the quantitative determination of glucosamine in rat plasma and evaluation for pharmacokinetic study of glucosamine. It was also possible to be applied for the quantitative determination of other compounds containing amino group in biological samples.

  15. UPLC-MS/MS-ESI assay for simultaneous determination of magnolol and honokiol in rat plasma: application to pharmacokinetic study after administration emulsion of the isomer.

    PubMed

    Sheng, Yi-Ling; Xu, Jing-Hua; Shi, Cai-Hong; Li, Wei; Xu, Hai-Yan; Li, Ning; Zhao, Yu-Qing; Zhang, Xiang-Rong

    2014-09-29

    Magnolia officinalis is one of the commonly used in traditional Chinese medicine for the treatment of fever, chronic bronchitis and stomach ailments. Magnolol and honokiol are isomers with hydroxylated biphenol compound in the extract of Magnolia officinalis. This study aims to determine the isomers in rat plasma and evaluate their pharmacokinetic pattern after administration emulsion. Sprague Dawley male rats received either an intravenous (i.v.25, mg/kg) or oral (50mg/kg) dose of the emulsion of the isomer. A sensitive and specific ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed for the investigation of the pharmacokinetics of magnolol and honokiol in rats. Kaempferol was employed as an internal standard. The plasma samples were deproteinized with acetonitrile, the post-treatment samples were analyzed on an Agela C18 column interfaced with a triple quadrupole tandem mass spectrometer in negative electrospray ionization mode. Acetonitrile and 5 mmol/L ammonium acetate buffer solution (65: 35, v/v) was used as the mobile phase at a flow rate of 0.2 mL/min. Following oral administration of emulsion to rats, magnolol attained mean peak plasma concentrations of 426.4 ± 273.8 ng/mL at 1.20 h, whereas honokiol reached peak plasma concentrations of 40.3 ± 30.8 ng/mL at 0.45 h. The absolute bioavailability of magnolol and honokiol is 17.5 ± 9.7% and 5.3 ± 11.7%. By comparison, the AUC0-∞ of magnolol was 5.4 times higher than that of honokiol after intravenous administration, but AUC0-∞ of magnolol was about 18-fold higher than honokiol after oral administration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Liquid chromatography tandem mass spectrometry method for the quantitative analysis of ceritinib in human plasma and its application to pharmacokinetic studies.

    PubMed

    Heudi, Olivier; Vogel, Denise; Lau, Yvonne Y; Picard, Franck; Kretz, Olivier

    2014-11-01

    Ceritinib is a highly selective inhibitor of an important cancer target, anaplastic lymphoma kinase (ALK). Because it is an investigational compound, there is a need to develop a robust and reliable analytical method for its quantitative determination in human plasma. Here, we report the validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the rapid quantification of ceritinib in human plasma. The method consists of protein precipitation with acetonitrile, and salting-out assisted liquid-liquid extraction (SALLE) using a saturated solution of sodium chloride prior to analysis by LC-MS/MS with electrospray ionization (ESI) technique in positive mode. Samples were eluted at 0.800 mL min(-1) on Ascentis Express® C18 column (50 mm × 2.1 mm, 2.7 μm) with a mobile phase made of 0.1 % formic acid in water (A) and 0.1 % formic acid in acetonitrile (B). The method run time was 3.6 min and the low limit of quantification (LLOQ) was estimated at 1.00 ng mL(-1) when using 0.100 mL of human plasma. The assay was fully validated and the method exhibited sufficient specificity, accuracy, precision, and sensitivity. In addition, recovery data and matrix factor (MF) in normal and in hemolyzed plasmas were assessed, while incurred samples stability (ISS) for ceritinib was demonstrated for at least 21 months at a storage temperature of -65 °C or below. The method was successfully applied to the measurement of ceritinib in clinical samples and the data obtained on incurred samples reanalysis (ISR) showed that our method was reliable and suitable to support the analysis of samples from the clinical studies.

  17. Determination of secnidazole in human plasma by high-performance liquid chromatography with UV detection and its application to the bioequivalence studies.

    PubMed

    Li, Xiaoyu; Sun, Jianguo; Wang, Guangji; Zheng, Yuanting; Yan, Bei; Xie, Haitang; Gu, Yi; Ren, Hongchan

    2007-03-01

    A simple, accurate, precise and sensitive HPLC-UV method was developed for the determination of secnidazole in human plasma. Secnidazole and tinidazole (IS) were extracted from 0.2 mL of human plasma by ethyl acetate. Secnidazole was then separated by HPLC on a Diamond C(18) column and quantified by ultraviolet detection at 319 nm. The mobile phase consisted of acetonitrile-aqueous 5 mm sodium acetate (30:70, v/v) containing of 0.1% acetic acid adjusted to pH 4.0, and the flow rate was 1.0 mL/min. The low limit of quantification was 0.1 microg/mL. The method was linear over the concentration range 0.1-25.0 microg/mL (R(2) = 1.000). The recovery of secnidazole from human plasma ranged from 76.5 to 89.1%. Inter- and intra-assay precision ranged from 3.3 to 10.7%. Secnidazole in plasma was stable when stored at ambient temperature for 8 h, at -20 degrees C for 2 weeks and at -20 degrees C for three freeze-thaw cycles. The developed method was successfully applied to the pharmacokinetic and bioequivalence studies between test and reference secnidazole tablets following a single 500 mg oral dosage to 20 healthy volunteers of both genders. Pharmacokinetics parameters T(max), C(max), AUC(0-)t, AUC(0-infinity), T(1/2) were determined of both preparations. The analysis of variance (ANOVA) did not show any significant difference between the two preparations and 90% confidence intervals fell within the acceptable range for bioequivalence. It was concluded that the two secnidazole preparations are bioequivalence and may be used interchangeably.

  18. Plasma-etched nanostructures for optical applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  19. A strategy for extending the applicability of a validated plasma calibration curve to quantitative measurements in multiple tissue homogenate samples: a case study from a rat tissue distribution study of JI-101, a triple kinase inhibitor.

    PubMed

    Gurav, Sandip Dhondiram; Jeniffer, Sherine; Punde, Ravindra; Gilibili, Ravindranath Reddy; Giri, Sanjeev; Srinivas, Nuggehally R; Mullangi, Ramesh

    2012-04-01

    A general practice in bioanalysis is that, whatever the biological matrix the analyte is being quantified in, the validation is performed in the same matrix as per regulatory guidelines. In this paper, we are presenting the applicability of a validated LC-MS/MS method in rat plasma for JI-101, to estimate the concentrations of JI-101 in various tissues that were harvested in a rat tissue distribution study. A simple protein precipitation technique was used to extract JI-101 and internal standard from the tissue homogenates. The recovery of JI-101 in all the matrices was found to be >70%. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI-101 and 180.1 → 110.1 for internal standard. The linearity range was 5.02-4017 ng/mL. The JI-101 levels were quantifiable in the various tissue samples harvested in this study. Therefore, the use of a previously validated JI-101 assay in plasma circumvented the tedious process of method development/validation in various tissue matrices. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Novel applications of atmospheric pressure plasma on textile materials

    NASA Astrophysics Data System (ADS)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  1. Plasma characterization studies for materials processing

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  2. Plasma Liner Development for MTF Applications: A Status Report

    NASA Technical Reports Server (NTRS)

    Eskridge, R. E.; Thio, Y. F.; Lee, M.; Martin, A.; Smith, J. W.; Griffin, S. T.; Schafer, Charles (Technical Monitor)

    2001-01-01

    An experimental plasma gun for Magnetic Target Fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. This gun has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.

  3. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  4. Radio Frequency Plasma Applications for Space Propulsion

    SciTech Connect

    Baity, F.W., Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-09-13

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the effcient use of both the propellant mass and power. Effcient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process.

  5. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  6. Applications of digital processing for noise removal from plasma diagnostics

    SciTech Connect

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-11-11

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.

  7. Surface studies of plasma processed Nb samples

    SciTech Connect

    Tyagi, Puneet V.; Doleans, Marc; Hannah, Brian S.; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  8. A sensitive UHPLC-MS/MS method for the simultaneous quantification of three lignans in human plasma and its application to a pharmacokinetic study.

    PubMed

    Kim, Sook-Jin; Shin, Hwajin; Cheon, Seong-Moon; Ko, Se-Mi; Ham, Seong-Ho; Kwon, Young-Dal; Lee, Yong-Bok; Cho, Hea-Young

    2017-09-01

    The aim of this study was to develop an analytical method to simultaneously analyze schizandrin, schizandrol B, and gomisin N lignans in human plasma using ultra high performance liquid chromatography with tandem mass spectrometry. The three lignans were separated using a mobile phase of water and acetonitrile containing 0.02% acetic acid equipped with a Kinetex C18 column (2.1 mm × 50 mm, 1.7 μm). This analysis was achieved by multiple reaction monitoring mode in an electrospray interface. The mass transitions were m/z 433.1→384.0 for schizandrin, 398.8→367.8 for schizandrol B, and 400.6→299.8 for gomisin N. Liquid-liquid extraction with methyl tert-butyl ether was used to obtain the three lignans. The chromatograms showed high resolution, sensitivity, and selectivity with no interference with plasma constituents. The calibration curves for the three lignans in human plasma were 0.05-50 ng/mL and displayed excellent linearity with correlation coefficients greater than 0.99. Precision for all three lignans was within 11.23%. The accuracy was 88.3-99.0% for schizandrin, 90.6-103.4% for schizandrol B, and 90.2-103.5% for gomisin N. The developed simultaneous analytical method satisfied the criteria of international guidance and could be successfully applied to the pharmacokinetic study of three lignans after oral administration of Schisandrae Fructus extract powder to humans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simultaneous Determination of Baicalein and Baicalin in Human Plasma by High Performance Liquid Chromatograph-Tandem Spectrometry and its Application in a Food-Effect Pharmacokinetic Study.

    PubMed

    Pang, H; Shi, A; Li, M; Xue, W; Li, Y; Cao, G; Yan, B; Dong, F; Xiao, W; He, G; Du, G; Hu, X; Cheng, G

    2016-08-01

    Baicalein is a flavonoid isolated from skullcap and it is likely to exist in plasma at a low concentration because of the extensive first-pass metabolism in vivo. The aim of our study was to develop and fully validate a sensitive and selective HPLC-MS/MS method for simultaneous determination of baicalein and its main metabolite baicalin (baicalein-7-O-β-glucopyranuronoside) in human plasma. Liquid-liquid extraction was used for pretreatment of plasma samples. The mobile phase consisted of aqueous phase A (0.5% formic acid in 3 mM ammonium acetate solution) and organic phase B (methanol-acetonitrile-formic acid, 50:50:0.5, v:v:v). Detection was performed on a triple-quadrupole tandem mass spectrometer using positive electrospray ionization. Quantification was performed by multiple reaction monitoring mode at m/z transitions of 271.1→123.1 for baicalein and 447.1→271.0 for baicalin, respectively. The calibration curve was linear over the range of 1~400 ng/mL (r(2)>0.99) for both baicalein and baicalin. The intra-day and inter-day precision values were below 6.84% for baicalein and 8.56% for baicalin at 3 quality control levels. The mean accuracy was 95.27 ~ 110.56%, 91.82 ~ 105.01% for baicalein and baicalin, respectively. Analytes were stable during sample storage and handling. The method was proved to be accurate and specific and was applied to a pharmacokinetic study of baicalein in healthy volunteers under both fasted and fed states. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Highly sensitive LC-MS/MS-ESI method for determination of phenelzine in human plasma and its application to a human pharmacokinetic study.

    PubMed

    Kallem, Raja Reddy; Jillela, Bhupathi; Ravula, Arun Reddy; Samala, Ramakrishna; Andy, Adinarayana; Ramesh, Mullangi; Rao, Jvln Seshagiri

    2016-06-01

    A selective, sensitive and rapid LC-MS/MS method has been developed and validated for quantification of the phenelzine (PZ) in 200μL of human plasma using hydroxyzine (HZ) as an internal standard (IS) as per regulatory guidelines. The sample preparation involved the derivatization of PZ using pentaflurobenzaldehyde followed by solid phase extraction process to extract PZ and HZ from human plasma. LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electro spray ionization technique in positive ion mode and the transitions of m/z 305.1→105.1 and m/z 375.3→201.1 were used to measure the derivative of PZ and IS, respectively. The total run time was 3.5min and the elution of PZ and HZ occurred at 2.53, and 1.92min, respectively; this was achieved with a mobile phase consisting of 10mM ammonium acetate: acetonitrile (20:80, v/v) at a flow rate of 1.0mL/min on an Ace C18 column with a split ratio of 70:30. The developed method was validated in human plasma with a lower limit of quantitation 0.51ng/mL. A linear response function was established for the range of concentrations 0.51-25.2ng/mL (r>0.995) for PZ. The intra- and inter-day precision values met the acceptance criteria. PZ was stable in the battery of stability studies viz., stock solution, bench-top, auto-sampler, long-term and freeze/thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.

  11. Simultaneous quantification of naproxcinod and its active metabolite naproxen in rat plasma using LC-MS/MS: application to a pharmacokinetic study.

    PubMed

    Shi, Xiaowei; Shang, Weiding; Wang, Shuang; Xue, Na; Hao, Yanxia; Wang, Yabo; Sun, Mengmeng; Du, Yumin; Cao, Deying; Zhang, Kai; Shi, Qingwen

    2015-01-26

    In this study, a liquid chromatography-tandem mass spectrometry method was developed and validated to simultaneously determine naproxcinod and naproxen concentrations in rat plasma for the first time. Plasma samples were prepared by simple one-step extraction with methanol for protein precipitation using only 50 μL plasma. Separation was performed on a Synergi Fusion-RP C18 column with a run time of 4 min. Naproxcinod, naproxen and internal standard concentrations were detected in the positive ion mode using multiple reaction monitoring (MRM) of the transitions at m/z 348.2→302.2, 231.1→185.1 and 271.2→203.1, respectively. The calibration curves were linear, with all correlation coefficients being ≥0.9952, in the range of 1.00-400 ng/mL for naproxcinod and 20.0-8000 ng/mL for naproxen. Their accuracy was in the range of -8.1% to 8.7%, and the intra- and inter-day variations were ≤4.53%. The mean extraction recovery of all analytes was more than 93.1% efficient. Stability testing showed that naproxcinod and naproxen remained stable during the whole analytical procedure. After validation, the method was successfully applied to a pharmacokinetic study of naproxcinod and naproxen in rats. The AUC0-∞ of naproxen was 74.6 times larger than that of naproxcinod, which indicated that naproxcinod was rapidly metabolized into naproxen in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Photo-ionized lithium source for plasma accelerator applications

    SciTech Connect

    Muggli, P. . Dept. of Electrical Engineering Univ. of Southern California, Los Angeles, CA . Dept. of Electrical Engineering and Quantum Electronics); Marsh, K.A.; Wang, S.; Clayton, C.E.; Joshi, C. . Dept. of Electrical Engineering); Lee, S.; Katsouleas, T.C. . Dept. of Electrical Engineering and Quantum Electronics)

    1999-06-01

    A photo-ionized lithium source is developed for plasma acceleration applications. A homogeneous column of lithium neutral vapor with a density of 2 [times] 10[sup 15] cm[sup [minus]3] is confined by helium gas in a heat-pipe oven. A UV laser pulse ionizes the vapor. In this device, the length of the neutral vapor and plasma column is 25 cm. The plasma density was measured by laser interferometry in the visible on the lithium neutrals and by CO[sub 2] laser interferometry on the plasma electrons. The maximum measured plasma density was 2.9 [times] 10[sup 14] cm[sup [minus]3], limited by the available UV fluence ([approx]83 mJ/cm[sup 2]), corresponding to a 15% ionization fraction. After ionization, the plasma density decreases by a factor of two in about 12 [micro]s. These results show that such a plasma source is scaleable to lengths of the order of 1 m and should satisfy all the requirements for demonstrating the acceleration of electrons by 1 GeV in a 1-GeV/m amplitude plasma wake.

  13. Simultaneous quantification of VX and its toxic metabolite in blood and plasma samples and its application for in vivo and in vitro toxicological studies.

    PubMed

    Reiter, Georg; Mikler, John; Hill, Ira; Weatherby, Kendal; Thiermann, Horst; Worek, Franz

    2011-09-15

    The present study was initiated to develop a sensitive and highly selective method for the simultaneous quantification of the nerve agent VX (O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate) and its toxic metabolite (EA-2192) in blood and plasma samples in vivo and in vitro. For the quantitative detection of VX and EA-2192 the resolution was realized on a HYPERCARB HPLC phase. A specific procedure was developed to isolate both toxic analytes from blood and plasma samples. The limit of detection was 0.1 pg/ml and the absolute recovery of the overall sample preparation procedure was 74% for VX and 69% for EA-2192. After intravenous and percutaneous administration of a supralethal doses of VX in anaesthetised swine both VX and EA-2192 could be quantified over 540 min following exposure. This study is the first to verify the in vivo formation of the toxic metabolite EA-2192 after poisoning with the nerve agent VX. Further toxicokinetic and therapeutic studies are required in order to determine the impact of EA-2192 on the treatment of acute VX poisoning.

  14. PEEK tube-based online solid-phase microextraction-high-performance liquid chromatography for the determination of yohimbine in rat plasma and its application in pharmacokinetics study.

    PubMed

    Xiang, Xiaowei; Shang, Bing; Wang, Xiaozheng; Chen, Qinhua

    2017-04-01

    Yohimbine is a novel compound for the treatment of erectile dysfunction derived from natural products, and pharmacokinetic study is important for its further development as a new medicine. In this work, we developed a novel PEEK tube-based solid-phase microextraction (SPME)-HPLC method for analysis of yohimbine in plasma and further for pharmacokinetic study. Poly (AA-EGDMA) was synthesized inside a PEEK tube as the sorbent for microextraction of yohimbine, and parameters that could influence extraction efficiency were systematically investigated. Under optimum conditions, the PEEK tube-based SPME method exhibits excellent enrichment efficiency towards yohimbine. By using berberine as internal standard, an online SPME-HPLC method was developed for analysis of yohimbine in human plasma sample. The method has wide linear range (2-1000 ng/mL) with an R(2) of 0.9962; the limit of detection was determined and was as low as 0.1 ng/mL using UV detection. Finally, a pharmacokinetic study of yohimbine was carried out by the online SPME-HPLC method and the results have been compared with those of reported methods.

  15. A simple and rapid high-performance liquid chromatography method for determination of alendronate sodium in beagle dog plasma with application to preclinical pharmacokinetic study.

    PubMed

    Meng, Jian; Meng, Qiang; Zheng, Liangyuan

    2010-02-01

    A simple and rapid high performance liquid chromatographic (HPLC) method for quantifying alendronate in beagle dog plasma was developed, validated and applied to a pharmacokinetic study. The sample preparation involved coprecipitation with CaCl(2) and derivatization with o-phthalaldehyde. Chromatographic separation was achieved on a Diamonsil C(18 )(250 x 4.6 mm, 5 microm) using acetonitrile-0.4% EDTA-Na(2) (16:84, v/v) containing 0.034% of NaOH as mobile phase. The fluorimetric detector was operated at 339 nm (excitation) and 447 nm (emission). The linearity over the concentration range of 5.00-600 ng/mL for alendronate was obtained and the lower limit of quantification was 5.00 ng/mL. For each level of quality control samples, inter-day and intra-day precisions were less than 8.52 and 7.42% and accuracies were less than 9.07%. The assay was applied to the analysis of samples from a pharmacokinetic study. Following the oral administration of 70 mg alendronate sodium to beagle dogs, the maximum plasma concentration (C(max)) and elimination half-life were 152 +/- 27.3 and 1.75 +/- 0.267 h, respectively. The method was demonstrated to be highly feasible and reproducible for pharmacokinetic studies. (c) 2009 John Wiley & Sons, Ltd.

  16. A fast, sensitive and simple method for mirtazapine quantification in human plasma by HPLC-ESI-MS/MS. Application to a comparative bioavailability study.

    PubMed

    Borges, Ney Carter; Barrientos-Astigarraga, Rafael Eliseo; Sverdloff, Carlos Eduardo; Donato, José Luiz; Moreno, Patricia; Felix, Leila; Galvinas, Paulo Alexandre Rebelo; Moreno, Ronilson Agnaldo

    2012-11-01

    In the present study a simple, fast, sensitive and robust method to quantify mirtazapine in human plasma using quetiapine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a simple protein precipitation with methanol and were analyzed by high-performance liquid chromatography coupled to an electrospray tandem triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). Chromatography was performed isocratically on a C(18), 5 µm analytical column and the run time was 1.8 min. The lower limit of quantitation was 0.5 ng/mL and a linear calibration curve over the range 0.5-150 ng/mL was obtained, showing acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test mirtazapine 30 mg single-dose formulation vs a reference formulation in 31 volunteers of both sexes. The study was conducted in an open randomized two-period crossover design and with a 14 day washout period. Since the 90% confidence interval for C(max) , AUC(last) and AUC(0-inf) were within the 80-125% interval proposed by the Food and Drug Administration and ANVISA (Brazilian Health Surveillance Agency), it was concluded that mirtazapine 30 mg/dose is bioequivalent to the reference formulation, according to both the rate and extent of absorption.

  17. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  18. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-13

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this study, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and themore » resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. Finally, this also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.« less

  19. Determination of bromazepam in human plasma by high-performance liquid chromatography with electrospray ionization tandem mass spectrometric detection: application to a bioequivalence study.

    PubMed

    Andraus, Maristela H; Wong, Anthony; Silva, Ovandir A; Wada, Cicília Y; Toffleto, Odaly; Azevedo, Cristina P; Salvadori, Myriam C

    2004-11-01

    A simple method using a one-step liquid-liquid extraction (LLE) followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of bromazepam in human plasma, using lorazepam as internal standard. The acquisition was performed in the multiple reaction monitoring mode, monitoring the transitions: m/z 316 > 182 for bromazepam and m/z 321 > 275 for lorazepam. The method was linear over the studied range (1-100 ng ml(-1)), with r(2) > 0.98, and the run time was 2.5 min. The intra- and inter-assay precisions were 2.7-14.6 and 4.1-17.3%, respectively and the intra- and inter-assay accuracies were 87-111 and 75.8-109.5%, respectively. The mean recovery was 73.7%, ranging from 64.5 to 79.7%. The limit of quantification was 1 ng ml(-1). At this concentration the mean intra- and inter-assay precisions were 14.6 and 7.1%, respectively, and the mean intra- and inter-assay accuracies were 102.5 and 104%, respectively. Bromazepam stability was evaluated and the results showed that the drug is stable in standard solution and in plasma samples under typical storage and processing conditions. The method was applied to a bioequivalence study in which 27 healthy adult volunteers (14 men) received single oral doses (6 mg) of reference and test bromazepam formulations, in an open, two-period, randomized, crossover protocol. The 90% confidence interval of the individual ratios (test formulation/reference formulation) for C(max) (peak plasma concentration), AUC(0-96) and AUC(0-inf) (area under the plasma concentration versus time curve from time zero to 96 h and to infinity, respectively) were within the range 80-125%, which supports the conclusion that the test formulation is bioequivalent to the reference formulation regarding the rate and extent of bromazepam absorption. Copyright (c) 2004 John Wiley & Sons, Ltd

  20. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.

    PubMed

    Gay-Mimbrera, Jesús; García, Maria Carmen; Isla-Tejera, Beatriz; Rodero-Serrano, Antonio; García-Nieto, Antonio Vélez; Ruano, Juan

    2016-06-01

    Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.

  1. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  2. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    SciTech Connect

    Ruzic, David N.

    2013-04-29

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o -normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas.

  3. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  4. Quantification of aesculin in rabbit plasma and ocular tissues by high performance liquid chromatography using fluorescent detection: application to a pharmacokinetic study.

    PubMed

    Chen, QiuHong; Zeng, Ying; Kuang, JianChao; Li, Ye; Li, XiaoHui; Zheng, Yu; Hou, Hua; Hou, ShiXiang

    2011-04-28

    A simple and sensitive high performance liquid chromatography method with fluorescence detection (HPLC-FD) was described for the determination of aesculin (AL) at low concentrations in rabbit plasma and ocular tissues. After deproteinization by methanol using pazufloxacin mesilate (PM) as an internal standard (I.S.), supernatants were evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was reconstituted in mobile phase and a volume of 20μL was injected into the HPLC for analysis. Analytes were separated on an Ultimate XB-C18 column (250mm × 4.6mm i.d., 5μm particle size) and protected by a ODS guard column (10mm × 4.0mm i.d., 5μm particle size), using acetonitrile-0.1% triethylamine in water (adjusted to pH 3.0 using phosphoric acid) (12:88, v/v) as mobile phase with a flow rate of 1.0mL/min. The wavelengths of fluorescence detector (FD) were set at 344nm for excitation and 466nm for emission. The lower limit of quantitation (LOQ) for AL was 0.80ng/mL for plasma and vitreous body, 1.59ng/mL for aqueous humor, and 6.55ng/g for iris and 1.66ng/g for retina. The method was used in the study of AL concentrations in plasma and ocular tissues after topical administration of AL eye drops. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. A simple high-performance liquid chromatographic method for the determination of acyclovir in human plasma and application to a pharmacokinetic study.

    PubMed

    Yu, Liyan; Xiang, Bingren; Zhan, Ying

    2008-01-01

    A rapid, simple and sensitive reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the measurement of acyclovir (CAS 59277-89-3) concentrations in human plasma and its use in bioavailability studies is evaluated. The method was linear in the concentration range of 0.05-4.0 microg/ml. The lower limit of quantification (LLOQ) was 0.05 microg/ml in 0.5 ml plasma sample. The intra- and inter-day relative standard deviations across three validation runs over the entire concentration range were less than 8.2%. This method was successfully applied for the evaluation of pharmacokinetic profiles of acyclovir capsule in 19 healthy volunteers. The main pharmacokinetic parameters obtained were: AUC(o-t) 6.50 +/- 1.47 and 7.13 +/- 1.44 microg x h/ml, AUC(0-infinity) 6.77 +/- 1.48 and 7.41 +/- 1.49 microg x h/ml, C(max) 2.27 +/- 0.57 and 2.27 +/- 0.62 microg/ml, t(1/2) 2.96 +/- 0.41 and 2.88 +/- 0.33 h, t(max) 0.8 +/- 0.3 and 1.0 +/- 0.5 h for test and reference formulations, respectively. No statistical differences were observed for C(max) and the area under the plasma concentration--time curve for acyclovir. 90% confidence limits calculated for C(max) and AUC from zero to infinity (AUC(0-infinity)) of acyclovir were included in the bioequivalence range (0.8-1.25 for AUC).

  6. Gradient high-performance liquid chromatography for the simultaneous determination of chlorogenic acid and baicalin in plasma and its application in the study of pharmacokinetics in rats.

    PubMed

    Gao, Rong; Zheng, Qiang; Gong, Tao; Fu, Yao; Deng, Li; Zhang, Zhi-Rong

    2007-01-04

    A novel HPLC-UV method was developed for the simultaneous determination of two major active components in Yinhuang injection, chlorogenic acid and baicalin, in rat plasma. Extracted from the plasma samples with methanol-acetonitrile (3:1, v/v), the two compounds were successfully separated using a C18 column with a gradient elution composed of 15 and 54% methanol-acetonitrile (1:1, v/v) in 0.2% (v/v) phosphoric acid water solution (pH 2.0). The flow-rate was set at 1 ml min(-1) and the eluent was detected at 327 nm for chlorogenic acid, 278 nm for baicalin. Puerarin and rutin were used as the internal standards for chlorogenic acid and baicalin, respectively. The method was linear over the range of 0.388-12.4 microg ml(-1), 0.485-124 microg ml(-1) for chlorogenic acid and baicalin, respectively. The correlation coefficient for each analyte was above 0.998. The intra-day and inter-day precisions were better than 7 and 9%, with the relative error ranging from -9.5 to 7.3% and from -4.2 to 1.8%. The limit of detection (LOD) and the limit of quantification (LOQ) for chlorogenic acid and baicalin in plasma were 0.194, 0.122, 0.388 and 0.485 microg ml(-1), respectively. This assay has been successfully applied in the pharmacokinetic study of chlorogenic acid and baicalin in vivo through intravenous administration of Yinhuang injection to rats.

  7. Optimization and validation of an ion-pair RP-HPLC-UV method for the determination of total free iodine in rabbit plasma: application to a pharmacokinetic study.

    PubMed

    Cui, Lijun; Wen, Jun; Zhou, Tingting; Wang, Shuowen; Fan, Guorong

    2009-11-01

    An ion-pair reverse-phase high performance liquid chromatographic method with UV-vis detection has been developed for the determination of total free iodine in rabbit plasma after vaginal administration of povidone-iodine (PVP-I). Sample preparation was done by protein precipitation with acetonitrile in 96-well format and aspirin was used as the internal standard. The 100 microL sodium thiosulfate solution (5 g L(-1)) was added to 100 microL plasma sample before protein precipitation, to convert the total free iodine in plasma to iodide (I(-)). Separation was performed on a C(18) column (200 x 4.6 mm i.d., 5 microm). The mobile phase consisting of a mixture of water phase (containing 10 mmol L(-1) 18-crown-6 ether, 5 mmol L(-1) octylamine and 5 mmol L(-1) sodium dihydrogen phosphate, pH adjusted to 6.0 with phosphoric acid) and acetonitrile in the ratio 70:30 (v/v) was delivered isocraticly at a flow rate of 1.0 mL min(-1). The method was sensitive with a lower limit of quantification of 0.005 microg mL(-1), with good linearity (r(2) > 0.9990) over the linear range of 0.005-2 microg mL(-1). All the validation data, such as linearity, accuracy and precision, were within the required limits. The method was successfully applied to study the pharmacokinetic of PVP-I in rabbits after vaginal administration.

  8. Development of Solid-Phase Extraction and HPLC Method for Simultaneous Estimation of Ilaprazole and Glimepiride in Rat Plasma: Application to Pharmacokinetic Studies.

    PubMed

    Dewani, A P; Tripathi, A S; Shelke, P G; Bakal, R L; Mohale, D S; Chandewar, A V

    2017-03-01

    A novel, simple and mass spectrometry (MS) compatible high-performance liquid chromatography (HPLC) method is reported for the simultaneous estimation of ilaprazole (ILA) and glimepiride (GLM) in rat plasma. The bio-analytical procedure involves extraction of ILA, GLM and internal standard (IS) from rat plasma with a solid-phase extraction (SPE) process. The chromatographic analysis was performed on Waters-600 system using an isocratic mobile phase comprising methanol:water (80:20 % v/v) with pH of water modified to three using formic acid at a flow rate of 1.0 mL/min and Kinetex C18 column maintained at 30 ± 1°C. The signals were monitored using a PDA detector set at 225 nm. IS, ILA and GLM eluted at 2.04, 4.7 and 7.4 min, respectively, and the total run time was 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 10-600 ng/mL (r2 = 0.999). The intra- and inter-day precisions for ILA and GLM were (%RSD values) in the range of 1.52-9.74 and 1.52-11.76%, respectively, in rat plasma. The method was successfully applied in pharmacokinetic studies followed by oral administration of GLM and ILA in rats. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Simultaneous determination of six flavonoids from Paulownia tomentosa flower extract in rat plasma by LC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Dai, Bin; Hu, Zhiqiang; Li, Haiyan; Yan, Chong; Zhang, Liwei

    2015-01-26

    A simple, rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of six components including apigenin, quercetin, apigenin-7-O-β-D-glucoside, quercetin-3-O-β-D-glucoside, 3'-methoxyluteolin-7-O-β-D-glucoside, and tricin-7-O-β-D-glucopyranoside in rat plasma using formononetin as the internal standard (IS). The plasma samples were pretreated by a one-step liquid-liquid extraction with dichloromethane. The chromatographic separation was carried out on a ZORBAX SB-Aq column with a gradient mobile phase consisting of acetonitrile and 2mM aqueous ammonium acetate. All analytes and IS were quantitated through electrospray ionization in negative ion multiple reaction monitoring mode. The mass transitions were as follows: m/z 269.1→117.2 for apigenin, m/z 301.2→151.2 for quercetin, m/z 431.3→311.2 for apigenin-7-O-β-D-glucoside, m/z 463.2→300.2 for quercetin-3-O-β-D-glucoside, m/z 461.3→283.1 for 3'-methoxyluteolin-7-O-β-D-glucoside, m/z 491.3→313.1 for tricin-7-O-β-D-glucopyranoside, and m/z 267.2→252.2 for IS, respectively. All calibration curves exhibited good linearity with correlation coefficient (r)>0.995. The intra-day and inter-day precisions (RSD) at three QC levels were both less than 14.0% and the accuracies ranged from 89.8% to 113.8%. The extraction recoveries of six compounds ranged from 82.3% to 92.5%. The validated method was successfully applied to pharmacokinetic study of the six components in male rat plasma after oral administration of Paulownia tomentosa flower extract.

  10. Development and validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of six steroidal saponins in rat plasma and its application to a pharmacokinetics study.

    PubMed

    Liu, Zhirui; Qin, Wenxing; Zhu, Zhenyu; Liu, Yao; Sun, Fengjun; Chai, Yifeng; Xia, Peiyuan

    2015-04-01

    A specific and reliable liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the simultaneous determination of timosaponin H1 (TH1), timosaponin E1 (TE1), timosaponin E (TE), timosaponin B-II (TB-II), timosaponin B-III (TB-III) and anemarrhenasaponin I (AS-I) in rat plasma. After addition of internal standard (IS) ginsenoside Rh1, plasma samples were pretreated by protein precipitation with acetonitrile. Chromatographic separation was performed on a reverse phase ACQUITY™ BEH C18 column (100mm×2.1mm i.d., 1.7μm) using a gradient mobile phase system of acetonitrile-water containing 0.05% formic acid and 5mM ammonium formate. The triple quadruple mass spectrometer was set in negative electrospray ionization mode and multiple reaction monitoring (MRM) was used for six steroidal saponins quantification. The precursors to produce ion transitions monitored for TH1, TE1, TE, TB-II, TB-III, AS-I and IS were m/z 1211.5>1079.6, 935.5>773.4, 935.4>773.5, 919.6>757.4, 901.5>739.3, 757.4>595.3 and 637.3>475.3, respectively. The method validation was conducted over the curve range of 0.5-400ng/mL for the six saponins. The intra- and inter-day precisions (RSD%) were less than 9.4% and the average extraction recoveries ranged from 82.5% to 97.8% for each analyte. Six steroidal saponins were proved to be stable during sample storage, preparation and analytical procedures. The validated method was successfully applied for the first time to determine the concentrations of six main steroidal saponins in incurred rat plasma samples, after intragastric administration of the extract of Anemarrhena asphodeloides Bge. for a rat pharmacokinetic study. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Simultaneous quantification of lenalidomide, ibrutinib and its active metabolite PCI-45227 in rat plasma by LC-MS/MS: application to a pharmacokinetic study.

    PubMed

    Veeraraghavan, Sridhar; Viswanadha, Srikant; Thappali, Satheeshmanikandan; Govindarajulu, Babu; Vakkalanka, Swaroopkumar; Rangasamy, Manivannan

    2015-03-25

    Efficacy assessments using a combination of ibrutinib and lenalidomide necessitate the development of an analytical method for determination of both drugs in plasma with precision. A high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of lenalidomide, ibrutinib, and its active metabolite PCI45227 in rat plasma. Extraction of lenalidomide, ibrutinib, PCI45227 and tolbutamide (internal standard; IS) from 50 μl rat plasma was carried out by liquid-liquid extraction with ethyl acetate:dichloromethane (90:10) ratio. Chromatographic separation of analytes was performed on YMC pack ODS AM (150 mm × 4.6 mm, 5 μm) column under gradient conditions with acetonitrile:0.1% formic acid buffer as the mobile phases at a flow rate of 1 ml/min. Precursor ion and product ion transition for analytes and IS were monitored on a triple quadrupole mass spectrometer, operated in the selective reaction monitoring with positive ionization mode. Method was validated over a concentration range of 0.72-183.20 ng/ml for ibrutinib, 0.76-194.33 ng/ml for PCI-45227 and 1.87-479.16 ng/ml for lenalidomide. Mean extraction recovery for ibrutinib, PCI-45227, lenalidomide and IS of 75.2%, 84.5%, 97.3% and 92.3% were consistent across low, medium, and high QC levels. Precision and accuracy at low, medium and high quality control levels were less than 15% across analytes. Bench top, wet, freeze-thaw and long term stability was evaluated for all the analytes. The analytical method was applied to support a pharmacokinetic study of simultaneous estimation of lenalidomide, ibrutinib, and its active metabolite PCI-45227 in Wistar rat. Assay reproducibility was demonstrated by re-analysis of 18 incurred samples.

  12. Simultaneous quantification of triterpenoid saponins in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study after oral total saponin of Aralia elata leaves.

    PubMed

    Sun, Yichun; Xue, Juan; Li, Baimei; Lin, Xiaoting; Wang, Zhibin; Jiang, Hai; Zhang, Hongwei; Wang, Qiuhong; Kuang, Haixue

    2016-11-01

    A rapid, sensitive, and reliable analytical ultra performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of Aralia-saponin IV, 3-O-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl oleanolic acid 28-O-β-d-glucopyranoside, Aralia-saponin A and Aralia-saponin B after the oral administration of total saponin of Aralia elata leaves in rat plasma. Plasma samples were pretreated by protein precipitation with methanol. The analysis was performed on an ACQUITY UPLC HSS T3 column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source with negative ionization mode. Under the experimental conditions, the calibration curves of four analytes had good linearity values (r > 0.991). The intra- and inter-day precision values of the four analytes were ≤ 11.6%, and the accuracy was between -6.2 and 4.2%.The extraction recoveries of four triterpenoid saponins were in the range of 84.06-91.66% (RSD < 10.5%), and all values of the matrix effect were more than 90.30%. The developed analytical method was successfully applied to pharmacokinetic study on simultaneous determination of the four triterpenoid saponins in rat plasma after oral administration of total saponin of Aralia elata leaves, which helps guiding clinical usage of Aralia elata leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. UPLC-MS-MS method for simultaneous determination of caffeine, tolbutamide, metoprolol, and dapsone in rat plasma and its application to cytochrome P450 activity study in rats.

    PubMed

    Liu, Yan; Li, Xiang; Yang, Chunjuan; Tai, Sheng; Zhang, Xiangning; Liu, Gaofeng

    2013-01-01

    A specific ultra-performance liquid chromatography tandem mass spectrometry method has been described for the simultaneous determination of caffeine, tolbutamide, metoprolol and dapsone in rat plasma, which are the four probe drugs of the four cytochrome P450 (CYP450) isoforms CYP1A2, CYP2C9, CYP2D6 and CYP3A4. The chromatographic separation was achieved using a Waters Acquity UPLC BEH HILIC C(18) column (2.1 × 50 mm, 1.7 µm). The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) (15:85, v/v). The triple quadrupole mass spectrometric detection was operated by positive electrospray ionization. Phenacetin was chosen as internal standard. Plasma samples were extracted with dichloromethane-butanol (10:1, v/v). The recoveries ranged from 67.5% to 98.5%. The calibration curves in plasma were linear in the range of 2.5-1,000 ng/mL for caffeine and dapsone, 5-5,000 ng/mL for tolbutamide and 2.5-250 ng/mLfor metoprolol, with correlation coefficient (r(2)) of 0.9936, 0.9966, 0.9990 and 0.9998, respectively. The method was successfully applied to pharmacokinetic studies of the four probe drugs of the four CYP450 isoforms and used to evaluate the effects of breviscapine on the activities of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in rats.

  14. Analysis of 21-hydroxy deflazacort in human plasma by UPLC-MS/MS: application to a bioequivalence study in healthy volunteers.

    PubMed

    Patel, Daxesh P; Sharma, Primal; Patel, Bhargav M; Sanyal, Mallika; Singhal, Puran; Shrivastav, Pranav S

    2013-11-01

    A sensitive and rapid ultra performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method has been developed for the determination of 21-hydroxy deflazacort in human plasma using betamethasone as the internal standard (IS). After solid-phase extraction from 100 μL human plasma, the analyte and IS were analyzed on Waters Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm) column using acetonitrile-4.0mM ammonium formate, pH 3.5 (90:10, v/v) as the mobile phase. The protonated analyte was quantified by selected reaction monitoring in the positive ionization mode by triple quadrupole mass spectrometer. The calibration plots were linear over the concentration range 0.50-500 ng/mL. Intra-batch and inter-batch precision (% CV) and accuracy (%) for five quality control samples ranged within 1.40-4.82% and 98.0-102.0% respectively. The overall mean extraction recovery of 21-hydroxy deflazacort from plasma ranged from 95.3 to 97.3%. Matrix effect was assessed by post-column analyte infusion and the extraction recovery was >95.0% across four quality control levels for the analyte and IS. Stability was evaluated under different conditions like bench top, autosampler, processed sample (at room temperature and in cooling chamber), freeze-thaw and long term stability. The method was applied to support a bioequivalence study of 30 mg deflazacort tablet formulation in 28 healthy subjects. Assay reproducibility was demonstrated by reanalysis of 115 incurred samples.

  15. A selective and sensitive method based on UPLC-MS/MS for quantification of momordin Ic in rat plasma: application to a pharmacokinetic study.

    PubMed

    Yan, Huiyu; Song, Yanqing; Zhou, Wei; Zhang, Sixi

    2015-11-10

    A selective and sensitive method was developed and validated based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). This method was applied to quantify momordin Ic in rat plasma. Chromatographic separation was performed on a Hypersil GOLD HPLC C18 column (150mm×4.6mm, 5μm) using an isocratic mobile phase of acetonitrile/water (80:20, v/v) at a flow rate of 0.6mL/min. An electrospray ionization source was applied and operated in negative ion mode; selected reaction monitoring (SRM) mode was used for quantification by monitoring the precursor-to-product ion transitions of m/z 763.4→m/z 455.3 for momordin Ic, and m/z 649.4→m/z 487.3 for IS. Calibration curves showed good linearity over the range of 22.0-2200ng/mL for momordin Ic in rat plasma. The developed method was applied to a pharmacokinetic study of momordin Ic in rats after single intravenous doses at 0.52, 1.56, and 4.67mg/kg. The elimination half-life (t1/2) values were 1.22±0.39, 1.14±0.10, and 1.83±0.39h, respectively. The plasma concentration at 2min (C2min) and area under the curve (AUC) for the intravenous doses of momordin Ic were approximately dose proportional.

  16. Enantioselective analysis of ibuprofen enantiomers in mice plasma and tissues by high-performance liquid chromatography with fluorescence detection: Application to a pharmacokinetic study.

    PubMed

    Przejczowska-Pomierny, Katarzyna; Włodyka, Monika; Cios, Agnieszka; Wyska, Elżbieta

    2017-09-01

    A direct fluorometric high-performance liquid chromatography (HPLC) method was developed and validated for the analysis of ibuprofen enantiomers in mouse plasma (100 μl) and tissues (brain, liver, kidneys) using liquid-liquid extraction and 4-tertbutylphenoxyacetic acid as an internal standard. Separation of enantiomers was accomplished in a Chiracel OJ-H chiral column based on cellulose tris(4-methylbenzoate) coated on 5 μm silica-gel, 250 x 4.6 mm at 22 °C with a mobile phase composed of n-hexane, 2-propanol, and trifluoroacetic acid that were delivered in gradient elution at a flow rate of 1 ml min(-1) . A fluorometric detector was set at: λexcit . = 220 nm and λemis. = 290 nm. Method validation included the evaluation of the selectivity, linearity, lower limit of quantification (LLOQ), within-run and between-run precision and accuracy. The LLOQ for the two enantiomers was 0.125 μg ml(-1) in plasma, 0.09 μg g(-1) in brain, and 0.25 μg g(-1) in for liver and kidney homogenates. The calibration curves showed good linearity in the ranges of each enantiomers: from 0.125 to 35 μg ml(-1) for plasma, 0.09-1.44 μg g(-1) for brain, and 0.25-20 μg g(-1) for liver and kidney homogenates. The method was successfully applied to a pharmacokinetic study of ibuprofen enantiomers in mice treated i.v. with 10 mg kg(-1) of racemate. © 2017 Wiley Periodicals, Inc.

  17. Simultaneous determination of four furostanol glycosides in rat plasma by UPLC-MS/MS and its application to PK study after oral administration of Dioscorea nipponica extracts.

    PubMed

    Liao, Min; Dai, Cong; Liu, Mengping; Chen, Jiefeng; Chen, Zuanguang; Xie, Zhiyong; Yao, Meicun

    2016-01-05

    A novel, sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method for simultaneous quantification of four furostanol glycosides in rat plasma was established and validated. Ginsenoside Rb1 was used as an internal standard. Plasma samples were pretreated by liquid-liquid extraction with n-butanol and chromatographed on a C18 column (2.1×50 mm i.d., 2.6 μm) using a gradient elution program consisting of acetonitrile and water (containing 0.03% formic acid and 0.1 mM lithium acetate) at a flow rate of 0.4 mL/min. Lithium adduct ions were employed to enhance the response of the analytes in electrospray positive ionization mode and multiple reaction monitoring transitions were performed for detection. All calibration curves exhibited good linearity (r>0.999) over the range of 10-20,000 ng/mL for protodioscin and 2-4000 ng/mL for protogracillin, pseudoprotodioscin and pseudoprotogracillin. The recoveries of the whole analytes were more than 80.3% and exhibited no severe matrix effect. Meanwhile, the intra- and inter-day precisions were all less than 10.7% and accuracies were within the range of -8.1-12.9%. The four saponins showed rapid excretion and relative high plasma concentrations when the validated method was applied to the PK study of Dioscorea nipponica extracts by intragastric administration at low, medium and high dose to rats. Moreover, the T(1/2) and AUC(0-t) of each compound turned out to behave in a dose-dependent pattern by comparing them at different dose levels.

  18. Enantioselective determination of (R)- and (S)-lansoprazole in human plasma by chiral liquid chromatography with mass spectrometry and its application to a stereoselective pharmacokinetic study.

    PubMed

    Sun, Luning; Cao, Yang; Jiao, Huiwen; Fang, Yunqian; Yang, Zhicheng; Bian, Mingliang; Zhang, Hongwen; Gong, Xiaojian; Wang, Yongqing

    2015-11-01

    A simple and enantioselective method was developed and validated for the simultaneous determination of (R)- and (S)-lansoprazole in human plasma by chiral liquid chromatography with tandem mass spectrometry. Lansoprazole enantiomers and internal standard (esomeprazole) were extracted from plasma using acetonitrile as protein precipitating agent. Baseline chiral separation was achieved within 9.0 min on a Chiralpak IC column (150 mm × 4.6 mm, 5 μm) with the column temperature of 30°C. The mobile phase consisted of 10 mM ammonium acetate solution containing 0.05% acetic acid/acetonitrile (50:50, v/v). The mass spectrometric analysis was performed using a QTrap 5500 mass spectrometer coupled with an electrospray ionization source in positive ion mode. The multiple reactions monitoring transitions of m/z 370.1→252.1 and 346.1→198.1 were used to quantify lansoprazole enantiomers and esomeprazole, respectively. For each enantiomer, no apparent matrix effect was found, the calibration curve was linear over 5.00-3000 ng/mL, the intra- and inter-day precisions were below 10.0%, and the accuracy was -3.8 to 3.3%. Analytes were stable during the study. No chiral inversion was observed during sample storage, preparation procedure and analysis. The method was applied to the stereoselective pharmacokinetic studies in human after intravenous administration of dexlansoprazole or racemic lansoprazole.

  19. Simultaneous determination of eight bioactive components of Qishen Yiqi Dripping Pills in rat plasma using UFLC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Shao, Yaping; Zhang, Wen; Tong, Ling; Huang, Jingyi; Li, Dongxiang; Nie, Wei; Zhu, Yan; Li, Yunfei; Lu, Tao

    2017-02-01

    In this study, a rapid and reliable ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method was developed and validated for the simultaneous determination of eight active ingredients, including astragaloside IV (AIV), ononin (ONO), tanshinol (TSL), protocatechualdehyde (PCA), protocatechuic acid (PA), salvianolic acid D (SAD), rosmarinic acid (RA), and ginsenoside Rg1 (GRg1 ), in rat plasma. The plasma samples were pretreated by protein precipitation with acetonitrile. Chromatographic separation was performed on a Waters Acquity UPLC® BEH C18 column (1.7 µm particles, 2.1 × 100 mm).The mobile phase consisted of 0.1% aqueous formic acid (A)-acetonitrile with 0.1% formic acid (B) at a flow rate of 0.4 mL/min. Quantification was performed on a triple quadruple tandem mass spectrometry with electrospray ionization by multiple reaction monitoring both in the negative and positive ion mode. The lower limit of quantification (LLOQ) of TSL was 2.0 ng/mL and the others were 5.0 ng/mL. The extraction recoveries, matrix effects, intra- and inter-day precision and accuracy of eight tested components were all within acceptable limits. The validated method was successfully applied to the pharmacokinetic study of the eight active constituents after intragastric administration of three doses (1.0, 3.0, 6.0 g/kg body weight) of Qishen Yiqi dripping pills to rats.

  20. A rapid and sensitive UHPLC-MS/MS assay for the determination of trelagliptin in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Hu, Xiao-Xia; Lan, Tian; Chen, Zhe; Yang, Cheng-Cheng; Tang, Peng-Fei; Yuan, Ling-Jing; Hu, Guo-Xin; Cai, Jian-Ping

    2016-10-15

    This study aims to develop and validate a simple, rapid and sensitive ultra-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for exploring pharmacokinetic characteristics of trelagliptin. Protein precipitation by acetonitrile was used to prepare plasma sample. A RRHD Eclipse Plus C18 (2.1×50mm, 1.8μ) column with gradient mobile phase (containing acetonitrile and 0.1% formic acid) help to achieve the separation of trelagliptin and carbamazepine (IS) with high selectivity. Detection of target fragment ions m/z 358.2→133.9 for trelagliptin, and m/z 237.1→194.0 for IS was performed in positive-ion electrospray ionization mass spectrometry by multiple reaction monitoring. Linear calibration plots were achieved in the range of 5-4000ng/mL for trelagliptin (R(2)=0.999) in rat plasma. The recovery of trelagliptin ranged from 87.8% to 93.7%. The method was showed to be accurate, precise and stable. No obvious matrix effect was found. It has been fully validated and successfully applied to pharmacokinetic study of trelagliptin.

  1. Determination of cetirizine in human plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a bioequivalence study.

    PubMed

    Ren, Xiao-Lei; Tian, Yuan; Zhang, Zun-Jian; Chen, Yun; Wu, Li-Li; Huang, Jun

    2011-01-01

    A rapid, sensitive and selective HPLC-MS/ MS method was developed and validated for the quantification of cetirizine dihydrochloride (CAS 83881-51-0) in human plasma using mosapride citrate as internal standard (IS, CAS 112885-42-4). Following liquid-liquid extraction, the analytes were separated using a mobile phase consisting of methanol and aqueous ammonium acetate solution (10 mM) (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 398 --> 201 for cetirizine and m/z 422 --> 198 for mosapride. The analysis time for each run was 8.0 min. The assay exhibited a linear dynamic range of 0.5-500 ng/ml for cetirizine dihydrochloride in human plasma. The lower limit of quantification (LLOQ) was 0.5 ng/ml with a relative standard deviation of less than 15% (all the concentration data in this study related to the salt (cetirizine dihydrochloride)). Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method has been successfully applied to a bioequivalence study in 20 healthy male Chinese volunteers.

  2. Determination of tulobuterol in rat plasma using a liquid chromatography-tandem mass spectrometry method and its application to a pharmacokinetic study of tulobuterol patch.

    PubMed

    Han, Xiao; Liu, Ran; Ji, Lifang; Hui, Mei; Li, Qing; Fang, Liang; Bi, Kaishun

    2016-01-01

    A sensitive and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for determination of tulobuterol in rat plasma for the first time. Plasma samples were extracted by liquid-liquid extraction method with methyl tert-butyl ether and the analyte and clenbuterol (IS) were separated on a Venusil MP C18 column (100mm×2.1mm, 3μm) using 0.1% formic acid-water-methanol as mobile phase, with a runtime of 5min. The analyte was detected in multiple reaction monitoring (MRM) mode with positive electrospray ionization. Transitions of m/z 228.2→154.0 for tulobuterol and m/z 277.1→203.0 for the clenbuterol were monitored. The linear range was 0.5-100ng/ml (r=0.9967) for tulobuterol with the lower limit of quantitation of 0.5ng/ml. The intra-day and inter-day precisions were less than 10.3% for the analyte and the accuracy was less than -8.6%. The RSD of matrix effect and recovery yield were within ±15% of nominal concentrations and tulobuterol was stable during stability studies. The validated method has been successfully applied to a pharmacokinetic study of three doses of tulobuterol patch in rats for the first time.

  3. Validated LC-MS/MS method for quantification of gabapentin in human plasma: application to pharmacokinetic and bioequivalence studies in Korean volunteers.

    PubMed

    Park, Jin-Hee; Jhee, Ok-Hwa; Park, Song-Hee; Lee, Jung-Sik; Lee, Min-Ho; Shaw, Leslie M; Kim, Kwang-Hyun; Lee, Jong-Ho; Kim, Yong-Seok; Kang, Ju-Seop

    2007-08-01

    A sensitive validated liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for gabapentin (GB) in human plasma has been developed and applied to pharmacokinetic (PK) and bioequivalence (BE) studies in human. In a randomized crossover design with a 1-week period, each subject received a 300 mg GB capsule. The procedure involves a simple protein precipitation with acetonitrile and separated by LC with a Gemini C(18) column using acetonitrile-10 mm ammonium acetate (20:80, v/v, pH 3.2) as mobile phase. The GB and internal standard [(S)-(+)-alpha-aminocyclohexanepropionic acid hydrate] were analyzed using an LC-API 2000 MS/MS in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 172.0 --> 154.0 and m/z 172.0 --> 126.0 for GB and IS, respectively. The assay exhibited good linearity over a working range of 20-5000 ng/mL for GB in human plasma with a lower limit of quantitation of 20 ng/mL. No endogenous compounds were found to interfere with the analysis. The accuracy and precision were shown for concentrations over the standard ranges. This method was successfully applied for the PK and BE studies by analysis of blood samples taken up to 36 h after an oral dose of 300 mg of GB in 24 healthy volunteers.

  4. Dressed electrostatic solitary excitations in three component pair-plasmas: Application in isothermal pair-plasma with stationary ions

    SciTech Connect

    Esfandyari-Kalejahi, A.; Akbari-Moghanjoughi, M.; Haddadpour-Khiaban, B.

    2009-10-15

    In this work electrostatic solitary waves in a three component pair-plasma consisting of hot isothermal electrons (or negative fullerene ions), positrons (or positive fullerene ions), and stationary positive ions (say, dust particulates) are studied. Using reductive perturbation method, plasma fluid equations are reduced to a Korteweg-de Vries (KdV) equation. Considering the higher-order nonlinearity, a linear inhomogeneous equation is derived, and the stationary solutions of these coupled equations are achieved by applying the renormalization procedure of Kodama-Taniuti. It is observed that in the linear approximation and applying Fourier analysis, two electrostatic modes, namely, upper or optical and lower or acoustic modes, are present. However, the application of reductive perturbation technique confirms that only acoustic-electrostatic mode can propagate in such plasma as KdV soliton, the amplitude and width of which are studied regarding to plasma parameters {sigma} (positron-to-electron temperature ratio) and {delta} (stationary cold ions-to-electron density ratio). It is also observed that the higher-order nonlinearity leads to deformation of the soliton structure from bell-shaped to W-shaped depending on the variation in values of the plasma parameters {sigma} and {delta}. It is revealed that KdV-type solitary waves cannot propagate in three component pair-plasma when the pair-species temperature is equal.

  5. Formation of Imploding Plasma Liners for HEDP and MIF Application

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel; Messer, Sarah; Bomgardner, Richard; Phillips, Mike; Wu, Linchun; Elton, Ray

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  6. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  7. Investigations of microwave plasmas - Applications in electrothermal thruster systems

    SciTech Connect

    Haraburda, S.S.; Hawley, M.C.

    1989-01-01

    Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered. 10 refs.

  8. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  9. Application of non-equilibrium plasmas in treatment of wool fibers and seeds

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran

    2003-10-01

    While large effort is under way to achieve stable, large area, non-equilibrium plasma reactors operating at atmospheric pressure we should still consider application of low pressure reactors, which provide well defined, easily controlled reactive plasmas. Therefore, the application of low pressure rf plasmas for the treatment of wool and seed was investigated. The studies were aimed at establishing optimal procedure to achieve better wettability, dyeability and printability of wool. Plasma treatment led to a modification of wool fiber topography and formation of new polar functional groups inducing the increase of wool hydrophylicity. Plasma activation of fiber surface was also used to achieve better binding of biopolymer chitosan to wool in order to increase the content of favorable functional groups and thus improving sorption properties of recycled wool fibers for heavy metal ions and acid dyes. In another study, the increase of germination percentage of seeds induced by plasmas was investigated. We have selected dry (unimbibed) Empress tree seeds (Paulownia tomentosa Steud.). Empress tree seed has been studied extensively and its mechanism of germination is well documented. Germination of these seeds is triggered by light in a limited range of wavelengths. Interaction between activated plasma particles and seed, inside the plasma reactor, leads to changes in its surface topography, modifies the surface layer and increases the active surface area. Consequently, some bioactive nitrogeneous compounds could be bound to the activated surface layer causing the increment of germination percentage.

  10. Stereoselective determination of ginsenosides Rg3 and Rh2 epimers in rat plasma by LC-MS/MS: application to a pharmacokinetic study.

    PubMed

    Bae, Soo Hyeon; Zheng, Yu Fen; Yoo, Young Hyo; Kim, Jeom Yong; Kim, Sun Ok; Jang, Min Jung; Seo, Jae Hong; Bae, Soo Kyung

    2013-06-01

    We developed and validated an accurate and sensitive LC-MS/MS method for the simultaneous quantitation of ginsenoside Rg3 and Rh2 epimers (R-Rg3, S-Rg3, R-Rh2, and S-Rh2) in rat plasma. Analytes were extracted from 0.1 mL aliquots of rat plasma by liquid-liquid extraction, using 2 mL of ethyl acetate. In this assay, dioscin (500 ng/mL) was used as an internal standard. Chromatographic separation was conducted using an Acclaim RSLC C18 column (150 × 2.1 mm, 2.2 μm) at 40°C, with a gradient mobile phase consisting of 0.1% formic acid in distilled water and in acetonitrile, a flow rate of 0.35 mL/min, and a total run time of 20 min. Detection and quantification were performed using a mass spectrometer in selected reaction-monitoring mode with negative electrospray ionization at m/z 783.4 → 161.1 for R-Rg3 and S-Rg3, m/z 621.3 → 161.1 for R-Rh2 and S-Rh2, and m/z 867.2 → 761.5 for the internal standard. For R-Rg3 and S-Rg3, the lower limit of quantification was 5 ng/mL, with a linear range up to 500 ng/mL; for R-Rh2 and S-Rh2, the lower limit of quantification was 150 ng/mL, with a linear range up to 6000 ng/mL. The coefficient of variation for assay precision was less than 10.5%, with an accuracy of 86.4-112%. No relevant cross-talk or matrix effect was observed. The method was successfully applied to a pharmacokinetic study after oral administration of 400 mg/kg and 2000 mg/kg of BST204, a fermented ginseng extract, to rats. We found that the S epimers exhibited significantly higher plasma concentrations and area under curve values for both Rg3 and Rh2. This is the first report on the separation and simultaneous quantification of R-Rg3, S-Rg3, R-Rh2, and S-Rh2 in rat plasma by LC-MS/MS. The method should be useful in the clinical use of ginseng or its derivatives.

  11. A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to study in vitro metabolism.

    PubMed

    Lin, Shen-Nan; Chang, Yan; Moody, David E; Foltz, Rodger L

    2004-09-01

    Quetiapine is an atypical antipsychotic agent for the treatment of schizophrenia. After an oral dose it is absorbed rapidly and extensively metabolized in the liver, resulting in low plasma concentrations of the parent drug. A sensitive analytical method is needed. A liquid chromatographic-electrospray-tandem mass spectrometric (LC-ESI-MS-MS) method combined with a simple liquid-liquid extraction has been developed for the measurement of quetiapine in human plasma and in human liver microsomes (HLM). Clozapine is used as internal standard. Plasma samples or microsomes quenched with methanol (100 microL) were made basic and extracted with 3 mL n-butyl chloride. The reconstituted extracts were analyzed by LC-ESI-MS-MS. Selective reaction monitoring of MH(+) at m/z 384 and 327 resulted in strong fragment ions at m/z 253 and 192 for quetiapine and clozapine, respectively. Recovery of quetiapine and clozapine ranged from 62 to 73%. Intrarun accuracy and precision determined at 1.0 (lower limit of quantitation), 2.5, 200, and 400 ng/mL did not exceed 7% deviation from target and the %CV did not exceed 5.5%. The % target +/- %CV for interrun accuracy and precision were at least 95% +/- 7.4% at concentrations of 2.5, 200, and 400 ng/mL. Plasma samples (2.5 and 400 ng/mL) stored at room temperature for 24 h or after 3 cycles of freeze/thaw were all stable (maximum % deviation < or = 11.0%). Processed extracts (2.5 and 400 ng/mL) stored for 7 days at -20 degrees C or 6 days on the autosampler were all stable (maximum % deviation < or = 11.5%). The method has been used to study quetiapine utilization during incubation with HLM or with cDNA-expressed human cytochrom P450s (CYP). Quetiapine is extensively metabolized by CYP 3A4 and CYP 2D6 and to a lesser extent by CYP 3A7, CYP 3A5, and CYP 2C19.

  12. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  13. Theoretical Study of a Spherical Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  14. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  15. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  16. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  17. Liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of cefoperazone and sulbactam in plasma and its application to a pharmacokinetic study.

    PubMed

    Zhou, Yingjie; Zhang, Jing; Guo, Beining; Yu, Jicheng; Shi, Yaoguo; Wang, Minggui; Zhang, Yingyuan

    2010-11-15

    A rapid and highly sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of cefoperazone sodium and sulbactam sodium in human plasma was developed. The analytes and internal standard (IS), cefuroxime sodium, were extracted from human plasma via liquid-liquid extraction with ethyl acetate and separated on a Waters Xterra C18 column within 3.5 min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in selected reaction monitoring (SRM) and negative ion mode. The precursor to product ion transitions monitored for cefoperazone, sulbactam and IS were m/z 644.1→528.0, 232.1→140.0, and 423.0→362.0, respectively. The assay was validated in the linear range of 0.1-20 μg/mL for cefoperazone and 0.02-4 μg/mL for sulbactam. The intra- and inter-day precisions (CV%) were within 8.39% for each analyte. The recoveries were greater than 87.3% for cefoperazone and 87.2% for sulbactam. Each analyte was found to be stable during all sample storage, preparation and analytical procedures. The method was successfully applied in a pharmacokinetic study of Sulperazon injection in six hospital-acquired pneumonia (HAP) patients.

  18. Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study.

    PubMed

    Kim, Soo-Jin; Ha, Dong-Jin; Koo, Tae-Sung

    2014-04-01

    A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of methylene blue (MB) and its major metabolite, azure B (AZB), in rat plasma. A simple protein precipitation using acetonitrile was followed by injection of the supernatant on to a Zorbax HILIC Plus column (3.5 µm, 2.1 × 100 mm) with isocratic mobile phase consisting of 5 mM ammonium acetate in 10:90 (v/v) water:methanol at a flow rate of 0.3 mL/min and detection in positive ionization mode. The standard curve was linear over the concentration range from 1 to 1000 ng/mL for MB and AZB with coefficient of determination above 0.9930. The lower limit of quantification was 1 ng/mL using 20 μL of rat plasma sample. The intra- and inter-assay precision and accuracy were <12%. The developed analytical method was successfully applied to the pharmacokinetic study of MB and AZB in rats. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Development and validation of a reversed-phase HPLC method for determination of nitrendipine in rat plasma: application to pharmacokinetic studies.

    PubMed

    Venishetty, Vinay Kumar; Durairaj, Chandrasekar; Sistla, Ramakrishna; Yamsani, Madhusudhan Rao; Diwan, Prakash V

    2007-04-01

    A simple and sensitive method for the determination of nitrendipine in rat plasma was developed using high-performance liquid chromatography (HPLC). The procedure involves extraction of nitrendipine in dichloromethane/sodium hydroxide, followed by reversed phase HPLC using a Waters, Spherisorb ODS2 (250 x 4.6 mm, 5 microm) column and UV detection at 238 nm. The retention times of nitrendipine and internal standard (felodipine) were 5.0 min and 7.5 min, respectively. The calibration curves were linear over the range of 5 ng/mL (lower limit of quantification, LOQ) to 200 ng/mL for nitrendipine. The intra- and inter-day coefficients of variation for all criteria of validation were less than 15% over the linearity range. The sensitivity and precision of the method were within the accepted limits (< 15%) throughout the validation period. The present method was also successfully applied for the study of plasma pharmacokinetics of nitrendipine loaded solid lipid nanoparticles (SLN) in rats.

  20. High-throughput determination of carbocysteine in human plasma by liquid chromatography/tandem mass spectrometry: application to a bioequivalence study of two formulations in healthy volunteers.

    PubMed

    Bi, Hui-Chang; Zhao, Li-zi; Zhong, Guo-ping; Zhou, Shufeng; Li, Bo; Deng, Ying; Chen, Xiao; Huang, Min

    2006-01-01

    A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method to determine carbocysteine in human plasma was developed and fully validated. After methanol-induced protein precipitation of the plasma samples, carbocysteine was subjected to LC/MS/MS analysis using electrospray ionization (ESI). The MS system was operated in the selected ion monitoring (SRM) mode. Chromatographic separation was performed on a Hypurity C18 column (i.d. 2.1 mm x 50 mm, particle size 5 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.1-20 microg/mL for carbocysteine. The lower limit of quantification (LLOQ) of the method was 0.1 microg/mL for carbocysteine. The intra- and inter-day precision was less than 7% for all quality control samples at concentrations of 0.5, 2.0, and 10.0 microg/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for carbocysteine compared with methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method has been successfully used to a bioequivalence study of two tablet formulations of carbocysteine in healthy volunteers.

  1. Determination of liquiritigenin by ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry: Application to a linear pharmacokinetic study of liquiritigenin in rat plasma.

    PubMed

    Gu, Jie; Li, Huan; Pei, Ke; Cai, Hui; Qin, Kunming; Zhang, Xinghai; Zheng, Lijuan; Liu, Xiao; Cai, Yunqing; Cai, Baochang

    2014-09-17

    A simple, sensitive and rapid ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been developed and validated for the quantification of liquiritigenin, a promising anti-tumor agent. Liquiritigenin and the internal standard were separated on an Agilent Extend C18 column and eluted with a gradient mobile phase system of acetonitrile and water. The analysis was performed on a negative ionization electrospray mass spectrometer via multiple reaction monitoring (MRM). Transitions of m/z 255.0→119.0 for liquiritigenin and m/z 269.0→117.0 for the IS were monitored. One-step protein precipitation with acetonitrile was used to remove impurities and extract the analytes from plasma. The method had a chromatographic run time of 4.5min and a good linearity in the range of 1-1000ng/mL. The precision (R.S.D.) of intra-day and inter-day ranged from 4.54 to 10.65% and 5.94 to 13.81%, respectively; while the accuracy of intra-day and inter-day ranged from 104.06 to 109.28% and 94.98 to 112.05%. The recovery and stability were also within the acceptable limits. The validated method was applied to a linear pharmacokinetic study of liquiritigenin in rat plasma for the first time.

  2. Quantification of 3-n-butylphthalide in beagle plasma samples by supercritical fluid chromatography with triple quadruple mass spectrometry and its application to an oral bioavailability study.

    PubMed

    Li, Yun; Zhao, Longshan; Li, Xiaoting; Guo, Bei; Zhao, Juanhang; Wang, Xianglin; Zhang, Tianhong

    2015-02-01

    A high-throughput, rapid, sensitive, environmentally friendly, and economical supercritical fluid chromatography with triple quadruple mass spectrometry method was established and validated for the first time to determine a cerebral stroke treatment drug named 3-n-butylphthalide in dog plasma. Plasma samples were prepared by protein precipitation with methanol and the analytes were eluted on an ACQUITY UPC(2TM) HSS-C(18) SB column (3 × 100 mm, 1.8 μm) maintained at 50°C. The mobile phase comprised supercritical carbon dioxide/methanol (90:10, v/v) at a flow rate of 1.5 mL/min, the compensation solvent was methanol at a flow rate of 0.2 mL/min and the total run time was 1.5 min per sample. The detection was carried out on a tandem mass spectrometer with an electrospray ionization source. Calibration curves were linear over the concentration range of 1.02-1021.00 ng/mL (r(2) ≥ 0.993) with the lower limit of quantification of 1.02 ng/mL. The intra- and inter-day precision values were below 15% and the accuracy was from 97.90 to 103.70% at all quality control levels. The method was suitable for a pharmacokinetic study of 3-n-butylphthalide in beagle dogs.

  3. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS: application of pharmacokinetic study in rats.

    PubMed

    Ren, Hong-Can; Sun, Jian-Guo; Wang, Guang-Ji; A, Ji-Ye; Xie, Hai-Tang; Zha, Wei-Bin; Yan, Bei; Sun, Fen-Zhi; Hao, Hai-Ping; Gu, Sheng-Hua; Sheng, Long-Sheng; Shao, Feng; Shi, Jian; Zhou, Fang

    2008-12-15

    20(S)-Protopanaxadiol (PPD), the main metabolite of protopanoxadiol type ginsenosides (e.g. Rg3 and Rh2), is a very promising anti-cancer drug candidate. To evaluate the pharmacokinetic property of PPD, we reported a reliable, sensitive and simple method utilizing liquid chromatography (HPLC)-atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) to determine PPD. PPD and the internal standard, panoxadiol (PD) were extracted from plasma with acetic ether, separated on a C18 reverse column, and then analyzed by APCI-MS. Targeting fragment ion at m/z 425 for both PPD and PD was monitored in selected-ion monitoring (SIM) mode. PPD can be quantitatively determined at the concentration as low as 1 ng/mL using 200 microL plasma. And the sensitive method showed excellent linearity over a range from 1 to 1000 ng/mL, high recovery, accuracy and precision at the concentrations of 2.5, 100.0 and 1000.0 ng/mL, respectively. The method was successfully applied to pharmacokinetic study of PPD in rats. Pharmacokinetic parameters were calculated and absolute bioavailability of PPD was 36.8+/-12.4%, at least ten times higher than that of Rg3 and Rh2, indicating its good absorption in gastrointestinal tract. It was further suggested that PPD be a promising anti-cancer candidate and probably responsible for the observed pharmacological activity of Rg3 and Rh2.

  4. High-performance liquid chromatographic determination of clindamycin in human plasma or serum: application to the bioequivalency study of clindamycin phosphate injections.

    PubMed

    Liu, C M; Chen, Y K; Yang, T H; Hsieh, S Y; Hung, M H; Lin, E T

    1997-08-29

    This paper presents an assay of clindamycin phosphate injection in human plasma or serum. A 0.5-ml volume of plasma was used with the internal standard, propranolol. The sample was loaded onto a silica extraction column. The column was washed with deionized water and then eluted with methanol. The eluates were evaporated under nitrogen gas. The residue was reconstituted with the mobile phase and injected onto the high-performance liquid chromatographic system: a 5-micron, 25 cm X 4.6 mm I.D. ODS2 column was used with acetonitrile, tetrahydrofuran and 0.05 M phosphate buffer as the mobile phase and with ultraviolet detection at 204 nm. A limit of quantitation of 0.05 microgram/ml was found, with a coefficient of variation of 11.6% (n = 6). The linear range is between 0.05 and 20.00 micrograms/ml and gives a coefficient of determination (r2) or 0.9992. The method has been successfully applied to the bioavailability study of two commercial preparations of clindamycin phosphate injection (300 mg each) in twelve healthy adult male volunteers.

  5. A rapid and sensitive HPLC-APCI-MS/MS method determination of fluticasone in human plasma: application for a bioequivalency study in nasal spray formulations.

    PubMed

    Byrro, Ricardo Martins Duarte; César, Isabela Costa; de Santana e Silva Cardoso, Fabiana Fernandes; Mundim, Iram Moreira; Teixeira, Leonardo de Souza; Bonfim, Ricardo Rodrigues; Gomes, Sandro Antônio; Pianetti, Gerson Antônio

    2012-03-05

    A sensitive method for the determination of fluticasone in plasma was developed using high performance liquid chromatography with tandem mass spectrometric detection, whereas beclomethasone was used as internal standard. The analytes were extracted with a simple liquid-liquid extraction from the plasma samples and separated on an ACE C(18) 50 × 4.6 mm i.d.; 5 μm particle size column with a mobile phase consisting of acetonitrile - 0.01% formic acid (48:52, v/v) at a flow rate of 1 ml/min. Detection was achieved by an Applied Biosystems API 5000 mass spectrometer (LC-MS/MS) set at unit resolution in the multiple reaction monitoring mode. Atmospheric pressure chemical ionization (APCI) was used for ion production. The mean recovery for fluticasone propionate was 85%, with a lower limit of quantification set at 2 pg/mL. The validated analytical method was applied to a bioequivalence study of fluticasone propionate administered by nasal spray formulations in human volunteers.

  6. Sensitive method for the determination of rocilinostat in small volume mouse plasma by LC-MS/MS and its application to a pharmacokinetic study in mice.

    PubMed

    Gupta, Manish; Dixit, Abhishek; Devaraj, V C; Zainuddin, Mohd; Bhamidipati, Ravi Kanth; Hallur, Mahanandeesha S; Dewang, Purushottam; Rajagopal, Sridharan; Rajagopal, Sriram; Mullangi, Ramesh

    2016-07-01

    A highly sensitive, specific and rapid LC-ESI-MS/MS method has been developed and validated for the quantification of rocilinostat in small volume mouse plasma (20 μL) using vorinostat as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a protein precipitation procedure with acetonitrile. Chromatography was achieved on Prodigy ODS-2 column using a binary gradient using mobile phase A (0.2% formic acid in water) and B (acetonitrile) at a flow rate of 0.38 mL/min. The total chromatographic run time was 4.1 min and the elution of rocilinostat and IS occurred at ~3.2 and 2.9 min, respectively. A linear response function was established in the concentration range of 0.28-1193 ng/mL in mouse plasma. The intra- and inter-day accuracy and precisions were in the ranges of 3.12-8.93 and 6.41-11.6%, respectively. This novel method has been applied to a pharmacokinetic study in mice. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Highly Sensitive LC-MS-MS Method for the Determination of Tacrine in Rat Plasma: Application to Pharmacokinetic Studies in Rats.

    PubMed

    Ponnayyan Sulochana, Suresh; Ravichandiran, Vishnuvardh; Mullangi, Ramesh; Sukumaran, Sathesh Kumar

    2016-03-01

    A rapid and highly sensitive assay method has been developed and validated for the estimation of tacrine in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves a simple liquid-liquid extraction of tacrine and phenacetin (internal standard, IS) from rat plasma using ethyl acetate. Chromatographic separation was achieved with 0.2% formic acid : acetonitrile (30 : 70, v/v) at a flow rate of 0.50 mL/min on an Atlantis dC18 column with a total run time of 3.0 min. The MS-MS ion transitions monitored were 199.10 → 171.20 for tacrine and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration (US FDA) guidelines and the results met the acceptance criteria. The lower limit of quantification achieved was 0.008 ng/mL and linearity was observed from 0.008 to 53.4 ng/mL. The intra- and inter-day precision was in the range of 2.76-12.5 and 5.15-12.8%, respectively. This novel method has been applied to a pharmacokinetic study in rats.

  8. Simultaneous quantification of two canthinone alkaloids of Picrasma quassioides in rat plasma by liquid chromatography-tandem mass spectrometry and its application to a rat pharmacokinetic study.

    PubMed

    Shi, Yuanyuan; Hong, Chunyan; Xu, Jian; Yang, Xiaoling; Xie, Ning; Feng, Feng; Liu, Wenyuan

    2015-04-01

    Picrasma quassioides (D. Don) Benn. is used in traditional Chinese medicine for the treatment of inflammation. Characteristic components of the medicinal extract are canthinone alkaloids. In this study, a sensitive and rapid liquid chromatography with tandem mass spectrometry method has been developed for simultaneous quantification of two major canthinone alkaloids, 5-hydroxy-4-methoxycanthin-6-one and 4,5-dimethoxycanthin-6-one, in rat plasma after oral administration of P. quassioides extract (200 mg/kg). The chromatographic separation was performed on a C18 column using acetonitrile-aqueous 0.1% formic acid (90:10, v/v) as the mobile phase. Plasma samples were prepared for analysis using a simple liquid-liquid extraction with ethyl acetate. Analytes were detected using tandem mass spectrometry in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range 1.25-900 ng/mL for 5-hydroxy-4-methoxycanthin-6-one and 0.5-800 ng/mL for 4,5-dimethoxycanthin-6-one with satisfactory intra- and inter-day precision, accuracy and recovery. Samples were stable under the conditions tested. The pharmacokinetic profiles of the analytes in rats showed that both canthinones were rapidly absorbed and that 4,5-dimethoxycanthin-6-one was eliminated faster than 5-hydroxy-4-methoxycanthin-6-one.

  9. Simultaneous determination of ipratropium and salbutamol in rat plasma by LC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Wu, Jingwen; Ding, Cungang; Ge, Qinghua; Li, Zhou; Zhou, Zhen; Zhi, Xiaojin

    2011-11-15

    A novel, sensitive and specific LC-MS/MS method with silica-based solid-phase extraction was developed for simultaneous determination of ipratropium (IPR) and salbutamol (SAL) in rat plasma. Chromatographic separation was achieved on a Shiseido Capcell Pak CR column (SCX:C(18)=1:4, 150 mm × 2.0 mm, 5 μm) with a mobile phase consisting of methanol/water (85:15, v/v) containing 20 mmol/L ammonium formate and 0.1% formic acid at a flow rate of 0.3 mL/min. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via multiple reaction monitoring (MRM) under positive ionization mode. This method was validated in terms of specificity, linearity, accuracy (within ±115.4%), intra- and inter-day precision (<11.4%) over the concentration range of 8-1612 pg/mL for IPR and 50-10,000 pg/mL for SAL. In addition, stability and matrix effects of IPR and SAL in plasma were evaluated. This method has been successfully applied to the pharmacokinetic study of compound ipratropium bromide aerosol mainly containing ipratropium bromide (IB) and salbutamol sulphate (SS) after inhalation in rats.

  10. Development and validation of a liquid chromatographic/electrospray ionization mass spectrometric method for the determination of salidroside in rat plasma: application to the pharmacokinetics study.

    PubMed

    Yu, Sen; Liu, Li; Wen, Tao; Liu, Yuchun; Wang, Dianlei; He, Yuxian; Liang, Yan; Liu, Xiaodong; Xie, Lin; Wang, Guangji; Wei, Wenzhi

    2008-01-01

    A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of salidroside, a major active constituent from Rhodiola rosea L., in rat plasma using helicid as an internal standard. The method involves a simple single-step liquid-liquid extraction with n-butanol. The analytes were separated by isocratic gradient elution on a Shim-pack ODS (4.6 microm, 250 mmx2.0 mm i.d.) column and analyzed in selected ion monitoring (SIM) mode with a negative electrospray ionization (ESI) interface using the respective [M+Cl]- ions, m/z 335 for salidroside, m/z 319 for internal standard. The method was validated over the concentration range of 5-2000 ng/mL for salidroside. Within- and between-batch precision (R.S.D.%) were all within 6% and accuracy ranged from 96 to 112%. The lower limits of quantification was 5 ng/mL. The extraction recovery was on average 86.6% for salidroside. The validated method was used to study the pharmacokinetic profile of salidroside in rat plasma after intravenous and oral administration of salidroside. The bioavailability of salidroside in rats is 32.1%.

  11. Simultaneous quantification of curdione, furanodiene and germacrone in rabbit plasma using liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Wang, Baolian; Yang, Shuang; Sheng, Li; Li, Yan

    2015-09-01

    A simple, rapid and sensitive method was developed for the simultaneous quantification of curdione, furanodiene and germacrone in rabbit plasma using a LC-MS/MS analysis. The plasma sample preparation was a simple deproteinization by the addition of 3 vols of acetonitrile followed by centrifugation. The analytes and internal standard (IS) costunolide were separated on a Zorbax SB-C18 column (3.5 µm, 2.1 × 100 mm) with mobile phase of methanol-water (90:10, v/v) containing 0.1% formic acid at a flow rate of 0.3 mL/min with an operating temperature of 25°C. Detection was carried out by atmospheric pressure chemical ionization in positive ion selected reaction monitoring mode. Linear detection responses were obtained for the three test compounds ranging from 5 to 5000 ng/mL and the lower limits of quantitation were 5-10 ng/mL. The intra- and inter-day precisions (relative standard deviations) were within 9.4% for all analytes, while the deviation of assay accuracies was within ±10.0%. The average recoveries of analytes were >80.0%. All analytes were proved to be stable during all sample storage, preparation and analytical procedures. The method was successfully applied to the pharmacokinetic study of the three compounds after vaginal drug delivery of Baofukang suppository to rabbit. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Determination of a novel anticancer AMPK activator hernandezine in rat plasma and tissues with a validated UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study.

    PubMed

    Song, Yang; Wang, Zhibin; Zhang, Baozhen; Zhang, Yujia; Zhang, Weipeng; Yang, Chunjuan; Meng, Fanhao; Feng, Xuesong

    2017-07-15

    Hernandezine, a novel anticancer AMPK activator, is a major active constituent of Thalictrum Ranunculaceae. A simple, specific and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the quantification of hernandezine in rat plasma and tissues after intravenous administration. Sample preparation was carried out through a protein-precipitation extraction with acetonitrile using tetrandrine as internal standard (IS). The chromatographic separation was achieved by using an Agilent ZORBAX Eclipse Plus C18 column with a mobile phase of acetonitrile and water (containing 10mM ammonium acetate) in an isocratic elution way. The mass spectrometry (MS) analysis was conducted in positive ionization mode with multiple reaction monitoring (MRM) transitions at m/z 653.4→411.2 for hernandezine and m/z 623.3→381.3 for tetrandrine (IS). Calibration curves were linear over the ranges of 20.0-4000ng/ml f or both plasma samples and tissue samples (r>0.991). The lower limit of quantification (LLOQ) was 20.0ng/ml. The intra-day and inter-day precision (RSD%) were less than 14.0%, while the accuracy was ranged from 85.2% to 114.9%. Finally, this developed method was successfully applied in the pharmacokinetics and tissue distribution study of hernandezine after intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Determination of AZD3759 in rat plasma and brain tissue by LC-MS/MS and its application in pharmacokinetic and brain distribution studies.

    PubMed

    Xiong, Shan; Xue, Mingxing; Mu, Yanling; Deng, Zhipeng; Sun, Peilu; Zhou, Ruican

    2017-06-05

    A simple and sensitive high performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of AZD3759, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in rat plasma and brain homogenate was developed and validated over the range of 1.0-1000ng/mL. Chromatographic separation was carried out on a C18 column with acetonitrile and 0.1% formic acid in water as mobile phase with gradient elution at a flow rate of 0.4mL/min. The lower limits of quantification (LLOQs) were 1.0ng/mL for AZD3759 in both rat plasma and brain homogenate. The intra-day and inter-day precision and accuracy of AZD3759 were well within the acceptable limits of variation. The simple and sensitive LC-MS/MS method was successfully applied to the pharmacokinetic and brain distribution studies following an oral administration of AZD3759 to rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A HPLC-MS/MS method for the simultaneous quantitation of six alkaloids of Rhizoma Corydalis Decumbentis in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Liao, Chuanrong; Chang, Sheng; Yin, Shiliang; Wang, Zhibin; Meng, Yonghai

    2014-01-01

    A specific and reliable HPLC-MS/MS method was developed and validated for the simultaneous determination of six alkaloids in rat plasma, jatrorrhizine, berberine, tetrahydropalmatine, protopine, bicuculline and palmatine. The analytes were separated on a C18 column (50mm×2.1mm, 1.8μm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was used for detection. The plasma sample was prepared by the simple protein precipitation and the recovery for the six analytes was over 80%. The calibration curves were linear over a concentration range of 0.38-1900.0ng/mL for jatrorrhizine, 0.57-2850.0ng/mL for berberine, 0.32-1600.0ng/mL for tetrahydropalmatine, 0.21-1050.0ng/mL for protopine, 0.34-1700.0ng/mL for bicuculline and 0.22-1100ng/mL for palmatine. The intra-day and inter-day precision was less than 15% and the relative error (RE) was all within ±15%. The validated method was successfully applied to a pharmacokinetics study in rats after oral administration of the extracts of Rhizoma Corydalis Decumbentis (a famous Chinese herb). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Sensitive and precise HPLC method with back-extraction clean-up step for the determination of sildenafil in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Strach, Beata; Wyska, Elżbieta; Pociecha, Krzysztof; Krupa, Anna; Jachowicz, Renata

    2015-10-01

    A sensitive HPLC method was developed and validated for the determination of sildenafil concentrations in rat plasma (200 μL) using a liquid-liquid extraction procedure and paroxetine as an internal standard. In order to eliminate interferences and improve the peak shape, a back-extraction into an acidic solution was utilized. Chromatographic separation was achieved on a cyanopropyl bonded-phase column with a mobile phase composed of 50 m m potassium dihydrogen phosphate buffer (pH 4.5) and acetonitrile (75:25, v/v), pumped at the flow rate of 1 mL/min. A UV detector was set at 230 nm. A calibration curve was constructed within a concentration range from 10 to 1500 ng/mL. The limit of detection was 5 ng/mL. The inter- and intra-day precisions of the assay were in the ranges 2.91-7.33 and 2.61-6.18%, respectively, and the accuracies for inter- and intra-day runs were within 0.14-3.92 and 0.44-2.96%, respectively. The recovery of sildenafil was 85.22 ± 4.54%. Tests confirmed the stability of sildenafil in plasma during three freeze-thaw cycles and during long-term storage at -20 and -80°C for up to 2 months. The proposed method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.

  16. A rapid and sensitive LC-MS/MS method for determination of lercanidipine in human plasma and its application in a bioequivalence study in Chinese healthy volunteers.

    PubMed

    Li, Xiaobing; Shi, Fuguo; He, Xiaojing; Jian, Lingyan; Ding, Li

    2016-09-05

    A rapid and highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of lercanidipine (LER) in human plasma. The plasma sample was deproteinized with methanol after addition of diazepam (internal standard, IS) and separated on a 38°C Hedera ODS-2 analytical column with a mobile phase of methanol and 5mM ammonium acetate buffer solution containing 0.1% formic acid at an isocratic flow rate of 400μL/min. The detection was performed on an API 4000 tandem mass spectrometer coupled with electrospray ionization (ESI) source in positive ESI mode. Quantification was conducted by multiple reaction monitoring (MRM) of the transitions of m/z 612.2→280.2 for LER and m/z 285.1→193.1 for IS, respectively. The method exhibited high sensitivity (LLOQ of 0.015ng/mL) and good linearity over the concentration range of 0.015-8.0ng/mL. No matrix effect and carry-over effect were observed. The values on both the occasions (intra- and inter-day) were all within 15% at three concentration levels. This robust method was successfully applied in a bioequivalence study to evaluate the pharmacokinetics of LER in 59 healthy male Chinese volunteers after a single oral administration of 10mg LER.

  17. Application of a high performance liquid chromatography-tandem mass spectrometry method for determination of buflomedil in human plasma for a bioequivalence study.

    PubMed

    Ren, Li; Yang, Chun; Peng, Yan; Li, Fan; Li, Ying-Hui; Zheng, Heng

    2013-09-15

    A rapid, simple and sensitive method based on ultra fast liquid chromatography-tandem spectrometry for the determination of buflomedil in human plasma has been developed and validated using carbamazepine as internal standard. After the precipitation of plasma sample with methanol, the analyte and IS were separated on an Ultimate C18 column (5μm, 2.1mm×50mm, MD, USA) with an isocratic mobile phase composed of acetonitrile and 5mM ammonium acetate in water (60:40, v/v) at a flow rate of 0.25ml/min. The analyte and IS were detected with proton adducts at m/z 308.3-237.1 and m/z 237.2-194.2 in positive ion electrospray ionization and multiple reaction monitoring acquisition mode, respectively. The lower limit of quantification of the method was 23.64ng/ml with a linear dynamic range of 23.64-1182ng/ml for buflomedil. The intra- and inter-batch precisions were less than 5.8%. The developed method was successfully applied to a bioequivalence study of two buflomedil hydrochloride preparations (150mg) in 22 healthy Chinese male volunteers.

  18. Determination of levonorgestrel in human plasma by liquid chromatography-tandem mass spectrometry method: application to a bioequivalence study of two formulations in healthy volunteers.

    PubMed

    Zhao, Li-Zi; Zhong, Guo-Ping; Bi, Hui-Chang; Ding, Liang; Deng, Ying; Guan, Su; Chen, Xiao; Huang, Zhi-ying; Huang, Min

    2008-05-01

    A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) method to determine levonorgestrel in human plasma was developed and fully validated. After hexane-ethyl acetate (70:30, v/v) induced extraction from the plasma samples, levonorgestrel was subjected to LC/MS/MS analysis using electro-spray ionization. The MS system was operated in the selected reaction monitoring mode. Chromatographic separation was performed on a Hypersil BDS C18 column (i.d. 2.1x50 mm, particle size 3 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.25-90 ng/mL for levonorgestrel. The lower limit of quantification of the method was 0.25 ng/mL for levonorgestrel. The intra- and inter-batch precision was 3.7-10.2 and 5.1-12.9%, respectively, for all quality control samples at concentrations of 0.5, 6.0 and 45.0 ng/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for levonorgestrel compared with those methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method was successfully used for a bioequivalence study of two tablet formulations of levonorgestrel in healthy volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.

  19. Development and validation of an improved method for the quantitation of sertraline in human plasma using LC-MS-MS and its application to bioequivalence studies.

    PubMed

    Zhang, Mengliang; Gao, Feng; Cui, Xiangyong; Zhang, Yunhui; Sun, Yantong; Gu, Jingkai

    2011-02-01

    A rapid and sensitive LC-MS-MS method for the quantitation of sertraline in human plasma was developed and validated. Sertraline and the internal standard, telmisartan, were cleaned up by protein precipitation from 100 μL of plasma sample, and analyzed on a TC-C18 column (5 μm, 150 × 4.6 mm i.d.) using 70% acetonitrile and 30% 10 mM ammonium acetate (0.1% formic acid) as mobile phase. The method was demonstrated to be linear from 0.1 ng/mL to 50 ng/mL with the lower limit of quantitation of 0.1 ng/mL. Intra- and inter-day precision were below 4.40% and 3.55%. Recoveries of sertraline at low, medium, and high levels were 88.0 ± 2.3%, 88.2 ± 1.9%, and 90.0 ± 2.0%, respectively. The method was successfully applied to a bioequivalence study of sertraline after a single oral administration of 50 mg sertraline hydrochloride tablets.

  20. High-performance liquid chromatographic method for the simultaneous determination of nalbuphine and its prodrug, sebacoyl dinalbuphine ester, in dog plasma and application to pharmacokinetic studies in dogs.

    PubMed

    Pao, L H; Hsiong, C H; Hu, O Y; Ho, S T

    2000-09-15

    For the determination of nalbuphine and its long acting prodrug, sebacoyl dinalbuphine ester (SDN), in biological samples, a reversed-phase high-performance liquid chromatographic method using dual detectors was established. Ultraviolet and fluorescence detectors were connected in series for determining SDN and nalbuphine, respectively. The two analytes and internal standard were extracted from plasma by alkaline liquid-liquid extraction using n-hexane-isoamyl alcohol (9:1, v/v). The calibration curve for nalbuphine was linear over the range from 10 to 2,500 ng/ml, while the range was 25 to 2,500 ng/ml for SDN. The within- and between-day precision and accuracy were all within 10% for both nalbuphine and SDN over these concentrations. The method was applied successfully to a pharmacokinetic study of SDN administered at 20 mg/kg to two beagle dogs. Pharmacokinetic analysis revealed that SDN followed a linear one-compartment model with an elimination half-life of 74.7 min. Formation of nalbuphine after intravenous administration of SDN was observed in the first time point sample (5 min). These results indicate that SDN is rapidly metabolized to its active moiety, nalbuphine, in dogs and no other metabolites are detected in plasma.

  1. Rapid and sensitive determination of levofloxacin in microsamples of human plasma by high-performance liquid chromatography and its application in a pharmacokinetic study.

    PubMed

    Aguilar-Carrasco, José Carlos; Hernández-Pineda, Jessica; Jiménez-Andrade, Juan Miguel; Flores-Murrieta, Francisco Javier; Carrasco-Portugal, Miriam Del Carmen; López-Canales, Jorge Skiold

    2015-03-01

    A rapid, sensitive and simple high-performance liquid chromatographic assay with ultraviolet detection was developed for the quantification of levofloxacin in microsamples (100 μL) of human plasma. The extraction procedure included a protein precipitation technique and a short chromatographic running time (4.5 min). Analyses were carried out on a Symmetry C18 column using a mixture of acetonitrile and 0.01 m potassium dihydrogen aqueous solution (pH 3.4; 14:86 v/v) as mobile phase. The method provided specificity and was linear (r ≥ 0.9992) over the concentration range 0.1-12 µg/mL. The average absolute recovery was 93.59%. The intra- and inter-day coefficients of variation were <6%. Additionally, levofloxacin was stable in all evaluations. The usefulness of this method was demonstrated in a pharmacokinetic study of levofloxacin in healthy adult volunteers. The present method offers two main advantages: (a) the use of microsamples reduces the total volume of blood to be collected from patients; and (b) it provides a good cost-effectiveness ratio. It is concluded that the method is rapid, simple, sensitive, economical and suitable for the determination of levofloxacin in human plasma using a small volume of sample.

  2. High-throughput LC-MS/MS assay for 6-methoxy-2-naphthylacetic acid, an active metabolite of nabumetone in human plasma and its application to bioequivalence study.

    PubMed

    Patel, Bhavin N; Sharma, Naveen; Sanyal, Mallika; Prasad, Arpana; Shrivastav, Pranav S

    2008-11-01

    A simple, precise and accurate assay for the determination of 6-methoxy-2-naphthylacetic acid (6-MNA), an active metabolite of nabumetone in human plasma, was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analyte (6-MNA) and propranolol (internal standard, IS) were extracted from 200 microL aliquot of human plasma via solid-phase extraction employing HLB Oasis cartridges and separated on a Discovery HS C18 (50 x 4.6 mm, 5 microm) column. Detection of analyte and IS was done by tandem mass spectrometry with a turbo ion spray interface operating in positive ion and multiple reaction monitoring acquisition mode. The total chromatographic runtime was 3.0 min with retention time for 6-MNA and IS at 1.97 and 1.26 min, respectively. The method was validated over a dynamic linear range of 0.20-60.00 microg/mL for 6-MNA with mean correlation coefficient r > or = 0.9986. The intra-batch and inter-batch precision (%CV) across five validation runs (lower limit of quantiation, low-, medium- and high-quality controls and upper limit of quantitation) was less than 7.5%. The accuracy determined at these levels was within -5.8 to +0.2% in terms of percentage bias. The method was successfully applied for a bioequivalence study of 750 mg nabumetone tablet formulation in 12 healthy Indian male subjects under fasted condition.

  3. Effects of plasma on polyethylene fiber surface for prosthodontic application

    PubMed Central

    SPYRIDES, Silvana Marques Miranda; do PRADO, Maíra; de ARAUJO, Joyce Rodrigues; SIMÃO, Renata Antoun; BASTIAN, Fernando Luis

    2015-01-01

    ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM), and chemically by X-ray photoelectron spectroscopy (XPS). For bending analysis, one indirect composite (Signum) was reinforced with polyethylene fiber (Connect, Construct, or InFibra). The InFibra fiber was subjected to three different treatments: (1) single application of silane, (2) oxygen or argon plasma for 1 or 3 min, (3) oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm), 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS) analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min. PMID:26814463

  4. Effects of plasma on polyethylene fiber surface for prosthodontic application.

    PubMed

    Spyrides, Silvana Marques Miranda; Prado, Maíra do; Araujo, Joyce Rodrigues de; Simão, Renata Antoun; Bastian, Fernando Luis

    2015-01-01

    Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM), and chemically by X-ray photoelectron spectroscopy (XPS). For bending analysis, one indirect composite (Signum) was reinforced with polyethylene fiber (Connect, Construct, or InFibra). The InFibra fiber was subjected to three different treatments: (1) single application of silane, (2) oxygen or argon plasma for 1 or 3 min, (3) oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm), 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS) analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min.

  5. Chromatographic/mass spectrometric method for the estimation of itraconazole and its metabolite in human plasma. Application to a bioequivalence study.

    PubMed

    Grabowski, Tomasz; Swierczewska, Anna; Borucka, Beata; Sawicka, Renata; Sasinowska-Motyl, Małgorzata; Gumułka, Stanisław Witold

    2009-01-01

    A HPLC/mass spectrometry method for the estimation of itraconazole (CAS 84625-61-6, ITR) and its active metabolite hydroxyitraconazole (CAS 112559-91-8, HOX) in human plasma was developed. Terconazole (CAS 67915-31-5) was used as an internal standard. The analytical method was fully validated according to FDA and EMEA requirements. The accuracy and precision of the developed method was satisfactory and stability studies showed an acceptable variation (below 15%) of ITR and HOX concentrations when the samples were stored frozen at -75 degrees C for 95 days. The developed method was successfully used for a comparative 2 x 2 period, crossover bioequivalence study of two preparations of ITR (Itrakonazol Genexo 100 mg as the test drug) performed on 36 healthy volunteers.

  6. Determination of mianserin in human plasma by high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI/MS): application to a bioequivalence study in Chinese volunteers.

    PubMed

    Xu, Ping; Li, Huan-De; Chen, Ben-Mei; Ma, Ning; Yan, Miao; Zhu, Yun-Gui

    2008-08-05

    This study aims to develop a standard protocol for the bioequivalence study of mianserin hydrochloride tablets--a tetracyclic antidepressant drug. For this purpose, a rapid, convenient and selective method using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI/MS) has been developed and validated to determine mianserin in human plasma. Mianserin and the internal standard (I.S.), cinnarizine were extracted from plasma by N-hexane:dimethylcarbinol (98:2, v/v) after alkalinized with sodium hydroxide. LC separation was performed on a Thermo Hypersil-Hypurity C18 (5 microm, 150 mm x 2.1 mm) with the mobile phase consisting of 10mM ammonium acetate (pH 3.4)-methanol-acetonitrile (35:50:15, v/v/v) at 0.22 ml/min. The retention time of mianserin and cinnarizine was 3.4 and 2.1 min, respectively. Quadrupole MS detection and quantitation was done by monitoring at m/z 265 [M+H]+ for mianserin and m/z 369 [M+H]+ for cinnarizine. The method was validated over the concentration ranges of 1.0-200.0 ng/ml for mianserin. The recovery was 81.3-84.1%, intra- and inter-day precision of the assay at three concentrations were 9.6-11.4% with accuracy of 97.5-101.2% and the lower limit of quantitation (LLOQ) detection was 1.0 ng/ml for mianserin. The stability of compounds was established in a battery of stability studies, i.e., short-term and long-term storage stability as well as freeze-thaw cycles. This method proved to be suitable for the bioequivalence study of mianserin hydrochloride tablets in healthy human male volunteers.

  7. Development and validation of a high performance liquid chromatography quantification method of levo-tetrahydropalmatine and its metabolites in plasma and brain tissues: application to a pharmacokinetic study.

    PubMed

    Abdallah, Inas A; Huang, Peng; Liu, Jing; Lee, David Y; Liu-Chen, Lee-Yuan; Hassan, Hazem E

    2017-04-01

    Levo-tetrahydropalmatine (l-THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l-THP and its desmethyl metabolites l-corydalmine (l-CD) and l-corypalmine (l-CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid-liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed-phase Symmetry® C18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile-methanol-10 mm ammonium phosphate (pH 3) (10:30:60, v/v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1-10,000 ng/mL. The intra- and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l-THP in rats. Taken together, the developed method can be applied for bioanalysis of l-THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples.

  8. Computational study of nonlinear plasma waves. [plasma simulation model applied to electrostatic waves in collisionless plasma

    NASA Technical Reports Server (NTRS)

    Matsuda, Y.

    1974-01-01

    A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.

  9. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  10. Rapid and simultaneous determination of nifedipine and dehydronifedipine in human plasma by liquid chromatography-tandem mass spectrometry: Application to a clinical herb-drug interaction study.

    PubMed

    Wang, Xue-Ding; Li, Jia-Li; Lu, Yan; Chen, Xiao; Huang, Min; Chowbay, Balram; Zhou, Shu-Feng

    2007-06-01

    Nifedipine (NIF), a calcium channel antagonist, is metabolized primarily by cytochrome P450 (CYP3A4) to dehydronifedipine (DNIF). As such, NIF is often used as a probe drug for determining CYP3A4 activity in human studies. A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated to simultaneously determine NIF and DNIF in human plasma using nitrendipine as the internal standard (IS). After extraction of the plasma samples by ether-n-hexane (3:1, v/v), NIF, DNIF and the IS were subjected to LC/MS/MS analysis using electro-spray ionization (ESI). Chromatographic separation was performed on a Hypersil BDS C(18) column (50 mm x 2.1 mm, i.d., 3 microm). The method had a chromatographic running time of approximately 2.5 min and linear calibration curves over the concentrations of 0.5-100 ng/mL for NIF and DNIF. The recoveries of the one-step liquid extraction method were 81.3-89.1% for NIF and 71.6-80.4% for DNIF. The lower limit of quantification (LLOQ) of the analytical method was 0.5 ng/mL for both analytes. The intra- and inter-day precision was less than 15% for all quality control samples at concentrations of 2, 10, and 50 ng/mL. The validated LC/MS/MS method has been successfully used to study pharmacokinetic interactions of NIF with the herbal antidepressant St. John's wort in healthy volunteers. These results indicated that the developed LC/MS/MS method was efficient with a significantly shorter running time (2.5 min) for NIF and DNIF compared to those methods previously reported in the literature. The presented LC/MS/MS method had acceptable accuracy, precision and sensitivity and was used in a clinical pharmacokinetic interaction study of NIF with St. John's wort, a known herbal inducer of CYP3A4. St. John's wort was shown to induce NIF metabolism with increased plasma concentrations of DNIF.

  11. Variable dual-frequency electrostatic wave launcher for plasma applications

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example—generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently—with a high adaptability to a number of plasma dynamics and heating applications.

  12. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  13. [Application of platelet-rich plasma in clinical orthopedics].

    PubMed

    Fu, Weili; Li, Qi; Li, Jian

    2014-10-01

    To summarize the application status and progress of platelet-rich plasma (PRP) in clinical orthopedics. The recent related literature concerning the application of PRP in clinical orthopedics was extensively reviewed and analyzed. Recently, a large number of clinical studies on PRP have been carried out, which are applied in bone defects or nonunion, spinal fusion, osteoarthritis and cartilage injuries, ligament reconstruction, muscle strain, tendon terminal diseases, and a variety of acute and chronic soft tissue injuries. Some results show certain effectiveness, while others demonstrate invalid. Easily drawing, achieving autologous transplantation, and the biological repair potential of the musculoskeletal tissues make PRP to be widely used in clinical orthopedics. However, there are still no uniform standards accepted and reliable clinical guidelines about the application of PRP. Furthermore, a variety of PRP products and their respective indications are also different. The clinical evidences with the greater sample size and higher quality are still needed to further support the safety and effectiveness of PRP in clinical orthopedics.

  14. Establishment of a liquid chromatographic/mass spectrometry method for quantification of tetrandrine in rat plasma and its application to pharmacokinetic study.

    PubMed

    Song, Naining; Zhang, Shaoyu; Li, Quansheng; Liu, Changxiao

    2008-11-04

    A rapid and sensitive liquid chromatography-tandem mass spectrometric method (LC/MS/MS) for the determination of tetrandrine in rat plasma has been developed, fully validated and successfully applied to pharmacokinetic study in Sprague-Dawley (SD) rats after a single oral administration. Sample preparation involves a liquid-liquid extraction with n-hexane-dichlormethane (65:35, containing 1% 2-propanol isopropyl alcohol, v/v). Tetrandrine and brodimoprim (internal standard) were well separated by LC with a Dikma C(18) column using acetonitrile-methanol-ammonium formate aqueous solution (20mM) containing 0.3% formic acid (20:30:50, v/v/v) as mobile phase. Detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 623.0-->381.0 and m/z 339.0-->281.0 for tetrandrine and I.S., respectively. The present method exhibited good linearity over the concentration range of 5-2,000 ng/mL for tetrandrine in rat plasma with a lower limit of quantification of 5 ng/mL. The intra- and inter-day precision were 2.0-9.2% and 4.5-9.4%, and the intra- and inter-day accuracy ranged from -7.6 to 10.3% and -6.0 to 5.3%, respectively. No endogenous compounds were found to interfere with the analysis, and tetrandrine was stable during the whole assay period. The method was successfully applied to a pharmacokinetic study after an intragastric administration (i.g.) of tetrandrine to SD rats with a single dose of 50mg/kg. The results confirm that the assay is suitable for the pharmacokinetic study of tetrandrine.

  15. The ultra-performance liquid chromatography tandem mass spectrometry method for detection and quantification of C4NP in rat plasma and its application to pharmacokinetic studies

    PubMed Central

    You, J.; Wang, L.; Yang, F.; Shang, J.

    2016-01-01

    Introduction Combretastatins, which are excellent anticancer agents, are isolated from Combretum. A sensitive ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated for the pharmacokinetic study of a combretastatin analog (C4NP) in rats. Methods Sample pretreatment was finished by simple protein precipitation in which methanol was added to plasma containing an internal standard (buspirone hydrochloride). Liquid chromatograph separation was accomplished on a reverse-phase Kinetex XB-C18 column [50×4.6 mm; internal diameter: 2.6 μm (Phenomenex, Torrance, CA, U.S.A.)] with a gradient mobile phase of acetonitrile (0.05% formic acid, volume for volume) and water (0.05% formic acid) at a flow rate of 0.3 mL/min. The analytes were analyzed in the positive ion by electrospray ionization and quantified in the selective reaction monitoring mode. The entire procedure was validated following the U.S. Food and Drug Administration guidelines for bioanalytical methods validation. Results Our study investigated, for the first time, the detection and pharmacokinetic characteristics of C4NP in Sprague–Dawley rat plasma. The pharmacokinetic results suggest that C4NP is predominantly restricted to blood or extracellular fluid and is not extensively distributed to most organ tissues. In addition, C4NP can be cleared by renal filtration and active tubular secretion in Sprague–Dawley rats. Toxicokinetics of C4NP in these rats indicate that no saturation of the metabolic or excretion process occurs for C4NP, and metabolic induction and accumulation of toxic injury from multiple dosing are both absent. Conclusions For 100 μL of analyte, recovery plus high accuracy and reproducibility indicate that our new ultra-performance liquid chromatography tandem mass spectrometry method is a reliable and high-throughput analytical tool for the pharmacokinetic study of C4NP in rats. Those results should be useful for risk assessment. PMID:26966419

  16. The ultra-performance liquid chromatography tandem mass spectrometry method for detection and quantification of C4NP in rat plasma and its application to pharmacokinetic studies.

    PubMed

    You, J; Wang, L; Yang, F; Shang, J

    2016-02-01

    Combretastatins, which are excellent anticancer agents, are isolated from Combretum. A sensitive ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated for the pharmacokinetic study of a combretastatin analog (C4NP) in rats. Sample pretreatment was finished by simple protein precipitation in which methanol was added to plasma containing an internal standard (buspirone hydrochloride). Liquid chromatograph separation was accomplished on a reverse-phase Kinetex XB-C18 column [50×4.6 mm; internal diameter: 2.6 μm (Phenomenex, Torrance, CA, U.S.A.)] with a gradient mobile phase of acetonitrile (0.05% formic acid, volume for volume) and water (0.05% formic acid) at a flow rate of 0.3 mL/min. The analytes were analyzed in the positive ion by electrospray ionization and quantified in the selective reaction monitoring mode. The entire procedure was validated following the U.S. Food and Drug Administration guidelines for bioanalytical methods validation. Our study investigated, for the first time, the detection and pharmacokinetic characteristics of C4NP in Sprague-Dawley rat plasma. The pharmacokinetic results suggest that C4NP is predominantly restricted to blood or extracellular fluid and is not extensively distributed to most organ tissues. In addition, C4NP can be cleared by renal filtration and active tubular secretion in Sprague-Dawley rats. Toxicokinetics of C4NP in these rats indicate that no saturation of the metabolic or excretion process occurs for C4NP, and metabolic induction and accumulation of toxic injury from multiple dosing are both absent. For 100 μL of analyte, recovery plus high accuracy and reproducibility indicate that our new ultra-performance liquid chromatography tandem mass spectrometry method is a reliable and high-throughput analytical tool for the pharmacokinetic study of C4NP in rats. Those results should be useful for risk assessment.

  17. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  18. Simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma by high performance liquid chromatography-electrospray ionization mass spectrometry and its application in a pharmacokinetic study.

    PubMed

    Ma, Bo; Zhang, Qi; Liu, Yinhui; Li, Jing; Xu, Qiuyu; Li, Xiaotian; Yang, Xiaojing; Yao, Di; Sun, Jingjing; Cui, Guangbo; Ying, Hanjie

    2013-02-15

    Eleutheroside B and Eleutheroside E, two kinds of the major bioactive saponins of Eleutherococcus senticosus, play a pivotal role in biologic activity. In this study, a specific and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method (HPLC-MS/MS) was developed and validated for simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma. The analytes were extracted from rat plasma via a simple protein precipitation procedure with methanol and polygonin was used as internal standard. Chromatographic separation was achieved on a C18 column using a gradient elution program with acetonitrile and water containing 0.1% ammonium hydroxide solution as the mobile phase, with a flow rate of 0.2mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reactions monitoring (MRM) mode in a negative ion mode via electrospray ionization (ESI). The transition monitored were m/z 371 [M-H](-)→209 for Eleutheroside B, m/z 741[M-H](-)→579 for Eleutheroside E and m/z 389[M-H](-)→277 for internal standard. Linear calibration curves were obtained in the concentration range of 1-2000ng/mL for both (Eleutheroside B and Eleutheroside E), with a lower limit of quantification of 1ng/mL. Extraction recovery was over 80% in plasma. The intra- and inter-day precision (RSD) values were below 12% and accuracy (RE) was -2.80 to 5.70% at three QC levels for both. The assay was successfully applied to study pharmacokinetics behavior in rats after oral and intravenous administration of the single substances (Eleutheroside B and Eleutheroside E). And further research was performed by comparing the difference in pharmacokinetic behavior between the single substances and an aqueous extract of E. senticosus after oral administration. Significant difference in pharmacokinetic characteristics between the single substances and an aqueous extract was found in rat, which would be beneficial for

  19. Development and validation of HPLC method for vicenin-1 isolated from fenugreek seeds in rat plasma: application to pharmacokinetic, tissue distribution and excretion studies.

    PubMed

    Kandhare, Amit D; Bodhankar, Subhash L; Mohan, Vishwaraman; Thakurdesai, Prasad A

    2016-11-01

    Vicenin-1, a flavonol glycoside, has potent platelet aggregation inhibition, antioxidant, radioprotectants and anti-inflammatory activities. To establish a rapid, simple, precise and sensitive high-performance liquid chromatography (HPLC) method for determination of vicenin-1 in rat plasma, and to investigate the pharmacokinetics, tissue distribution and excretion after a single 60 mg/kg oral dose in rats. Vicenin-1 was extracted by solid-liquid extraction through Tulsicon(®) ADS-400 (0.40-1.2 mm). Chromatographic separation was achieved by HPLC with a C18 column with a mobile phase composed of water and acetonitrile (75:25 v/v) and a flow rate of 1 mL/min along with UV detection at 210 nm. Good linearity of calibration curve was found between 10.5 and 100.5 μg/mL (R(2 )=( )0.995) for plasma and tissue, whereas 2.5-500 μg/mL (R(2 )=( )0.999) for the urine and stool samples. The extraction recoveries were 98.51-99.58% for vicenin-1 in plasma, whereas intra-day and inter-day precision were validated by relative standard deviation (%RSD), that came in the ranges of 1.16-1.79% and 1.28-1.73%, respectively. The pharmacokinetics results showed Cmax (7.039 μg/mL) and Tmax (2 h) after oral administration of vicenin-1. Tissue distribution study showed that the highest concentration of vicenin-1 was achieved in the liver followed by the lung. Approximately 24.2% of its administered dose was excreted via urinary excretion route. The first-pass metabolism, poor solubility and presence of reducing sugar moiety in vicenin-1 may decrease its bioavailability. The developed method is sensitive, specific and was successfully applied to the pharmacokinetics, tissue distribution and excretion studies of vicenin-1 in rats.

  20. An ultra-sensitive LC-MS/MS method to determine midazolam levels in human plasma: development, validation and application to a clinical study.

    PubMed

    Chen, Mu; Lu, Wenzhe; Lu, Yang; Kang, Lijuan; Zhao, Harry; Lin, Zhongping John; Wang, Weimin; Fraier, Daniela; Ottaviani, Giorgio

    2017-02-01

    Midazolam is a commonly used marker substrate for the in vivo assessment of CYP3A activity. Reliable pharmacokinetic assessment at sub-pharmacological doses of midazolam requires an ultra-sensitive analytical method. A new, ultra-sensitive LC-MS/MS method for the determination of midazolam in human plasma using SPE was developed and fully validated. The lowest limit of quantitation is 0.1 pg/ml with a sample volume of 500 μl. The following parameters were validated: sensitivity, assay accuracy and precision, linearity, selectivity, and stability of midazolam at pertinent analytical and storage conditions. The validated method was utilized successfully for the sample assay during a midazolam microdosing study for the evaluation of CYP3A4 activity of a clinical candidate.

  1. Correlation analysis of waves above a capacitive plasma applicator.

    PubMed

    Gekelman, W; Barnes, M; Vincena, S; Pribyl, P

    2009-07-24

    Capacitively coupled plasma glow discharges have been extensively used for materials processing in numerous industrial applications. Considerable research has been performed on plasma sheaths and standing waves over a capacitive applicator, which typically holds the processed substrate (e.g., a semiconductor wafer). In this work, we demonstrate for the first time the existence of normal modes in electric potential analogous to the vibrational modes in circular membranes and plates. These modes are exhibited through cross spectral analysis of the plasma potential measured with an emissive probe at 208 spatial positions and sampled at 1 GHz. These modes exist at several frequencies and are described by a series of Bessel functions. The data further suggests a nonlinear interaction between modes of different frequencies.

  2. Correlation Analysis of Waves above a Capacitive Plasma Applicator

    SciTech Connect

    Gekelman, W.; Vincena, S.; Pribyl, P.; Barnes, M.

    2009-07-24

    Capacitively coupled plasma glow discharges have been extensively used for materials processing in numerous industrial applications. Considerable research has been performed on plasma sheaths and standing waves over a capacitive applicator, which typically holds the processed substrate (e.g., a semiconductor wafer). In this work, we demonstrate for the first time the existence of normal modes in electric potential analogous to the vibrational modes in circular membranes and plates. These modes are exhibited through cross spectral analysis of the plasma potential measured with an emissive probe at 208 spatial positions and sampled at 1 GHz. These modes exist at several frequencies and are described by a series of Bessel functions. The data further suggests a nonlinear interaction between modes of different frequencies.

  3. Development of a simple LC-MS/MS method for the determination of febuxostat in human plasma and its application to a bioequivalence study.

    PubMed

    Shi, Zheng; Liu, Jian; Hu, Xing-Jiang; ShenTu, Jian-Zhong

    2013-06-01

    The purpose of this study was to design a simple, sensitive and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for a febuxostat bioequivalence study in healthy Chinese male volunteers. In this method, febuxostat and etodolac (internal standard) were isolated from plasma samples by protein precipitation with acetonitrile. The supernatant was chromatographed on a Zorbax SB-C18 (150 x 3.0 mm, 3.5-microm particle size, Agilent) column with a SecurityGuard Inertsil Symmetry C18 column (12.5 x 4.6 mm, 5-microm particle size, Waters). The lower limit of quantification for febuxostat in 0.2 mL of human plasma was 13.40 ng x mL(-1), and the linearity was achieved over a concentration range from 13.40 to 21440 ng x mL(-1). Febuxostat tablets from Hengrui Medicine Co., Ltd (test, Jiangsu, China) and from Takeda pharmaceuticals america, Inc. (reference, Deerfield, IL) were evaluated following a single 80 mg oral dose to 18 healthy volunteers. Bioequivalence was determined by calculating 90% confidence intervals (90% CI) for the ratio of C(max), AUC(0-t), and AUC(0-infinity) values for the test and reference products, using logarithmic transformed data. The calculated 90% CIs for the ratio of C(max) (88.7-131.2%), AUC(0-t) (99.2-122.7%) and AUC(0-infinity) (99.5-123.1%) values for the test and reference products were all located within the bioequivalence criteria range (80-125% for AUC, and 70-143% for Ca(mzax)), proposed by State of Food and Drug Administration [SFDA, 2005. China]. It was concluded that the two febuxostat formulations (test and reference) analyzed were bioequivalent in terms of rate and extent of absorption and the method met the principle of quick and easy clinical analysis.

  4. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by high-performance liquid chromatography: application to a pharmacokinetic study.

    PubMed

    Li, Peifan; Zhang, Yunhui; Xiao, Li; Jin, Xinghua; Yang, Kun

    2007-12-01

    Radix Scrophulariae (xuanshen) is one of the famous Chinese herbal medicines widely used to treat rheumatism, tussis, pharyngalgia, arthritis, constipation, and conjunctival congestion. Harpagoside and cinnamic acid are the main bioactive components of xuanshen. The purpose of this study was to develop an HPLC-UV method for simultaneous determination of harpagoside and cinnamic acid in rat plasma and investigate pharmacokinetic parameters of harpagoside and cinnamic acid after oral administration of xuanshen extract (760 mg kg(-1)). After addition of syringin as internal standard, the analytes were isolated from plasma by liquid-liquid extraction. Separation was achieved on a Kromasil C18 column, and detection was by UV absorption at 272 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery, and limit of quantification according to the FDA validation guidelines. Calibration curves for both analytes were linear with the coefficient of variation (r) for both was greater than 0.999. Accuracy for harpagoside and cinnamic acid ranged from 100.7-103.5% and 96.9-102.9%, respectively, and precision for both analytes were less than 8.5%. The main pharmacokinetic parameters found for harpagoside and cinnamic acid after oral infusion of xuanshen extract were as follows: Cmax 1488.7 +/- 205.9 and 556.8 +/- 94.2 ng mL(-1), Tmax 2.09 +/- 0.31 and (1.48 +/- 0.14 h, AUC(0-24) 10,336.4 +/- 1426.8 and 3653.1 +/- 456.4 ng h mL(-1), AUC(0-infinity) 11,276.8 +/- 1321.4 and 3704.5 +/- 398.8 ng h mL(-1), and t(1/2) 4.9 +/- 1.3 and 2.5 +/- 0.9 h, respectively. These results indicated that the proposed method is simple, selective, and feasible for pharmacokinetic study of radix Scrophulariae extract in rats.

  5. Application of a UPLC-MS/MS method for the analysis of alosetron in human plasma to support a bioequivalence study in healthy males and females.

    PubMed

    Chaudhary, Darshan V; Patel, Daxesh P; Shah, Jaivik V; Shah, Priyanka A; Sanyal, Mallika; Shrivastav, Pranav S

    2015-10-01

    A simple, rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid-phase extraction of ALO and ALO 13C-d3 as internal standard (IS) on a LichroSep DVB-HL (30 mg, 1 cm(3) ) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01-10.0 ng/mL for ALO. Post-column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion-suppression/enhancement, expressed as IS-normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97-103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects.

  6. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min⁻¹ into a Phenomenex Gemini® C18, 5 μm analytical column (150 × 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL⁻¹ for dextromethorphan and doxylamine and 0.05 to 10 ng mL⁻¹ for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study.

  7. Rapid and Specific Approach for Direct Measurement of Glimepiride in Human Plasma by LC–ESI-MS–MS Employing Automated 96 Well Format: Application to a Bioequivalence Study

    PubMed Central

    Kundlik, M.L.; Zaware, B.H.; Kuchekar, S.R.

    2012-01-01

    A rapid liquid chromatographic method with electrospray ionization tandem mass spectrometric (LC–MS–MS) detection is developed and validated for quantification of glimepiride in heparinized human plasma. Plasma samples, without a drying and reconstitution step, are extracted by solid-phase extraction (SPE) and eluted with 0.9 mL of acetonitrile–methanol (1:1, v/v) containing 0.05% formic acid. The analyte and glimepiride d8 (internal standard, IS) are chromatographed on a C18 column; the mobile phase is acetonitrile–2 mm ammonium formate (88:12, v/v), with the pH adjusted to 3.5 with formic acid, at a flow rate of 0.5 mL/min. The retention times of glimepiride and the IS are 0.93 min, and the runtime is 1.6 min per sample. Selected reaction monitoring of MH+ at m/z 491.20 and 499.26 result in stable fragment ions with m/z 351.80 and 359.96 for glimepiride and the IS, respectively. The response was a linear function of the concentration in the range of 2.0–650.0 ng/mL, with r ≥ 0.9994. The recovery of glimepiride and the IS ranged from 81.91 to 83.36%. The assay has excellent characteristics and has been successfully used for the analysis of glimepiride in healthy human subjects in a bioequivalence study. It was well suited to clinical studies of the drug involving large numbers of samples. PMID:22291058

  8. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  9. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  10. Development of a LC-MS/MS method for quantification of two pairs of isomeric flavonoid glycosides and other ones in rat plasma: Application to pharmacokinetic studies.

    PubMed

    Zhang, Sixi; Xie, Yang; Wang, Jing; Geng, Yanmei; Zhou, Yu; Sun, Chengxin; Wang, Guangshu

    2017-03-10

    An liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of six flavonoid glycosides including isoorientin (1), orientin (2), 2″-O-β-D-xylopyranosyl isoorientin (3), 2″-O-β-D-xylopyranosyl isovitexin (4), 6-C-L-α-arabipyranosyl vitexin (5), and vitexin (6) in rat plasma using isoquercitrin as the internal standard (IS). Plasma samples were prepared by a one-step protein precipitation with acetonitrile. Chromatographic analysis was carried out on a 25-cm C18 column with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid. Six analytes and IS were detected through electrospray ionization in negative-ion selection reaction monitoring mode. The mass transitions were as follows: m/z 447.2 → 327.0 for 1, m/z 447.2 → 327.0 for 2, m/z 579.3 → 458.9 for 3, m/z 563.0 → 293.1 for 4, m/z 563.0 → 353.0 for 5, m/z 431.1 → 311.1 for 6, and m/z 463.1 → 300.2 for IS, respectively. Calibration curves exhibited good linearity (r(2)  > 0.9908) over a wide concentration range for all compounds. Intra-day and inter-day precision (RSD%) at four different levels were both less than 14.2% and the accuracy (RE%) ranged from -11.9% to 12.0%. The extraction recoveries of the six components ranged from 88.2% to 103.6%. The validated assay was successfully applied to the pharmacokinetic studies of the six components in male rat plasma after intravenous administration of total flavonoids of Scorzonera austriaca Wild.

  11. Simultaneous Determination of Bosentan, Glimepiride, HYBOS and M1 in Rat Plasma by UPLC-MS-MS and its Application to Pharmacokinetic Study.

    PubMed

    Chen, Mengchun; Song, Wenjie; Wang, Shuanghu; Chen, Qiulei; Pan, Peipei; Xu, Tao; Hu, Guoxin; Zheng, Zhiqiang

    2016-08-01

    A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method for the simultaneous determination of bosentan (BOS), glimepiride (GLP), hydroxyl bosentan (HYBOS) and hydroxyl glimepiride (M1) in rat plasma using one-step protein precipitation was developed and validated. After addition of ambrisentan as an internal standard (IS), protein precipitation by acetonitrile was used in sample preparation. Chromatographic separation was achieved on a Waters ACQUITY UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm particle size, Waters Corp., Milford, MA, USA) and inline 0.2 μm stainless steel frit filter (Waters Corp.) with acetonitrile-0.1% formic acid as the mobile phase at a flow rate of 0.4 mL/min with gradient elution. The column temperature was maintained at 40°C. Only 4 min was needed for an analytical run. The retention times were ∼3.29 min for BOS, 3.56 min for GLP, 1.42 min for HYBOS, 1.53 min for M1 and 3.22 min for IS. Electrospray ionization source was employed and operated in positive-ion mode; multiple reaction monitoring mode was applied to target fragment ions m/z 552 → 202, m/z 568 → 202, m/z 491 → 352, m/z 507 → 352 and m/z 379 → 347 for BOS, HYBOS, GLP, M1 and IS, respectively. The assay was validated over concentration ranges of 25-5,000 ng/mL (r(2) = 0.9984) for BOS, 1-200 ng/mL (r(2) = 0.9999) for GLP, 0.5-100 ng/mL (r(2) = 0.9999) for HYBOS and 0.1-20 ng/mL (r(2) = 0.9984) for M1. Intra- and interday precision values for replicate quality control samples were within 14.2% for all analytes during the assay validation. Mean quality control accuracy values were within -3.3 to 14.4% of nominal values for all analytes. The mean recoveries of BOS, GLP, HYBOS, M1 and ambrisentan from the plasma exceeded 90.4%. The analytes were stable in rat plasma for at least 2 h at room temperature, 30 days at -40°C and following at least three freeze-thaw cycles (-40°C to room temperature). This method was

  12. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    SciTech Connect

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V.; Kingma, H.; Van de Berg, R.

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  13. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    NASA Astrophysics Data System (ADS)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V.; Kingma, H.; Van de Berg, R.

    2016-04-01

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  14. Quantification of liensinine in rat plasma using ultra-performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Lv, Song-Feng; Wang, Xiang-hong; Li, Hong-wei; Zhang, Xiao-lei; Wang, Bo

    2015-06-15

    An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed to determine liensinine in rat plasma using carbamazepine as the internal standard (IS). Sample preparation was accomplished through a protein precipitation procedure with acetonitrile to 0.1ml plasma sample. The analyte and IS were separated on an Acquity UPLC BEH C18 column (2.1mm×50mm, 1.7μm) with the mobile phase of acetonitrile and 0.1% formic acid in water with gradient elution at a flow rate of 0.40ml/min. The injection volume was 6μl. The detection was performed on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization (ESI) by multiple reactions monitoring (MRM) of the transitions at m/z 611.6→206.2 for liensinine and m/z 237.1→194.2 for IS. The linearity of this method was found to be within the concentration range of 10-1000ng/ml with a lower limit of quantification of 10ng/ml. Only 3.0min was needed for an analytical run. The matrix effect was 93.8-107.4% for liensinine. The intra- and inter-day precision (RSD %) were less than 9.9% and accuracy (RE %) was within ±10.5%. The recovery ranged from 76.2 to 86.8%. Liensinine was sufficiently stable under all relevant analytical conditions. The method was also successfully applied to the pharmacokinetic study of liensinine in rats. The pharmacokinetic parameters were demonstrated as followed: t1/2 was 8.2±3.3h, Cmax was 668.4±156.9ng/ml, and AUC0→∞ was 1802.9±466.4ng/mlh.

  15. Simultaneous determination of the bioactive components in rat plasma by UPLC-MS/MS and application in pharmacokinetic studies after oral administration of radix Scutellariae extract.

    PubMed

    Tao, Jin-Hua; Xu, Jun; Jiang, Shu; Ling, Yong; Wang, Dong-Geng

    2017-09-01

    A highly sensitive and rapid ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid-acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1-1000 ng/mL. The intra- and inter-day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Development and validation of an LC-ESI-MS/MS method for the simultaneous quantification of naproxen and sumatriptan in human plasma: application to a pharmacokinetic study.

    PubMed

    Brêtas, Juliana Machado; César, Isabela Costa; Brêtas, Camila Machado; Teixeira, Leonardo de Souza; Bellorio, Karini Bruno; Mundim, Iram Moreira; Pianetti, Gerson Antônio

    2016-06-01

    A sensitive and fast liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for the simultaneous quantification of naproxen and sumatriptan in human plasma. A simple liquid-liquid extraction procedure, with a mixture of ethyl acetate, methyl tert-butyl ether, and dichloromethane (4:3:3, v/v), was used for the cleanup of plasma. Naratriptan and aceclofenac were employed as internal standards. The analyses were carried out using an ACE C18 column (50 × 4.6 mm i.d.; particle size 5 μm) and a mobile phase consisting of 2 mM aqueous ammonium acetate with 0.025 % formic acid and methanol (38:62, v/v). A triple-quadrupole mass spectrometer equipped with an electrospray source in the positive mode was set up in the selective reaction monitoring mode to detect the ion transitions m/z 231.67 → m/z 185.07, m/z 296.70 → m/z 157.30, m/z 354.80 → m/z 215.00, and m/z 336.80 → m/z 97.94 for naproxen, sumatriptan, aceclofenac, and naratriptan, respectively. The method was validated and proved to be linear, accurate, precise, and selective over the ranges of 2.5-130 μg mL(-1) for naproxen and 1-50 ng mL(-1) for sumatriptan. The validated method was successfully applied to a pharmacokinetic study with simultaneous administration of naproxen sodium and sumatriptan succinate tablet formulations in healthy volunteers.

  17. Simultaneous analysis of codeine and its active metabolites in human plasma using liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study after oral administration of codeine.

    PubMed

    Wu, Xiujun; Zhang, Weiping; Bai, Yin; Guo, Tao; Gu, Jingkai

    2013-05-05

    A rapid and sensitive bioassay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated for the simultaneous determination of codeine and its active metabolites, including morphine, morphine 3β-glucuronide (M3G) and morphine 6β-glucuronide (M6G), in human plasma. Sample preparation of plasma after the addition of naloxone as internal standard (IS) involved solid-phase extraction (SPE) on C18 cartridges. Reversed-phase chromatography using a gradient elution with methanol and 0.04% formic acid solution (pH 3.5) was used for separation in a run time of 5 min. The analytes were detected in the positive ion mode using multiple reaction monitoring (MRM) of the transitions at m/z 300.4→215.2 for codeine, 286.2→152.0 for morphine, and 462.2→286.2 for M3G and M6G. The method has the following performance characteristics: a reliable response range of 0.05-80 ng/ml for codeine, M3G and M6G and a response range of 0.05-5.0 ng/ml for morphine with correlation coefficients (r) of >0.997 for all analytes. The lower limit of quantitation (LLOQ) for all four analytes was 0.05 ng/ml. The intra- and inter-day precision and accuracy of the quality control samples at low, medium and high concentration levels showed <12% relative standard deviation (RSD) and -6.9 to 8.1% relative error (RE) for all the analytes. The method was successfully applied to a pharmacokinetic study of codeine in healthy Mongolian Chinese volunteers after a 30 mg oral dose. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Simultaneous determination of rupatadine and its metabolite desloratadine in human plasma by a sensitive LC-MS/MS method: application to the pharmacokinetic study in healthy Chinese volunteers.

    PubMed

    Wen, Jun; Hong, Zhanying; Wu, Yiwen; Wei, Hua; Fan, Guorong; Wu, Yutian

    2009-02-20

    A sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of rupatadine and its metabolite desloratadine in human plasma. After the addition of diphenhydramine, the internal standard (IS), plasma samples were extracted with a mixture of methyl tert-butyl ether and n-hexane (1:1, v/v). The analysis was performed on a Ultimate AQ-C18 (4.6mm x 100mm, 5microm) column using a mobile phase consisting of a 80/20 mixture of methanol/water containing 0.0005% formic acid pumped at 0.3mlmin(-1). The analytes and the IS were detected in positive ionization mode and monitoring their precursor-->product ion combinations of m/z 416-->309, 311-->259, and 256-->167, respectively, in multiple reaction monitoring mode. The linear ranges of the assay were 0.1-50 and 0.1-20ngml(-1) for rupatadine and desloratadine, respectively. The lower limits of reliable quantification for both rupatadine and desloratadine were 0.1ngml(-1), which offered high sensitivity and selectivity. The within- and between-run precision was less than 7.2%. The accuracy ranged from -9.2% to +6.4% and -7.2% to +7.2% for rupatadine and desloratadine in quality control samples at three levels, respectively. The method has been successfully applied to a pharmacokinetic study of rupatadine and its major metabolite after oral administration of 10, 20 and 40mg rupatadine tablets to healthy Chinese volunteers.

  19. Cyproterone acetate quantification in human plasma by high-performance liquid chromatography coupled to atmospheric pressure photoionization tandem mass spectrometry. Application to a comparative pharmacokinetics study.

    PubMed

    Borges, Ney Carter; Mazuqueli, Ana; Moreno, Ronilson Agnaldo; Astigarraga, Rafael Barrientos; Sverdloff, Carlos Eduardo; Galvinas, Paulo Alexandre Rebelo; Sampaio, Maurício Rocha de Magalhães; da Silva, Washington Moreira

    2009-01-01

    A specific, fast and sensitive high performance liquid chromatography (HPLC) coupled to atmospheric pressure photoionization (APPI) tandem mass spectrometric (LC-MS/MS) assay was developed for the determination of cyproterone (CYP) acetate (CAS 427-51-0) in human plasma. The retention times were 3.26 and 2.90 min for CYP acetate and its internal standard (I. S.) finasteride (FIN), respectively. The overall mean recovery, using liquid/liquid extraction, was found to be 109.0, 107.7 and 100.3%, for low, medium and high concentrations, respectively. Calibration curves were linear in the concentration range of 0.1-50.0 ng/ml, and the lower limit of quantification (LLOQ) was 0.1 ng/ml. The LLOQ, 0.1 ng/ml, was sensitive enough for detecting terminal phase concentrations of the drug. Inter-batch precision of the method ranged from 2.2 to 5.55%, while Inter-batch accuracy ranged from 95.5 to 100.0%. Intra-batch precision ranged from 1.8 to 5.6%, while Intra-batch accuracy ranged from 92.0 to 99.4% at concentrations of 0.3 ng/ml, 20.0 and 40.0 ng/ml. The developed method was applied to a bioequivalenc study of CYP acetate in a group of 44 female volunteers at a single oral dose of a 2 mg tablet, in a combination of ethinylestradiol/CYP acetate (0.25/2 mg). The plasma concentration of CYP acetate did not differ significantly after administration of both formulations (test formulation and the reference one). The geometric mean and respective 90% CI of CYP acetate test/reference percent ratios were 90.66% (84.39-97.40%) for Cmax and 96.20% (90.45-102.33%) for AUC0-t.

  20. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by liquid chromatography electrospray ionization mass spectrometry and its application to pharmacokinetic studies.

    PubMed

    Wang, Su-Jun; Ruan, Jin-Xiu; Zhao, Yan-Hong; Zhang, Zhen-Qing

    2008-01-01

    A simple and sensitive method was developed for the simultaneous quantification of harpagoside and cinnamic acid in rat plasma using high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile. The analytes were separated on an Intersil C8-3 column (2.1 mm i.d.x250 mm, 5 microm) with acetonitrile-5 mm ammonium formate aqueous solution (60:40, v/v) as mobile phase at a flow-rate of 0.2 mL/min. Detection was performed on a quadrupole mass spectrometer equipped with electrospray ionization (ESI) source operated under selected ion monitoring (SIM) mode. [M+HCOO]- at m/z 539 for harpagoside, [M-H]- at m/z 147 for cinnamic acid and [M-H]- at m/z 137 for salylic acid (internal standard) were selected as detecting ions, respectively. The method was validated over the concentration range 7-250 ng/mL for harpagoside and 5-500 ng/mL for cinnamic acid. The lower limits of quantitation for harpagoside and cinnamic acid were 7 and 5 ng/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.5% and the assay accuracies (RE%) ranged from -5.3 to 3.0% for both analytes. Their average recoveries were greater than 86%. Both analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the pharmacokinetic study of harpagoside and cinnamic acid following oral administration of Radix Scrophulariae extract to rats.

  1. Liquid chromatography-tandem mass spectrometry for the simultaneous quantitation of artemether and lumefantrine in human plasma: application for a pharmacokinetic study.

    PubMed

    César, Isabela Costa; Ribeiro, José Antônio de Aquino; Teixeira, Leonardo de Souza; Bellorio, Karini Bruno; de Abreu, Fernanda Crunivel; Moreira, Josianny Mesquita; Chellini, Paula Rocha; Pianetti, Gerson Antônio

    2011-01-05

    A liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method for the simultaneous quantitation of artemether and lumefantrine in human plasma was developed and validated. Artesunate was used as an internal standard (IS). The analytes were extracted by a protein precipitation procedure and separated on a reversed-phase Zorbax SB-Ciano column with a mobile phase composed of methanol and 10mM aqueous ammonium acetate containing 0.2% (v/v) acetic acid and 0.1% (v/v) formic acid. Multiple reaction monitoring was performed using the transitions m/z 316 → m/z 267, m/z 530 → m/z 348 and m/z 402 → m/z 267 to quantify artemether, lumefantrine and artesunate, respectively. Calibration curves were constructed over the range of 10-1000 ng/mL for artemether and 10-18,000 ng/mL for lumefantrine. The lower limit of quantitation was 10 ng/mL for both drugs. The mean R.S.D. values for the intra-run precision were 2.6% and 3.0% and for the inter-run precision were 3.6% and 4.6% for artemether and lumefantrine, respectively. The mean accuracy values were 102.0% and 101.2% for artemether and lumefantrine, respectively. No matrix effect was detected in the samples. The validated method was successfully applied to determine the plasma concentrations of artemether and lumefantrine in healthy volunteers, in a one-dose pharmacokinetic study, over the course of 11 days.

  2. Study on the ignition process of a segmented plasma torch

    NASA Astrophysics Data System (ADS)

    Cao, Xiuquan; Yu, Deping; Xiang, Yong; Li, Chao; Jiang, Hui; Yao, Jin

    2017-07-01

    Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet). However, there has been little study on the underlying mechanism of this key process. A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module. Thus, in this paper, the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed. Corresponding electrical models of different stages of the ignition process are set up and used to derive the electrical parameters, e.g. the variations of the arc voltage and arc current between the cathode and anode. In addition, the experiments with different ignition parameters on a home-made SPT have been conducted. At the same time, the variations of the arc voltage and arc current have been measured, and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.

  3. Studies of particle wake potentials in plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian N.; Graziani, Frank R.; Glosli, James N.; Strozzi, David J.; Surh, Michael P.; Richards, David F.; Decyk, Viktor K.; Mori, Warren B.

    2011-09-01

    A detailed understanding of electron stopping and scattering in plasmas with variable values for the number of particles within a Debye sphere is still not at hand. Presently, there is some disagreement in the literature concerning the proper description of these processes. Theoretical models assume electrostatic (Coulomb force) interactions between particles and neglect magnetic effects. Developing and validating proper descriptions requires studying the processes using first-principle plasma simulations. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and BEPS. In this paper, we compare the wakes observed in these simulations with each other and predictions from collisionless kinetic theory. The relevance of the work to Fast Ignition is discussed.

  4. Development and validation of an LC-MS/MS method for the determination of tofogliflozin in plasma and its application to a pharmacokinetic study in rats.

    PubMed

    Kobuchi, Shinji; Matsuno, Megumi; Fukuda, Etsuko; Ito, Yukako; Sakaeda, Toshiyuki

    2016-08-01

    Tofogliflozin is a novel selective inhibitor of sodium-dependent glucose co-transporter-2 (SGLT2) and has been developed for the treatment of patients with type 2 diabetes mellitus. In this study, a highly sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitation of tofogliflozin in rat plasma was developed and validated. The detection was performed using an API 3200 triple-quadrupole mass spectrometer with selected reaction monitoring (SRM) in the positive electrospray ionization mode. The SRM transitions were m/z=387.1 [M+H](+)→267.1 for tofogliflozin and m/z=451.2 [M+H](+)→71.0 for empagliflozin (internal standard: I.S.). Chromatographic separation was performed on a Quicksorb ODS (2.1mm i.d.×150mm, 5μm size) using isocratic elution with acetonitrile/10mM ammonium acetate (50:50, v/v) as the mobile phase at a flow rate of 0.2mL/min and the total run time was 4.0min. The lower limit of quantification (LLOQ) for tofogliflozin was 0.5ng/mL with sufficient specificity, accuracy, and precision. The validated method was successfully applied to the pharmacokinetic studies of tofogliflozin in rats. This assay method could be a valuable tool for future studies including pharmacokinetic and pharmacodynamic studies of SGLT2 inhibitors.

  5. Simultaneous determination of seven bufadienolides in rat plasma after oral administration of Shexiang Baoxin Pill by liquid chromatography-electrospray ionization-tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Wang, Shuping; Peng, Chengcheng; Jiang, Peng; Fu, Peng; Tao, Jianfei; Han, Lin; Huang, Huimei; Chang, Wanlin; Li, Le; Zhang, Weidong; Liu, Runhui

    2014-09-15

    A liquid chromatography-electrospray ionization-tandem mass spectrometry method was described for the simultaneous determination of resibufogenin, bufalin, gamabufotalin, telibufagin, arenobufagin, cinobufagin and bufotalin in rat plasma. Plasma samples were pretreated by liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out on an ACQUITY HSS T3 column with gradient elution using mobile phase consisting of acetonitrile-0.1% formic acid in water at a flow rate of 0.3 mL/min. All analytes showed good linearity over a wide concentration range (r>0.99). The lower limit of quantification was in the range of 0.5-10 ng/mL for seven bufadienolides. The mean recovery of the analytes ranged from 94.36 to 104.18%. The intra- and inter-day precisions were in the range of 1.74-13.78% and the accuracies were between 89.37 and 101.38%. The validated method was successfully applied to a pharmacokinetic (PK) study of the seven bufadienolides in rat plasma after oral administration of Shexiang Baoxin Pill (SBP). The selected PK marker compounds with typical efficacy/toxicity may provide a practical solution for marker compound selection and dosage design for the therapeutic drug monitoring and PK study of SBP in its clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  7. Plasma assisted deposition of metal fluorides for 193nm applications

    NASA Astrophysics Data System (ADS)

    Bischoff, Martin; Sode, Maik; Gaebler, Dieter; Kaiser, Norbert; Tuennermann, Andreas

    2008-10-01

    The ArF lithography technology requires a minimization of optical losses due to scattering and absorption. Consequently it is necessary to optimize the coating process of metal fluorides. The properties of metal fluoride thin films are mainly affected by the deposition methods, their parameters, and the vacuum conditions. Until now the best results were achieved by metal boat evaporation with high substrate temperature and without plasma assistance. In fact, it was demonstrated that the plasma assisted deposition process results in optical thin films with high packing density but the losses due to absorption were extremely high for deep and vacuum ultraviolet applications. This paper will demonstrate that most of the common metal fluorides can be deposited by electron beam evaporation with plasma assistance. In comparison to other deposition methods, the prepared thin films show low absorption in the VUV spectral range, high packing density, and less water content. The densification of the thin films was performed by a Leybold LION plasma source. As working gas, a variable mixture of fluorine and argon gas was chosen. To understand the deposition process and the interaction of the plasma with the deposition material, various characterization methods like plasma emission spectroscopy and ion current measurements were implemented.

  8. Application of Nonlocal Electron Kinetics to Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2011-10-01

    Partially ionized plasmas are typically in a highly non-equilibrium thermodynamic state: the electrons are not in equilibrium with the neutral particle species or the ions, and the electrons are also not in equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function (EVDF) from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas-discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Significant progress in understanding the formation of non-Maxwellian EVDF in the self-consistent electric fields has been one of the major achievements in the low-temperature plasmas during the last decade. This progress was made possible by a synergy between full-scale particle-in-cell simulations, analytical models, and experiments. Specific examples include rf discharges, dc discharges with auxiliary electrodes, Hall thruster discharges. In each example, nonlocal kinetic effects are identified as the main mechanisms responsible for the surprising degree of discharge self-organization. These phenomena include: explosive generation of cold electrons with rf power increase in low-pressure rf discharges; abrupt changes in discharge structure with increased bias voltage on a third electrode in a dc discharge with hot cathode; absence of a steady-state regime in Hall thruster discharges with intense secondary electron emission due to coupling of the sheath properties and the EVDF. In collaboration with Y. Raitses, A.V. Khrabrov, M. Campanell, V. I. Demidov, D. Sydorenko, I. Schweigert, and A. S. Mustafaev. Research supported by the U.S. Department of Energy.

  9. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  10. Current and Perspective Applications of Dense Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  11. Development and validation of a highly sensitive LC-MS/MS method for the determination of dexamethasone in nude mice plasma and its application to a pharmacokinetic study.

    PubMed

    Yuan, Yin; Zhou, Xuan; Li, Jian; Ye, Suofu; Ji, Xiwei; Li, Liang; Zhou, Tianyan; Lu, Wei

    2015-04-01

    In the current study, a simple, sensitive and rapid analytical method for the determination of dexamethasone was developed and applied to a pharmacokinetic study in nude mice. Using testosterone as an internal standard, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach after one-step precipitation with acetonitrile was validated and used to determine the concentrations of dexamethasone in nude mice plasma. The method utilized a simple isocratic reverse phase separation over a Dionex C18 column with a mobile phase composed of acetonitrile-water (40:60, v/v). The analyte was detected by a triple quadrupole tandem mass spectrometer via electrospray and multiple reaction monitoring was employed to select both dexamethasone at m/z 393.0/147.1 and testosterone at m/z 289.5/97.3 in the positive ion mode. The calibration curves were linear (r >0.99) ranging from 2.5 to 500 ng/mL with a lower limit of quantitation of 2.5 ng/mL. The relative standard deviation ranged from 1.69 to 9.22% while the relative error ranged from -1.92 to -8.46%. This method was successfully applied to a preclinical pharmacokinetic study of dexamethasone and its pharmacokinetics was characterized by a two-compartment model with first-order absorption in female nude mice.

  12. Validated LC-MS/MS method for simultaneous quantification of resveratrol levels in mouse plasma and brain and its application to pharmacokinetic and brain distribution studies.

    PubMed

    Ramalingam, Prakash; Ko, Young Tag

    2016-02-05

    A rapid, selective, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine resveratrol levels in plasma and brain tissue in mice for supporting pharmacokinetic and brain distribution studies. Analytes were separated using a Sepax BR-C18 analytical column (5μm, 120Å, 1.0×100mm) and eluted using an isocratic elution mobile phase acetonitrile and 0.01% formic acid [60:40, v/v] at a flow rate of 0.1mL/min. Precursor and product ion transitions for analyte resveratrol m/z 226.9>184.8 and curcumin m/z 367.1>148.9 were monitored using triple quadrupole mass spectrometer with multiple reaction monitoring (MRM) in negative ionization mode. The method was validated with respect to accuracy, within- and between-day precision, linearity, limit of quantification, recovery, and matrix effects of analyte. The inter- and intra-day accuracy and precision were within the range of the US Food and Drug Administration (FDA) acceptance criteria, for both matrices. The method was also successfully applied to pharmacokinetic and brain distribution studies of resveratrol after intravenous administration of free resveratrol and resveratrol-loaded solid lipid nanoparticles to mice. The combined use of serial blood sampling, small sample volume, simple extraction, and capillary depletion method drastically improved resveratrol analysis from biological matrices.

  13. Simultaneous determination of three phenylethanoid glycosides from Callicarpae Caulis et Folium in rat plasma by LC-MS/MS and its application to PK study.

    PubMed

    Sun, Xiuman; Liao, Qiongfeng; Liu, Guanghui; Cai, Hao; Zhang, Lei; Zhu, Chenchen; Xie, Zhiyong

    2013-08-01

    Callicarpae Caulis et Folium (CCF) is a traditional Chinese medicine usually used for hemostasis in clinics. In this study, a novel LC-MS/MS method was developed and validated for the simultaneous quantification of three phenylethanoid glycosides in rat plasma (verbascoside, forsythoside B and poliumoside), which are the major bioactive compounds of CCF; MS was operated in negative mode. This method was linear between 5.2 and 1010 ng/ml for poliumoside, 7.0 and 420 ng/ml for forsythoside B and 2.60 and 260.0 ng/ml for verbascoside. The MS/MS ion transitions monitored were m/z 769.4→160.5, m/z 755.3→593.3, m/z 623.1→160.5 and m/z 179.0→133.6 for poliumoside, forsythoside B, verbascoside and caffeic acid (IS), respectively. Linearity, accuracy, precision and extraction recovery of three analytes were all satisfactory. The method developed was sensitive, specific and rapid. It has been successfully applied in a PK study of three phenylethanoid glycosides after a single oral administration of CCF extract to rats.

  14. Development of a LC-MS/MS method for the determination of CKD-712 in rat plasma: Application to a pharmacokinetic study in rats.

    PubMed

    Chae, Jung-Woo; Yun, Hwi-Yeol; Eom, Han Young; Jeong, Eun Ju; Koo, Tae-Sung; Kwon, Kwang-Il; Lee, Jong-Hwa

    2017-09-01

    CKD-712 is a potential treatment for sepsis, as it exhibits protective effects against lipopolysaccharide-mediated platelet aggregation, inducible nitric oxide synthase expression, and cecum-ligation puncture-induced septic mortality in mice. In this study, we develop a rapid and sensitive LC-MS/MS method for determining CKD-712 in rat plasma. CKD-712 and papaverine hydrochloride (an internal standard) were analyzed using an LC-MS/MS system consisting of an Agilent HPLC system (HP-1100) equipped with an Atlantis HILIC Silica (2.1×50mm, 3μm) column and a API 4000 (Applied Biosystems/MDS Sciex, USA) in a positive ESI mode. We utilized multiple reaction monitoring (MRM) at m/z transitions of 306.2-164.0 to analyze CKD-712, and 340.3-202.1 m/z for IS, with a mobile phase of acetonitrile (0.025% trifluoroacetic acid):20mM ammonium acetate (94:6, v/v) at a flow rate of 0.25mL/min. The lower limit of quantification (LLOQ) was 5ng/mL, with a linearity ranging from 5 to 1000ng/mL (r>0.999). Validation parameters including specificity, precision, accuracy, matrix effect, recovery, dilution effect and stability results were well within acceptance criteria, and applied successfully on a pharmacokinetic study in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simultaneous quantification six active compounds in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study of Pien-Tze-Huang.

    PubMed

    Xu, Wen; Zhang, Yiping; Zhou, Caijie; Tai, Yanni; Zhang, Xiaoqing; Liu, Jie; Sha, Mei; Huang, Mingqing; Zhu, Yanlin; Peng, Jun; Lu, Jin-Jian

    2017-09-01

    Pien-Tze-Huang (PZH) is a popular traditional Chinese medicine (TCM) formula in China, but its pharmacokinetics has not been investigated yet. To better study the pharmacokinetic behaviors of PZH, an optimal ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UPLC-MS/MS) method was developed for rapid quantification of six compounds (notoginsenoside R1, ginsenosides Re, Rg1, Rb1, Rd, and muscone) in rat plasma after oral administration of PZH. All analytes were extracted by protein precipitation with acetonitrile and separated on a Waters Acquity Cortecs C18 column within 3.9min, and detected by multiple-reaction monitoring in positive ion mode. This proposed method exhibited good linearity (r≥0.9932) with a lower quantification limits of 0.558-1.566ng/mL for all analytes. The intra- and inter-day precisions were within 8.24%, and the accuracy was within -10.05 to 9.87% for each analyte. The extraction recovery for each analyte ranged from 80.02 to 96.12%. This UPLC-MS/MS method was successfully applied to the pharmacokinetic study for PZH in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Simultaneous determination of gentiopicroside and its two active metabolites in rat plasma by LC-MS/MS and its application in pharmacokinetic studies.

    PubMed

    Xiong, Kai; Gao, Tingting; Zhang, Tong; Wang, Zhengtao; Han, Han

    2017-09-14

    Gentiopicroside is a natural secoiridoid glycoside that may require metabolic activation to exert pharmacological effects. In this study, two active metabolites of gentiopicroside (M1 and M2) were isolated from rat urines and identified with our previous method. Most importantly, a fast, sensitive and selective ultra high-performance liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine gentiopicroside and its two metabolites in rat plasma. The analytes and internal standard (swertiamarin) were separated on an ACQUITY UPLC(®) BEH C18 column (2.1×50mm, 1.7μm) using gradient elution by acetonitrile and 0.1% formic acid at a flow rate of 0.4mL/min. The mass spectrometry detector was operated in the multiple reaction monitoring with positive ionization mode. The method had a good linearity over the concentration range of 0.2-10,000ng/mL for gentiopicroside and 0.1-5000ng/mL for the two metabolites. The validated method was successfully applied to the pharmacokinetic study of gentiopicroside and its metabolites after single oral administration of gentiopicroside (150mg/kg) to rats (n=8). The pharmacokinetic differences between gentiopicroside and its two metabolites were identified.Results provided the evidence for in vivo metabolism-based activation of gentiopicroside. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sensitive LC-MS/MS-ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: application to a bioequivalence study.

    PubMed

    Muppavarapu, Rajendraprasad; Guttikar, Swati; Rajappan, Manavalan; Kamarajan, Kannan; Mullangi, Ramesh

    2014-08-01

    A rapid, simple, sensitive and selective LC-MS/MS method was developed and validated for simultaneous quantification of montelukast (MT) and fexofenadine (FF) in human plasma (200 μL) using montelukast-d6 (MT-d6 ) and fexofenadine-d10 (FF-d10 ), respectively as an internal standard (IS) as per the US Food and Drug Administration guidelines. The chromatographic resolution was achieved on a Chromolith RP18e column using an isocratic mobile phase consisting of 20 mm ammonium formate-acetonitrile (20:80, v/v) at flow rate of 1.2 mL/min. The LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. The total run time of analysis was 4 min and elution of MT, FF, MT-d6 and FF-d10 occurred at 2.5, 1.2, 2.4 and 1.2 min, respectively. The standard curve found to be linear in the range 2.00-1000 ng/mL with a coefficient of correlation of ≥0.99 for both the drugs. The intra- and inter-day accuracy and precision values for MT and FF met the acceptance as per FDA guidelines. MT and FF were found to be stable in a battery of stability studies viz., bench-top, auto-sampler and repeated freeze-thaw cycles. The validated assay was applied to an oral bioequivalence study in humans.

  18. Development of an LC/MS/MS method in order to determine arctigenin in rat plasma: its application to a pharmacokinetic study.

    PubMed

    Zou, Quanfei; Gu, Yuan; Lu, Rong; Zhang, Tiejun; Zhao, Guang-Rong; Liu, Changxiao; Si, Duanyun

    2013-09-01

    In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2-500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and -80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half-life and area under the concentration-time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Simultaneous determination of ten compounds in rat plasma by UPLC-MS/MS: Application in the pharmacokinetic study of Ma-Zi-Ren-Wan.

    PubMed

    Hu, Dong-Dong; Han, Quan-Bin; Zhong, Linda Li-Dan; Li, Yan-Hong; Lin, Cheng-Yuan; Ho, Hing-Man; Zhang, Man; Lin, Shu-Hai; Zhao, Ling; Huang, Tao; Mi, Hong; Tan, Hong-Sheng; Xu, Hong-Xi; Bian, Zhao-Xiang

    2015-09-01

    Ma-Zi-Ren-Wan (MZRW) is a classic Chinese formula which has been used to treat human constipation in China for over 2000 years. In order to make good and rational use of this formula in the future, this paper presents the first attempt to track the pharmacokinetic features of MZRW in rat using rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Ten chemical components of MZRW, namely, rhein, emodin, aloe emodin, hesperidin, naringin, amygdalin, albiflorin, paeoniflorin, magnolol and honokiol, were simultaneously determined in rat plasma after a single oral administration (10g/kg body weight) of MZRW to rats. Geniposide and liquiritin were used as internal standards. The separation was performed on a Waters ACQUITY BEH C18 column (100mm×2.1mm, 1.7μm). The detection was conducted by multiple-reaction monitoring (MRM) in negative ionization mode. Two highest abundant MRM transitions without interference were optimized for each analyte. This method was well validated in terms of linearity, precision, accuracy, recovery, matrix effect and stability. All calibration curves had good linearity (r(2)>0.995) over the concentration range from 3.9 to 125.0ng/mL for emodin, 3.9-500.0ng/mL for amygdalin, 2.0-4000.0ng/mL for naringin and hesperidin, 3.9-2000.0ng/mL for magnolol, 7.8-2000.0ng/mL for rhein and 3.9-4000.0ng/mL for albiflorin, paeoniflorin, aloe emodin and honokiol. The intra-day and inter-day precision (relative standard deviation) was within 15%, the accuracy (relative error) ranged from -13.6% to 15.1%, and the lower limit of quantification in plasma ranged between 2.0ng/mL and 7.8ng/mL. Extraction recovery, matrix effect and stability were satisfactory. The validated method was successfully applied to a pharmacokinetic study of these ten compounds after oral administration of MZRW to rats. The pharmacokinetic parameters of each compound can facilitate clinical studies in the future. Copyright © 2015 Elsevier B

  20. Nevirapine quantification in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry. Application to bioequivalence study.

    PubMed

    Laurito, Tiago L; Santagada, Vincenzo; Caliendo, Giuseppe; Oliveira, Celso H; Barrientos-Astigarraga, Rafael E; De Nucci, Gilberto

    2002-04-01

    A rapid, sensitive and specific method to quantify nevirapine in human plasma using dibenzepine as the internal standard (IS) was developed and validated. The method employed a liquid-liquid extraction. The analyte and the IS were chromatographed on a C(18) analytical column, (150 x 4.6 mm i.d. 4 microm) and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode. The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 10-5000 ng ml(-1) (r(2) > 0.9970). The between-run precision, based on the relative standard deviation for replicate quality controls was 1.3% (30 ng ml(-1)), 2.8% (300 ng ml(-1)) and 3.6% (3000 ng ml(-1)). The between-run accuracy was 4.0, 7.0 and 6.2% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two nevirapine tablet formulations (Nevirapina from Far-Manguinhos, Brazil, as a test formulation, and Viramune from Boehringer Ingelheim do Brasil Química e Farmacêutica, as a reference formulation) in 25 healthy volunteers of both sexes who received a single 200 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Nevirapina/Viramune was 96.4-104.5% for AUC((0-last)), 91.4-105.1% for AUC((0-infinity)) and 95.3-111.6% for C(max) (AUC = area under the curve; C(max) = peak plasma concentration). Since both 90% CI for AUC((0-last)) and AUC((0-infinity)) and C(max) were included in the 80-125% interval proposed by the US Food and Drug Administration, Nevirapina was considered bioequivalent to Viramune according to both the rate and extent of absorption.

  1. Basic Studies in Plasma Physics

    DTIC Science & Technology

    2010-02-17

    ring by Evans, Kafri, Koduvely, and Mukamel, and the weakly asymmetric version was later studied by Clincy, Derrida , and Evans. Here the latter model...Dipole Model, Rev. in Math. Phys., 20, 835-872, 2007 Los Alamos Arxiv:math-ph/0609069 4. B. Derrida , E. Speer and J.L. Lebowitz, Entropy of Open...mat/0612371. 11 14. J.L. Lebowitz, Emergent Phenomena. Physics Journal, 6,1-6, 2007 15. T. Bodineau, B. Derrida and J.L. Lebowitz, Vortices in the

  2. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  3. Physics and applications of atmospheric non-thermal air plasma with reference to environment

    NASA Astrophysics Data System (ADS)

    Marode, E.; Djermoune, D.; Dessante, P.; Deniset, C.; Ségur, P.; Bastien, F.; Bourdon, A.; Laux, C.

    2009-12-01

    Since air is a natural part of our environment, special attention is given to the study of plasmas in air at atmospheric pressure and their applications. This fact promoted the study of electrical conduction in air-like mixtures, i.e. mixtures containing an electronegative gas component. If the ionization growth is not limited its temporal evolution leads to spark formation, i.e. a thermal plasma of several thousand kelvins in a quasi-local thermodynamic equilibrium state. But before reaching such a thermal state, a plasma sets up where the electrons increase their energy characterized by an electron temperature Te much higher than that of heavy species T or T+ for the ions. Since the plasma is no longer characterized by only one temperature T, it is said to be in a non-thermal plasma (NTP) state. Practical ways are listed to prevent electron ionization from going beyond the NTP states. Much understanding of such NTP may be gathered from the study of the simple paradigmatic case of a discharge induced between a sharp positively stressed point electrode facing a grounded negative plane electrode. Some physical properties will be gathered from such configurations and links underlined between these properties and some associated applications, mostly environmental. Aerosol filtration and electrostatic precipitators, pollution control by removal of hazardous species contained in flue gas exhaust, sterilization applications for medical purposes and triggering fuel combustion in vehicle motors are among such applications nowadays.

  4. Low voltage drop plasma switch for inverter and modulator applications

    NASA Astrophysics Data System (ADS)

    Goebel, D. M.; Poeschel, R. L.; Schumacher, R. W.

    1993-08-01

    A low forward voltage drop plasma switch has been developed for high-efficiency inverter and modulator applications. The switch, called the HOLLOTRON, is based on a grid-controlled, thermionic hollow-cathode discharge. A low forward voltage drop (10-20 V) is achieved by operating the hollow-cathode discharge in a static gas pressure of xenon. The dense plasma generated in the Ba-oxide dispenser hollow cathode is spread over a relatively large control grid area by a diverging magnetic field superimposed on the discharge. Interruption of the discharge current at high current densities (≳4 A/cm2) over the grid area is achieved by biasing the control grid sufficiently negative with respect to the plasma. The HOLLOTRON switch has demonstrated voltage stand-off of up to 20 kV, switching times of ≤0.3 μs, and pulse repetition frequencies of 20 kHz at 50% duty.

  5. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  6. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    PubMed Central

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-01-01

    In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238

  7. Selective Plasma Etching of Polymeric Substrates for Advanced Applications.

    PubMed

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-06-07

    In today's nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a "zoo" of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance.

  8. Simultaneous determination of harmine, harmaline and their metabolites harmol and harmalol in beagle dog plasma by UPLC-ESI-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Zhang, Lei; Teng, Liang; Gong, Can; Liu, Wei; Cheng, Xuemei; Gu, Shenghua; Deng, Zhongping; Wang, Zhengtao; Wang, Changhong

    2013-11-01

    Harmine (HAR) and harmaline (HAL) were metabolized by demethylation to form harmol (HOL) and harmalol (HAM) both in vivo and in vitro. It has been demonstrated tremendous value of HAR, HAL and their metabolites in the therapy of Alzheimer's disease. A rapid, selective and sensitive UPLC-ESI-MS/MS method was firstly developed and validated for the simultaneous determination of HAR, HAL, HOL, and HAM in beagle dog plasma with 9-aminoacridine as the internal standard (IS). After protein precipitation with acetonitrile, the analytes were separated within 4.5 min on an ACQUITY UPLC BEH C18 column with a gradient elution system composed of 0.1% formic acid and acetonitrile at a flow rate of 0.4 ml/min. Detection was performed using multiple reactions monitoring mode under a positive ionization condition. The calibration curves of four analytes showed good linearity (r(2)>0.9959) within the tested concentration ranges. The low limit of quantification for HAR, HAL, HOL, and HAM were all 1.00 ng/ml. The mean accuracy of the analytes was within the range of 94.56-112.23%, the R.S.D. values of intra-day and the inter-day precision were less than 6.26% and 7.51%, respectively. Matrix effects and extraction recoveries of the analytes from the beagle dog plasma were within the range of 94.48-105.77% and 89.07-101.44%, respectively. The validated method was successfully applied to a pharmacokinetic study of HAR, HAL, HOL, and HAM in beagle dogs after intravenous administration of HAR and HAL both of 1.0mg/kg. The main pharmacokinetic parameters of Cmax, Vd, CL, AUC and MRT, except Ke and t1/2 values, showed significant difference between the two parent drug HAR and HAL, respectively (p<0.05-0.001). Because of the different metabolic rate of HAR and HAL in vivo, the two metabolites, HOL and HAM, exhibited unique pharmacokinetic properties.

  9. Simultaneous determination of three sesquiterpene lactones from Herba Inula extract in rat plasma by LC/MS/MS and its application to pharmacokinetic study.

    PubMed

    Yang, Xi; Su, Juan; He, Yajun; Liu, Hui; Li, Haiyun; Zhang, Weidong

    2012-08-15

    A rapid and sensitive liquid chromatography-tandem mass spectrometry method has been developed and validated for the determination of 1-acetoxy-6α-hydroxyeriolanolide, 1β-hydroxyalantolactone and ivangustin from Herba Inula extract in rat plasma. Plasma samples were pretreated by protein precipitation with methanol. Chromatographic separation was accomplished on a TOSOH TSKgel ODS column with mobile phase consisting of methanol and 0.3% formic acid (80:20, v/v). The detection was carried out by multiple-reaction monitoring mode under positive electrospray ionization. The quantification was performed using the transitions of m/z 309.1/185.0 for 1-acetoxy-6α-hydroxyeriolanolide, m/z 249.0/231.1 for 1β-hydroxyalantolactone and ivangustin and m/z 285.0/193.0 for diazepam, respectively. Calibration curves were linear over the concentration range of 4-800 ng/mL for 1-acetoxy-6α-hydroxyeriolanolide, 8-500 ng/mL for 1β-hydroxyalantolactone and ivangustin. The limit of detection (LOD) was 1 ng/mL for 1-acetoxy-6α-hydroxyeriolanolide, 1.6 ng/mL for 1β-hydroxyalantolactone and ivangustin (S/N=3). The intra-day and inter-day precisions (RSD%) for the three compounds were less than 7.8% and 8.6%, and the accuracy (RE%) ranged from -4.6 to 6.8%. The method was successfully applied to pharmacokinetic studies of the three sesquiterpene lactones after oral administration of 300 mg/kg Herba Inula extract to rats, the t(½) of 1-acetoxy-6α-hydroxyeriolanolide, 1β-hydroxyalantolactone and ivangustin was 9.65±1.43, 14.88±0.82 and 13.93±2.74 (h). The AUC((0-t)) of 1-acetoxy-6α-hydroxyeriolanolide, 1β-hydroxyalantolactone and ivangustin was 1102.46±247.04, 808.92±117.53 and 990.35±275.49 (ng h/mL), respectively.

  10. Simultaneous determination of timosaponin B-II and A-III in rat plasma by LC-MS/MS and its application to pharmacokinetic study.

    PubMed

    Feng, Yi; Chen, Baoting; Lin, Aihua; Liu, Yiming

    2014-08-15

    A rapid, specific and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous determination of timosaponin B-II (TB-II) and A-III (TA-III) in rat plasma. Plasma samples were pretreated via simple protein precipitation with acetonitrile and ginsenoside Rg2 was used as internal standard. Chromatographic separation was carried out on an Agilent XDB-C8 (150 mm × 2.1mm i.d., 5 μm) column by isocratic elution with acetonitrile-2 mmol/L ammonium acetate (55:45, v/v). The detection was performed on a Sciex API 4000(+) triple-quadrupole tandem mass spectrometer with TurboIonSpray ionization (ESI) inlet via the negative ion multiple reaction monitoring (MRM) mode. The results showed that the calibration curve was linear in the concentration range of 3-3,000 ng/mL for TB-II and 0.3-3,000 ng/mL for TA-III, respectively. The intra- and inter-day precisions were less than 13.25%, and the accuracy ranged from 100.88% to 104.07% at three QC levels for both. The pharmacokinetic profiles of TB-II and TA-III in timosaponins (total timosaponin) at three dose levels (TB-II 150, 300, 600 mg/kg and TA-III 0.59, 1.17, 2.34 mg/kg, respectively) and in timosaponins-Huangbai alkaloids mixtures (1:1, 1:3, w/w, TB-II 300 mg/kg and TA-III 1.17 mg/kg) were studied for the first time in rats by this LC-MS/MS method. After single oral administration of timosaponins, mean Cmax and AUC0-t of TB-II and TA-III increased but non-proportional to the oral doses. When timosaponins-Huangbai alkaloids (1:1, 1:3, w/w) mixtures were administered, Cmax and AUC0-t of TB-II in the mixtures were obviously higher than the corresponding values in timosaponins at the same dose level. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A UHPLC-MS/MS method for simultaneous determination of twelve constituents from Erigeron breviscapus extract in rat plasma: Application to a pharmacokinetic study.

    PubMed

    Tian, Yuanyuan; Li, Qingqian; Zhou, Xinpeng; Pang, Qian; Xu, Yuanjin

    2017-03-01

    A rapid, sensitive and specific ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated to simultaneously determine the twelve major bioactive ingredients (neochlorogenic acid, chlorogenic acid, caffeic acid, cynarin, scopoletin, scutellarin, isochlorogenic acid A, apigenin-7-o-glucuronide, isochlorogenic acid C, scutellarein, luteolin, and apigenin) in rat plasma. Gallic acid and wogonoside were used as internal standards (IS1 and IS2). The plasma samples were pretreated and extracted by liquid-liquid extraction and protein precipitation with ethyl acetate-acetonitrile (95:5, v/v). Chromatographic separation was accomplished on Agilent ZORBAX RRHD Eclipse Plus C18 column (2.1mm×50mm, 1.8μm) utilizing 0.1% formic acid aqueous solution and acetonitrile as mobile phase under gradient conditions at a flow rate of 0.3mL·min(-1). Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode using electrospray ionization (ESI) in positive and negative mode. The whole intra- and inter-day precision (as relative standard deviation) of all analytes were less than 11.03%, and the accuracy (as relative error) were in the range from -10.43% to 9.76% and from -10.14% to 10.33%. The lower limits of quantification (LLOQ) were 20, 3.0, 100, 7.0, 0.30, 2.0, 70, 1.0, 20, 30, 10, and 2.0ngmL(-1) for neochlorogenic acid, chlorogenic acid, caffeic acid, cynarin, scopoletin, scutellarin, isochlorogenic acid A, apigenin-7-o-glucuronide, isochlorogenic acid C, scutellarein, luteolin, and apigenin, respectively. Extraction recovery, matrix effect and stability were found to be the required limits. This method was selective and sensitive for the investigation of the pharmacokinetics of twelve constituents following oral administration to research study about in Erigeron breviscapus of clinical practices for separately analytes on rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A source to deliver mesoscopic particles for laser plasma studies.

    PubMed

    Gopal, R; Kumar, R; Anand, M; Kulkarni, A; Singh, D P; Krishnan, S R; Sharma, V; Krishnamurthy, M

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 10(16) W/cm(2).

  13. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  14. Simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a bioequivalence study.

    PubMed

    Hu, Ziyan; Zou, Qiaogen; Tian, Jixin; Sun, Lili; Zhang, Zunjian

    2011-12-15

    A rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma has been developed and validated. Following liquid-liquid extraction, the analytes were separated on a reversed-phase C(18) column (150 mm × 2.0 mm, 3 μm) using formic acid:10 mM ammonium acetate:methanol (0.2:62:38, v/v/v) as mobile phase at a flow rate of 0.2 mL/min and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode. The method was linear for all analytes over the following concentration (ng/mL) ranges: codeine 0.08-16; ephedrine 0.8-160; guaiphenesin 80-16,000; chlorpheniramine 0.2-40. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method was successfully applied to a bioequivalence study in 6 healthy beagle dogs.

  15. Simultaneous determination of ambroxol and salbutamol in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Guo, Zhening; Chen, Yangsheng; Ding, Xiaoliang; Huang, Chenrong; Miao, Liyan

    2016-11-01

    A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry assay method was developed for simultaneous determination of ambroxol and salbutamol in human plasma using citalopram hydrobromide as internal standard (IS). The sample was alkalinized with ammonia water (33:67, v/v) and extracted by single liquid-liquid extraction with ethyl acetate. Separation was achieved on Waters Acquity UPLC BEH C18 column using a gradient program at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 378.9 → 263.6 (ambroxol), m/z 240.2 → 147.7 (salbutamol) and m/z 325.0 → 261.7 (IS). The total analytical run time was relatively short (3 min). Calibration curves were linear in the concentration range of 0.5-100.0 ng/mL for ambroxol and 0.2-20.0 ng/mL for salbutamol, with intra- and inter-run precision (relative standard deviation) <15% and accuracy (relative error) ranging from 97.7 to 112.1% for ambroxol and from 94.5 to 104.1% for salbutamol. The method was successfully applied in a clinical pharmacokinetic study of the compound ambroxol and salbutamol tablets. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Determination of lansoprazole enantiomers in dog plasma by column-switching liquid chromatography with tandem mass spectrometry and its application to a preclinical pharmacokinetic study.

    PubMed

    Wang, Hao; Sun, Yantong; Meng, Xiangjun; Yang, Bo; Wang, Jian; Yang, Yan; Gu, Jingkai

    2015-09-01

    Lansoprazole, a selective proton pump inhibitor, has a chiral benzimidazole sulfoxide structure and is used for the treatment of gastric acid hypersecretory related diseases. To investigate its stereoselective pharmacokinetics, a column-switching liquid chromatography with tandem mass spectrometry method was developed for the determination of lansoprazole enantiomers in dog plasma using (+)-pantoprazole as an internal standard. After a simple protein precipitation procedure with acetonitrile, matrix components left behind after sample preparation were further eliminated from the sample by reversed-phase chromatography on a C18 column. The fluent was fed to a chiral column for the separation of lansoprazole enantiomers. Baseline separation of lansoprazole enantiomers was achieved on a Chiralcel OZ-RH column using acetonitrile/0.1% formic acid in water (35:65, v/v) as the mobile phase at 40°C. The linearity of the calibration curves ranged from 3 to 800 ng/mL for each enantiomer. Intra- and inter-day precisions ranged from 2.1 to 7.3% with an accuracy of ±1.7% for (+)-lansoprazole, and from 1.6 to 6.9% with an accuracy of ±3.5% for (-)-lansoprazole, respectively. The validated method was successfully applied for the stereoselective pharmacokinetic study of lansoprazole in beagle dog after intravenous infusion.

  17. Development of a sensitive UPLC-ESI-MS/MS method for quantification of sofosbuvir and its metabolite, GS-331007, in human plasma: Application to a bioequivalence study.

    PubMed

    Rezk, Mamdouh R; Basalious, Emad B; Karim, Iman A

    2015-10-10

    A rapid and simple LC-MS/MS method was developed and validated for the simultaneous estimation of sofosbuvir (SF) and its metabolite GS-331007 (GS) using famotidine as an internal standard (IS). The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Extraction with ethyl acetate was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC HSS C₁₈ (50 mm × 2.1 mm, 1.8 μm) column by pumping 0.1% formic acid and acetonitrile (50:50, v/v) in an isocratic mode at a flow rate of 0.3 ml/min. Method validation was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 10-2500 ng/ml for both SF and its metabolite. The intra-day and inter-day precision and accuracy results were within the acceptable limits. A very short run time of 1.2 min made it possible to analyze more than 300 human plasma samples per day. The developed assay method was successfully applied to a bioequivalence study in human volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Development and Validation of a LC-MS/MS Method for the Simultaneous Estimation of Amlodipine and Valsartan in Human Plasma: Application to a Bioequivalence Study

    PubMed Central

    Jangala, Hemanth; Vats, Poonam; Khuroo, Arshad Hussain; Monif, Tausif

    2014-01-01

    Abstract A reliable, simple, and robust liquid chromatography-tandem mass spectro-metric (LC-MS/MS) method has been developed and validated that employs solid-phase extraction for the simultaneous estimation of amlodipine and valsartan in human K3EDTA plasma using amlodipine-d4 and valsartan-d9 as internal standards. Chromatographic separation of amlodipine and valsartan was achieved on the Luna C18 (2)100A (150 × 4.6 mm, 5 μm) column using acetonitrile: 5 mM ammonium formate solution (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min in isocratic mode. Quantification was achieved using an electrospray ion interface operating in positive mode, under multiple reaction monitoring (MRM) conditions. The assay was found to be linear over the range of 0.302–20.725 ng/mL for amlodipine and 6.062–18060.792 ng/mL for valsartan. The method has shown good reproducibility, as intra- and interday precisions were within 10% and accuracies were within 8% of nominal values for both analytes. The method was successfully applied for the bioequivalence study of amlodipine and valsartan after oral administration of a fixed dose of the combination. Additionally, as required by the current regulatory bodies, incurred sample reanalysis was performed and found to be acceptable. PMID:25853070

  19. A validated LC-MS/MS assay for the simultaneous determination of periplocin and its two metabolites, periplocymarin and periplogenin in rat plasma: Application to a pharmacokinetic study.

    PubMed

    He, Jun; Bo, Fang; Tu, Yaru; Azietaku, John Teye; Dou, Ting; Ouyang, Huizi; Chang, Yanxu; Liu, Hong; Gao, Xiumei

    2015-10-10

    A sensitive and reliable LC-MS/MS method was developed and validated for the simultaneous determination of periplocin and its two metabolites (periplocymarin and periplogenin) in rat plasma using psoralen as the internal standard (IS). After liquid-liquid extraction with ethyl acetate, chromatographic separation was performed on a C18 column with a 13 min gradient elution using 0.1% formic acid and acetonitrile as mobile phase at a flow rate of 0.3 mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the positive ionization mode. The lower limits of quantitation (LLOQs) for periplocin, periplocymarin and periplogenin were 0.5, 1 and 0.1 ng/mL, respectively. The mean recoveries of the analytes and IS were higher than 67.7%. The proposed method was successfully applied to evaluating the pharmacokinetic studies of periplocin and its metabolites (periplocymarin and periplogenin) in rats after a single oral administration of periplocin at 50 mg/kg. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Simultaneous determination of two epimeric furofuran lignans (sesamin and asarinin) of Asarum heterotropoides extract in rat plasma by LC/MS/MS: application to pharmacokinetic study.

    PubMed

    Ma, Yingyan; Xu, Kai; Wang, Shumin; Han, Yaling

    2014-09-01

    A rapid, sensitive and selective liquid chromatography-tandem mass spectrometry was developed to determine two epimeric furofuran lignans (sesamin and asarinin) simultaneously from Asarum heterotropoides extract in rat plasma. Simple protein precipitation with acetonitrile was performed to extract analytes by using alantolactone as an internal standard. Chromatographic separation was achieved using a DIKMA Diamonsil C18 analytical column (4.6 mm × 150 mm, i.d., 5 µm) by isocratically eluting with a mobile phase consisting of methanol/5 mM ammonium acetate/formic acid (75:25:0.1, v/v/v) at a flow rate of 0.8 mL/min. Tandem mass spectrometric detection with an electrospray ionization interface was performed by multiple reaction monitoring in positive ionization mode. This method was validated according to specificity, sensitivity, linearity, intra- and inter-day precision (<10.7%) and accuracy (<2.3%) and recovery and stability in a concentration range of 25.0-15 000 ng/mL for sesamin and 5.00-3 000 ng/mL for asarinin. This method has been successfully applied in a pharmacokinetic study of A. heterotropoides extract containing sesamin and asarinin after this extract was orally administrated in rats.

  1. HPLC-MS/MS method for the simultaneous quantification of desmethylmebeverine acid, mebeverine acid and mebeverine alcohol in human plasma along with its application to a pharmacokinetics study.

    PubMed

    Moskaleva, Natalia E; Baranov, Pavel A; Mesonzhnik, Natalia V; Appolonova, Svetlana A

    2017-05-10

    A new simple, rapid and sensitive high pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for simultaneous analysis of mebeverine metabolites as: mebeverine alcohol (MAL), mebeverine acid (MAC) and desmethylmebeverine acid (DMAC) in human plasma. Sample preparation was performed by protein precipitation following the separation of analytes using an Acquity UPLC BEN C8 column 1.7 mm 2.1×50mm (Waters, USA). (2)H5-desmethylmebeverine acid ((2)H5-DMAC) was used as the internal standard (IS). The proposed method was validated with linear ranges of 0.1-10ng/mL; 1-100ng/mL and 5-1000ng/mL for MAL, MAC and DMAC, respectively. Accuracy for all analytes (%RE), given as deviation between nominal and measured concentration and assay variability (CV) ranged from -4.04% to 4.60% and from 0.31% to 6.43% respectively both for within- and between-run. The overall recoveries for all metabolites were above 85%. The proposed method was used successfully for analysis of real samples from a pharmacokinetics study.

  2. Measurement of fexofenadine concentration in micro-sample human plasma by a rapid and sensitive LC-MS/MS employing protein precipitation: application to a clinical pharmacokinetic study.

    PubMed

    Guo, Daqing; Zou, Jianjun; Zhu, Yubing; Lou, Sheng; Fan, Hongwei; Qin, Qun

    2010-03-01

    A simple, rapid and sensitive liquid chromatography/positive ion electro-spray tandem mass spectrometry method (LC-MS/MS) was developed and validated for the quantification of fexofenadine with 100 microL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed-phase C(18 )column (5 microm, 100 x 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC-MS/MS in positive ion mode using 502.1 --> 466.2 and 446.0 --> 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1-600 ng/mL with a correlation coefficient (r) of > or =0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully.

  3. Liquid chromatography-tandem mass spectrometry simultaneous determination of repaglinide and metformin in human plasma and its application to bioequivalence study.

    PubMed

    Liang, Xiao-Rong; Dai, Xiao-Jian; Zhang, Yi-Fan; Ding, Jue-Fang; Chen, Xiao-Yan; Zhong, Da-Fang

    2013-04-01

    A simple, sensitive, selective, and reproducible liquid chromatography-tandem mass spectrometric method was developed for the simultaneous determination of repaglinide and metformin in human plasma using d5-repaglinide and d6-metformin as internal standards (ISs). After a simple protein precipitation using acetonitrile as the precipitation solvent, both analytes and ISs were separated on a Venusil ASB C 18 (150 mm x 4.6 mm, 5 microm) via gradient elution using acetonitrile--10 mmol x L(-1) ammonium acetate as the mobile phase. A chromatographic total run time of 7.5 min was achieved. Mass spectrometric detection was conducted with atmospheric pressure chemical ionization under positive-ion and multiple-reaction monitoring modes. The method was linear over the 0.2 to 60.0 ng x mL(-1) concentration range for repaglinide and over the 4 to 1 000 ng x mL(-1) range for metformin. For both analytes, the intra- and inter-accuracies and precisions were within the +/- 15% acceptable limit across all concentrations. The validated method was successfully applied to a clinical bioequivalence study.

  4. Determination of bevantolol in human plasma using liquid chromatography-electrospray ionization tandem mass spectrometry and its application to a bioequivalence study.

    PubMed

    Ren, Li; Wang, Zheng; Lou, Yiceng; Zheng, Lu; Zheng, Heng; Yin, Chunping

    2014-05-15

    A liquid chromatography-electrospray ionization tandem mass spectrometry method was established and validated for the determination of bevantolol in human plasma using propranolol as the internal standard. The optimal chromatographic behavior of bevantolol and propranolol was achieved on a Welch Ultimate XB-C18 column (5 μm, 150 mm × 2.1mm, Maryland, USA) with a mobile phase of acetonitrile-water (40:60, v/v) containing 10mM ammonium acetate and 0.1% formic acid. The mass spectrometer was operated in selected reaction monitoring mode using the transition m/z 346.1>165.1 for bevantolol and m/z 260.3>116.1 for propranolol. Sample preparation was carried out through protein precipitation with acetonitrile. The calibration curves were linear over the range of 5.00-1,000 ng/ml. The intra- and inter-day precisions were less than 6.7% and 6.6%, respectively. This method was successfully applied to the bioequivalence study of two kinds of bevantolol hydrochloride tablets in 24 Chinese male volunteers in fasting and postprandial experiment.

  5. Development and Validation of a LC-MS/MS Method for the Simultaneous Estimation of Amlodipine and Valsartan in Human Plasma: Application to a Bioequivalence Study.

    PubMed

    Jangala, Hemanth; Vats, Poonam; Khuroo, Arshad Hussain; Monif, Tausif

    2014-01-01

    A reliable, simple, and robust liquid chromatography-tandem mass spectro-metric (LC-MS/MS) method has been developed and validated that employs solid-phase extraction for the simultaneous estimation of amlodipine and valsartan in human K3EDTA plasma using amlodipine-d4 and valsartan-d9 as internal standards. Chromatographic separation of amlodipine and valsartan was achieved on the Luna C18 (2)100A (150 × 4.6 mm, 5 μm) column using acetonitrile: 5 mM ammonium formate solution (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min in isocratic mode. Quantification was achieved using an electrospray ion interface operating in positive mode, under multiple reaction monitoring (MRM) conditions. The assay was found to be linear over the range of 0.302-20.725 ng/mL for amlodipine and 6.062-18060.792 ng/mL for valsartan. The method has shown good reproducibility, as intra- and interday precisions were within 10% and accuracies were within 8% of nominal values for both analytes. The method was successfully applied for the bioequivalence study of amlodipine and valsartan after oral administration of a fixed dose of the combination. Additionally, as required by the current regulatory bodies, incurred sample reanalysis was performed and found to be acceptable.

  6. An LC-MS/MS method for simultaneous determination of hosenkoside A and hosenkoside K from Semen Impatientis in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Yu, Xiaodong; Bi, Binna; Dong, Ning; Zhao, Huanli; Ji, Lixin; Lu, Minghua

    2017-03-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of two baccharane glycosides (hosenkoside A and hosenkoside K) of total saponins of Semen Impatientis in rat plasma using mogroside V as the internal standard (IS). The analytes were separated using a C18 RP Agilent XDB column (1.8 μm, 50 × 2.1 mm i.d.) and detection of the compounds was done using a TSQ Quantum triple quadrupole mass spectrometer coupled with a negative electrospray ionization source under selection reaction monitoring mode. According to the US Food and Drug Administration guidelines, the established method was fully validated and the results were proved within acceptable limits. The lower limits of quantification of both analytes were 5 ng/mL. The validated method was successfully applied to a pharmacokinetic study of orally administered the total saponins of Semen Impatientis in rats. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Rapid high performance liquid chromatographic method for determination of clarithromycin in human plasma using amperometric detection: application in pharmacokinetic and bioequivalence studies.

    PubMed

    Foroutan, Seyed Mohsen; Zarghi, Afshin; Shafaati, Alireza; Madadian, Babak; Abolfathi, Farshid

    2013-01-01

    A rapid, sensitive and reproducible HPLC method using amperometric detector was developed and validated for the analysis of clarithromycin in human plasma. The separation was achieved on a monolithic silica column (MZ- C8 125×4.0 mm) using acetonitrile-methanol-potassium dihydrogen phosphate buffer (40:6:54,v/v), with pH of 7.5, as the mobile phase at a flow rate of 1.5 mL/min. The assay enables the measurement of clarithromycin for therapeutic drug monitoring with a minimum quantification limit of 20 ng/mL. The method involves simple, protein precipitation procedure and analytical recovery was complete. The calibration curve was linear over the concentration range of 0.1-6 μg/mL. The coefficients of variation for inter-day and intra-day assay were found to be less than 6%. This method was used in bioequivalency and pharmacokinetic studies of the test (generic) product 2 × 500 mg clarithromycin tablets, with respect to the reference product.

  8. Plasma promoted manufacturing of hydrogen and vehicular applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.