Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.
Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit
2017-09-13
Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda
2016-01-15
GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.
Erwin, Steven C; Lyons, John L
2018-06-13
Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Profijt, H. B.; Sanden, M. C. M. van de; Kessels, W. M. M.
2013-01-15
Two substrate-biasing techniques, i.e., substrate-tuned biasing and RF biasing, have been implemented in a remote plasma configuration, enabling control of the ion energy during plasma-assisted atomic layer deposition (ALD). With both techniques, substrate bias voltages up to -200 V have been reached, which allowed for ion energies up to 272 eV. Besides the bias voltage, the ion energy and the ion flux, also the electron temperature, the electron density, and the optical emission of the plasma have been measured. The effects of substrate biasing during plasma-assisted ALD have been investigated for Al{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, and TiO{sub 2}more » thin films. The growth per cycle, the mass density, and the crystallinity have been investigated, and it was found that these process and material properties can be tailored using substrate biasing. Additionally, the residual stress in substrates coated with Al{sub 2}O{sub 3} films varied with the substrate bias voltage. The results reported in this article demonstrate that substrate biasing is a promising technique to tailor the material properties of thin films synthesized by plasma-assisted ALD.« less
Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit
2010-09-07
We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.
Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; ...
2016-12-02
Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma- assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as amore » function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali
2016-01-15
Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less
High indium content homogenous InAlN layers grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kyle, Erin C. H.; Kaun, Stephen W.; Wu, Feng; Bonef, Bastien; Speck, James S.
2016-11-01
InAlN grown by plasma-assisted molecular beam epitaxy often contains a honeycomb microstructure. The honeycomb microstructure consists of 5-10 nm diameter aluminum-rich regions which are surrounded by indium-rich regions. Layers without this microstructure were previously developed for nominally lattice-matched InAlN and have been developed here for higher indium content InAlN. In this study, InAlN was grown in a nitrogen-rich environment with high indium to aluminum flux ratios at low growth temperatures. Samples were characterized by high-resolution x-ray diffraction, atomic force microscopy, high-angle annular dark-field scanning transmission electron microscopy, and atom probe tomography. Atomic force microscopy showed InAlN layers grown at temperatures below 450 °C under nitrogen-rich conditions were free of droplets. InAlN films with indium contents up to 81% were grown at temperatures between 410 and 440 °C. High-angle annular dark-field scanning transmission electron microscopy and atom probe tomography showed no evidence of honeycomb microstructure for samples with indium contents of 34% and 62%. These layers are homogeneous and follow a random alloy distribution. A growth diagram for InAlN of all indium contents is reported.
Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources
NASA Astrophysics Data System (ADS)
Haiying, WEI; Hongge, GUO; Lijun, SANG; Xingcun, LI; Qiang, CHEN
2018-04-01
In this paper, Al2O3 thin films are deposited on a hydrogen-terminated Si substrate by using two home-built electron cyclotron resonance (ECR) and magnetic field enhanced radio frequency plasma-assisted atomic layer deposition (PA-ALD) devices with Al(CH3)3 (trimethylaluminum, TMA) and oxygen plasma used as precursor and oxidant, respectively. The thickness, chemical composition, surface morphology and group reactions are characterized by in situ spectroscopic ellipsometer, x-ray photoelectric spectroscopy, atomic force microscopy, scanning electron microscopy, a high-resolution transmission electron microscope and in situ mass spectrometry (MS), respectively. We obtain that both ECR PA-ALD and the magnetic field enhanced PA-ALD can deposit thin films with high density, high purity, and uniformity at a high deposition rate. MS analysis reveals that the Al2O3 deposition reactions are not simple reactions between TMA and oxygen plasma to produce alumina, water and carbon dioxide. In fact, acetylene, carbon monoxide and some other by-products also appear in the exhaustion gas. In addition, the presence of bias voltage has a certain effect on the deposition rate and surface morphology of films, which may be attributed to the presence of bias voltage controlling the plasma energy and density. We conclude that both plasma sources have a different deposition mechanism, which is much more complicated than expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza
2015-11-23
Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BNmore » until it may cover entire h-BN flakes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla
2015-01-15
Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less
Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM
2011-05-24
Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.
Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers
NASA Astrophysics Data System (ADS)
Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.
1998-12-01
Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.
Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haider, Ali; Kayaci, Fatma; Uyar, Tamer
2014-09-01
Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii) calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructuremore » using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.« less
NASA Astrophysics Data System (ADS)
Zhang, Yi; Creatore, Mariadriana; Ma, Quan-Bao; El Boukili, Aishah; Gao, Lu; Verheijen, Marcel A.; Verhoeven, M. W. G. M. (Tiny); Hensen, Emiel. J. M.
2015-03-01
Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO2-xNx ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO2 arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O2 or N2) during the Ti precursor exposure, while the N2/H2-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O2 was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO2 with a binding energy of 400 eV (Ninterst) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N2 as background gas results in formation of N state with a binding energy of 396 eV (Nsubst) and very low photocurrents. These Nsubst are linked to the presence of Ti3+, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO2 arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O2 recipe was adopted. This is attributed to constant N content in the PA-ALD TiO2-xNx, regardless of the adopted recipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoops, Harm C. M., E-mail: h.c.m.knoops@tue.nl, E-mail: w.m.m.kessels@tue.nl; Oxford Instruments Plasma Technology, North End, Bristol BS49 4AP; Peuter, K. de
2015-07-06
The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takesmore » place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.« less
NASA Astrophysics Data System (ADS)
Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu
2012-02-01
We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.
NASA Astrophysics Data System (ADS)
Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin
2017-02-01
For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp2 and NH3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of 1.5 × 1012 cm-2 and a small size of 3 4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.
Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.
Wi, Sungjin; Kim, Hyunsoo; Chen, Mikai; Nam, Hongsuk; Guo, L Jay; Meyhofer, Edgar; Liang, Xiaogan
2014-05-27
Layered transition-metal dichalcogenides hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photovoltaic performance, superior flexibility, long lifetime, and low manufacturing cost. Engineering the proper band structures of such layered materials is essential to realize such potential. Here, we present a plasma-assisted doping approach for significantly improving the photovoltaic response in multilayer MoS2. In this work, we fabricated and characterized photovoltaic devices with a vertically stacked indium tin oxide electrode/multilayer MoS2/metal electrode structure. Utilizing a plasma-induced p-doping approach, we are able to form p-n junctions in MoS2 layers that facilitate the collection of photogenerated carriers, enhance the photovoltages, and decrease reverse dark currents. Using plasma-assisted doping processes, we have demonstrated MoS2-based photovoltaic devices exhibiting very high short-circuit photocurrent density values up to 20.9 mA/cm(2) and reasonably good power-conversion efficiencies up to 2.8% under AM1.5G illumination, as well as high external quantum efficiencies. We believe that this work provides important scientific insights for leveraging the optoelectronic properties of emerging atomically layered two-dimensional materials for photovoltaic and other optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine
2016-01-15
The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less
Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin
2017-12-01
For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp 2 and NH 3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of ~1.5 × 10 12 cm -2 and a small size of 3~4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.
Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.
2016-01-01
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342
Atomic Precision Plasma Processing - Modeling Investigations
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2016-09-01
Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.
NASA Astrophysics Data System (ADS)
Adolph, David; Tingberg, Tobias; Ive, Tommy
2015-09-01
Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Yumi; Hattori, Nozomu; Miyatake, Naomasa
Zinc oxide (ZnO) thin films have attracted significant attention for application in thin film transistors (TFTs) due to their specific characteristics, such as high mobility and transparency. In this paper, the authors fabricated TFTs with ZnO thin films as channel layers deposited by plasma-assisted atomic layer deposition (PAALD) at 100 Degree-Sign C using two different plasma sources, water (H{sub 2}O-plasma) and oxygen gas (O{sub 2}-plasma), as oxidants, and investigated the effects of the plasma sources on TFT performances. The TFT with ZnO channel layer deposited with H{sub 2}O-plasma indicated higher performances such as a field effect mobility ({mu}) of 1.1more » cm{sup 2}/Vs. Analysis of the ZnO films revealed that the residual carbon in the film deposited with H{sub 2}O-plasma was lower than that of O{sub 2}-plasma. In addition, the c-axis preferred orientation was obtained in the case of the ZnO film deposited with H{sub 2}O-plasma. These results suggest that it is possible to fabricate high-performance ZnO TFTs at low temperatures by PAALD with H{sub 2}O-plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadi, Elaheh; Wienecke, Steven; Keller, Stacia
2014-02-17
The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. These layers were grown by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. Microstructural analysis shows an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. A room temperature two-dimensional electron gas (2DEG) mobility of 1100 cm{sup 2}/V s and 2DEG sheet charge density of 1.9 × 10{sup 13} cm{sup −2} was measured for N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers.
NASA Astrophysics Data System (ADS)
Matsui, Miyako; Kuwahara, Kenichi
2018-06-01
A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.
Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana
2015-10-14
Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu
2016-07-15
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less
NASA Astrophysics Data System (ADS)
Park, Yeonjoon
The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.
Sohbatzadeh, F; Eshghabadi, M; Mohsenpour, T
2018-06-29
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.
2018-06-01
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis
Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang
2016-01-01
An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.
2016-05-15
Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaker, A.; Szkutnik, P. D.; Pointet, J.
2016-08-28
In this paper, TiO{sub 2} layers grown on RuO{sub 2} by atomic layer deposition (ALD) using tetrakis (dimethyla-mino) titanium (TDMAT) and either oxygen plasma or H{sub 2}O as oxygen source were analyzed using X-ray diffraction (XRD), Raman spectroscopy, and depth-resolved X-ray Photoelectron spectroscopy (XPS). The main objective is to investigate the surface chemical reactions mechanisms and their influence on the TiO{sub 2} film properties. The experimental results using XRD show that ALD deposition using H{sub 2}O leads to anatase TiO{sub 2} whereas a rutile TiO{sub 2} is obtained when oxygen-plasma is used as oxygen source. Depth-resolved XPS analysis allows tomore » determine the reaction mechanisms at the RuO{sub 2} substrate surface after growth of thin TiO{sub 2} layers. Indeed, the XPS analysis shows that when H{sub 2}O assisted ALD process is used, intermediate Ti{sub 2}O{sub 3} layer is obtained and RuO{sub 2} is reduced into Ru as evidenced by high resolution transmission electron microscopy. In this case, there is no possibility to re-oxidize the Ru surface into RuO{sub 2} due to the weak oxidation character of H{sub 2}O and an anatase TiO{sub 2} layer is therefore grown on Ti{sub 2}O{sub 3}. In contrast, when oxygen plasma is used in the ALD process, its strong oxidation character leads to the re-oxidation of the partially reduced RuO{sub 2} following the first Ti deposition step. Consequently, the RuO{sub 2} surface is regenerated, allowing the growth of rutile TiO{sub 2}. A surface chemical reaction scheme is proposed that well accounts for the observed experimental results.« less
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2015-11-11
The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less
NASA Astrophysics Data System (ADS)
Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie
2018-01-01
Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.
NASA Astrophysics Data System (ADS)
Zaima, K.; Akashi, H.; Sasaki, K.
2015-09-01
It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.
Atomic-layer soft plasma etching of MoS2
Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)
2016-01-01
Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335
NASA Astrophysics Data System (ADS)
Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun
2011-02-01
Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.
Antimonide-Based Compound Semiconductors for Low-Power Electronics
2013-01-01
A, Madan HS, Kirk AP, Zhao DA, Mourey DA, Hudait MK, et al. Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of...et al. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure. Appl Phys Lett. 2012;101: 231601. [18] Ali A, Madan H
Overview of atomic layer etching in the semiconductor industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.
2015-03-15
Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article providesmore » defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.« less
Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.
We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less
NASA Astrophysics Data System (ADS)
Liudi Mulyo, Andreas; Konno, Yuta; Nilsen, Julie S.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge; Kishino, Katsumi
2017-12-01
We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm-2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.
NASA Astrophysics Data System (ADS)
Budde, Melanie; Tschammer, Carsten; Franz, Philipp; Feldl, Johannes; Ramsteiner, Manfred; Goldhahn, Rüdiger; Feneberg, Martin; Barsan, Nicolae; Oprea, Alexandru; Bierwagen, Oliver
2018-05-01
NiO layers were grown on MgO(100), MgO(110), and MgO(111) substrates by plasma-assisted molecular beam epitaxy under Ni-flux limited growth conditions. Single crystalline growth with a cube-on-cube epitaxial relationship was confirmed by X-ray diffraction measurements for all used growth conditions and substrates except MgO(111). A detailed growth series on MgO(100) was prepared using substrate temperatures ranging from 20 °C to 900 °C to investigate the influence on the layer characteristics. Energy-dispersive X-ray spectroscopy indicated close-to-stoichiometric layers with an oxygen content of ≈ 47 at. % and ≈ 50 at. % grown under low and high O-flux, respectively. All NiO layers had a root-mean-square surface roughness below 1 nm, measured by atomic force microscopy, except for rougher layers grown at 900 °C or using molecular oxygen. Growth at 900 °C led to a significant diffusion of Mg from the substrate into the film. The relative intensity of the quasi-forbidden one-phonon Raman peak is introduced as a gauge of the crystal quality, indicating the highest layer quality for growth at low oxygen flux and high growth temperature, likely due to the resulting high adatom diffusion length during growth. The optical and electrical properties were investigated by spectroscopic ellipsometry and resistance measurements, respectively. All NiO layers were transparent with an optical bandgap around 3.6 eV and semi-insulating at room temperature. However, changes upon exposure to reducing or oxidizing gases of the resistance of a representative layer at elevated temperature were able to confirm p-type conductivity, highlighting their suitability as a model system for research on oxide-based gas sensing.
2017-01-01
Area-selective atomic layer deposition (ALD) is rapidly gaining interest because of its potential application in self-aligned fabrication schemes for next-generation nanoelectronics. Here, we introduce an approach for area-selective ALD that relies on the use of chemoselective inhibitor molecules in a three-step (ABC-type) ALD cycle. A process for area-selective ALD of SiO2 was developed comprising acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O2 plasma reactant (step C) pulses. Our results show that this process allows for selective deposition of SiO2 on GeO2, SiNx, SiO2, and WO3, in the presence of Al2O3, TiO2, and HfO2 surfaces. In situ Fourier transform infrared spectroscopy experiments and density functional theory calculations underline that the selectivity of the approach stems from the chemoselective adsorption of the inhibitor. The selectivity between different oxide starting surfaces and the compatibility with plasma-assisted or ozone-based ALD are distinct features of this approach. Furthermore, the approach offers the opportunity of tuning the substrate-selectivity by proper selection of inhibitor molecules. PMID:28850774
NASA Astrophysics Data System (ADS)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.
2017-02-01
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C4F8 and CHF3) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO2 and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF3 has a lower FC deposition yield for both SiO2 and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F8. The thickness of deposited FC layers using CHF3 is found to be greater for Si than for SiO2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.
Layer-controllable graphene by plasma thinning and post-annealing
NASA Astrophysics Data System (ADS)
Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)
2018-05-01
The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.
Effect of SiC buffer layer on GaN growth on Si via PA-MBE
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.
2017-11-01
The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-03
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-01
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
NASA Astrophysics Data System (ADS)
Dechana, A.; Thamboon, P.; Boonyawan, D.
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.
Dechana, A; Thamboon, P; Boonyawan, D
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
NASA Astrophysics Data System (ADS)
Tsai, Ming-Li; Wang, Shin-Yuan; Chien, Chao-Hsin
2017-08-01
Through in situ hydrogen plasma treatment (HPT) and plasma-enhanced atomic-layer-deposited TiN (PEALD-TiN) layer capping, we successfully fabricated TiN/HfO2/GaSb metal-oxide-semiconductor capacitors with an ultrathin equivalent oxide thickness of 0.66 nm and a low density of states of approximately 2 × 1012 cm-2 eV-1 near the valence band edge. After in situ HPT, a native oxide-free surface was obtained through efficient etching. Moreover, the use of the in situ PEALD-TiN layer precluded high-κ dielectric damage that would have been caused by conventional sputtering, thereby yielding a superior high-κ dielectric and low gate leakage current.
Chen, Lei; Wen, Jialin; Zhang, Peng; Yu, Bingjun; Chen, Cheng; Ma, Tianbao; Lu, Xinchun; Kim, Seong H; Qian, Linmao
2018-04-18
Topographic nanomanufacturing with a depth precision down to atomic dimension is of importance for advancement of nanoelectronics with new functionalities. Here we demonstrate a mask-less and chemical-free nanolithography process for regio-specific removal of atomic layers on a single crystalline silicon surface via shear-induced mechanochemical reactions. Since chemical reactions involve only the topmost atomic layer exposed at the interface, the removal of a single atomic layer is possible and the crystalline lattice beneath the processed area remains intact without subsurface structural damages. Molecular dynamics simulations depict the atom-by-atom removal process, where the first atomic layer is removed preferentially through the formation and dissociation of interfacial bridge bonds. Based on the parametric thresholds needed for single atomic layer removal, the critical energy barrier for water-assisted mechanochemical dissociation of Si-Si bonds was determined. The mechanochemical nanolithography method demonstrated here could be extended to nanofabrication of other crystalline materials.
Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho
2016-01-01
The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process. PMID:27721493
Hyperbolic and Plasmonic Properties of Silicon/Ag Aligned Nanowire Arrays
2013-06-17
Cleveland, J. D. Caldwell, E. Foos, J. Niinistö, and M. Ritala, “Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin...M. Leskela, “ Plasma -enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011). 52. O. J. Glembocki, S. M. Prokes...all principal components of the dielectric permittivity tensor are positive, the iso-frequency surface is “closed” and forms a spheroid or ellipsoid
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechana, A.; Thamboon, P.; Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides highmore » flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.« less
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2016-09-08
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kizir, Seda; Haider, Ali; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr
2016-07-15
Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Simore » (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
NASA Astrophysics Data System (ADS)
Barnes, Teresa M.; Hand, Steve; Leaf, Jackie; Wolden, Colin A.
2004-09-01
Zinc oxide thin films were produced by high vacuum plasma-assisted chemical vapor deposition (HVP-CVD) from dimethylzinc (DMZn) and atomic oxygen. HVP-CVD is differentiated from conventional remote plasma-enhanced CVD in that the operating pressures of the inductively coupled plasma (ICP) source and the deposition chamber are decoupled. Both DMZn and atomic oxygen effuse into the deposition chamber under near collisionless conditions. The deposition rate was measured as a function of DMZn and atomic oxygen flux on glass and silicon substrates. Optical emission spectroscopy and quadrupole mass spectrometry (QMS) were used to provide real time analysis of the ICP source and the deposition chamber. The deposition rate was found to be first order in DMZn pressure and zero order in atomic oxygen density. All films demonstrated excellent transparency and were preferentially orientated along the c-axis. The deposition chemistry occurs exclusively through surface-mediated reactions, since the collisionless transport environment eliminates gas-phase chemistry. QMS analysis revealed that DMZn was almost completely consumed, and desorption of unreacted methyl radicals was greatly accelerated in the presence of atomic oxygen. Negligible zinc was detected in the gas phase, suggesting that Zn was efficiently consumed on the substrate and walls of the reactor.
Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe
NASA Astrophysics Data System (ADS)
Gao, ZHAO; Wanying, ZHU; Huihui, WANG; Qiang, CHEN; Chang, TAN; Jiting, OUYANG
2018-07-01
In this work we used a passive measurement method based on a high-impedance electrostatic probe and an optical emission spectroscope (OES) to investigate the characteristics of the double layer (DL) in an argon helicon plasma. The DL can be confirmed by a rapid change in the plasma potential along the axis. The axial potential variation of the passive measurement shows that the DL forms near a region of strong magnetic field gradient when the plasma is operated in wave-coupled mode, and the DL strength increases at higher powers in this experiment. The emission intensity of the argon atom line, which is strongly dependent on the metastable atom concentration, shows a similar spatial distribution to the plasma potential along the axis. The emission intensity of the argon atom line and the argon ion line in the DL suggests the existence of an energetic electron population upstream of the DL. The electron density upstream is much higher than that downstream, which is mainly caused by these energetic electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp
2015-08-03
Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less
Inhibition of Crystal Growth during Plasma Enhanced Atomic Layer Deposition by Applying BIAS
Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana
2015-01-01
In this study, the influence of direct current (DC) biasing on the growth of titanium dioxide (TiO2) layers and their nucleation behavior has been investigated. Titania films were prepared by plasma enhanced atomic layer deposition (PEALD) using Ti(OiPr)4 as metal organic precursor. Oxygen plasma, provided by remote inductively coupled plasma, was used as an oxygen source. The TiO2 films were deposited with and without DC biasing. A strong dependence of the applied voltage on the formation of crystallites in the TiO2 layer is shown. These crystallites form spherical hillocks on the surface which causes high surface roughness. By applying a higher voltage than the plasma potential no hillock appears on the surface. Based on these results, it seems likely, that ions are responsible for the nucleation and hillock growth. Hence, the hillock formation can be controlled by controlling the ion energy and ion flux. The growth per cycle remains unchanged, whereas the refractive index slightly decreases in the absence of energetic oxygen ions. PMID:28793679
Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang
2013-01-23
Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.
Xie, Xianzong; Rieth, Loren; Merugu, Srinivas; Tathireddy, Prashant; Solzbacher, Florian
2012-08-27
Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al(2)O(3) by atomic layer deposition with parylene C for implantable electronic systems. The Al(2)O(3)-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 °C) and elevated temperatures (57 °C and 67 °C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 MΩ at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 °C about 5 months (approximately equivalent to 40 months at 37 °C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 °C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.
Plasma-assisted synthesis of MoS2
NASA Astrophysics Data System (ADS)
Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.
2018-03-01
There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.
Stahl, D.B.; Paisley, D.L.
1994-04-12
A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.
NASA Astrophysics Data System (ADS)
Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan
2016-10-01
In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.
Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy
NASA Astrophysics Data System (ADS)
Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.
2017-11-01
The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolat, S., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800
We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperaturemore » reported for GaN based transistors, so far.« less
NASA Astrophysics Data System (ADS)
Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi
1995-08-01
High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.
Schneider, Nathanaëlle; Lincot, Daniel
2013-01-01
Summary This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned. PMID:24367743
Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique
2013-01-01
This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.
Stoleru, Elena; Zaharescu, Traian; Hitruc, Elena Gabriela; Vesel, Alenka; Ioanid, Emil G; Coroaba, Adina; Safrany, Agnes; Pricope, Gina; Lungu, Maria; Schick, Christoph; Vasile, Cornelia
2016-11-23
Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.
Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering
NASA Astrophysics Data System (ADS)
Anders, André; Yushkov, Georgy Yu.
2009-04-01
A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.
Functionalized graphene-Pt composites for fuel cells and photoelectrochemical cells
Diankov, Georgi; An, Jihwan; Park, Joonsuk; Goldhaber, David J. K.; Prinz, Friedrich B.
2017-08-29
A method of growing crystals on two-dimensional layered material is provided that includes reversibly hydrogenating a two-dimensional layered material, using a controlled radio-frequency hydrogen plasma, depositing Pt atoms on the reversibly hydrogenated two-dimensional layered material, using Atomic Layer Deposition (ALD), where the reversibly hydrogenated two-dimensional layered material promotes loss of methyl groups in an ALD Pt precursor, and forming Pt-O on the reversibly hydrogenated two-dimensional layered material, using combustion by O.sub.2, where the Pt-O is used for subsequent Pt half-cycles of the ALD process, where growth of Pt crystals occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.
2014-03-15
In this research, Al{sub 2}O{sub 3} films were grown by remote plasma-enhanced atomic layer deposition using a nonpyrophoric precursor, dimethylaluminum isopropoxide (DMAI), and oxygen plasma. After optimization, the growth rate was determined to be ∼1.5 Å/cycle within a growth window of 25–220 °C; the higher growth rate than reported for thermal atomic layer deposition was ascribed to the higher reactivity of the plasma species compared with H{sub 2}O and the adsorption of active oxygen at the surface, which was residual from the oxygen plasma exposure. Both effects enhance DMAI chemisorption and increase the saturation density. In addition, a longer oxygen plasma timemore » was required at room temperature to complete the reaction and decrease the carbon contamination below the detection limit of x-ray photoemission spectroscopy. The properties of the subsequent Al{sub 2}O{sub 3} films were measured for different temperatures. When deposited at 25 °C and 200 °C, the Al{sub 2}O{sub 3} films demonstrated a single Al-O bonding state as measured by x-ray photoemission spectroscopy, a similar band gap of 6.8±0.2 eV as determined by energy loss spectroscopy, a similar index of refraction of 1.62±0.02 as determined by spectroscopic ellipsometry, and uniform growth with a similar surface roughness before and after growth as confirmed by atomic force microscopy. However, the room temperature deposited Al{sub 2}O{sub 3} films had a lower mass density (2.7 g/cm{sup 3} compared with 3.0 g/cm{sup 3}) and a higher atomic ratio of O to Al (2.1 compared with 1.6) as indicated by x-ray reflectivity and Rutherford backscattering spectroscopy, respectively.« less
Growth mechanism of Al2O3 film on an organic layer in plasma-enhanced atomic layer deposition
NASA Astrophysics Data System (ADS)
Lee, J. Y.; Kim, D. W.; Kang, W. S.; Lee, J. O.; Hur, M.; Han, S. H.
2018-01-01
Differences in the physical and chemical properties of Al2O3 films on a Si wafer and a C x H y layer were investigated in the case of plasma-enhanced atomic layer deposition. The Al2O3 film on the Si had a sharper interface and lower thickness than the Al2O3 film on the C x H y . The amount of carbon-impurity near the interface was larger for Al2O3 on the C x H y than for Al2O3 on the Si. In order to understand these differences, the concentrations of Al, O, C, and Si atoms through the Al2O3 films were evaluated by using x-ray photoelectron spectroscopy (XPS) depth profiling. The emission intensities of CO molecule were analyzed for different numbers of deposition cycles, by using time-resolved optical emission spectroscopy (OES). Finally, a growth mechanism for Al2O3 on an organic layer was proposed, based on the XPS and OES results for the Si wafer and the C x H y layer.
Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon
2016-01-14
Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin
In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung
2014-02-21
Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung
2016-01-15
It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films preparedmore » by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.« less
NASA Astrophysics Data System (ADS)
Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU
2018-03-01
Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.
Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...
2014-10-15
This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Daming; Edgar, James H.; Briggs, Dayrl P.
This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less
NASA Astrophysics Data System (ADS)
Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.
2012-01-01
We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowińska, Małgorzata, E-mail: malgorzata.sowinska@b-tu.de; Henkel, Karsten; Schmeißer, Dieter
2016-01-15
The process parameters' impact of the plasma-enhanced atomic layer deposition (PE-ALD) method on the oxygen to nitrogen (O/N) ratio in titanium oxynitride (TiO{sub x}N{sub y}) films was studied. Titanium(IV)isopropoxide in combination with NH{sub 3} plasma and tetrakis(dimethylamino)titanium by applying N{sub 2} plasma processes were investigated. Samples were characterized by the in situ spectroscopic ellipsometry, x-ray photoelectron spectroscopy, and electrical characterization (current–voltage: I-V and capacitance–voltage: C-V) methods. The O/N ratio in the TiO{sub x}N{sub y} films is found to be very sensitive for their electric properties such as conductivity, dielectric breakdown, and permittivity. Our results indicate that these PE-ALD film propertiesmore » can be tuned, via the O/N ratio, by the selection of the process parameters and precursor/coreactant combination.« less
New frontiers of atomic layer etching
NASA Astrophysics Data System (ADS)
Sherpa, Sonam D.; Ranjan, Alok
2018-03-01
Interest in atomic layer etching (ALE) has surged recently because it offers several advantages over continuous or quasicontinuous plasma etching. These benefits include (1) independent control of ion energy, ion flux, and radical flux, (2) flux-independent etch rate that mitigates the iso-dense loading effects, and (3) ability to control the etch rate with atomic or nanoscale precision. In addition to these benefits, we demonstrate an area-selective etching for maskless lithography as a new frontier of ALE. In this paper, area-selective etching refers to the confinement of etching into the specific areas of the substrate. The concept of area-selective etching originated during our studies on quasi-ALE of silicon nitride which consists of sequential exposure of silicon nitride to hydrogen and fluorinated plasma. The findings of our studies reported in this paper suggest that it may be possible to confine the etching into specific areas of silicon nitride without using any mask by replacing conventional hydrogen plasma with a localized source of hydrogen ions.
NASA Astrophysics Data System (ADS)
Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan
2018-05-01
Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO2. The ALD ZrO2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.
Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan
2018-05-11
Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO 2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO 2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO 2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO 2 . The ALD ZrO 2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.
Photodetectors using III-V nitrides
Moustakas, T.D.; Misra, M.
1997-10-14
A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.
Photodetectors using III-V nitrides
Moustakas, Theodore D.; Misra, Mira
1997-01-01
A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin
2016-06-15
The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{submore » x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.« less
A Three-Step Atomic Layer Deposition Process for SiN x Using Si2Cl6, CH3NH2, and N2 Plasma.
Ovanesyan, Rafaiel A; Hausmann, Dennis M; Agarwal, Sumit
2018-06-06
We report a novel three-step SiN x atomic layer deposition (ALD) process using Si 2 Cl 6 , CH 3 NH 2 , and N 2 plasma. In a two-step process, nonhydrogenated chlorosilanes such as Si 2 Cl 6 with N 2 plasmas lead to poor-quality SiN x films that oxidize rapidly. The intermediate CH 3 NH 2 step was therefore introduced in the ALD cycle to replace the NH 3 plasma step with a N 2 plasma, while using Si 2 Cl 6 as the Si precursor. This three-step process lowers the atomic H content and improves the film conformality on high-aspect-ratio nanostructures as Si-N-Si bonds are formed during a thermal CH 3 NH 2 step in addition to the N 2 plasma step. During ALD, the reactive surface sites were monitored using in situ surface infrared spectroscopy. Our infrared spectra show that, on the post-N 2 plasma-treated SiN x surface, Si 2 Cl 6 reacts primarily with the surface -NH 2 species to form surface -SiCl x ( x = 1, 2, or 3) bonds, which are the reactive sites during the CH 3 NH 2 cycle. In the N 2 plasma step, reactive -NH 2 surface species are created because of the surface H available from the -CH 3 groups. At 400 °C, the SiN x films have a growth per cycle of ∼0.9 Å with ∼12 atomic percent H. The films grown on high-aspect-ratio nanostructures have a conformality of ∼90%.
Beam heated linear theta-pinch device for producing hot plasmas
Bohachevsky, Ihor O.
1981-01-01
A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.
Park, Jae-Min; Jang, Se Jin; Lee, Sang-Ick; Lee, Won-Jun
2018-03-14
We designed cyclosilazane-type silicon precursors and proposed a three-step plasma-enhanced atomic layer deposition (PEALD) process to prepare silicon nitride films with high quality and excellent step coverage. The cyclosilazane-type precursor, 1,3-di-isopropylamino-2,4-dimethylcyclosilazane (CSN-2), has a closed ring structure for good thermal stability and high reactivity. CSN-2 showed thermal stability up to 450 °C and a sufficient vapor pressure of 4 Torr at 60 °C. The energy for the chemisorption of CSN-2 on the undercoordinated silicon nitride surface as calculated by density functional theory method was -7.38 eV. The PEALD process window was between 200 and 500 °C, with a growth rate of 0.43 Å/cycle. The best film quality was obtained at 500 °C, with hydrogen impurity of ∼7 atom %, oxygen impurity less than 2 atom %, low wet etching rate, and excellent step coverage of ∼95%. At 300 °C and lower temperatures, the wet etching rate was high especially at the lower sidewall of the trench pattern. We introduced the three-step PEALD process to improve the film quality and the step coverage on the lower sidewall. The sequence of the three-step PEALD process consists of the CSN-2 feeding step, the NH 3 /N 2 plasma step, and the N 2 plasma step. The H radicals in NH 3 /N 2 plasma efficiently remove the ligands from the precursor, and the N 2 plasma after the NH 3 plasma removes the surface hydrogen atoms to activate the adsorption of the precursor. The films deposited at 300 °C using the novel precursor and the three-step PEALD process showed a significantly improved step coverage of ∼95% and an excellent wet etching resistance at the lower sidewall, which is only twice as high as that of the blanket film prepared by low-pressure chemical vapor deposition.
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-06
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO 2 , NO, H 2 O, as well as the related fragments during the O 2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO 2 during the complex surface chemical reaction of the ligand and O 2 plasma were monitored using the QCM. The remote PEALD ZrO 2 /zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10 -5 g/m 2 /day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10-5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization
2017-01-01
A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD. PMID:28405059
Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE
NASA Astrophysics Data System (ADS)
Turski, Henryk; Muzioł, Grzegorz; Siekacz, Marcin; Wolny, Pawel; Szkudlarek, Krzesimir; Feduniewicz-Żmuda, Anna; Dybko, Krzysztof; Skierbiszewski, Czeslaw
2018-01-01
Doping of Ga(Al)N layers by plasma-assisted molecular beam epitaxy in Ga-rich conditions on c-plane bulk GaN substrates was studied. Ga(Al)N samples, doped with Mg or Si, grown using different growth conditions were compared. In contrast to Si doped layers, no change in the Mg concentration was observed for layers grown using different growth rates for a constant Mg flux and constant growth temperature. This effect enables the growth of Ga(Al)N:Mg layers at higher growth rates, leading to shorter growth time and lower residual background doping, without the need of increasing Mg flux. Enhancement of Mg incorporation for Al containing layers was also observed. Change of Al content from 0% to 17% resulted in more than two times higher Mg concentration.
NASA Astrophysics Data System (ADS)
Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.
2017-07-01
In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.
Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.
Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J
2012-12-03
We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengdi, E-mail: M.Yang@utwente.nl; Aarnink, Antonius A. I.; Kovalgin, Alexey Y.
2016-01-15
In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 °C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H{sub 2}), which reacted with WF{sub 6} at the substrate to deposit W. The growth behavior was monitored in real time by an in situ spectroscopic ellipsometer. In this work, the authors compare samples with tungsten grown by either HWALD or chemical vapor deposition (CVD) in terms of growth kinetics and properties. For CVD, the samples were made in a mixture of WF{sub 6} and molecularmore » or atomic hydrogen. Resistivity of the WF{sub 6}-H{sub 2} CVD layers was 20 μΩ·cm, whereas for the WF{sub 6}-at-H-CVD layers, it was 28 μΩ·cm. Interestingly, the resistivity was as high as 100 μΩ·cm for the HWALD films, although the tungsten films were 99% pure according to x-ray photoelectron spectroscopy. X-ray diffraction reveals that the HWALD W was crystallized as β-W, whereas both CVD films were in the α-W phase.« less
Predicting synergy in atomic layer etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanarik, Keren J.; Tan, Samantha; Yang, Wenbing
2017-03-27
Atomic layer etching (ALE) is a multistep process used today in manufacturing for removing ultrathin layers of material. In this article, the authors report on ALE of Si, Ge, C, W, GaN, and SiO 2 using a directional (anisotropic) plasma-enhanced approach. The authors analyze these systems by defining an “ALE synergy” parameter which quantifies the degree to which a process approaches the ideal ALE regime. This parameter is inspired by the ion-neutral synergy concept introduced in the 1979 paper by Coburn and Winters. ALE synergy is related to the energetics of underlying surface interactions and is understood in terms ofmore » energy criteria for the energy barriers involved in the reactions. Synergistic behavior is observed for all of the systems studied, with each exhibiting behavior unique to the reactant–material combination. By systematically studying atomic layer etching of a group of materials, the authors show that ALE synergy scales with the surface binding energy of the bulk material. This insight explains why some materials are more or less amenable to the directional ALE approach. Furthermore, they conclude that ALE is both simpler to understand than conventional plasma etch processing and is applicable to metals, semiconductors, and dielectrics.« less
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore; Ni, Pavel
Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side-on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel
Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.
NASA Astrophysics Data System (ADS)
Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf
2016-07-01
Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.
NASA Astrophysics Data System (ADS)
Bae, Choelhwyi; Lucovsky, Gerald
2004-11-01
Low-temperature remote plasma-assisted oxidation and nitridation processes for interface formation and passivation have been extended from Si and SiC to GaN. The initial oxidation kinetics and chemical composition of thin interfacial oxide were determined from analysis of on-line Auger electron spectroscopy features associated with Ga, N, and O. The plasma-assisted oxidation process is self-limiting with power-law kinetics similar to those for the plasma-assisted oxidation of Si and SiC. Oxidation using O2/He plasma forms nearly pure GaOx, and oxidation using 1% N2O in N2 forms GaOxNy with small nitrogen content, ~4-7 at. %. The interface and dielectric layer quality was investigated using fabricated GaN metal-oxide-semiconductor capacitors. The lowest density of interface states was achieved with a two-step plasma-assisted oxidation and nitridation process before SiO2 deposition.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Imai, Daichi; Hwang, Eun-Sook
2016-12-01
The growth kinetics of nominally one-monolayer (˜1-ML)-thick InN wells on/in the +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the impacts of excess In atoms and/or In droplets at a high growth temperature of 650 °C. Even at a constant growth temperature of 650 °C, the thickness of the sheet-island-like InN-well layers could be controlled/varied from 1-ML to 2-ML owing to the effect of excess In atoms and/or In droplets accumulated during growth. The possible growth mechanism is discussed based on the ring-shaped bright cathodoluminescence emissions introduced along the circumference of the In droplets during growth. The effective thermal stability of N atoms below the bilayer adsorbed In atoms was increased by the presence of In droplets, resulting in the freezing of 2-ML-thick InN wells into the GaN matrix. It therefore became possible to study the difference between the emission properties of 1-ML and 2-ML-thick InN wells/GaN matrix quantum wells (QWs) having similar GaN matrix crystallinity grown at the same temperature. InN/GaN QW-samples grown under widely different In + N* supply conditions characteristically separated into two groups with distinctive emission-peak wavelengths originating from 1-ML and 2-ML-thick InN wells embedded in the GaN matrix. Reflecting the growth mechanism inherent to the D-ALEp of InN on/in the +c-GaN matrix at high temperature, either 1-ML or 2-ML-thick "binary" InN well layers tended to be frozen into the GaN matrix rather InGaN random ternary-alloys. Both the structural quality and uniformity of the 1-ML InN well sample were better than those of the 2-ML InN well sample, essentially owing to the quite thin critical thickness of around 1-ML arising from the large lattice mismatch of InN and GaN.
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.
2018-01-01
Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.
2010-01-01
Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium
Lee, J H; Lee, B H; Kim, Y T; Kim, J J; Lee, S Y; Lee, K P; Park, C G
2014-03-01
Laser-assisted atom probe tomography has opened the way to three-dimensional visualization of nanostructures. However, many questions related to the laser-matter interaction remain unresolved. We demonstrate that the interface reaction can be activated by laser-assisted field evaporation and affects the quantification of the interfacial composition. At a vertical interface between Si and SiO2, a SiO2 molecule tends to combine with a Si atom and evaporate as a SiO molecule, reducing the evaporation field. The features of the reaction depend on the direction of the laser illumination and the inner structure of tip. A high concentration of SiO is observed at a vertical interface between Si and SiO2 when the Si column is positioned at the center of the tip, whereas no significant SiO is detected when the SiO2 layer is at the center. The difference in the interfacial compositions of two samples was due to preferential evaporation of the Si layer. This was explained using transmission electron microscopy observations before and after atom probe experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kim, Jun Woo; Kim, Byungwoo; Park, Suk Won; Kim, Woong; Shim, Joon Hyung
2014-10-31
It is challenging to realize a conformal metal coating by atomic layer deposition (ALD) because of the high surface energy of metals. In this study, ALD of ruthenium (Ru) on vertically aligned carbon nanotubes (CNTs) was carried out. To activate the surface of CNTs that lack surface functional groups essential for ALD, oxygen plasma was applied ex situ before ALD. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed surface activation of CNTs by the plasma pretreatment. Transmission electron microscopy analysis with energy-dispersive x-ray spectroscopy composition mapping showed that ALD Ru grew conformally along CNTs walls. ALD Ru/CNTs were electrochemically oxidized to ruthenium oxide (RuOx) that can be a potentially useful candidate for use in the electrodes of ultracapacitors. Electrode performance of RuOx/CNTs was evaluated using cyclic voltammetry and galvanostatic charge-discharge measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muneshwar, Triratna, E-mail: muneshwa@ualberta.ca; Cadien, Ken
2015-11-15
Atomic layer deposition (ALD) relies on a sequence of self-limiting surface reactions for thin film growth. The effect of non-ALD side reactions, from insufficient purging between pulses and from precursor self-decomposition, on film growth is well known. In this article, precursor condensation within an ALD valve is described, and the effect of the continuous precursor source from condensate evaporation on ALD growth is discussed. The influence of the ALD valve temperature on growth and electrical resistivity of ZrN plasma enhanced ALD (PEALD) films is reported. Increasing ALD valve temperature from 75 to 95 °C, with other process parameters being identical, decreasedmore » both the growth per cycle and electrical resistivity (ρ) of ZrN PEALD films from 0.10 to 0.07 nm/cycle and from 560 to 350 μΩ cm, respectively. Our results show that the non-ALD growth resulting from condensate accumulation is eliminated at valve temperatures close to the pressure corrected boiling point of precursor.« less
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10−5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime. PMID:28059160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, C., E-mail: colm.fallon5@mail.dcu.ie; Hayden, P.; Walsh, N.
We present the results of a time and space resolved optical-spectroscopic study of colliding plasmas formed at the front surfaces of flat and inclined Cu slab targets as a function of both the distance and the wedge angle between them for angles ranging from 100° to 180° (laterally colliding plasmas). The key parameters studied are stagnation layer density, temperature, duration, and kinetics of atomic/ionic spatial distributions and all have been found to vary significantly with wedge angle. It is found that the density and temperature of the stagnation layer decrease with increasing wedge angle. It is also found that themore » larger the wedge angle, the tighter and more well defined the stagnation layer formed.« less
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
Effect of Atomic Layer Deposition on the Quality Factor of Silicon Nanobeam Cavities
2012-01-25
Additionally, tuning of 2D photonic crystal systems has been shown using atomic layer deposition (ALD) of hafnium oxide [5] and titanium oxide [6] and plasma...μm. This region of the fiber is then carefully positioned across the nanobeam cavity. A tunable narrowband laser source is coupled into one end of the...fiber, and the trans- mitted power is detected at the other end. As the laser source is tuned into resonance with the cavity, some of the power is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Neeraj; Anderson, Virginia R.; Johnson, Scooter D.
The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities duemore » to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to understand nucleation and growth mechanisms of ALEp to enable improvement in material quality and broaden its application.« less
An Industry Viewpoint on Electron Energy Distribution Function Control
NASA Astrophysics Data System (ADS)
Ventzek, Peter
2011-10-01
It is trite to note that plasmas play a key role in industrial technology. Lighting, laser, film coating and now medical technology require plasma science for their sustenance. One field stands out by virtue of its economic girth and impact. Semiconductor manufacturing and process science enabling its decades of innovation owe significant debt to progress in low temperature plasma science. Today, technology requires atomic level control from plasmas. Mere layers of atoms delineate good and bad device performance. While plasma sources meet nanoscale specifications over 100s cm scale dimensions, achieving atomic level control from plasmas is hindered by the absence of direct control of species velocity distribution functions. EEDF control translates to precise control of species flux and velocities at surfaces adjacent to the plasma. Electron energy distribution function (eedf) control is a challenge that, if successfully met, will have a huge impact on nanoscale device manufacturing. This lunchtime talk will attempt to provide context to the research advances presented at this Workshop. Touched on will be areas of new opportunity and the risks associated with missing these opportunities.
Surface modification of paper on a continuous atmospheric-pressure-plasma system
NASA Astrophysics Data System (ADS)
Cruz-Barba, Luis Emilio
Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.
NASA Astrophysics Data System (ADS)
Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.
2015-12-01
Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.
NASA Astrophysics Data System (ADS)
Chen, Jinsuo; Xia, Yunfei; Yang, Jin; Chen, Beibei
2018-06-01
The extremely low friction between incommensurate two-dimensional (2D) atomic layers has recently attracted a great interest. Here, we demonstrated a promising surfactant-assisted strategy for the synthesis of MoS2/reduced graphene oxide (MoS2/rGO) hybrid materials with monolayer MoS2 and rGO, which exhibited excellent tribological metrics with a friction coefficient of ˜ 0.09 and a wear rate of ˜ 2.08 × 10-5 mm3/Nm in the ethanol dispersion. The incommensurate 2D atomic layer interface formed due to intrinsic lattice mismatch between MoS2 and graphene was thought to be responsible for the excellent lubricating performances. In addition to the benefits of unique hybrid structure, MoS2/rGO hybrids could also adsorb on metal surfaces and screen the metal-metal interaction to passivate the metal surfaces with a consequent reduction of corrosion wear during sliding. This work could pave a new pathway to design novel materials for pursuing excellent tribological properties by hybridizing different 2D atomic-layered materials.
Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.
2018-04-01
Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.
Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei
2016-12-01
Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyanto, Hery; Pardede, Marincan; Hedwig, Rinda
2016-08-15
A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by themore » fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.« less
Novikov, S. V.; Ting, M.; Yu, K. M.; ...
2014-10-01
In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less
Polarity dependence of Mn incorporation in (Ga,Mn)N superlattices
NASA Astrophysics Data System (ADS)
Tropf, L.; Kunert, G.; Jakieła, R.; Wilhelm, R. A.; Figge, S.; Grenzer, J.; Hommel, D.
2016-03-01
In the context of recent efforts to combine high Mn concentrations in (Ga,Mn)N with a pronounced p-type carrier density, (Ga,Mn)N/GaN:Mg-superlattices have been fabricated using plasma-assisted molecular beam epitaxy. Profiles of the dopant atomic densities in the heterostructures are obtained by secondary ion mass spectroscopy. They show an abrupt drop of two to three orders of magnitude in both Mn and Mg concentrations after the first GaN:Mg layer above a critical Mg-flux. Scanning electron microscopy before and after selective etching reveals a polarity inversion from originally Ga-face to N-face GaN in samples in which high Mg fluxes were applied. From our observations, we are able to draw an analogy between the impurity incorporation laws of Mg and Mn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogane, S.; Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M.
In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steadymore » State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha
2015-01-01
The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less
Understanding the Structure of High-K Gate Oxides - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Andre
2015-08-25
Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less
Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Andre
2015-08-27
Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelov, N. V.; Heerikhuisen, J.; Roytershteyn, V.
The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW–LISM interaction. By performing three-dimensional, MHD plasma/kinetic neutral atom simulations, we determine the width of the outer heliosheath—the LISM plasma region affected by the presence of the heliosphere—and analyze quantitatively the distributions in front of the heliopause. Itmore » is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. We also demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by Interstellar Boundary Explorer .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke
2016-04-11
The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of themore » (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.« less
Optical in situ monitoring of plasma-enhanced atomic layer deposition process
NASA Astrophysics Data System (ADS)
Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang
2018-06-01
An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.
Tzou, An-Jye; Chu, Kuo-Hsiung; Lin, I-Feng; Østreng, Erik; Fang, Yung-Sheng; Wu, Xiao-Peng; Wu, Bo-Wei; Shen, Chang-Hong; Shieh, Jia-Ming; Yeh, Wen-Kuan; Chang, Chun-Yen; Kuo, Hao-Chung
2017-12-01
We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N 2 -based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H 2 /NH 3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th ), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yafarov, R. K., E-mail: pirpc@yandex.ru
Scanning atomic-force and electron microscopies are used to study the self-organization kinetics of nanoscale domains upon the deposition of submonolayer carbon coatings on silicon (100) in the microwave plasma of low-pressure ethanol vapor. Model mechanisms of how silicon-carbon domains are formed are suggested. The mechanisms are based on Langmuir’s model of adsorption from the precursor state and modern concepts of modification of the equilibrium structure of the upper atomic layer in crystalline semiconductors under the influence of external action.
Process for the formation of wear- and scuff-resistant carbon coatings
Malaczynski, Gerard W.; Qiu, Xiaohong; Mantese, Joseph V.; Elmoursi, Alaa A.; Hamdi, Aboud H.; Wood, Blake P.; Walter, Kevin C.; Nastasi, Michael A.
1995-01-01
A process for forming an adherent diamond-like carbon coating on a workpiece of suitable material such as an aluminum alloy is disclosed. The workpiece is successively immersed in different plasma atmospheres and subjected to short duration, high voltage, negative electrical potential pulses or constant negative electrical potentials or the like so as to clean the surface of oxygen atoms, implant carbon atoms into the surface of the alloy to form carbide compounds while codepositing a carbonaceous layer on the surface, bombard and remove the carbonaceous layer, and to thereafter deposit a generally amorphous hydrogen-containing carbon layer on the surface of the article.
Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
Zhang, Yi; Hillier, Andrew C
2010-07-15
We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.
Atomically flat platinum films grown on synthetic mica
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki; Taniguchi, Masateru
2018-04-01
Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-Min; Kim, Doyoung; Kim, Hyungjun
We investigated the ultraviolet (UV) light photostability of plasma-enhanced and thermal atomic layer deposition of ZnO thin film transistor (TFT). The negative shift of threshold voltage was similarly observed in both cases by UV exposure due to the increment of carrier concentration. Additionally, the transfer curves of TFT using thermal ALD ZnO:N active layer were exhibited recovery characteristics.
Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haider, Ali, E-mail: ali.haider@bilkent.edu.tr, E-mail: biyikli@unam.bilkent.edu.tr; Kizir, Seda; Biyikli, Necmi, E-mail: ali.haider@bilkent.edu.tr, E-mail: biyikli@unam.bilkent.edu.tr
2016-04-15
In this work, we report on self-limiting growth of InN thin films at substrate temperatures as low as 200 °C by hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD). The precursors used in growth experiments were trimethylindium (TMI) and N{sub 2} plasma. Process parameters including TMI pulse time, N{sub 2} plasma exposure time, purge time, and deposition temperature have been optimized for self-limiting growth of InN with in ALD window. With the increase in exposure time of N{sub 2} plasma from 40 s to 100 s at 200 °C, growth rate showed a significant decrease from 1.60 to 0.64 Å/cycle. At 200 °C, growth ratemore » saturated as 0.64 Å/cycle for TMI dose starting from 0.07 s. Structural, optical, and morphological characterization of InN were carried out in detail. X-ray diffraction measurements revealed the hexagonal wurtzite crystalline structure of the grown InN films. Refractive index of the InN film deposited at 200 °C was found to be 2.66 at 650 nm. 48 nm-thick InN films exhibited relatively smooth surfaces with Rms surface roughness values of 0.98 nm, while the film density was extracted as 6.30 g/cm{sup 3}. X-ray photoelectron spectroscopy (XPS) measurements depicted the peaks of indium, nitrogen, carbon, and oxygen on the film surface and quantitative information revealed that films are nearly stoichiometric with rather low impurity content. In3d and N1s high-resolution scans confirmed the presence of InN with peaks located at 443.5 and 396.8 eV, respectively. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) further confirmed the polycrystalline structure of InN thin films and elemental mapping revealed uniform distribution of indium and nitrogen along the scanned area of the InN film. Spectral absorption measurements exhibited an optical band edge around 1.9 eV. Our findings demonstrate that HCPA-ALD might be a promising technique to grow crystalline wurtzite InN thin films at low substrate temperatures.« less
Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo
2017-12-01
Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.
Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel
NASA Astrophysics Data System (ADS)
Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming
2014-12-01
A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000-12,000 K and 2 × 1022 m-3-1.4 × 1023 m-3. The atomic ionization degrees of iron, carbon and boron are 10-16-10-3, and 10-23-10-6, 10-19-10-4, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.
NASA Astrophysics Data System (ADS)
Biyikli, Necmi; Haider, Ali
2017-09-01
In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.
NASA Astrophysics Data System (ADS)
Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.
2015-09-01
This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.
Simulations of carbon sputtering in fusion reactor divertor plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, J; Zepeda-Ruiz, L A; Gilmer, G H
2005-10-03
The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less
Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability
NASA Astrophysics Data System (ADS)
Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.
2013-05-01
This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.
Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, D. N., E-mail: dima@ipmras.ru; Novikov, A. V.; Yunin, P. A.
2016-11-15
In this publication, the results of development of the technology of the epitaxial growth of GaN on single-crystal langasite substrates La{sub 3}Ga{sub 5}SiO{sub 14} (0001) by the plasma-assisted molecular-beam epitaxy (PA MBE) method are reported. An investigation of the effect of the growth temperature at the initial stage of deposition on the crystal quality and morphology of the obtained GaN layer is performed. It is demonstrated that the optimal temperature for deposition of the initial GaN layer onto the langasite substrate is about ~520°C. A decrease in the growth temperature to this value allows the suppression of oxygen diffusion frommore » langasite into the growing layer and a decrease in the dislocation density in the main GaN layer upon its subsequent high-temperature deposition (~700°C). Further lowering of the growth temperature of the nucleation layer leads to sharp degradation of the GaN/LGS layer crystal quality. As a result of the performed research, an epitaxial GaN/LGS layer with a dislocation density of ~10{sup 11} cm{sup –2} and low surface roughness (<2 nm) is obtained.« less
Method of produce ultra-low friction carbon films
Erdemir, Ali; Fenske, George R.; Eryilmaz, Osman Levent; Lee, Richard H.
2003-04-15
A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.
Molecular Diagnostics of Fusion and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Fantz, U.
2005-05-01
The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.
Narayan, Roger J.; Adiga, Shashishekar P.; Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.; Stafslien, Shane; Chisholm, Bret; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.; Elam, Jeffrey W.
2010-01-01
Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. PMID:20308114
NASA Astrophysics Data System (ADS)
Choi, Kyeong-Keun; Park, Chan-Gyung; Kim, Deok-kee
2016-01-01
The electrical characteristics and step coverage of ZrO2 films deposited by atomic layer deposition were investigated for through-silicon via (TSV) and metal-insulator-metal applications at temperatures below 300 °C. ZrO2 films were able to be conformally deposited on the scallops of 50-µm-diameter, 100-µm-deep TSV holes. The mean breakdown field of 30-nm-thick ZrO2 films on 30-nm-thick Ta(N) increased about 41% (from 2.7 to 3.8 MV/cm) upon H2 plasma treatment. With the plasma treatment, the breakdown field of the film increased and the temperature coefficient of capacitance decreased significantly, probably as a result of the decreased carbon concentration in the film.
NASA Astrophysics Data System (ADS)
Takeuchi, Hideo; Yamamoto, Yoshitsugu; Kamo, Yoshitaka; Kunii, Tetsuo; Oku, Tomoki; Shirahama, Takeo; Tanaka, Hiroyasu; Nakayama, Masaaki
2007-08-01
We demonstrate that photoluminescence-excitation (PLE) spectroscopy can probe with high sensitivity the effects of plasma-induced surface damages on photogenerated-carrier-transport processes in AlxGa1-xN/GaN heterostructures, on the basis of systematic optical and structural characterization results for the as-grown reference sample and the plasma-exposed sample. It is found from the structural characterizations with atomic force microscopy that the plasma exposure remarkably modifies the atomic step boundaries and the pits on the AlxGa1-xN surface, which leads to a remarkable difference between the PLE spectra of the bound exciton photoluminescence from the underlying GaN layer in the two samples. The PLE spectrum of the reference sample shows a step rising from the AlxGa1-xN fundamental transition energy toward the high energy side, whereas the rising step disappears in the PLE spectrum of the plasma-exposed sample. In contrast, the reflectance characteristics are the same in the two samples; i.e., the excitonic transition itself is not influenced by the plasma exposure. The present findings indicate that the PLE spectral profile is sensitive to the change in efficiency of the photogenerated carrier injection from the AlxGa1-xN layer to the GaN layer. Thus, it is concluded that the PLE characterization is effective to probe the photogenerated-carrier transport in heterostructures.
NASA Astrophysics Data System (ADS)
Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi
2018-05-01
We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.
Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition.
O'Donoghue, Richard; Rechmann, Julian; Aghaee, Morteza; Rogalla, Detlef; Becker, Hans-Werner; Creatore, Mariadriana; Wieck, Andreas Dirk; Devi, Anjana
2017-12-21
Herein we describe an efficient low temperature (60-160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga 2 O 3 ) thin films using hexakis(dimethylamido)digallium [Ga(NMe 2 ) 3 ] 2 with oxygen (O 2 ) plasma on Si(100). The use of O 2 plasma was found to have a significant improvement on the growth rate and deposition temperature when compared to former Ga 2 O 3 processes. The process yielded the second highest growth rates (1.5 Å per cycle) in terms of Ga 2 O 3 ALD and the lowest temperature to date for the ALD growth of Ga 2 O 3 and typical ALD characteristics were determined. From in situ quartz crystal microbalance (QCM) studies and ex situ ellipsometry measurements, it was deduced that the process is initially substrate-inhibited. Complementary analytical techniques were employed to investigate the crystallinity (grazing-incidence X-ray diffraction), composition (Rutherford backscattering analysis/nuclear reaction analysis/X-ray photoelectron spectroscopy), morphology (X-ray reflectivity/atomic force microscopy) which revealed the formation of amorphous, homogeneous and nearly stoichiometric Ga 2 O 3 thin films of high purity (carbon and nitrogen <2 at.%) under optimised process conditions. Tauc plots obtained via UV-Vis spectroscopy yielded a band gap of 4.9 eV and the transmittance values were more than 80%. Upon annealing at 1000 °C, the transformation to oxygen rich polycrystalline β-gallium oxide took place, which also resulted in the densification and roughening of the layer, accompanied by a slight reduction in the band gap. This work outlines a fast and efficient method for the low temperature ALD growth of Ga 2 O 3 thin films and provides the means to deposit Ga 2 O 3 upon thermally sensitive polymers like polyethylene terephthalate.
NASA Astrophysics Data System (ADS)
Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue
2017-02-01
This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.
Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.
1996-01-01
Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an impact site caused negligible changes in reflectance. In all cases oxidation was found to be confined to the vicinity of the seams, impact sites, edges or defect sites. Asher to in-space atomic oxygen correlation issues will be addressed.
NASA Astrophysics Data System (ADS)
Krzyżewski, Filip; Załuska-Kotur, Magdalena A.; Turski, Henryk; Sawicka, Marta; Skierbiszewski, Czesław
2017-01-01
The evolution of surface morphology during the growth of N-polar (000 1 bar) GaN under N-rich conditions is studied by kinetic Monte Carlo (kMC) simulations for two substrates miscuts 2° and 4°. The results are compared with experimentally observed surface morphologies of (000 1 bar) GaN layers grown by plasma-assisted molecular beam epitaxy. The proposed kMC two-component model of GaN(000 1 bar) surface where both types of atoms, nitrogen and gallium, attach to the surface and diffuse independently shows that at relatively high rates of the step flow (miscut angle < 2 °) the low mobility of gallium adatoms causes surface instabilities and leads to experimentally observed roughening while for low rates of the step flow (miscut 4°), smooth surface can be obtained. In the presence of almost immobile nitrogen atoms under N-rich conditions crystal growth is realized by the process of two-dimensional island nucleation and coalescence. Larger crystal miscut, lower growth rate or higher temperature results in similar effect of the surface smoothening. We show that the surface also smoothens for the growth conditions with very high N-excess. In the presence of large number of nitrogen atoms the mobility of gallium atoms changes locally thus providing easier coalescence of separated island.
Structural studies of n-type nc-Si-QD thin films for nc-Si solar cells
NASA Astrophysics Data System (ADS)
Das, Debajyoti; Kar, Debjit
2017-12-01
A wide optical gap nanocrystalline silicon (nc-Si) dielectric material is a basic requirement at the n-type window layer of nc-Si solar cells in thin film n-i-p structure on glass substrates. Taking advantage of the high atomic-H density inherent to the planar inductively coupled low-pressure (SiH4 + CH4)-plasma, development of an analogous material in P-doped nc-Si-QD/a-SiC:H network has been tried. Incorporation of C in the Si-network extracted from the CH4 widens the optical band gap; however, at enhanced PH3-dilution of the plasma spontaneous miniaturization of the nc-Si-QDs below the dimension of Bohr radius (∼4.5 nm) further enhances the band gap by virtue of the quantum size effect. At increased flow rate of PH3, dopant induced continuous amorphization of the intrinsic crystalline network is counterbalanced by the further crystallization promoted by the supplementary atomic-H extracted from PH3 (1% in H2) in the plasma, eventually holding a moderately high degree of crystallinity. The n-type wide band gap (∼1.93 eV) window layer with nc-Si-QDs in adequate volume fraction (∼52%) could furthermore be instrumental as an effective seed layer for advancing sequential crystallization in the i-layer of nc-Si solar cells with n-i-p structure in superstrate configuration.
Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere
2016-07-25
Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in themore » presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.« less
NASA Astrophysics Data System (ADS)
Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis
2016-04-01
Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.
Characterization of atomic oxygen from an ECR plasma source
NASA Astrophysics Data System (ADS)
Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.
2002-11-01
A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.
Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation
NASA Astrophysics Data System (ADS)
Bischoff, Martin; Stenzel, Olaf; Gäbler, Dieter; Kaiser, Norbert
2005-09-01
Nowadays, chirped dielectric mirrors for ultrafast optics and laser applications are usually manufactured by sputtering techniques. The suitability of Advanced Plasma Source (APS) assisted electron beam evaporation with respect to such coatings is still under investigation. The purpose of this presentation is to show our first results of the deposition of chirped layers produced by plasma ion assisted electron beam evaporation and of the investigation of their properties. The aim was to design and prepare a NIR-mirror for the spectral range of 700 nm to 900 nm. It has been attempted to find a design that is robust with respect to errors of thickness and refractive index. The mirror consists of more than 26 layers composed of alternating high- (Nb2O5) and low-refractive index (SiO2) material. The deposited coatings were tested in terms of their group delay dispersion (GDD) and their reflectivity. We show, that in the wavelength range between 720 nm and 890 nm the GDD exhibits a value of about -50 fs2, whereas the reflectivity is above 99%. However, the subsequent reverse engineering operations show a relatively large thickness error of more than 1% - 2% regarding the particular layers. Nevertheless the effect on the GDD and the reflectivity is tolerable. Furthermore, we present our first experiments concerning the design and fabrication of a chirped mirror, which allows controlling the third order dispersion (TOD), whereas the relative thickness error of the particular layers should not exceed 1%.
Plasma-enhanced atomic layer deposition of highly transparent zinc oxy-sulfide thin films
NASA Astrophysics Data System (ADS)
Bugot, C.; Schneider, N.; Lincot, D.; Donsanti, F.
2018-05-01
The potential of Plasma Enhanced Atomic Layer Deposition (PEALD) for the synthesis of zinc oxy-sulfide Zn(O,S) thin films was explored for the first time, using a supercycle strategy and DEZ, Ar/O2 plasma and H2S as precursors. The growth and the properties of the material were studied by varying the pulse ratio on the full range of composition and the process temperature from Tdep = 120 °C to 220 °C. PEALD-Zn(O,S) films could be grown from pure ZnO to pure ZnS compositions by varying the H2S/(O2 plasma + H2S) pulse ratio. Three distinct growth modes were identified depending on the nature of exchange mechanisms at the film surface during the growth. Films globally have an amorphous structure, except for the extremely sulfur-rich or sulfur-poor ones. High transmission values (up to 85% for Zn(O,S) for 500 < λ < 2500 nm) and optical band gaps (3.3-3.8 eV) have been obtained. The PEALD-Zn(O,S) process and the thin film properties were compared with ALD-Zn(O,S) to highlight the specificities, disadvantages and benefits of plasma enhancement for the synthesis of multi-element materials.
Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Misiano, Carlo; Zanoni, Robertino; Politi, Laura; Mazzola, Luca; Iosi, Francesca; Mura, Francesco; Scandurra, Roberto
2016-01-01
Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.
NASA Astrophysics Data System (ADS)
Fellmann, Vincent; Jaffrennou, Périne; Sam-Giao, Diane; Gayral, Bruno; Lorenz, Katharina; Alves, Eduardo; Daudin, Bruno
2011-03-01
We have studied the influence of III/N flux ratio and growth temperature on structural and optical properties of high Al-content, around 50-60%, AlGaN alloy layers grown by plasma-assisted molecular beam epitaxy. In a first part, based on structural analysis by Rutherford Backscattering Spectroscopy, we establish that a III/N flux ratio slightly above 1 produces layers with low amount of structural defects. In a second part, we study the effect of growth temperature on structural and optical properties of layers grown with previously determined optimal III/N flux ratio. We find that optimal growth temperatures for Al0.50Ga0.50N layers with compositional homogeneity related with narrow UV photoluminescence properties are in the low temperature range for growing GaN layers, i.e., 650-680 °C. We propose that lowering Ga adatom diffusion on the surface favors random incorporation of both Ga and Al adatoms on wurtzite crystallographic sites leading to the formation of an homogeneous alloy.
Quantitative analysis of hydrogen in SiO{sub 2}/SiN/SiO{sub 2} stacks using atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimune, Yorinobu, E-mail: yorinobu.kunimune.vz@renesas.com; Shimada, Yasuhiro; Sakurai, Yusuke
2016-04-15
We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO{sub 2}/SiN/SiO{sub 2} (ONO) stack structure using ultraviolet laser-assisted atom probe tomography (APT). The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %). Thus, by subtracting the concentration of adsorbed hydrogen, the actualmore » hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA), which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.« less
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mokhovikov, A. A.
2017-12-01
Exemplified by metal-ceramic composite TiC-(Ni-Cr) with the ratio of components 50:50, the paper presents findings of the study on patterns of nanoscale structural-phase state formation in the surface layer of the composite under pulsed electron irradiation in inert gas plasmas with different ionization energies and atomic weights and their influence on tribological and strength properties of the surface layer.
NASA Astrophysics Data System (ADS)
Hong, J. P.; Kim, C. O.; Nahm, T. U.; Kim, C. M.
2000-02-01
Microcrystalline silicon films have been prepared on indium-coated glass utilizing a layer-by-layer technique with a plasma-enhanced chemical-vapor deposition system. The microcrystalline films were fabricated by varying the number of cycles from 10 to 60 under a fixed H2 time (t2) of 120 s, where the corresponding deposition time (t1) of amorphous silicon thin film was 60 s. Structural properties, such as the crystalline volume fraction (Xc) and grain sizes were analyzed by using Raman spectroscopy and a scanning electron microscopy. The carrier transport was characterized by the temperature dependence of dark conductivity, giving rise to the calculation of activation energy (Ea). Optical energy gaps (Eg) were also investigated using an ultraviolet spectrophotometer. In addition, the process under different hydrogen plasma time (t2) at a fixed number of 20 cycles was extensively carried out to study the dominant role of hydrogen atoms in layer-by-layer deposition. Finally, the correlation between structural and electrical properties has been discussed on the basis of experimental results.
The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell
NASA Astrophysics Data System (ADS)
Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng
2014-04-01
This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.
Auger electron diffraction study of the initial stage of Ge heteroepitaxy on Si(001)
NASA Astrophysics Data System (ADS)
Sasaki, M.; Abukawa, T.; Yeom, H. W.; Yamada, M.; Suzuki, S.; Sato, S.; Kono, S.
1994-12-01
The initial stage of pure and surfactant (Sb)-assisted Ge growth on a Si(001) surface has been studied by Auger electron diffraction (AED) and X-ray photoelectron diffraction (XPD). A single-domain Si(001)2 × 1 substrate was used to avoid the ambiguity arising from the usual double-domain substrate. For the pure Ge growth, 1 monolayer of Ge was deposited onto the room temperature substrate followed by annealing at 350°C-600°C, which appeared to have (1 × 2) periodicity by LEED. Ge LMM AED patterns were measured to find that a substantial amount of Ge atoms diffuse to the bulk Si positions up to the fourth layer at least. For the Sb-assisted Ge growth, a Sb(1 × 2)/Si(001) surface was first prepared and Sb 3d XPD patterns were measured to find that Sb forms dimers on the substrate. 1 ML of Ge was deposited onto the Sb(1 × 2)/Si(001) surface and then the surface was annealed at 600°C. Ge LMM AED and Sb 3d XPD patterns measured for this surface showed that surfactant Sb atoms are indeed present on the first layer forming dimers and that Ge atoms are present mainly on the second layer with a substantial amount of Ge diffused into the third and fourth layers.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh
2012-03-01
This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.
Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films
NASA Astrophysics Data System (ADS)
Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia
2016-07-01
Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are given. The report also presents the results of computer simulation of protons and oxygen atoms interaction with polyimide, and a comparison of the experimental and calculated data.
Sharma, Akhil; Verheijen, Marcel A; Wu, Longfei; Karwal, Saurabh; Vandalon, Vincent; Knoops, Harm C M; Sundaram, Ravi S; Hofmann, Jan P; Kessels, W M M Erwin; Bol, Ageeth A
2018-05-10
Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.
NASA Astrophysics Data System (ADS)
Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk
2017-03-01
Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.
NASA Astrophysics Data System (ADS)
Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian
2015-08-01
The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.
NASA Astrophysics Data System (ADS)
Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric
2014-01-01
The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.
Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond
Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.
2016-08-16
A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.
Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond
NASA Technical Reports Server (NTRS)
Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)
2016-01-01
A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.
NASA Astrophysics Data System (ADS)
Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul
2018-03-01
The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.
NASA Astrophysics Data System (ADS)
Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.
2016-07-01
We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.
NASA Astrophysics Data System (ADS)
Patel, U. R.; Joshipura, K. N.
2015-05-01
Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.
NASA Astrophysics Data System (ADS)
Zhu, Jianxin; Quarterman, P.; Wang, Jian-Ping
2017-05-01
Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, "The Stopping and Range of Ions in Matter," Volume 1, Pergamon,1985] in comparison with conventional Lennard-Jones "12-6" potential is applied to interactions between etching gas ions and metal atoms. It is shown the post-etch structure defects can include amorphized surface layer and lattice interstitial point defects that caused by etchant ions passed through the surface layer. We show that the amorphized or damaged FePt lattice surface layer (or "magnetic dead-layer") thickness after etching increases with ion energy for Ar ion impacts, but significantly small for He ions at up to 250eV ion energy. However, we showed that He sputtering creates more interstitial defects at lower energy levels and defects are deeper below the surface compared to Ar sputtering. We also calculate the interstitial defect level and depth as dependence on ion energy for both Ar and He ions. Media magnetic property loss due to these defects is also discussed.
Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco
2013-05-28
Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.
A magnetospheric signature of some F layer positive storms
NASA Technical Reports Server (NTRS)
Miller, N. J.; Mayr, H. G.; Grebowsky, J. M.; Harris, I.; Tulunay, Y. K.
1981-01-01
Calculations of electron density distributions in the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating are presented which indicate a link between the heating and magnetospheric plasma disturbances near the equator. The calculations were made using a self-consistent model of the global sunlit thermosphere-ionosphere system describing the evolution of equatorial plasma disturbances. The heat input is found to cause electron density enhancements that propagate along magnetic field lines from the F2 maximum over mid-latitudes to the equator in the magnetosphere and which correspond to the positive phase of an F layer storm. The positive phase is shown to be generated by the induction of equatorward winds that raise the mid-latitude F layer through momentum transfer from neutral atoms to ionospheric ions, which ions pull electrons with them. Model results are used to identify plasma signatures of equatorward winds and an intensified magnetospheric electric field in Explorer 45 and Arial 4 measurements taken during the positive phase of an F layer storm.
NASA Astrophysics Data System (ADS)
Hinata, Sintaro; Jo, Shin; Saito, Shin
2018-05-01
Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.
Complexation of Uranium by Cells and S-Layer Sheets of Bacillus sphaericus JG-A12
Merroun, Mohamed L.; Raff, Johannes; Rossberg, André; Hennig, Christoph; Reich, Tobias; Selenska-Pobell, Sonja
2005-01-01
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 ± 0.02 Å and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 ± 0.02 Å. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface. PMID:16151146
Cleaning of optical surfaces by capacitively coupled RF discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Nayak, M.
2014-04-24
In this paper, we report cleaning of carbon capped molybdenum (Mo) thin film by in-house developed radio frequency (RF) plasma reactor, at different powers and exposure time. Carbon capped Mo films were exposed to oxygen plasma for different durations at three different power settings, at a constant pressure. After each exposure, the thickness of the carbon layer and the roughness of the film were determined by hard x-ray reflectivity measurements. It was observed that most of the carbon film got removed in first 15 minutes exposure. A high density layer formed on top of the Mo film was also observedmore » and it was noted that this layer cannot be removed by successive exposures at different powers. A significant improvement in interface roughness with a slight improvement in top film roughness was observed. The surface roughness of the exposed and unexposed samples was also confirmed by atomic force microscopy measurements.« less
An Experiment to Study Sporadic Sodium Layers in the Earth's Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Swenson, Charles M.
2002-01-01
The Utah State University / Space Dynamics Lab was funded under a NASA Grant. This investigation has been part of Rockwell Universities Sudden Atom Layer Investigation (SAL). USU/SDL provided an electron density measurement instrument, the plasma frequency probe, which was launched on the vehicle 21.117 from Puerto-Rico in February of 1998. The instrument successfully measured electron density as designed and measurement techniques included in this version of the Plasma Frequency probe provided valuable insight into the electron density structures associated with sudden sodium layers in a collisional plasma. Electron density data was furnished to Rockwell University but no science meetings were held by Rockwell Data from the instrument was presented to the scientific community at the URSI General Session in 1999. A paper is in preparation for publication in Geophysical Research Letters. The following document provides a summary of the experiment and data obtained as a final report on this grant.
Arie, Arenst Andreas; Lee, Joong Kee
2012-02-01
Phosphorus doped C60 (P:C60) thin films were prepared by a radio frequency plasma assisted thermal evaporation technique using C60 powder as a carbon source and a mixture of argon and phosphine (PH3) gas as a dopant precursor. The effects of the plasma power on the structural characteristics of the as-prepared films were then studied using Raman spectroscopy, Auger electron spectroscopy (AES) and X-ray photo-electrons spectroscopy (XPS). XPS and Auger analysis indicated that the films were mainly composed of C and P and that the concentration of P was proportional to the plasma power. The Raman results implied that the doped films contained a more disordered carbon structure than the un-doped samples. The P:C60 films were then used as a coating layer for the Si anodes of lithium ion secondary batteries. The cyclic voltammetry (CV) analysis of the P:C60 coated Si electrodes demonstrated that the P:C60 coating layer might be used to improve the transport of Li-ions at the electrode/electrolyte interface.
Focused beams of fast neutral atoms in glow discharge plasma
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.
2017-06-01
Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.
Motion of W and He atoms during formation of W fuzz
NASA Astrophysics Data System (ADS)
Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; Schwarz-Selinger, T.; Zach, M.
2018-06-01
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion of the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten ‘fuzz’. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. This supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.
Motion of W and He atoms during formation of W fuzz
Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; ...
2018-04-11
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion ofmore » the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten 'fuzz'. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. Lastly, this supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.« less
Hafnium nitride buffer layers for growth of GaN on silicon
Armitage, Robert D.; Weber, Eicke R.
2005-08-16
Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.
Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser
NASA Astrophysics Data System (ADS)
Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.
2017-01-01
Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.
Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers
NASA Astrophysics Data System (ADS)
Adolph, David; Tingberg, Tobias; Andersson, Thorvald; Ive, Tommy
2015-04-01
Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO (0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C-445°C and an O2 flow rate of 2.0-2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(10bar 15) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature > 450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm-3 and a Hall mobility of 50 cm2·V-1·s-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nicholas R.; Sun, Huaxing; Sharma, Kashish
2016-09-15
Thermal atomic layer etching (ALE) of crystalline aluminum nitride (AlN) films was demonstrated using sequential, self-limiting reactions with hydrogen fluoride (HF) and tin(II) acetylacetonate [Sn(acac){sub 2}] as the reactants. Film thicknesses were monitored versus number of ALE reaction cycles at 275 °C using in situ spectroscopic ellipsometry (SE). A low etch rate of ∼0.07 Å/cycle was measured during etching of the first 40 Å of the film. This small etch rate corresponded with the AlO{sub x}N{sub y} layer on the AlN film. The etch rate then increased to ∼0.36 Å/cycle for the pure AlN films. In situ SE experiments established the HF and Sn(acac){submore » 2} exposures that were necessary for self-limiting surface reactions. In the proposed reaction mechanism for thermal AlN ALE, HF fluorinates the AlN film and produces an AlF{sub 3} layer on the surface. The metal precursor, Sn(acac){sub 2}, then accepts fluorine from the AlF{sub 3} layer and transfers an acac ligand to the AlF{sub 3} layer in a ligand-exchange reaction. The possible volatile etch products are SnF(acac) and either Al(acac){sub 3} or AlF(acac){sub 2}. Adding a H{sub 2} plasma exposure after each Sn(acac){sub 2} exposure dramatically increased the AlN etch rate from 0.36 to 1.96 Å/cycle. This enhanced etch rate is believed to result from the ability of the H{sub 2} plasma to remove acac surface species that may limit the AlN etch rate. The active agent from the H{sub 2} plasma is either hydrogen radicals or radiation. Adding an Ar plasma exposure after each Sn(acac){sub 2} exposure increased the AlN etch rate from 0.36 to 0.66 Å/cycle. This enhanced etch rate is attributed to either ions or radiation from the Ar plasma that may also lead to the desorption of acac surface species.« less
NASA Astrophysics Data System (ADS)
Park, Suk Won; Han, Gwon Deok; Choi, Hyung Jong; Prinz, Fritz B.; Shim, Joon Hyung
2018-05-01
This study evaluated the effectiveness of alumina fabricated by atomic layer deposition (ALD) as a protective coating for silver articles against the corrosion caused by body contact. An artificial sweat solution was used to simulate body contact. ALD alumina layers of varying thicknesses ranging from 20 to 80 nm were deposited on sputtered silver samples. The stability of the protective layer was evaluated by immersing the coated samples in the artificial sweat solution at 25 and 35 °C for 24 h. We confirmed that a sufficiently thick layer of ALD alumina is effective in protecting the shape and light reflectance of the underlying silver, whereas the uncoated bare silver is severely degraded by the artificial sweat solution. Inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy were used for in-depth analyses of the chemical stability of the ALD-coated silver samples after immersion in the sweat solution.
Effect of catalyst on deposition of vanadium oxide in plasma ambient
NASA Astrophysics Data System (ADS)
Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.
2018-05-01
In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.
Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten
The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less
NASA Astrophysics Data System (ADS)
Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer
2017-03-01
Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.
Nie, X; Leyland, A; Matthews, A; Jiang, J C; Meletis, E I
2001-12-15
Hydroxyapatite (HA) coatings can be deposited using a hybrid process of plasma electrolysis and electrophoresis, called plasma-assisted electrophoretic deposition (PEPD). HA aqueous suspensions with various pH values were prepared using a modified ultrasonic cleaning bath as an agitator/stirrer. Both DC and unbalanced AC power supplies were used to bias the titanium alloy substrate materials employed in this work. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to observe and analyze coating morphology and microstructure. It was shown that the morphology and composition of the calcium phosphate coatings were significantly influenced by solution pH values; the level of "pure" HA in the coatings' composition corresponded to both solution pH and the type of power supply employed. Loss of hydroxyl radials (i.e., dehydroxylation), which degrades the performance of the hydroxyapatite coating in terms of long-term chemical and mechanical stability, can be virtually eliminated by a combination of high pH and unbalanced AC plasma power. In addition, the underlying TiO2 coatings used to support the HA layer (preproduced by plasma electrolysis process) have a nanoscaled (10-20 nm) polycrystalline structure. TEM studies also revealed a dense, continuous amorphous titania layer (10 nm in thickness) at the interface between the Ti alloy substrate and the TiO2 layer, which may play a role in improving the corrosion resistance of the substrate. Such a nanophase TiO2 layer (if used as a coating alone) may also provide a further improvement in osteoinductive properties, compared to a conventional TiO2 coating on the Ti alloy substrate. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 612-618, 2001
Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d’Abusco, Anna; Superti, Fabiana; Misiano, Carlo; Zanoni, Robertino; Politi, Laura; Mazzola, Luca; Iosi, Francesca; Mura, Francesco; Scandurra, Roberto
2016-01-01
Introduction Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. Results The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. Conclusion In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone. PMID:27031101
NASA Astrophysics Data System (ADS)
Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi
2016-12-01
The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.
Hydrogen-related defects in Al2O3 layers grown on n-type Si by the atomic layer deposition technique
NASA Astrophysics Data System (ADS)
Kolkovsky, Vl.; Stübner, R.
2018-04-01
The electrical properties of alumina films with thicknesses varying from 15 nm to 150 nm, grown by the atomic layer deposition technique on n-type Si, were investigated. We demonstrated that the annealing of the alumina layers in argon (Ar) or hydrogen (H) atmosphere at about 700 K resulted in the introduction of negatively charged defects irrespective of the type of the substrate. These defects were also observed in samples subjected to a dc H plasma treatment at temperatures below 400 K, whereas they were not detected in as-grown samples and in samples annealed in Ar atmosphere at temperatures below 400 K. The concentration of these defects increased with a higher H content in the alumina films. In good agreement with theory we assigned these defects to interstitial H-related defects.
Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide
Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.; ...
2017-04-05
The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less
Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.
The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less
Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki
2018-06-01
A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.
Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1
NASA Astrophysics Data System (ADS)
Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.
2018-04-01
In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Nigamananda; Du Hui; Luberoff, Russell
Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for themore » DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.« less
Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions
NASA Astrophysics Data System (ADS)
Zhang, Meng; Bhattacharya, Pallab; Guo, Wei; Banerjee, Animesh
2010-03-01
Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 °C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1×1018 cm-3. The corresponding doping efficiency and hole mobility are ˜4.9% and 3.7 cm2/V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (λpeak=529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 Ω.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
2008-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
1999-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.
1999-06-29
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.
Filatova, Ekaterina A; Hausmann, Dennis; Elliott, Simon D
2018-05-02
Understanding the mechanism of SiC chemical vapor deposition (CVD) is an important step in investigating the routes toward future atomic layer deposition (ALD) of SiC. The energetics of various silicon and carbon precursors reacting with bare and H-terminated 3C-SiC (011) are analyzed using ab initio density functional theory (DFT). Bare SiC is found to be reactive to silicon and carbon precursors, while H-terminated SiC is found to be not reactive with these precursors at 0 K. Furthermore, the reaction pathways of silane plasma fragments SiH 3 and SiH 2 are calculated along with the energetics for the methane plasma fragments CH 3 and CH 2 . SiH 3 and SiH 2 fragments follow different mechanisms toward Si growth, of which the SiH 3 mechanism is found to be more thermodynamically favorable. Moreover, both of the fragments were found to show selectivity toward the Si-H bond and not C-H bond of the surface. On the basis of this, a selective Si deposition process is suggested for silicon versus carbon-doped silicon oxide surfaces.
2014-01-01
W.F. O’Brien, J.A. Schetz - Plasma torch atomizer-igniter for supersonic combustion of liquid hydrocarbon fuels // AIAA Paper 2006-7970. 6. H. Do...A. Deminsky, I. V. Kochetov, A. P. Napartovich, S. B. Leonov, - “Modeling of Plasma Assisted Combustion in Premixed Supersonic Gas Flow...1 Ignition and Flameholding in a Supersonic Combustor by an Electrical Discharge Combined with a Fuel Injector K. V. Savelkin 1 , D. A
Photo-assisted etching of silicon in chlorine- and bromine-containing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Weiye; Sridhar, Shyam; Liu, Lei
2014-05-28
Cl{sub 2}, Br{sub 2}, HBr, Br{sub 2}/Cl{sub 2}, and HBr/Cl{sub 2} feed gases diluted in Ar (50%–50% by volume) were used to study etching of p-type Si(100) in a rf inductively coupled, Faraday-shielded plasma, with a focus on the photo-assisted etching component. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br{sub 2}/Ar and HBr/Cl{sub 2}/Ar plasmas having the lowest and highest sub-threshold etching rates, respectively. Sub-threshold etching rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) andmore » Ar emission intensity (7504 Å). Etching rates measured under MgF{sub 2}, quartz, and opaque windows showed that sub-threshold etching is due to photon-stimulated processes on the surface, with vacuum ultraviolet photons being much more effective than longer wavelengths. Scanning electron and atomic force microscopy revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. Photo-assisted etching in Cl{sub 2}/Ar plasmas resulted in the formation of 4-sided pyramidal features with bases that formed an angle of 45° with respect to 〈110〉 cleavage planes, suggesting that photo-assisted etching can be sensitive to crystal orientation.« less
Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi
2013-03-01
Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.
Unraveling atomic-level self-organization at the plasma-material interface
NASA Astrophysics Data System (ADS)
Allain, J. P.; Shetty, A.
2017-07-01
The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion-induced nanopatterning and nanostructuring as well as ultra-thin film deposition. Future outlook will examine the critical role of complementary surface-sensitive techniques and trends towards advances in both in situ and in operando tooling.
Durable anti-fogging effect and adhesion improvement on polymer surfaces
NASA Astrophysics Data System (ADS)
Moser, E. M.; Gilliéron, D.; Henrion, G.
2010-01-01
The hydrophobic properties of polymeric surfaces may cause fogging in transparent packaging and poor adhesion to printing colours and coatings. Novel plasma processes for durable functionalization of polypropylene and polyethylene terephthalate substrates were developed and analysed using optical emission spectroscopy. A worm-like nano pattern was created on the polypropylene surface prior to the deposition of thin polar plasma polymerised layers. For both substrates, highly polar surfaces exhibiting a surface tension of up to 69 mN/m and a water contact angle of about 10° were produced - providing the anti-fogging effect. The deposition of thin plasma polymerised layers protects the increased surface areas and enables to tailoring the surface energy of the substrate in a wide range. Wetting characteristics were determined by dynamic contact angle measurements. Investigations of the chemical composition of several layers using X-ray photoelectron spectroscopy and FT-infrared spectroscopy were correlated with functional testing. The surface topography was investigated using atomic force microscopy. The weldability and peeling-off characteristics of the plasma treated polymer films could be adjusted by varying the process parameters. Global and specific migration analyses were undertaken in order to ensure the manufacturing of plasma treated polymer surfaces for direct food contact purposes.
NASA Astrophysics Data System (ADS)
Shimabayashi, Masaharu; Kurihara, Kazuaki; Sasaki, Koichi
2018-05-01
We remotely irradiated a nitrogen plasma onto the carbon-side surface of 4H-SiC at a low temperature, and examined the effect of sample cooling on the characteristics of the nitride layer. An improved nitride layer, which had higher concentrations of carbon and silicon and a lower concentration of oxygen, was formed in the region at depths of more than 0.6–0.9 nm from the top surface. The depth of the fragile nitride layer in the top region, where no improved characteristics of the nitride layer were observed, became smaller with sample cooling. In addition, on the basis of the experimental results, we discussed the difference in the activation energy of the nitriding reaction of 4H-SiC supported by atomic nitrogen and molecular nitrogen in the metastable \\text{A}3Σ \\text{u} + state.
Study of a contracted glow in low-frequency plasma-jet discharges operating with argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minotti, F.; Giuliani, L.; Xaubet, M.
2015-11-15
In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium betweenmore » electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.« less
Plasma Assisted Decontamination of Bacterial Spores
Kuo, Spencer P
2008-01-01
The efficacy and mechanism of killing bacterial spores by a plasma torch is studied. Bacterial-spore (Bacillus cereus) suspension is inoculated onto glass/paper slide-coupons and desiccated into dry samples, and inoculated into well-microplate as wet sample. The exposure distance of all samples is 4 cm from the nozzle of the torch. In the experiment, paper slide-coupon is inserted inside an envelope. The kill times on spores in three types of samples are measured to be about 3, 9, and 24 seconds. The changes in the morphology and shape of still viable spores in treated wet samples are recorded by scanning electron and atomic force microscopes. The loss of appendages and exosporium in the structure and squashed/flattened cell shape are observed. The emission spectroscopy of the torch indicates that the plasma effluent carries abundant reactive atomic oxygen, which is responsible for the destruction of spores. PMID:19662115
PVD coating for optical applications on temperature-resistant thermoplastics
NASA Astrophysics Data System (ADS)
Munzert, Peter; Schulz, Ulrike; Kaiser, Norbert
2004-02-01
The performance of the high temperature resistant polymers Pleximid, APEC and Ultrason as substrate materials in plasma-assisted physical vapor deposition processes was studied and compared with well-known thermoplastics for optical applications. Different effects of UV irradiation and plasma exposure on the polymers' optical features, surface energy and adhesion properties for oxide layers, typically used for interference multilayer coatings, are shown.
Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers
NASA Astrophysics Data System (ADS)
Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.
2016-09-01
In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.
NASA Astrophysics Data System (ADS)
Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.
2018-05-01
Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated AAC/LDPE films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.
2012-09-15
Chlorine atom recombination coefficients were measured on silicon oxy-chloride surfaces deposited in a chlorine inductively coupled plasma (ICP) with varying oxygen concentrations, using the spinning wall technique. A small cylinder embedded in the walls of the plasma reactor chamber was rapidly rotated, repetitively exposing its surface to the plasma chamber and a differentially pumped analysis chamber housing a quadruple mass spectrometer for line-of-sight desorbing species detection, or an Auger electron spectrometer for in situ surface analysis. The spinning wall frequency was varied from 800 to 30 000 rpm resulting in a detection time, t (the time a point on themore » surface takes to rotate from plasma chamber to the position facing the mass or Auger spectrometer), of {approx}1-40 ms. Desorbing Cl{sub 2}, due to Langmuir-Hinshelwood (LH) Cl atom recombination on the reactor wall surfaces, was detected by the mass spectrometer and also by a pressure rise in one of the differentially pumped chambers. LH Cl recombination coefficients were calculated by extrapolating time-resolved desorption decay curves to t = 0. A silicon-covered electrode immersed in the plasma was either powered at 13 MHz, creating a dc bias of -119 V, or allowed to electrically float with no bias power. After long exposure to a Cl{sub 2} ICP without substrate bias, slow etching of the Si wafer coats the chamber and spinning wall surfaces with an Si-chloride layer with a relatively small amount of oxygen (due to a slow erosion of the quartz discharge tube) with a stoichiometry of Si:O:Cl = 1:0.38:0.38. On this low-oxygen-coverage surface, any Cl{sub 2} desorption after LH recombination of Cl was below the detection limit. Adding 5% O{sub 2} to the Cl{sub 2} feed gas stopped etching of the Si wafer (with no rf bias) and increased the oxygen content of the wall deposits, while decreasing the Cl content (Si:O:Cl = 1:1.09:0.08). Cl{sub 2} desorption was detectable for Cl recombination on the spinning wall surface coated with this layer, and a recombination probability of {gamma}{sub Cl} = 0.03 was obtained. After this surface was conditioned with a pure oxygen plasma for {approx}60 min, {gamma}{sub Cl} increased to 0.044 and the surface layer was slightly enriched in oxygen fraction (Si:O:Cl = 1:1.09:0.04). This behavior is attributed to a mechanism whereby Cl LH recombination occurs mainly on chlorinated oxygen sites on the silicon oxy-chloride surface, because of the weak Cl-O bond compared to the Cl-Si bond.« less
Jia, Endong; Zhou, Chunlan; Wang, Wenjing
2015-01-01
Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthusubramanian, N.; Zant, H. S. J. van der; Galan, E.
We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al{sub 2}O{sub 3} thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10{sup −4} G{sub 0} (1 G{sub 0} = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were usedmore » to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.
Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Choi, Hagyoung
2013-11-07
In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradationmore » test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.« less
Plasma contactor research, 1990
NASA Technical Reports Server (NTRS)
Williams, John D.; Wilbur, Paul J.
1991-01-01
Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.
NASA Astrophysics Data System (ADS)
Tari, Alireza; Wong, William S.
2018-02-01
Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...
2017-07-31
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
Laser-driven acceleration of electrons in a partially ionized plasma channel.
Rowlands-Rees, T P; Kamperidis, C; Kneip, S; Gonsalves, A J; Mangles, S P D; Gallacher, J G; Brunetti, E; Ibbotson, T; Murphy, C D; Foster, P S; Streeter, M J V; Budde, F; Norreys, P A; Jaroszynski, D A; Krushelnick, K; Najmudin, Z; Hooker, S M
2008-03-14
The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.
Improving yield and performance in ZnO thin-film transistors made using selective area deposition.
Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H
2015-02-04
We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Sinha, C.
2012-01-01
The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less
NASA Astrophysics Data System (ADS)
Li, Yan; Sung, Yung-Ta; Scharer, John
2015-11-01
Ion acceleration through plasma double layer and non-Maxwellian two temperature electron distributions have been observed in Madison Helicon Experiment (MadHeX) operated in high RF power (>1000 W) and low Ar pressure (0.17 mtorr) inductive mode. By applying Optical Emission Spectroscopy (OES) cross-checked with an RF-compensated Langmuir probe (at 13.56 MHz and its second and third harmonics), the fast (>80 eV), untrapped electrons downstream of the double layer have a higher temperature of 13 eV than the trapped bulk electrons upstream with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The hot tail electrons of the non-Maxwellian electron distribution affect the formation and the potential drop of the double layer region. The mechanism behind this has been explored via several non-invasive plasma diagnostics tools. The OES measured electron temperatures and densities are also cross-checked with Atomic Data and Analysis Structure (ADAS) and a millimeter wave interferometer respectively. The IEDF is measured by a four-grid RPA and also cross-checked with argon 668 nm Laser Induced Fluorescence (LIF). An emissive probe has been used to measure the plasma potential.
Utilization of plasmas for graphene synthesis
NASA Astrophysics Data System (ADS)
Shashurin, Alexey; Keidar, Michael
2013-10-01
Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a honeycomb crystal lattice. Grapheen has tremendous range of potential applications ranging from high-speed transistors to electrochemical energy storage devices and biochemical sensors. Methods of graphene synthesis include mechanical exfoliation, epitaxial growth on SiC, CVD and colloidal suspensions. In this work the utilization of plasmas in synthesis process is considered. Types of carbonaceous structures produced by the anodic arc and regions of their synthesis were studied. Ultimate role of substrate temperature and transformations occurring with various carbonaceous structures generated in plasma discharge were considered. Formation of graphene film on copper substrate was detected at temperatures around the copper melting point. The film was consisted of several layers graphene flakes having typical sizes of about 200 nm. Time required for crystallization of graphene on externally heated substrates was determined. This work was supported by National Science Foundation (NSF Grant No. CBET-1249213).
A collisional-radiative model of iron vapour in a thermal arc plasma
NASA Astrophysics Data System (ADS)
Baeva, M.; Uhrlandt, D.; Murphy, A. B.
2017-06-01
A collisional-radiative model for the ground state and fifty effective excited levels of atomic iron, and one level for singly-ionized iron, is set up for technological plasmas. Attention is focused on the population of excited states of atomic iron as a result of excitation, de-excitation, ionization, recombination and spontaneous emission. Effective rate coefficients for ionization and recombination, required in non-equilibrium plasma transport models, are also obtained. The collisional-radiative model is applied to a thermal arc plasma. Input parameters for the collisional-radiative model are provided by a magnetohydrodynamic simulation of a gas-metal welding arc, in which local thermodynamic equilibrium is assumed and the treatment of the transport of metal vapour is based on combined diffusion coefficients. The results clearly identify the conditions in the arc, under which the atomic state distribution satisfies the Boltzmann distribution, with an excitation temperature equal to the plasma temperature. These conditions are met in the central part of the arc, even though a local temperature minimum occurs here. This provides assurance that diagnostic methods based on local thermodynamic equilibrium, in particular those of optical emission spectroscopy, are reliable here. In contrast, deviations from the equilibrium atomic-state distribution are obtained in the near-electrode and arc fringe regions. As a consequence, the temperatures determined from the ratio of line intensities and number densities obtained from the emission coefficient in these regions are questionable. In this situation, the collisional-radiative model can be used as a diagnostic tool to assist in the interpretation of spectroscopic measurements.
NASA Astrophysics Data System (ADS)
Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.
2017-10-01
The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.
Interfacial Structure and Chemistry of GaN on Ge(111)
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Zhang, Yucheng; Cui, Ying; Freysoldt, Christoph; Neugebauer, Jörg; Lieten, Ruben R.; Barnard, Jonathan S.; Humphreys, Colin J.
2013-12-01
The interface of GaN grown on Ge(111) by plasma-assisted molecular beam epitaxy is resolved by aberration corrected scanning transmission electron microscopy. A novel interfacial structure with a 5∶4 closely spaced atomic bilayer is observed that explains why the interface is flat, crystalline, and free of GeNx. Density functional theory based total energy calculations show that the interface bilayer contains Ge and Ga atoms, with no N atoms. The 5∶4 bilayer at the interface has a lower energy than a direct stacking of GaN on Ge(111) and enables the 5∶4 lattice-matching growth of GaN.
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2014-10-01
For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).
Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip
2017-01-01
The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192
NASA Astrophysics Data System (ADS)
Shubina, K. Yu; Pirogov, E. V.; Mizerov, A. M.; Nikitina, E. V.; Bouravleuv, A. D.
2018-03-01
The effects of GaN nanocolumn arrays and a thin SixNy layer, used as buffer layers, on the morphology of GaN epitaxial layers are investigated. Two types of samples with different buffer layers were synthesized by PA-MBE. The morphology of the samples was characterized by SEM. The crystalline quality of the samples was assessed by XRD. The possibility of synthesis of continuous crystalline GaN layers on Si(111) substrates without the addition of other materials such as aluminum nitride was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbasian, Golnaz, E-mail: Golnaz.Karbasian.1@nd.edu; McConnell, Michael S.; Orlov, Alexei O.
The authors report the use of plasma-enhanced atomic layer deposition (PEALD) to fabricate single-electron transistors (SETs) featuring ultrathin (≈1 nm) tunnel-transparent SiO{sub 2} in Ni-SiO{sub 2}-Ni tunnel junctions. They show that, as a result of the O{sub 2} plasma steps in PEALD of SiO{sub 2}, the top surface of the underlying Ni electrode is oxidized. Additionally, the bottom surface of the upper Ni layer is also oxidized where it is in contact with the deposited SiO{sub 2}, most likely as a result of oxygen-containing species on the surface of the SiO{sub 2}. Due to the presence of these surface parasitic layersmore » of NiO, which exhibit features typical of thermally activated transport, the resistance of Ni-SiO{sub 2}-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with thermally activated resistors in series with tunnel junctions. The reduction of NiO to Ni is therefore required to restore the metal-insulator-metal (MIM) structure of the junctions. Rapid thermal annealing in a forming gas ambient at elevated temperatures is presented as a technique to reduce both parasitic oxide layers. This method is of great interest for devices that rely on MIM tunnel junctions with ultrathin barriers. Using this technique, the authors successfully fabricated MIM SETs with minimal trace of parasitic NiO component. They demonstrate that the properties of the tunnel barrier in nanoscale tunnel junctions (with <10{sup −15} m{sup 2} in area) can be evaluated by electrical characterization of SETs.« less
Deuterium diffusion and retention in tungsten coated with barrier layer during ion irradiation
NASA Astrophysics Data System (ADS)
Begrambekov, L. B.; Kaplevsky, A. S.; Dovganyuk, S. S.; Evsin, A. E.; Baryshnikova, I. E.
2017-12-01
The results of the comparative analysis of low-temperature desorption of deuterium from tungsten coated with aluminum and yttrium films under the irradiation by hydrogen plasma with oxygen impurity are presented. The irradiation of aluminum or yttrium coating by H2+1%O2 plasma leads to the desorption of implanted deuterium from the samples. It was shown that the number of atoms desorbed depends on the sign of enthalpy of hydrogen solution in the metal film.
Dawson, John M.
1976-01-01
Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.
Modeling of beryllium sputtering and re-deposition in fusion reactor plasma facing components
NASA Astrophysics Data System (ADS)
Zimin, A. M.; Danelyan, L. S.; Elistratov, N. G.; Gureev, V. M.; Guseva, M. I.; Kolbasov, B. N.; Kulikauskas, V. S.; Stolyarova, V. G.; Vasiliev, N. N.; Zatekin, V. V.
2004-08-01
Quantitative characteristics of Be-sputtering by hydrogen isotope ions in a magnetron sputtering system, the microstructure and composition of the sputtered and re-deposited layers were studied. The energies of H + and D + ions varied from 200 to 300 eV. The ion flux density was ˜3 × 10 21 m -2 s -1. The irradiation doses were up to 4 × 10 25 m -2. For modeling of the sputtered Be-atom re-deposition at increased deuterium pressures (up to 0.07 torr), a mode of operation with their effective return to the Be-target surface was implemented. An atomic ratio O/Be ≅ 0.8 was measured in the re-deposited layers. A ratio D/Be decreases from 0.15 at 375 K to 0.05 at 575 K and slightly grows in the presence of carbon and tungsten. The oxygen concentration in the sputtered layers does not exceed 3 at.%. The atomic ratio D/Be decreases there from 0.07 to 0.03 at target temperatures increase from 350 to 420 K.
Vapor deposition of molybdenum oxide using bis(ethylbenzene) molybdenum and water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, Tasha L.; Stair, Peter C., E-mail: pstair@u.northwestern.edu
2016-09-15
Three molybdenum precursors—bis(acetylacetonate) dioxomolybdenum, molybdenum isopropoxide, and bis(ethylbenzene) molybdenum—were tested for molybdenum oxide vapor deposition. Quartz crystal microbalance studies were performed to monitor growth. Molybdenum isopropoxide and bis(ethylbenzene) molybdenum achieved linear growth rates 0.01 and 0.08 Å/cycle, respectively, using atomic layer deposition techniques. Negligible MoO{sub x} growth was observed on alumina powder using molybdenum isopropoxide, as determined by inductively coupled plasma optical emission spectroscopy. Bis(ethylbenzene) molybdenum achieved loadings of 0.5, 1.1, and 1.9 Mo/nm{sup 2} on alumina powder after one, two, and five cycles, respectively, using atomic layer deposition techniques. The growth window for bis(ethylbenzene) molybdenum is 135–150 °C. An alternative pulsingmore » strategy was also developed for bis(ethylbenzene) molybdenum that results in higher growth rates in less time compared to atomic layer deposition techniques. The outlined process serves as a methodology for depositing molybdenum oxide for catalytic applications. All as-deposited materials undergo further calcination prior to characterization and testing.« less
Deuterium supersaturation in low-energy plasma-loaded tungsten surfaces
NASA Astrophysics Data System (ADS)
Gao, L.; Jacob, W.; von Toussaint, U.; Manhard, A.; Balden, M.; Schmid, K.; Schwarz-Selinger, T.
2017-01-01
Fundamental understanding of hydrogen-metal interactions is challenging due to a lack of knowledge on defect production and/or evolution upon hydrogen ingression, especially for metals undergoing hydrogen irradiation with ion energy below the displacement thresholds reported in literature. Here, applying a novel low-energy argon-sputter depth profiling method with significantly improved depth resolution for tungsten (W) surfaces exposed to deuterium (D) plasma at 300 K, we show the existence of a 10 nm thick D-supersaturated surface layer (DSSL) with an unexpectedly high D concentration of ~10 at.% after irradiation with ion energy of 215 eV. Electron back-scatter diffraction reveals that the W lattice within this DSSL is highly distorted, thus strongly blurring the Kikuchi pattern. We explain this strong damage by the synergistic interaction of energetic D ions and solute D atoms with the W lattice. Solute D atoms prevent the recombination of vacancies with interstitial W atoms, which are produced by collisions of energetic D ions with W lattice atoms (Frenkel pairs). This proposed damaging mechanism could also be active on other hydrogen-irradiated metal surfaces. The present work provides deep insight into hydrogen-induced lattice distortion at plasma-metal interfaces and sheds light on its modelling work.
NASA Astrophysics Data System (ADS)
Zolotukhin, D.; Seredin, P.; Lenshin, A.; Goloshchapov, D.; Mizerov, A.
2017-11-01
We report on successful growth of GaN nanorods by low-temperature plasma-assisted molecular beam epitaxy on a Si(111) substrate with and without preformed thin porous Si layer (por-Si). The deposited GaN initially forms islands which act as a seed for the wires. Porous structure of the por-Si layer helps to control nucleation islands sizes and achieve homogeneous distribution of the nanorods diameters. In addition 850 nm-thick crack-free GaN layer was formed on Si(111) substrate with preformed por-Si layer.
Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho
2013-10-01
This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.
Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J
2017-02-01
Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.
Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu
2017-03-17
A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS 2 and other vW materials. Using this technique we etch MoS 2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe 2 . In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.
Song, Ji-Min; Lee, Jang-Sik
2016-01-01
Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122
Silicone Coating on Polyimide Sheet
NASA Technical Reports Server (NTRS)
Park, J. J.
1985-01-01
Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.
Scrape-off layer modeling with kinetic or diffusion description of charge-exchange atoms
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2016-12-01
Hydrogen isotope atoms, generated by charge-exchange (c-x) of neutral particles recycling from the first wall of a fusion reactor, are described either kinetically or in a diffusion approximation. In a one-dimensional (1-D) geometry, kinetic calculations are accelerated enormously by applying an approximate pass method for the assessment of integrals in the velocity space. This permits to perform an exhaustive comparison of calculations done with both approaches. The diffusion approximation is deduced directly from the velocity distribution function of c-x atoms in the limit of charge-exchanges with ions occurring much more frequently than ionization by electrons. The profiles across the flux surfaces of the plasma parameters averaged along the main part of the scrape-off layer (SOL), beyond the X-point and divertor regions, are calculated from the one-dimensional equations where parallel flows of charged particles and energy towards the divertor are taken into account as additional loss terms. It is demonstrated that the heat losses can be firmly estimated from the SOL averaged parameters only; for the particle loss the conditions in the divertor are of importance and the sensitivity of the results to the so-called "divertor impact factor" is investigated. The coupled 1-D models for neutral and charged species, with c-x atoms described either kinetically or in the diffusion approximation, are applied to assess the SOL conditions in a fusion reactor, with the input parameters from the European DEMO project. It is shown that the diffusion approximation provides practically the same profiles across the flux surfaces for the plasma density, electron, and ion temperatures, as those obtained with the kinetic description for c-x atoms. The main difference between the two approaches is observed in the characteristics of these species themselves. In particular, their energy flux onto the wall is underestimated in calculations with the diffusion approximation by 20 % - 30 % . This discrepancy can be significantly reduced if after the convergence of coupled plasma-neutral calculations, the final computation for c-x atoms is done kinetically.
Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda
2017-04-01
With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vos, Martijn F. J.; Macco, Bart; Thissen, Nick F. W.
2016-01-15
Molybdenum oxide (MoO{sub x}) films have been deposited by atomic layer deposition using bis(tert-butylimido)-bis(dimethylamido)molybdenum and oxygen plasma, within a temperature range of 50–350 °C. Amorphous film growth was observed between 50 and 200 °C at a growth per cycle (GPC) around 0.80 Å. For deposition temperatures of 250 °C and higher, a transition to polycrystalline growth was observed, accompanied by an increase in GPC up to 1.88 Å. For all deposition temperatures the O/Mo ratio was found to be just below three, indicating the films were slightly substoichiometric with respect to MoO{sub 3} and contained oxygen vacancies. The high purity of the films was demonstratedmore » in the absence of detectable C and N contamination in Rutherford backscattering measurements, and a H content varying between 3 and 11 at. % measured with elastic recoil detection. In addition to the chemical composition, the optical properties are reported as well.« less
Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes
NASA Astrophysics Data System (ADS)
Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.
2017-09-01
Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.
Muñoz, Roberto; Martínez, Lidia; López-Elvira, Elena; Munuera, Carmen; Huttel, Yves; García-Hernández, Mar
2018-06-27
Direct graphene growth on silicon with a native oxide using plasma enhanced chemical vapour deposition at low temperatures [550 °C-650 °C] is demonstrated for the first time. It is shown that the fine-tuning of a two-step synthesis with gas mixtures C2H2/H2 yields monolayer and few layer graphene films with a controllable domain size from 50 nm to more than 300 nm and the sheet resistance ranging from 8 kΩ sq-1 to less than 1.8 kΩ sq-1. Differences are understood in terms of the interaction of the plasma species - chiefly atomic H - with the deposited graphene and the native oxide layer. The proposed low temperature direct synthesis on an insulating substrate does not require any transfer processes and improves the compatibility with the current industrial processes.
Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen
2016-12-21
We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO 2 and Ta 2 O 5 , which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO 2 and Ta 2 O 5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO 2 or Ta 2 O 5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.
NASA Astrophysics Data System (ADS)
Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.
2018-01-01
The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.
Khalifa, Marouan; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-08
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C.
2012-01-01
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C. PMID:22873706
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.
Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M
2017-10-11
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer
2017-01-01
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032
Characteristics of InN epilayers grown with H2-assistance
NASA Astrophysics Data System (ADS)
Zhou, Jin; Li, Jinchai; Lu, Shiqiang; Kang, Junyong; Lin, Wei
2017-11-01
A series of InN films were grown on GaN-on-sapphire template with H2 pulse flow by metal organic vapor phase epitaxy. The scanning electron microscopy and atomic force microscopy observations demonstrate that the smooth surface has been achieved. The X-ray diffraction and Raman spectra measurements indicate that InN layers experience stronger accommodated compressive stress, resulting in a larger fraction of (002) oriented InN grains. On the basics of the first-principles calculations, these features can be understand as competition between N-penetrating effect with the assistance of the H atom and the etching effect of H2. Finally, the absorption spectra in conjunction with simulated results reveal that the band gap energy predominantly increase with increasing compressive strain.
Detector and energy analyzer for energetic-hydrogen in beams and plasmas
Bastasz, Robert J.; Hughes, Robert C.; Wampler, William R.
1988-01-01
A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicondioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies.
Detector and energy analyzer for energetic-hydrogen in beams and plasmas
Bastasz, R.J.; Hughes, R.C.; Wampler, W.R.
1988-11-01
A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicon-dioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies. 4 figs.
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Li, Kun; Cheng, Yingchun; Wang, Qingxiao; Yao, Yingbang; Schwingenschlögl, Udo; Zhang, Xixiang; Yang, Wei
2012-04-01
Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. Electronic supplementary information (ESI) available: Additional Figures for characterization of mono-layer CVD graphene samples with free edges and Pt atoms decorations and analysis of the effect of electron irradiation; supporting movie on edge evolution. See DOI: 10.1039/c2nr00059h
Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition
Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong
2015-01-01
We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469
NASA Astrophysics Data System (ADS)
Hong, S. K.; Chen, Y.; Ko, H. J.; Wenisch, H.; Hanada, T.; Yao, T.
2001-06-01
This paper will address features of plasma-assisted molecular beam epitaxial growth of ZnO and related materials and their characteristics. Two-dimensional, layer-by-layer growth is achieved both on c-plane sampphire by employing MgO buffer layer growth and on (0001) GaN/Al2O3 template by predepositing a low-temperature buffer layer followed by high-temperature annealing. Such two-dimensional growth results in the growth of high-quality heteroepitaxial ZnO epilayers. Biexciton emission is obtained from such high quality epilayers The polarity of heteroepitaxial ZnO epilayers is controlled by engineering the heterointerfaces. We achieved selective growth of Zn-polar and O-polar ZnO heteroepitaxial layers. The origin of different polarities can be successfully explained by an interface bonding sequence model. N-type conductivity in Gadoped ZnO epilayers is successfully controlled. High conductivity, enough to be applicable to devices, is achieved. MgxZn1-xO/ZnO heterostructures are grown and emission from a ZnO quantum well is observed. Mg incorporation in a MgZnO alloy is determined by in-situ reflection high-energy electron diffraction intensity oscillations, which enables precise control of the composition. Homoepitaxy on commericial ZnO substrates has been examined. Reflection high-energy electron diffraction intensity oscillations during homoepitaxy growth are observed.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer
NASA Astrophysics Data System (ADS)
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-01
Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer.
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-08
Crystalline ZrTiO 4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF 4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N 2 O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 10 5 program/erase cycles and 81.8% charge retention after 10 4 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Transition from moving to stationary double layers in a single-ended Q machine
NASA Technical Reports Server (NTRS)
Song, Bin; Merlino, R. L.; D'Angelo, N.
1990-01-01
Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.
Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes
Wang, Siming; Antonakos, C.; Bordel, C.; ...
2016-11-07
Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less
Fluorine compounds for doping conductive oxide thin films
Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L
2013-04-23
Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.
Atomic layer deposition of TiO2 on surface modified nanoporous low-k films.
Levrau, Elisabeth; Devloo-Casier, Kilian; Dendooven, Jolien; Ludwig, Karl F; Verdonck, Patrick; Meersschaut, Johan; Baklanov, Mikhail R; Detavernier, Christophe
2013-10-01
This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially. In a next step, in situ X-ray fluorescence (XRF), ellipsometric porosimetry (EP), and Rutherford backscattering spectroscopy (RBS) were used to characterize ALD growth of TiO2 on these substrates. The initial growth of TiO2 was found to be inhibited in the original low-k film containing only Si-CH3 surface groups, while immediate growth was observed in the hydrophilic O2 plasma treated film. The latter film was uniformly filled with TiO2 after 8 ALD cycles, while pore filling was delayed to 17 ALD cycles in the hydrophobic film. For the He/H2 plasma treated film, containing both Si-OH and Si-CH3 groups, the in situ XRF data showed that TiO2 could no longer be deposited in the He/H2 plasma treated film after 8 ALD cycles, while EP measurements revealed a remaining porosity. This can be explained by the faster deposition of TiO2 in the hydrophilic top part of the film than in the hydrophobic bulk which leaves the bulk porous, as confirmed by RBS depth profiling. The outcome of this research is not only of interest for the development of advanced interconnects in ULSI technology, but also demonstrates that ALD combined with RBS analysis is a handy approach to analyze the modifications induced by a plasma treatment on a nanoporous thin film.
The Effect of Low Earth Orbit Atomic Oxygen Exposure on Phenylphosphine Oxide-Containing Polymers
NASA Technical Reports Server (NTRS)
Connell, John W.
2000-01-01
Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin film samples described herein were part of an atomic oxygen exposure experiment (AOE) and were exposed to primarily atomic oxygen (1 X 1019 atoms/cm2). The thin film samples consisted of three phosphine oxide containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, X-ray photoelectron spectroscopy, and weight loss data, it was found that atomic oxygen exposure of these materials efficiently produces a phosphate layer at the surface of the samples. This layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favorably with those obtained from samples exposed to atomic oxygen and or oxygen plasma in ground based exposure experiments. The results of the low Earth orbit atomic oxygen exposure on these materials will be compared with those of ground based exposure to AO.
NASA Astrophysics Data System (ADS)
Corsino, Dianne C.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Takahashi, Kiyoshi; Ishikawa, Yasuaki; Uraoka, Yukiharu
2018-06-01
Atomic layer deposition (ALD) of Al2O3 using dimethylaluminum hydride (DMAH) was demonstrated as an effective passivation for amorphous InGaZnO thin-film transistors (TFTs). Compared with the most commonly used precursor, trimethylaluminum, TFTs fabricated with DMAH showed improved stability, resulting from the lower amount of oxygen vacancies, and hence fewer trap sites, as shown by X-ray photoelectron spectroscopy (XPS) depth profiling analysis. We found that prolonged plasma exposure during ALD can eliminate the hump phenomenon, which is only present for DMAH. The higher Al2O3 deposition rate when using DMAH is in line with the requirements of emerging techniques, such as spatial ALD, for improving fabrication throughput.
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zhang, W. Z.; Shi, L. Q.; Qi, Q.; Zhang, B.; Zhang, W. Y.; Wang, K.; Hu, J. S.
2013-06-01
A C-W co-deposition layer, formed by radio frequency magnetron sputtering, was investigated to identify the characteristics of C-W mixed layers in fusion experimental reactors. The layers were characterized by ion beam analysis, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. It was found that D atoms in C-W layers were mainly trapped by the C atoms. The ratio of C/W and D concentrations in the C-W layers deposited at a pressure of 5.0 Pa and a fixed flow rate ratio were 54/31 and 5%, respectively. They all increased significantly with increased flow rate of D2 but decreased with temperature at a relatively low level. The pressure dependence of the D concentration showed a maximum value around 5 Pa and it decreased with rising or decreasing pressure. Both Raman and X-ray analysis revealed that the structure of the C-W layers became more graphite-like with increasing temperature. Moreover, deuterium introduction made the tungsten carbide phase disappear in the deuterated C-W layers. Only erosion caves on the surface of the sample prepared at 300 K were observed by SEM. When the temperature increased, they disappeared, and convex bodies appeared.
X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas
NASA Astrophysics Data System (ADS)
Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.
2018-06-01
In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
NASA Astrophysics Data System (ADS)
Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong
2017-05-01
In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10-3 A/cm2 at gate bias of Vfb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO2/SiO2/Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.
Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong
2017-12-01
In situ-formed SiO 2 was introduced into HfO 2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO 2 /SiO 2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO 2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO 2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10 -3 A/cm 2 at gate bias of V fb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO 2 /SiO 2 /Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO 2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.
NASA Astrophysics Data System (ADS)
Kwak, C.-M.; Seol, J.-B.; Kim, Y.-T.; Park, C.-G.
2017-02-01
For the past 10 years, laser-assisted atom probe tomography (APT) analysis has been performed to quantify the near-atomic scale distribution of elements and their local chemical compositions within interfaces that determine the design, processing, and properties of virtually all materials. However, the nature of the occurring laser-induced emission at the surface of needle-shaped sample is highly complex and it has been an ongoing challenge to understand the surface-related interactions between laser-sources and tips containing non-conductive oxides for a robust and reliable analysis of multiple-stacked devices. Here, we find that the APT analysis of four paired poly-Si/SiO2 (conductive/non-conductive) multiple stacks with each thickness of 10 nm is governed by experimentally monitoring three experimental conditions, such as laser-beam energies ranged from 30 to 200 nJ, analysis temperatures varying with 30-100 K, and the inclination of aligned interfaces within a given tip toward analysis direction. Varying with laser-energy and analysis temperature, a drastic compositional ratio of doubly charged Si ions to single charged Si ions within conductive poly-Si layers is modified, as compared with ones detected in the non-conductive layers. Severe distorted APT images of multiple stacks are also inevitable, especially at the conductive layers, and leading to a lowering of the successful analysis yields. This lower throughput has been overcome though changing the inclination of interfaces within a given tip to analysis direction (planar interfaces parallel to the tip axis), but significant deviations in chemical compositions of a conductive layer counted from those of tips containing planar interfaces perpendicular to the tip axis are unavoidable owing to the Si2, SiH2O, and Si2O ions detected, for the first time, within poly-Si layers.
Practical layer designs for polarizing beam-splitter cubes.
von Blanckenhagen, Bernhard
2006-03-01
Liquid-crystal-on-silicon- (LCoS-) based digital projection systems require high-performance polarizing beam splitters. The classical beam-splitter cube with an immersed interference coating can fulfill these requirements. Practical layer designs can be generated by computer optimization using the classic MacNeille polarizer layer design as the starting layer design. Multilayer structures with 100 nm bandwidth covering the blue, green, or red spectral region and one design covering the whole visible spectral region are designed. In a second step these designs are realized by using plasma-ion-assisted deposition. The performance of the practical beam-splitter cubes is compared with the theoretical performance of the layer designs.
Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya
2015-08-04
Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.
Tracking of buried layers during plasma-assisted femtosecond laser drilling of compound targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhvaniya, I. A., E-mail: irina.zhvaniya@physics.msu.ru; Garmatina, A. A.; Makarov, I. A.
It was shown that drilling of multi-layered target placed in the air by tightly focused femtosecond laser radiation with high fluence (up to 1000 J/cm{sup 2}) can be monitored online using plasma-induced X-ray emission and second harmonic of incident laser radiation. The technique based on X-rays registration is appeared to be more flexible than the method based on detection of second harmonic since its accuracy depends crucially on the target type. We demonstrated that the X-ray signal clearly indicates the transition from one layer to another during the microdrilling of targets consisting of 2–4 layers of titanium foil when a lasermore » beam is focused beneath the target surface at a depth comparable to the layer thickness. The diagnostics of microchannel production in the chicken eggshell was performed for the first time. It was found that the presence of albumen beneath the shell accounts for longtime generation of X-ray pulses.« less
Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy
2015-04-21
A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.
Meric, Zeynep; Mehringer, Christian; Karpstein, Nicolas; Jank, Michael P M; Peukert, Wolfgang; Frey, Lothar
2015-09-14
In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.
Mechanisms of plasma-assisted catalyzed growth of carbon nanofibres: a theoretical modeling
NASA Astrophysics Data System (ADS)
Gupta, R.; Sharma, S. C.; Sharma, R.
2017-02-01
A theoretical model is developed to study the nucleation and catalytic growth of carbon nanofibers (CNFs) in a plasma environment. The model includes the charging of CNFs, the kinetics of the plasma species (neutrals, ions and electrons), plasma pretreatment of the catalyst film, and various processes unique to a plasma-exposed catalyst surface such as adsorption of neutrals, thermal dissociation of neutrals, ion induced dissociation, interaction between neutral species, stress exerted by the growing graphene layers and the growth of CNFs. Numerical calculations are carried out for typical glow discharge plasma parameters. It is found that the growth rate of CNFs decreases with the catalyst nanoparticle size. In addition, the effect of hydrogen on the catalyst nanoparticle size, CNF tip diameter, CNF growth rate, and the tilt angle of the graphene layers to the fiber axis are investigated. Moreover, it is also found that the length of CNFs increases with hydrocarbon number density. Our theoretical findings are in good agreement with experimental observations and can be extended to enhance the field emission characteristics of CNFs.
NASA Astrophysics Data System (ADS)
Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi
2018-01-01
The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.
Recombination reduction at the c-Si/RCA oxide interface through Ar-H2 plasma treatment
NASA Astrophysics Data System (ADS)
Landheer, Kees; Bronsveld, Paula C. P.; Poulios, Ioannis; Tichelaar, Frans D.; Kaiser, Monja; Schropp, Ruud E. I.; Rath, Jatin K.
2017-02-01
An Ar-H2 plasma treatment was applied on an ultrathin RCA oxide to create well-passivated silicon wafers with symmetric c-Si/SiOx:H/a-Si:H passivation layer stacks. The effective lifetime of these samples increased from 10 μs to 4 ms after annealing at 200 °C through Ar-H2 plasma treatment of the oxide. The results indicate that the plasma treatment can modify the RCA oxide and this enables atomic hydrogen diffusion at low annealing temperature, leading to a well passivated c-Si/SiOx:H interface. This might provide new possibilities to use wet chemical oxides in c-Si solar cells, for example as tunnel contacts.
Hydrogen and Ethene Plasma Assisted Ignition by NS discharge at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey
2015-09-01
The kinetics of ignition in lean H2:O2:Ar and C2H4:O2:Ar mixtures has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 10 - 30 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time - resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. Good agreement was obtained between the calculated ignition delay times and the experimental data. It follows from the analysis of the calculated results that the main mechanism of the effect of gas discharge on the ignition of hydrocarbons is the electron impact dissociation of O2 molecules in the discharge phase. Detailed kinetic mechanism for plasma assisted ignition of hydrogen and ethene is elaborated and verified.
NASA Astrophysics Data System (ADS)
Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.
2018-04-01
Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.
Plasma-enhanced atomic layer deposition for plasmonic TiN
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Hammack, Aaron T.; Aloni, Shaul; Ogletree, D. Frank; Olynick, Deirdre L.; Dhuey, Scott; Stadler, Bethanie J. H.; Schwartzberg, Adam M.
2016-09-01
This work presents the low temperature plasma-enhanced atomic layer deposition (PE-ALD) of TiN, a promising plasmonic synthetic metal. The plasmonics community has immediate needs for alternatives to traditional plasmonic materials (e.g. Ag and Au), which lack chemical, thermal, and mechanical stability. Plasmonic alloys and synthetic metals have significantly improved stability, but their growth can require high-temperatures (>400 °C), and it is difficult to control the thickness and directionality of the resulting film, especially on technologically important substrates. Such issues prevent the application of alternative plasmonic materials for both fundamental studies and large-scale industrial applications. Alternatively, PE-ALD allows for conformal deposition on a variety of substrates with consistent material properties. This conformal coating will allow the creation of exotic three-dimensional structures, and low-temperature deposition techniques will provide unrestricted usage across a variety of platforms. The characterization of this new plasmonic material was performed with in-situ spectroscopic ellipsometry as well as Auger electron spectroscopy for analysis of TiN film sensitivity to oxide cross-contamination. Plasmonic TiN films were fabricated, and a chlorine plasma etch was found to pattern two dimensional gratings as a test structure. Optical measurements of 900 nm period gratings showed reasonable agreement with theoretical modeling of the fabricated structures, indicating that ellipsometry models of the TiN were indeed accurate.
Thin film GaP for solar cell application
NASA Astrophysics Data System (ADS)
Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.
2016-08-01
A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure
Multibit data storage states formed in plasma-treated MoS₂ transistors.
Chen, Mikai; Nam, Hongsuk; Wi, Sungjin; Priessnitz, Greg; Gunawan, Ivan Manuel; Liang, Xiaogan
2014-04-22
New multibit memory devices are desirable for improving data storage density and computing speed. Here, we report that multilayer MoS2 transistors, when treated with plasmas, can dramatically serve as low-cost, nonvolatile, highly durable memories with binary and multibit data storage capability. We have demonstrated binary and 2-bit/transistor (or 4-level) data states suitable for year-scale data storage applications as well as 3-bit/transistor (or 8-level) data states for day-scale data storage. This multibit memory capability is hypothesized to be attributed to plasma-induced doping and ripple of the top MoS2 layers in a transistor, which could form an ambipolar charge-trapping layer interfacing the underlying MoS2 channel. This structure could enable the nonvolatile retention of charged carriers as well as the reversible modulation of polarity and amount of the trapped charge, ultimately resulting in multilevel data states in memory transistors. Our Kelvin force microscopy results strongly support this hypothesis. In addition, our research suggests that the programming speed of such memories can be improved by using nanoscale-area plasma treatment. We anticipate that this work would provide important scientific insights for leveraging the unique structural property of atomically layered two-dimensional materials in nanoelectronic applications.
Simulations of Neon Pellets for Plasma Disruption Mitigation in Tokamaks
NASA Astrophysics Data System (ADS)
Bosviel, Nicolas; Samulyak, Roman; Parks, Paul
2017-10-01
Numerical studies of the ablation of neon pellets in tokamaks in the plasma disruption mitigation parameter space have been performed using a time-dependent pellet ablation model based on the front tracking code FronTier-MHD. The main features of the model include the explicit tracking of the solid pellet/ablated gas interface, a self-consistent evolving potential distribution in the ablation cloud, JxB forces, atomic processes, and an improved electrical conductivity model. The equation of state model accounts for atomic processes in the ablation cloud as well as deviations from the ideal gas law in the dense, cold layers of neon gas near the pellet surface. Simulations predict processes in the ablation cloud and pellet ablation rates and address the sensitivity of pellet ablation processes to details of physics models, in particular the equation of state.
Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.
2013-08-15
In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economou, Demetre J.
As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Tsung-Hsin
2016-01-15
In this study, zinc oxide (ZnO) films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system. Prior to deposition, the substrates were treated with hydrogen peroxide (H{sub 2}O{sub 2}) in order to increase nucleation on the initial sapphire surface and, thus, enhance the quality of deposited ZnO films. Furthermore, x-ray diffraction spectroscopy measurements indicated that the crystallinity of ZnO films was considerably enhanced by H{sub 2}O{sub 2} pretreatment, with the strongest (002) diffraction peak occurring for the film pretreated with H{sub 2}O{sub 2} for 60 min. X-ray photoelectron spectroscopy also was used, and the results indicated that amore » high number of Zn–O bonds was generated in ZnO films pretreated appropriately with H{sub 2}O{sub 2}. The ZnO film deposited on a sapphire substrate with H{sub 2}O{sub 2} pretreatment for 60 min was applied to metal–semiconductor–metal ultraviolet photodetectors (MSM-UPDs) as an active layer. The fabricated ZnO MSM-UPDs showed improvements in dark current and ultraviolet–visible rejection ratios (0.27 μA and 1.06 × 10{sup 3}, respectively) compared to traditional devices.« less
NASA Astrophysics Data System (ADS)
Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming
2016-04-01
In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade-1 and 3.62 × 1011 eV-1 cm-2, respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.
NASA Astrophysics Data System (ADS)
Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.
2007-03-01
We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.
2013-10-28
Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film.more » The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.« less
Solving a Mock Arsenic-Poisoning Case Using Atomic Spectroscopy
NASA Astrophysics Data System (ADS)
Tarr, Matthew A.
2001-01-01
A new upper-level undergraduate atomic spectroscopy laboratory procedure has been developed that presents a realistic problem to students and asks them to assist in solving it. Students are given arsenic-laced soda samples from a mock crime scene. From these samples, they are to gather evidence to help prosecute a murder suspect. The samples are analyzed by inductively coupled plasma atomic emission spectroscopy or by atomic absorbance spectroscopy to determine the content of specific metal impurities. By statistical comparison of the samples' composition, the students determine if the soda samples can be linked to arsenic found in the suspect's home. As much as possible, the procedures and interpretations are developed by the students. Particular emphasis is placed on evaluating the limitations and capabilities of the analytical method with respect to the demands of the problem.
Sheng, Jiazhen; Han, Ju-Hwan; Choi, Wan-Ho; Park, Jozeph; Park, Jin-Seong
2017-12-13
Silicon dioxide (SiO 2 ) films were synthesized by plasma-enhanced atomic layer deposition (PEALD) using BTBAS [bis(tertiarybutylamino) silane] as the precursor and O 2 plasma as the reactant, at a temperature range from 50 to 200 °C. While dielectric constant values larger than 3.7 are obtained at all deposition temperatures, the leakage current levels are drastically reduced to below 10 -12 A at temperatures above 150 °C, which are similar to those obtained in thermally oxidized and PECVD grown SiO 2 . Thin film transistors (TFTs) based on In-Sn-Zn-O (ITZO) semiconductors were fabricated using thermal SiO 2 , PECVD SiO 2 , and PEALD SiO 2 grown at 150 °C as the gate dielectrics, and superior device performance and stability are observed in the last case. A linear field effect mobility of 68.5 cm 2 /(V s) and a net threshold voltage shift (ΔV th ) of approximately 1.2 V under positive bias stress (PBS) are obtained using the PEALD SiO 2 as the gate insulator. The relatively high concentration of hydrogen in the PEALD SiO 2 is suggested to induce a high carrier density in the ITZO layer deposited onto it, which results in enhanced charge transport properties. Also, it is most likely that the hydrogen atoms have passivated the electron traps related to interstitial oxygen defects, thus resulting in improved stability under PBS. Although the PECVD SiO 2 contains a hydrogen concentration similar to that of PEALD SiO 2 , its relatively large surface roughness appears to induce scattering effects and the generation of electron traps, which result in inferior device performance and stability.
NASA Astrophysics Data System (ADS)
Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.
2010-03-01
Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.
Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo
2011-06-01
Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.
Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P
2016-06-29
The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in
2016-02-07
We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less
Preparation of nanowire specimens for laser-assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Blumtritt, H.; Isheim, D.; Senz, S.; Seidman, D. N.; Moutanabbir, O.
2014-10-01
The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.
Nanotexturing of High-Performance Woven Fabrics for Novel Composite Applications
2006-11-29
biocompatibility , and adhesion of dyes. At the same time the glow discharge assists in the removal of a weak boundary layer (WBL) residing on the... polyimides , polyetherimides, carbon fibers, silk, cellulose, wool, cotton, linen, etc… PLASMA ON Average process speed: 15 ft/min web width: >20 inches
Conformal doping of topographic silicon structures using a radial line slot antenna plasma source
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru
2014-06-01
Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.
Surface Modification of Melamine-Formaldehyde (MF-R) Macroparticles in Complex Plasma
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Pergament, A. L.; Scherbina, A. I.; Pikalev, A. A.
2018-04-01
The surface modification of melamine-formaldehyde (MF-R) macroparticles (4.12 ± 0.09 μm in diameter) in dc glow discharges in neon, argon, and an argon-oxygen mixture (90% Ar, 10% O2) was studied experimentally. The macroparticles were treated in the discharge plasma for 10, 20, 40, and 60 min. The macroparticles were placed in ordered plasma-dust structures and then extracted from them. The results of atomic force microscopy of the surface profile are presented. Quantitative data on destruction of the surface layer and aspects of its modification are discussed. The amount of substance removed from the particle surface for the exposure time was calculated using the fractal analysis method.
NASA Astrophysics Data System (ADS)
Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei
2008-03-01
The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.
Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.
Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun
2018-01-17
We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.
Copper vapor-assisted growth of hexagonal graphene domains on silica islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Que, Yande; Jiang, Lili
2016-07-11
Silica (SiO{sub 2}) islands with a dendritic structure were prepared on polycrystalline copper foil, using silane (SiH{sub 4}) as a precursor, by annealing at high temperature. Assisted by copper vapor from bare sections of the foil, single-layer hexagonal graphene domains were grown directly on the SiO{sub 2} islands by chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, Raman spectra, and X-ray photoelectron spectroscopy confirm that hexagonal graphene domains, each measuring several microns, were synthesized on the silica islands.
Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Olstad, R.; Jory, H.
2017-09-08
This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this projectmore » uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)« less
Plasma-assisted oxide removal from ruthenium-coated EUV optics
NASA Astrophysics Data System (ADS)
Dolgov, A.; Lee, C. J.; Bijkerk, F.; Abrikosov, A.; Krivtsun, V. M.; Lopaev, D.; Yakushev, O.; van Kampen, M.
2018-04-01
An experimental study of oxide reduction at the surface of ruthenium layers on top of multilayer mirrors and thin Ru/Si films is presented. Oxidation and reduction processes were observed under conditions close to those relevant for extreme ultraviolet lithography. The oxidized ruthenium surface was exposed to a low-temperature hydrogen plasma, similar to the plasma induced by extreme ultraviolet radiation. The experiments show that hydrogen ions are the main reducing agent. Furthermore, the addition of hydrogen radicals increases the reduction rate beyond that expected from simple flux calculations. We show that low-temperature hydrogen plasmas can be effective for reducing oxidized top surfaces. Our proof-of-concept experiments show that an in situ, EUV-generated plasma cleaning technology is feasible.
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.
2018-01-01
Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.
Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hui; Cummings, Marvin; Camino, Fernando
Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less
Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM
Yan, Hui; Cummings, Marvin; Camino, Fernando; ...
2015-08-05
Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less
Enhancement of burning velocity by dissociated oxygen atoms
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2015-09-01
Green technology, such as preventing global warming, has been developed for years. Researches on plasma assisted combustion is one of the technologies and have been done for investigating more efficient combustion, more efficient use of fossil fuel with plasmas or applying electric fields. In the ignition time delay analyses with the dissociated oxygen atoms which is generated by non-equilibrium plasma had significant effect on the ignition time. In this paper, dissociated oxygen could effect on burning velocity or not has been examined using CHEMKIN. As a result, no effect can be seen with dissociation degree of lower than 10-3. But there is an effect on the enhancement of burning velocity with higher degree of 10-3. At the dissociation degree of 5×10-2, the burning velocity is enhanced at a factor of 1.24. And it is found that the distributions of each species in front of preheat zone are completely different. The combustion process is proceeded several steps in advance, and generation of H2O, CO and CO2 can be seen before combustion in higher dissociation case. This work was supported by KAKENHI (22340170).
NASA Astrophysics Data System (ADS)
Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.
2015-10-01
Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 1016 to 3.8 × 1019 cm-3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1-2 × 1015 cm-3. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically enhanced growth rates demonstrate great promise for the future of III-nitride devices grown by PAMBE.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin
2015-05-01
Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung
Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and differentmore » crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.« less
CMUTs with high-K atomic layer deposition dielectric material insulation layer.
Xu, Toby; Tekes, Coskun; Degertekin, F
2014-12-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.
The structural and electrical evolution of graphene by oxygen plasma-induced disorder.
Kim, Dong Chul; Jeon, Dae-Young; Chung, Hyun-Jong; Woo, YunSung; Shin, Jai Kwang; Seo, Sunae
2009-09-16
Evolution of a single graphene layer with disorder generated by remote oxygen plasma irradiation is investigated using atomic force microscopy, Raman spectroscopy and electrical measurement. Gradual changes of surface morphology from planar graphene to isolated granular structure associated with a decrease of transconductance are accounted for by two-dimensional percolative conduction by disorder and the oxygen plasma-induced doping effect. The corresponding evolution of Raman spectra of graphene shows several peculiarities such as a sudden appearance of a saturated D peak followed by a linear decrease in its intensity, a relatively inert characteristic of a D' peak and a monotonic increase of a G peak position as the exposure time to oxygen plasma increases. These are discussed in terms of a disorder-induced change of Raman spectra in the graphite system.
NASA Astrophysics Data System (ADS)
Feng, Peter Xianping; Rivera, Manuel; Velazquez, Rafael; Aldalbahi, Ali
We extend our work on the use of digitally controlled plasma deposition technique to synthesize high quality boron nitride nanosheets (BNNSs). The nanoscale morphologies and layered growth characteristics of the BNNSs were characterized using scanning electron microscope, transmission electron microscopy, and atomic force microscopy. The experimental data indicated each sample consists of multiple atomically thin, highly transparent BNNSs that overlap one another with certain orientations. Purity and structural properties were characterized by Raman scattering, XRD, FTIR and XPS. Based on these characterizations, 2D BNNSs based self-powered, visible blind deep UV detectors were designed, fabricated, and tested. The bias, temperature, and humidity effects on the photocurrent strength were investigated. A significant increase of signal-to-noise ratio after plasma treatment was observed. The fabricated photodetectors presented exceptional properties: a very stable baseline and a high sensitivity to weak intensities of radiation in both UVC and UVB range while remaining visible-blind, a high signal-to-noise ratio, and excellent repeatability even when the operating temperature was up to 400 0C. The shift in cutoff wavelength was also observed. This work is supported by the Army Research Office/DoD Grant (62826-RT-REP) and the ISPP#0058 at King Saud University.
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
NASA Astrophysics Data System (ADS)
Majchrowicz, D.; Den, W.; Hirsch, M.
2016-09-01
The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.
NASA Astrophysics Data System (ADS)
Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.
1995-07-01
The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.
Massive stars: flare activity due to infalls of comet-like bodies
NASA Astrophysics Data System (ADS)
Ibadov, Subhon; Ibodov, Firuz S.
2015-01-01
Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.
Lin, Yongjing; Xu, Yang; Mayer, Matthew T; Simpson, Zachary I; McMahon, Gregory; Zhou, Sa; Wang, Dunwei
2012-03-28
Mg-doped hematite (α-Fe(2)O(3)) was synthesized by atomic layer deposition (ALD). The resulting material was identified as p-type with a hole concentration of ca. 1.7 × 10(15) cm(-3). When grown on n-type hematite, the p-type layer was found to create a built-in field that could be used to assist photoelectrochemical water splitting reactions. A nominal 200 mV turn-on voltage shift toward the cathodic direction was measured, which is comparable to what has been measured using water oxidation catalysts. This result suggests that it is possible to achieve desired energetics for solar water splitting directly on metal oxides through advanced material preparations. Similar approaches may be used to mitigate problems caused by energy mismatch between water redox potentials and the band edges of hematite and many other low-cost metal oxides, enabling practical solar water splitting as a means for solar energy storage.
Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell
NASA Astrophysics Data System (ADS)
Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.
2017-07-01
Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.
Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming
2017-01-01
Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673
Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Cramer, Richard; Speck, James S.
2017-06-01
Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.
Phosphorus oxide gate dielectric for black phosphorus field effect transistors
NASA Astrophysics Data System (ADS)
Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.
2018-04-01
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
2009-11-04
plasma enhanced combustion in flow reactors and flames Motivation •Nano‐ particles are known to be ionized more easily than molecules and atoms (due to...aluminum nano‐ particles at high temperature (~1100 K), providing a strong driving force for ion transport •Nano‐ particles are chemically and catalytically...active in plasma •Functionalized nano‐ particles may enhance the effectiveness of plasma Functionalized graphene sheet colloids enhance fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhongguang; Khanaki, Alireza; Tian, Hao
2016-07-25
Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layersmore » were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.« less
Strongly Interacting Fermi Gases In Two Dimensions
2012-01-03
Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting...atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice . Decreasing the dimensionality leads to the...opening of a gap in radiofrequency spectra, even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the measured binding energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslam, N.; Rodenbücher, C.; Szot, K.
2014-08-14
The resistive switching (RS) properties of strontium titanate (Sr{sub 1+x}Ti{sub 1+y}O{sub 3+(x+2y)}, STO) based metal-oxide-metal structures prepared from industrial compatible processes have been investigated focusing on the effects of composition, microstructure, and device size. Metastable perovskite STO films were prepared on Pt-coated Si substrates utilizing plasma-assisted atomic layer deposition (ALD) from cyclopentadienyl-based metal precursors and oxygen plasma at 350 °C, and a subsequent annealing at 600 °C in nitrogen. Films of 15 nm and 12 nm thickness with three different compositions [Sr]/([Sr] + [Ti]) of 0.57 (Sr-rich STO), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO) were integrated into Pt/STO/TiN crossbar structures with sizes ranging from 100 μm{supmore » 2} to 0.01 μm{sup 2}. Nano-structural characterizations revealed a clear effect of the composition of the as-deposited STO films on their crystallization behavior and thus on the final microstructures. Local current maps obtained by local-conductivity atomic force microscopy were in good agreement with local changes of the films' microstructures. Correspondingly, also the initial leakage currents of the Pt/STO/TiN devices were affected by the STO compositions and by the films' microstructures. An electroforming process set the Pt/STO/TiN devices into the ON-state, while the forming voltage decreased with increasing initial leakage current. After a RESET process under opposite voltage has been performed, the Pt/STO/TiN devices showed a stable bipolar RS behavior with non-linear current-voltage characteristics for the high (HRS) and the low (LRS) resistance states. The obtained switching polarity and nearly area independent LRS values agree with a filamentary character of the RS behavior according to the valence change mechanism. The devices of 0.01 μm{sup 2} size with a 12 nm polycrystalline stoichiometric STO film were switched at a current compliance of 50 μA with voltages of about ±1.0 V between resistance states of about 40 kΩ (LRS) and 1 MΩ (HRS). After identification of the influences of the films' microstructures, i.e., grain boundaries and small cracks, the remaining RS properties could be ascribed to the effect of the [Sr]/([Sr] + [Ti]) composition of the ALD STO thin films.« less
Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R
2014-04-01
Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.
NASA Astrophysics Data System (ADS)
Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.
1996-03-01
Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.
Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.
Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J
2016-11-24
Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiko, M.; Nose, K.; Suenaga, R.
2013-12-28
The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed thatmore » the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.« less
An assessment for the erosion rate of DEMO first wall
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2018-01-01
In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.
Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.
Hong, Jinkee; Kang, Sang Wook
2011-09-01
We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.
NASA Astrophysics Data System (ADS)
Consiglio, Steven P.
To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of the properties of conductive HfN grown via plasma-assisted atomic layer deposition (PA-ALD) using tetrakis(ethylmethylamido)hafnium on a modified commercially available wafer processing tool. Key properties of these materials for use as gate stack replacement materials are addressed and future directions for further characterization and novel material investigations are proposed.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D
2010-04-01
Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.
Atomic Layer Deposition of the Solid Electrolyte LiPON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan -Fu
We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiO tBu), H 2O, trimethylphosphate (TMP), and plasma N 2 ( PN 2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN 2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen aremore » polycrystalline. Lastly, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.« less
Atomic Layer Deposition of the Solid Electrolyte LiPON
Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan -Fu; ...
2015-07-09
We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiO tBu), H 2O, trimethylphosphate (TMP), and plasma N 2 ( PN 2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN 2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen aremore » polycrystalline. Lastly, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R.; Xu, H. C.; Xia, M.
The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less
Strain relaxation in (0001) AlN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido
2001-06-01
The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.
Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films
NASA Astrophysics Data System (ADS)
Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.
2008-03-01
Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.
NASA Astrophysics Data System (ADS)
Takaloo, AshkanVakilipour; Kolahdouz, Mohammadreza; Poursafar, Jafar; Es, Firat; Turan, Rasit; Ki-Joo, Seung
2018-03-01
Nanotextured Si fabricated through metal-assisted chemical etching (MACE) technique exhibits a promising potential for producing antireflective layer for photovoltaic (PV) application. In this study, a novel single-step nickel (Ni) assisted etching technique was applied to produce an antireflective, nonporous Si (black Si) in an aqueous solution containing hydrofluoric acid (HF), hydrogen peroxide (H2O2) and NiSO4 at 40 °C. Field emission scanning electron microscope was used to characterize different morphologies of the textured Si. Optical reflection measurements of samples were carried out to compare the reflectivity of different morphologies. Results indicated that vertical as well as horizontal pores with nanosized diameters were bored in the Si wafer after 1 h treatment in the etching solution containing different molar ratios of H2O2 to HF. Increasing H2O2 concentration in electrochemical etching solution had a considerable influence on the morphology due to higher injection of positive charges from Ni atoms onto the Si surface. Optimized concentration of H2O2 led to formation of an antireflective layer with 2.1% reflectance of incident light.
Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav
2017-02-01
We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.
2017-01-01
The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.
NASA Astrophysics Data System (ADS)
Yan, M. F.; Liu, R. L.
2010-08-01
17-4PH stainless steel was plasma nitrocarburized at 430 °C for different time with rare earths (RE) addition. Plasma RE nitrocarburized layers were studied by optical microscope, scanning electron microscope equipped with an energy dispersive X-ray analyzer, X-ray diffraction, microhardness tests, pin-on-disc tribometer and anodic polarization tests. The results show that rare earths atoms can diffuse into the surface of 17-4PH steel. The modified layer depths increase with increasing process time and the layer growth conforms approximately to the parabolic law. The phases in the modified layer are mainly of γ'-Fe 4N, nitrogen and carbon expanded martensite (α' N) as well as some incipient CrN at short time (2 h). With increasing of process time, the phases of CrN and γ'-Fe 4N increase but α' N decomposes gradually. Interestingly, the peaks of γ'-Fe 4N display a high (2 0 0) plane preferred orientation. The hardness of the modified specimen is more than 1340 HV, which is about 3.7 times higher than that of untreated one. The friction coefficients and wear rates of specimens can be dramatically decreased by plasma RE nitrocarburizing. The surface hardness and the friction coefficients decrease gradually with increasing process time. The corrosion test shows that the 8 h treated specimen has the best corrosion resistance with the characterization of lower corrosion current density, a higher corrosion potential and a large passive region as compared with those of untreated one.
NASA Astrophysics Data System (ADS)
Teramoto, Tatsuya; Shikama, Taiichi; Ueda, Akira; Hasuo, Masahiro
2018-05-01
The anisotropy in the electron velocity distribution (EVD) was measured using the polarization of two helium atom emission lines, 21P-31D (668 nm) and 23P-33D (588 nm), in a helium electron cyclotron resonance (ECR) discharge plasma. A small polarization degree of less than 4% was measured by adopting a temporal modulation technique. It was found that the polarization originated locally from around the ECR layer and that the anisotropic component of the EVD produced by ECR heating had an average kinetic energy of approximately 40 eV.
Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process
NASA Astrophysics Data System (ADS)
Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG
2018-06-01
The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.
Sun, Xiangyu; Wu, Chuangui; Shuai, Yao; Pan, Xinqiang; Luo, Wenbo; You, Tiangui; Bogusz, Agnieszka; Du, Nan; Li, Yanrong; Schmidt, Heidemarie
2016-12-07
Low power consumption is crucial for the application of resistive random access memory. In this work, we present the bipolar resistive switching in an Ag/TiO x F y /Ti/Pt stack with extremely low switch-on voltage of 0.07 V. Operating current as low as 10 nA was also obtained by conductive atomic force microscopy. The highly defective TiO x F y layer was fabricated by plasma treatment using helium, oxygen, and carbon tetrafluoride orderly. During the electroforming process, AgF nanoparticles were formed due to the diffusion of Ag + which reacted with the adsorbed F - in the TiO x F y layer. These nanoparticles are of great importance to resistive switching performance because they are believed to be conductive phases and become part of the conducting path when the sample is switched to a low-resistance state.
Feng, Fada; Zheng, Yanyan; Shen, Xinjun; Zheng, Qinzhen; Dai, Shaolong; Zhang, Xuming; Huang, Yifan; Liu, Zhen; Yan, Keping
2015-06-02
The main technical challenges for the treatment of volatile organic compounds (VOCs) with plasma-assisted catalysis in industrial applications are large volume plasma generation under atmospheric pressure, byproduct control, and aerosol collection. To solve these problems, a back corona discharge (BCD) configuration has been designed to evenly generate nonthermal plasma in a honeycomb catalyst. Voltage-current curves, discharge images, and emission spectra have been used to characterize the plasma. Grade particle collection results and flow field visualization in the discharge zones show not only that the particles can be collected efficiently, but also that the pressure drop of the catalyst layer is relatively low. A three-stage plasma-assisted catalysis system, comprising a dielectric barrier discharge (DBD) stage, BCD stage, and catalyst stage, was built to evaluate toluene treatment performance by BCD. The ozone analysis results indicate that BCD enhances the ozone decomposition by collecting aerosols and protecting the Ag-Mn-O catalyst downstream from aerosol contamination. The GC and FTIR results show that BCD contributes to toluene removal, especially when the specific energy input is low, and the total removal efficiency reaches almost 100%. Furthermore, this removal results in the emission of fewer byproducts.
Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays
NASA Astrophysics Data System (ADS)
Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Mao, Shengchun
2015-08-01
Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F-) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F-, smaller azimuth angle of Fsbnd Ag(T4)sbnd Si, shorter bond length of Fsbnd Si compared with Fsbnd Ag. As F- was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF4 when it bonded with enough F- while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F- to Si.
NASA Astrophysics Data System (ADS)
Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun
2018-03-01
Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.
Atomic Layer Deposition of Al2O3 on GaSb Using In Situ Hydrogen Plasma Exposure
2012-12-03
Krishna, and A. Javey, Nano Lett. 12, 3592 (2012). 7A. Ali, H. Madan , A. Agrawal, I. Ramirez, R. Misra, J. B. Boos, B. R. Bennett, J. Lindemuth, and S...Trans. Electron Devices 58, 3407 (2011). 9M. Xu, R. S. Wang, and P. D. Ye, IEEE Electron Device Lett. 32, 883 (2011). 10A. Ali, H. S. Madan , A. P. Kirk
Coatings Would Protect Polymers Against Atomic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.
1995-01-01
Proposed interposition of layers of silver oxide tens to hundreds of angstroms thick between polymeric substrates and overlying films helps protect substrates against chemical attack by monatomic oxygen. In original application, polymer substrate would be, sheet of polyimide supporting array of solar photovoltaic cells on spacecraft in low orbit around Earth. Concept also applicable to protection of equipment in terrestrial laboratory and industrial vacuum and plasma chambers in which monatomic oxygen present.
Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties
Molnárová, Orsolya; Málek, Přemysl; Lukáč, František; Chráska, Tomáš
2016-01-01
The powder of an Al7075 alloy was prepared by gas atomization. A combination of cellular, columnar, and equiaxed dendritic-like morphology was observed in individual powder particles with continuous layers of intermetallic phases along boundaries. The cells are separated predominantly by high-angle boundaries, the areas with dendritic-like morphology usually have a similar crystallographic orientation. Spark plasma sintering resulted in a fully dense material with a microstructure similar to that of the powder material. The continuous layers of intermetallic phases are replaced by individual particles located along internal boundaries, coarse particles are formed at the surface of original powder particles. Microhardness measurements revealed both artificial and natural ageing behavior similar to that observed in ingot metallurgy material. The minimum microhardness of 81 HV, observed in the sample annealed at 300 °C, reflects the presence of coarse particles. The peak microhardness of 160 HV was observed in the sample annealed at 500 °C and then aged at room temperature. Compression tests confirmed high strength combined with sufficient plasticity. Annealing even at 500 °C does not significantly influence the distribution of grain sizes—about 45% of the area is occupied by grains with the size below 10 µm. PMID:28774126
Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride
NASA Astrophysics Data System (ADS)
Yusup, Luchana L.; Park, Jae-Min; Mayangsari, Tirta R.; Kwon, Young-Kyun; Lee, Won-Jun
2018-02-01
The reaction of precursor with surface active site is the critical step in atomic layer deposition (ALD) process. We performed the density functional theory calculation with DFT-D correction to study the surface reaction of different silicon chloride precursors during the first half cycle of ALD process. SiCl4, SiH2Cl2, Si2Cl6 and Si3Cl8 were considered as the silicon precursors, and an NH/SiNH2*-terminated silicon nitride surface was constructed to model the thermal ALD processes using NH3 as well as the PEALD processes using NH3 plasma. The total energies of the system were calculated for the geometry-optimized structures of physisorption, chemisorption, and transition state. The order of silicon precursors in energy barrier, from lowest to highest, is Si3Cl8 (0.92 eV), Si2Cl6 (3.22 eV), SiH2Cl2 (3.93 eV) and SiCl4 (4.49 eV). Silicon precursor with lower energy barrier in DFT calculation showed lower saturation dose in literature for both thermal and plasma-enhanced ALD of silicon nitride. Therefore, DFT calculation is a promising tool in predicting the reactivity of precursor during ALD process.
AFRL Research in Plasma-Assisted Combustion
2013-10-23
Scramjet propulsion Non-equilibrium flows Diagnostics for scramjet controls Boundary-layer transition Structural sciences for...hypersonic vehicles Computational sciences for hypersonic flight 3 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Overview Research...within My Division HIFiRE-5 Vehicle Launched 23 April 2012 can payload transition section Orion S-30 Focus on hypersonic flight: scalability
Creation of fluorocarbon barriers on surfaces of starch-based products through cold plasma treatment
NASA Astrophysics Data System (ADS)
Han, Yousoo
Two kinds of starch foam trays (starch and aspen-starch foam trays) were produced using a lab model baking machine. Surfaces of the trays were treated with CF4 and SF6 plasma to create fluorine-rich layers on the surfaces, which might show strong water resistance. The plasma parameters, such like RF power, gas pressure and reaction time, were varied to evaluate the effects of each parameter on fluorination of surfaces. The atomic concentrations of fluorine, oxygen and carbon on samples' surfaces were earned from ESCA (electron spectroscopy for chemical analysis) and contact angles of sample surfaces were measured for hydrophobicity. For water resistance of plasma treated surfaces, liquid water uptake and water vapor uptake test were performed. Also, equilibrium moisture contents of unmodified and plasma treated samples were measured to evaluate biodegradability of plasma treated samples. Fluorine-rich barriers were created on sample surfaces treated with CF 4 and SF6 plasma. The fluorine atomic concentrations of treated sample surfaces were ranged from 34.4% to 64.4% (CF4 treatment) and 43.6% to 57.9% (SF6 treatment). It was found at both plasma gases that plasma parameters affected total fluorine concentration and carbon-peak shapes in ESCA surveys, which imply different distributions of mono- or multi-fluoro carbon's contents. In various reaction times, it was found that total fluorine contents were decreased after a critical point as the reaction time was prolonged, which may imply that a dominant mechanism has been changed from deposition or functionalization to etching. Oxygen atomic concentration was decreased at sample surfaces treated by both plasmas. In the case of SF6 plasma, it was proved that the removal of oxygen surely occurred because there was no addition of sulfur species. Plasma treated sample surfaces had high contact angles with distilled water up to 150° and the high values of angles have been kept constant up to for 15 minutes. Fluorine-rich barriers created by plasma showed lower water liquid and vapor permeability than untreated surfaces did. Plasma treated samples had similar moisture contents with untreated samples at all relative humidity tested. AFM and SEM images were taken for sample surfaces' morphology and topography.
Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.
2016-12-06
This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less
Dielectric function for doped graphene layer with barium titanate
NASA Astrophysics Data System (ADS)
Martinez Ramos, Manuel; Garces Garcia, Eric; Magana, Fernado; Vazquez Fonseca, Gerardo Jorge
2015-03-01
The aim of our study is to calculate the dielectric function for a system formed with a graphene layer doped with barium titanate. Density functional theory, within the local density approximation, plane-waves and pseudopotentials scheme as implemented in Quantum Espresso suite of programs was used. We considered 128 carbon atoms with a barium titanate cluster of 11 molecules as unit cell with periodic conditions. The geometry optimization is achieved. Optimization of structural configuration is performed by relaxation of all atomic positions to minimize their total energies. Band structure, density of states and linear optical response (the imaginary part of dielectric tensor) were calculated. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.
NASA Astrophysics Data System (ADS)
Kapser, Stefan; Balden, Martin; Fiorini da Silva, Tiago; Elgeti, Stefan; Manhard, Armin; Schmid, Klaus; Schwarz-Selinger, Thomas; von Toussaint, Udo
2018-05-01
Low-energy-plasma-driven deuterium permeation through tungsten at 300 K and 450 K has been investigated. Microstructural analysis by scanning electron microscopy, assisted by focused ion beam, revealed sub-surface damage evolution only at 300 K. This damage evolution was correlated with a significant evolution of the deuterium amount retained below the plasma-exposed surface. Although both of these phenomena were observed for 300 K exposure temperature only, the deuterium permeation flux at both exposure temperatures was indistinguishable within the experimental uncertainty. The permeation flux was used to estimate the maximum ratio of solute-deuterium to tungsten atoms during deuterium-plasma exposure at both temperatures and thus in the presence and absence of damage evolution. Diffusion-trapping simulations revealed the proximity of damage evolution to the implantation surface as the reason for an only insignificant decrease of the permeation flux.
Microstructure and opto-electronic properties of Sn-rich Au-Sn diffusive solders
NASA Astrophysics Data System (ADS)
Rerek, T.; Skowronski, L.; Kobierski, M.; Naparty, M. K.; Derkowska-Zielinska, B.
2018-09-01
Microstructural and opto-electronic properties of Au ⧹ Sn and Sn ⧹ Au bilayers, obtained by sequential evaporating of metals on the Si substrate, were investigated by means of atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry. Thicknesses of individual films were established to obtain the atomic ratio of Au:Sn atoms 1:1, 1:2 and 1:4, which were favor the formation of AuSn, AuSn2 and AuSn4, respectively. However, the produced intermatallic compounds were detected as AuSn and AuSn2. Additionally, the unbounded Sn was found. The sequence of deposition of Au and Sn films as well as their thickness strongly affect on the composition, microstructure, optical and electrical properties of the produced layers. The Au ⧹ Sn (Sn on the top) layers were more smooth than Sn ⧹ Au (Au on the top) films. Generally, the Au ⧹ Sn layers exhibit a better electrical and optical properties than Sn ⧹ Au films. The optical parameters: plasma energy, free-carrier damping, mean relaxation time of conduction electrons and optical resistivity were determined from the effective complex dielectric function of the formed Au, Sn and Au-Sn films. The optical resistivity values are in the range from 17.8 μΩ cm to 85.1 μΩ cm and from 29.6 μΩ cm to 113.3 μΩ cm for Au ⧹ Sn and Sn ⧹ Au layers, respectively.
CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer
Xu, Toby; Tekes, Coskun; Degertekin, F. Levent
2014-01-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786
Optimization of ion-atomic beam source for deposition of GaN ultrathin films.
Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš
2014-08-01
We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.
NASA Astrophysics Data System (ADS)
Marley, Edward; Jarrot, Charlie; Schneider, Marilyn; Kemp, Elijah; Foord, Mark; Heeter, Robert; Liedahl, Duane; Widmann, Klause; Mauche, Christopher; Brown, Greg; Emig, James
2017-10-01
A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of coronal (non LTE) plasmas (ne few 1021/cm3, Te 0.8-1.2 keV) of mid Z materials. Studies have been done using a 250 μm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 μm diameter, 13 μm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the microdot vs time was measured with x-ray imaging (face-on and side-on). The radiant x-ray power was measured with a low-resolution absolutely calibrated x-ray spectrometer (DANTE). The temperature was measured from the Ti helium-beta complex. The use of this platform for the verification of atomic models is discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2017-12-01
This paper outlines the results of analysis and describes the structure of the thermal protection coatings formed by atomic ion stream deposition in vacuum, and plasma thermal spraying method. Crystallite structure features are considered along with the crystallite dimensions, spatial orientation, and position of the boundaries between separate crystallites. Discontinuity, volume, and morphology of the pores has been evaluated. Experimental studies have been accomplished using various fractions of the powder-like material ZrO2 - 8%Y2O3. The influence of the coating microstructure on the coating performance has been analyzed, such as adhesive strength, thermal stability, and thermal conductivity.
Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav
2014-09-01
The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muneshwar, Triratna, E-mail: muneshwa@ualberta.ca; Cadien, Ken; Shoute, Gem
2016-09-15
Although atomic layer deposition (ALD) of ZnO using diethyl zinc (DEZ) precursor has been extensively reported, variation in growth-per-cycle (GPC) values and the range of substrate temperature (T{sub sub}) for ALD growth between related studies remain unexplained. For identical processes, GPC for the characteristic self-limiting ALD growth is expected to be comparable. Hence, a significant variation in GPC among published ZnO ALD studies strongly suggests a concealed non-ALD growth component. To investigate this, the authors report plasma-enhanced ALD growth of ZnO using DEZ precursor and O{sub 2} inductively coupled plasma. The effect of T{sub sub} on ZnO GPC was studiedmore » with deposition cycles (1) 0.02 s–15 s–6 s–15 s, (2) 0.10 s–15 s–15 s–15 s, and (3) 0.20 s–15 s–30 s–15 s, where the cycle parameters t{sub 1}–t{sub 2}–t{sub 3}–t{sub 4} denote duration of DEZ pulse, post-DEZ purge, plasma exposure, and postplasma purge, respectively. The non-ALD growth characteristics observed at T{sub sub} ≥ 60 °C are discussed and attributed to DEZ precursor decomposition. The authors demonstrate ZnO growth at T{sub sub} = 50 °C to be self-limiting with respect to both t{sub 1} and t{sub 3} giving GPC of 0.101 ± 0.001 nm/cycle. The effect of precursor decomposition related (non-ALD) growth at T{sub sub} ≥ 60 °C is illustrated from comparison of optical dielectric function, electrical resistivity, and surface roughness of ZnO films deposited at T{sub sub} = 50, 125, and 200 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar K.; Reddy, G. B.
In this work, we have successfully developed plasma assisted paste sublimation route to deposit vertically aligned MoO{sub 3} nanoflakes (NFs) on nickel coated glass substrate in oxygen plasma ambience with the assistant of Ni thin layer as a catalyst. In our case, sublimation source (Mo strip surface) is resistively heated by flowing current across it. The structural, morphological, and optical properties of NFs have been investigated systematically using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), High resolution transmission electron microscopy (HRTEM), micro-Raman spectroscopy, and Photoluminescence (PL) spectroscopy. Studies reveal thatmore » the presence of oxygen plasma and the nickel thin layer are very essential for the growth of vertically aligned NFs. The observed results divulge that α-MoO{sub 3} NFs are deposited uniformly on large scale with very high aspect (height/thickness) ratio more than 30 and well aligned along [0 k 0] crystallographic direction where k is even (2, 4, 6). Raman spectrum shows a significant size effect on the vibrational property of MoO{sub 3} nanoflakes. The PL spectrum of MoO{sub 3} NFs was recorded at room temperature and four prominent peaks at 365 nm, 395 nm, 452 nm, and 465 nm corresponding to UV-visible region were observed. In this paper, a three step growth strategy for the formation of MoO{sub 3} NFs has been proposed in detail.« less
NASA Astrophysics Data System (ADS)
Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min
2017-05-01
The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.
2014-01-06
N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less
NASA Astrophysics Data System (ADS)
Craciun, V.; Singh, R. K.
2000-04-01
Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.
2015-10-21
Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N{sub 2} while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N{sub 2} and 7.7 sccm Ar flows at 600 W radio frequency power, for which themore » standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10{sup 16} to 3.8 × 10{sup 19} cm{sup −3} were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10{sup 15} cm{sup −3}. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically enhanced growth rates demonstrate great promise for the future of III-nitride devices grown by PAMBE.« less
Atomic oxygen recombination on the ODS PM 1000 at high temperature under air plasma
NASA Astrophysics Data System (ADS)
Balat-Pichelin, M.; Bêche, E.
2010-06-01
High temperature materials are necessary for the design of primary heat shields for future reusable space vehicles re-entering atmospheric planet at hypersonic velocity. During the re-entry phase on earth, one of the most important phenomena occurring on the heat shield is the recombination of atomic oxygen and this phenomenon is more or less catalyzed by the material of the heat shield. PM 1000 is planned to be use on the EXPERT capsule to study in real conditions its catalycity. Before the flight, it is necessary to perform measurements on ground test facility. Experimental data of the recombination coefficient of atomic oxygen under air plasma flow were obtained in the diffusion reactor MESOX on pre-oxidized PM 1000, for two total pressures 300 and 1000 Pa in the temperature range (850-1650 K) using actinometry and optical emission spectroscopy. In this investigation, the evolution of the recombination coefficient is dependent of temperature, pressure level and also of the chemical composition of the surface leading to one order of magnitude for a given temperature. The recombination coefficient is increasing with temperature and also dependent on the static pressure. The surface change due to the plasma exposure is inspected with SEM, XRD and XPS. As chromium oxide is the main part of the oxide layer formed during the oxidation in air plasma conditions, a sintered Cr 2O 3 sample was elaborated from powders to compare the data of the recombination coefficient obtained on PM 1000. Pre- and post-test analyses on the several materials were carried out using SEM, WDS, XRD and XPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.
2016-06-15
The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less
Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging
NASA Astrophysics Data System (ADS)
Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.
2017-10-01
This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.
Kim, Yoon-Jun; Tao, Runzhe; Klie, Robert F; Seidman, David N
2013-01-22
Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.
Multilayer optical dielectric coating
Emmett, John L.
1990-01-01
A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, S. V.; Ting, M.; Yu, K. M.
In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less
Numerical study of electronic impact and radiation in sonoluminescence
NASA Astrophysics Data System (ADS)
Xu, Ning; Wang, Long; Hu, Xiwei
1998-02-01
A hydrodynamic simulation of pure argon single-bubble sonoluminescence including electron collisional ionization, recombination, and radiative energy loss has been performed. We find that near the moment that the bubble reaches its minimum radius the atoms inside a very thin layer around the origin of the bubble are strongly ionized, and the light emission occurs nearly simultaneously. Therefore we conclude that multiple ionization and recombination, which mainly occur in the thin layer of plasma, play a dramatically important role in the noble gas sonoluminescence. We also find that the temperature and the intensity of luminescence are not so high as those predicted by previous models, which consider only neutral gases.
Sakuraba, Masao; Sugawara, Katsutoshi; Nosaka, Takayuki; Akima, Hisanao; Sato, Shigeo
2017-01-01
Abstract The atomic-layer (AL) doping technique in epitaxy has attracted attention as a low-resistive ultrathin semiconductor film as well as a two-dimensional (2-D) carrier transport system. In this paper, we report carrier properties for B AL-doped Si films with suppressed thermal diffusion. B AL-doped Si films were formed on Si(100) by B AL formation followed by Si cap layer deposition in low-energy Ar plasma-enhanced chemical-vapor deposition without substrate heating. After fabrication of Hall-effect devices with the B AL-doped Si films on unstrained and 0.8%-tensile-strained Si(100)-on-insulator substrates (maximum process temperature 350°C), carrier properties were electrically measured at room temperature. Typically for the initial B amount of 2 × 1014 cm−2 and 7 × 1014 cm−2, B concentration depth profiles showed a clear decay slope as steep as 1.3 nm/decade. Dominant carrier was a hole and the maximum sheet carrier densities as high as 4 × 1013 cm−2 and 2 × 1013 cm−2 (electrical activity ratio of about 7% and 3.5%) were measured respectively for the unstrained and 0.8%-tensile-strained Si with Hall mobility around 10–13 cm2 V−1 s−1. Moreover, mobility degradation was not observed even when sheet carrier density was increased by heat treatment at 500–700 °C. There is a possibility that the local carrier (ionized B atom) concentration around the B AL in Si reaches around 1021 cm−3 and 2-D impurity-band formation with strong Coulomb interaction is expected. The behavior of carrier properties for heat treatment at 500–700 °C implies that thermal diffusion causes broadening of the B AL in Si and decrease of local B concentration. PMID:28567175
NASA Astrophysics Data System (ADS)
Sakuraba, Masao; Sugawara, Katsutoshi; Nosaka, Takayuki; Akima, Hisanao; Sato, Shigeo
2017-12-01
The atomic-layer (AL) doping technique in epitaxy has attracted attention as a low-resistive ultrathin semiconductor film as well as a two-dimensional (2-D) carrier transport system. In this paper, we report carrier properties for B AL-doped Si films with suppressed thermal diffusion. B AL-doped Si films were formed on Si(100) by B AL formation followed by Si cap layer deposition in low-energy Ar plasma-enhanced chemical-vapor deposition without substrate heating. After fabrication of Hall-effect devices with the B AL-doped Si films on unstrained and 0.8%-tensile-strained Si(100)-on-insulator substrates (maximum process temperature 350°C), carrier properties were electrically measured at room temperature. Typically for the initial B amount of 2 × 1014 cm-2 and 7 × 1014 cm-2, B concentration depth profiles showed a clear decay slope as steep as 1.3 nm/decade. Dominant carrier was a hole and the maximum sheet carrier densities as high as 4 × 1013 cm-2 and 2 × 1013 cm-2 (electrical activity ratio of about 7% and 3.5%) were measured respectively for the unstrained and 0.8%-tensile-strained Si with Hall mobility around 10-13 cm2 V-1 s-1. Moreover, mobility degradation was not observed even when sheet carrier density was increased by heat treatment at 500-700 °C. There is a possibility that the local carrier (ionized B atom) concentration around the B AL in Si reaches around 1021 cm-3 and 2-D impurity-band formation with strong Coulomb interaction is expected. The behavior of carrier properties for heat treatment at 500-700 °C implies that thermal diffusion causes broadening of the B AL in Si and decrease of local B concentration.
Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong
2015-01-01
Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.
Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst
NASA Astrophysics Data System (ADS)
Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong
2015-02-01
Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Absorption D 3697-07 Atomic Absorption; Furnace 3113 B Axially viewed inductively coupled plasma-atomic... C Hydride Atomic Absorption 3114 B D 2972-08 B Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. Barium Inductively Coupled Plasma 3120 B Atomic...
Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser
NASA Astrophysics Data System (ADS)
Burdt, Russell A.; Yuspeh, Sam; Sequoia, Kevin L.; Tao, Yezheng; Tillack, Mark S.; Najmabadi, Farrokh
2009-08-01
The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3×1011 to 2×1012 W/cm2. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z =50) used in these experiments.
NASA Astrophysics Data System (ADS)
Kolokolov, N. B.; Blagoev, A. B.
1993-03-01
Studies of reactions involving excited atoms, which result in the release of electrons with energies exceeding the mean plasma electron energy, are reviewed. Particular attention is devoted to plasma electron spectroscopy (PES) which combines the advantages of studies of elementary plasma processes with those of traditional electron spectroscopy. Data obtained by investigating the following reactions are reported: chemoionization with the participation of two excited inert-gas atoms, Penning ionization of atoms and molecules by metastable helium atoms, and electron quenching of excited inert-gas atoms and mercury atoms. The effect of processes in which fast electrons are emitted on plasma properties is discussed.
Deployment of titanium thermal barrier for low-temperature carbon nanotube growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.Y.; Poa, C.H.P.; Henley, S.J.
2005-12-19
Chemical vapor-synthesized carbon nanotubes are typically grown at temperatures around 600 deg. C. We report on the deployment of a titanium layer to help elevate the constraints on the substrate temperature during plasma-assisted growth. The growth is possible through the lowering of the hydrocarbon content used in the deposition, with the only source of heat provided by the plasma. The nanotubes synthesized have a small diameter distribution, which deviates from the usual trend that the diameter is determined by the thickness of the catalyst film. Simple thermodynamic simulations also show that the quantity of heat, that can be distributed, ismore » determined by the thickness of the titanium layer. Despite the lower synthesis temperature, it is shown that this technique allows for high growth rates as well as better quality nanotubes.« less
NASA Astrophysics Data System (ADS)
Moore, Christopher Samuel
2017-11-01
Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Hinode X-ray Telescope (XRT), Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) and Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) to study the solar corona. This resulted in new insights on the coronal temperature distribution and elemental abundance variations for quiescence, active regions and during solar flares.
Distributed Pore Chemistry in Porous Organic Polymers
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1999-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1999-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
Distributed Pore Chemistry in Porous Organic Polymers
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1998-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
Cell-Culture Reactor Having a Porous Organic Polymer Membrane
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
2000-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
NASA Astrophysics Data System (ADS)
Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.
2017-07-01
β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.
NASA Astrophysics Data System (ADS)
Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen
2018-05-01
A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.
NASA Astrophysics Data System (ADS)
Abdul-Majeed, Wameath Sh
This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time analysis as well as a possibility of connecting the proposed device to control loops..
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
NASA Astrophysics Data System (ADS)
Arora, Sweety; Srivastava, Chandan
2017-02-01
A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.
Pt thermal atomic layer deposition for silicon x-ray micropore optics.
Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa
2018-04-20
We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.
The Structure of the Heliosphere as Seen from In Situ and Remote Observations
NASA Astrophysics Data System (ADS)
Pogorelov, N. V.; Heerikhuisen, J.; Kim, T. K.; Zhang, M.
2017-12-01
The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW-LISM interaction. By performing three-dimensional, MHD plasma / kinetic neutral atom simulations, we describe the structure of the outer heliosheath (OHS) - the LISM plasma region affected by the presence of the heliosphere - and analyze quantitatively the distributions in front of the heliopause. It is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. Numerical results are presented that reproduce shocks that pass by Voyager 1 in the OHS. We demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The effect of pickup ions is discussed in the context of in situ measurements. We also show that multi-TeV cosmic ray anisotropy can serve as an imager of the heliosphere due to its effect on the LISM properties. In particular, both the bow wave and the heliotail reveal themselves as characteristic features in the TeV flux images. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by IBEX. In particular, the position of the IBEX ribbon on the celestial sphere is strongly dependent on the choice of the plane that contains the vectors of velocity and magnetic field in the unperturbed LISM.
CERA-V: Microwave plasma stream source with variable ion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balmashnov, A.A.
1996-01-01
A microwave plasma stream source with variable ion energy operated under low magnetic field electron cyclotron resonance conditions has been developed. A two mode resonant cavity (TE{sub 111}, {ital E}{sub 010}) was used. It was established that overdense plasma creation (TE{sub 111}) and high energy in-phase space localized electron plasma oscillations ({ital E}{sub 010}) in a decreased magnetic field lead to the potential for ion energy variation from 10 to 300 eV (up to 1 A of ion current, and a plasma cross section of 75 cm{sup 2}, hydrogen) by varying the TE{sub 111}, {ital E}{sub 010} power, the valuemore » of the magnetic field, and pressure. The threshold level of {ital E}{sub 010}-mode power was also determined. An application of this CERA-V source to hydrogenation of semiconductor devices without deterioration of surface layers by ions and fast atoms is under investigation. {copyright} {ital 1996 American Vacuum Society}« less
78 FR 64414 - Assistance to Foreign Atomic Energy Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... DEPARTMENT OF ENERGY 10 CFR Part 810 RIN 1994-AA02 Assistance to Foreign Atomic Energy Activities... Assistance to Foreign Atomic Energy Activities since 1986. The NOPR reflected a need to make the regulations... concerning Assistance to Foreign Atomic Energy Activities since 1986. (76 FR 55278) The NOPR reflected a need...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aseev, Pavel, E-mail: pavel.aseev@upm.es; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.
The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology.
Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size
Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; ...
2015-03-23
Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less
Final report on CCQM-K125: elements in infant formula
NASA Astrophysics Data System (ADS)
Merrick, J.; Saxby, D.; Dutra, E. S.; Sena, R. C.; Araújo, T. O.; Almeida, M. D.; Yang, L.; Pihillagawa, I. G.; Mester, Z.; Sandoval, S.; Wei, C.; Castillo, M. E. D.; Oster, C.; Fisicaro, P.; Rienitz, O.; Pape, C.; Schulz, U.; Jährling, R.; Görlitz, V.; Lampi, E.; Kakoulides, E.; Sin, D. W. M.; Yip, Y. C.; Tsoi, Y. T.; Zhu, Y.; Okumu, T. O.; Yim, Y. H.; Heo, S. W.; Han, M.; Lim, Y.; Osuna, M. A.; Regalado, L.; Uribe, C.; Buzoianu, M. M.; Duta, S.; Konopelko, L.; Krylov, A.; Shin, R.; Linsky, M.; Botha, A.; Magnusson, B.; Haraldsson, C.; Thiengmanee, U.; Klich, H.; Can, S. Z.; Coskun, F. G.; Tunc, M.; Entwisle, J.; O'Reilly, J.; Hill, S.; Goenaga-Infante, H.; Winchester, M.; Rabb, S. A.; Pérez, R.
2017-01-01
CCQM-K125 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (K, Cu and I) in infant formula. Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratory. In CCQM-K125, 25 institutes submitted the results for potassium, 24 institutes submitted the results for copper and 8 institutes submitted the results for iodine. For examination of potassium and copper, most of the participants used microwave-assisted acid digestion methods for sample dissolution. A variety of instrumental techniques including inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), atomic absorption spectrometry (AAS), flame atomic emission spectrometry (FAES) and microwave plasma atomic emission spectroscopy (MP-AES) were employed by the participants for determination. For analysis of iodine, most of the participants used alkaline extraction methods for sample preparation. ICP-MS and ID-ICP-MS were used by the participants for the determination. Generally, the participants' results of CCQM-K125 were found consistent for all measurands according to their equivalence statements. Except with some extreme values, most of the participants obtained the values of di/U(di) within +/- 1 for the measurands. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy
NASA Astrophysics Data System (ADS)
Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.
2017-10-01
The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E
NASA Astrophysics Data System (ADS)
Gray, Zachary R.
This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.
NASA Astrophysics Data System (ADS)
Hijazi, Hussein; Martin, C.; Roubin, P.; Addab, Y.; Cabie, C.; Pardanaud, C.; Bannister, M.; Meyer, F.
2017-10-01
Nanocrystalline tungsten oxide thin films (25 nm - 250 nm thickness) produced by thermal oxidation of a tungsten substrate were exposed to low energy D and He plasma. Low energy D plasma exposure (11 eV/D+) of these films have resulted in the formation of a tungsten bronze (DxWO3) clearly observed by Raman microscopy. D plasma bombardment (4 1021 m-2) has also induced a color change of the oxide layer which is similar to the well-known electro-chromic effect and has been named ``plasma-chromic effect''. To unravel physical and chemical origins of the modifications observed under exposure, similar tungsten oxide films were also exposed to low energy helium plasma (20 eV/He+) . Due to the low fluence (4 1021 m-2) and low ion energy (20 eV), at room temperature, He exposure has induced only very few morphological and structural modifications. On the contrary, at 673 K, significant erosion is observed, which gives evidence for an unexpected thermal enhancement of the erosion yield. We present here new results concerning He beam exposures at low fluence (4 1021 m-2) varying the He+ energy from 20 eV to 320 eV to measure the tungsten oxide sputtering threshold energy. Detailed analyses before/after exposure to describe the D and He interaction with the oxide layer, its erosion and structural modification at the atomic and micrometer scale will be presented.
Atomic Layer Deposition of the Metal Pyrites FeS2 , CoS2 , and NiS2.
Guo, Zheng; Wang, Xinwei
2018-05-14
Atomic layer deposition (ALD) of the pyrite-type metal disulfides FeS 2 , CoS 2 , and NiS 2 is reported for the first time. The deposition processes use iron, cobalt, and nickel amidinate compounds as the corresponding metal precursors and the H 2 S plasma as the sulfur source. All the processes are demonstrated to follow ideal self-limiting ALD growth behavior to produce fairly pure, smooth, well-crystallized, stoichiometric pyrite FeS 2 , CoS 2 , and NiS 2 films. By these processes, the FeS 2 , CoS 2 , and NiS 2 films can also be uniformly and conformally deposited into deep narrow trenches with aspect ratios as high as 10:1, which thereby highlights the broad and promising applicability of these ALD processes for conformal film coatings on complex high-aspect-ratio 3D architectures in general. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.
2016-07-01
The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).
NASA Astrophysics Data System (ADS)
Juneja, Sucheta; Verma, Payal; Savelyev, Dmitry A.; Khonina, Svetlana N.; Sudhakar, S.; Kumar, Sushil
2016-04-01
An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotsari, A.; Kehagias, Th.; Katsikini, M.
2014-06-07
Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults,more » and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanaghi, Ali, E-mail: alishanaghi@gmail.com; Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir; Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com
Highlights: ► The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperaturesmore » are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. P., E-mail: popov@isp.nsc.ru; Ilnitskii, M. A.; Zhanaev, E. D.
2016-05-15
The properties of protective dielectric layers of aluminum oxide Al{sub 2}O{sub 3} applied to prefabricated silicon-nanowire transistor biochips by the plasma enhanced atomic layer deposition (PEALD) method before being housed are studied depending on the deposition and annealing modes. Coating the natural silicon oxide with a nanometer Al{sub 2}O{sub 3} layer insignificantly decreases the femtomole sensitivity of biosensors, but provides their stability in bioliquids. In deionized water, transistors with annealed aluminum oxide are closed due to the trapping of negative charges of <(1–10) × 10{sup 11} cm{sup −2} at surface states. The application of a positive potential to the substratemore » (V{sub sub} > 25 V) makes it possible to eliminate the negative charge and to perform multiple measurements in liquid at least for half a year.« less
Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D
2014-11-12
Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.
Development of plasma assisted thermal vapor deposition technique for high-quality thin film.
Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae
2016-12-01
The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.
Development of plasma assisted thermal vapor deposition technique for high-quality thin film
NASA Astrophysics Data System (ADS)
Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae
2016-12-01
The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.
NASA Astrophysics Data System (ADS)
Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.
2017-08-01
The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH2 fraction ∼8.5%. This value is closely matching the NH2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably related to the side reaction of benzaldehydes with conjugated imines, the proposed IFA derivatization of primary amines can be an alternative procedure for the quantification of surface amine groups.
Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces
NASA Astrophysics Data System (ADS)
Mattson, E. C.; Michalak, D. J.; Veyan, J. F.; Chabal, Y. J.
2017-02-01
Cobalt-iron-boron (CoFeB) thin films are the industry standard for ferromagnetic layers in magnetic tunnel junction devices and are closely related to the relevant surfaces of CoFe-based catalysts. Identifying and understanding the composition of their surfaces under relevant processing conditions is therefore critical. Here we report fundamental studies on the interaction of nitrogen plasma with CoFeB surfaces using infrared spectroscopy, x-ray photoemission spectroscopy, and low energy ion scattering. We find that, upon exposure to nitrogen plasma, clean CoFeB surfaces spontaneously reorganize to form an overlayer comprised of Fe2N3 and BN, with the Co atoms moved well below the surface through a chemically driven process. Subsequent annealing to 400 °C removes nitrogen, resulting in a Fe-rich termination of the surface region.
NASA Astrophysics Data System (ADS)
Elam, Fiona M.; Starostin, Sergey A.; Meshkova, Anna S.; van der Velden-Schuermans, Bernadette C. A. M.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.
2017-06-01
Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense ‘barrier layer’ and comparatively porous ‘buffer layer’ onto a flexible polyethylene 2,6 naphthalate substrate. For both layers, tetraethyl orthosilicate was used as the precursor gas, together with a mixture of nitrogen, oxygen and argon. The bilayer films demonstrated exceptionally low effective water vapour transmission rates in the region of 6.1 × 10-4 g m-2 d-1 (at 40 °C, 90% relative humidity), thus capable of protecting flexible photovoltaics and thin film transistors from degradation caused by oxygen and water. The presence of the buffer layer within the bilayer architecture was mandatory in order to achieve the excellent encapsulation performance. Atomic force microscopy in addition to solvent permeation measurements, confirmed that the buffer layer prevented the formation of performance-limiting defects in the bilayer thin films, which likely occur as a result of excessive plasma-surface interactions during the deposition process. It emerged that the primary function of the buffer layer was therefore to act as a protective coating for the flexible polymer substrate material.
Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas
2016-01-01
In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. PMID:28773494
Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas
2016-05-13
In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans' and animals' infected wounds were used. It is demonstrated that the efficiency of the Ag⁺ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.
Lu, Chi-Yu; Liu, Fei-Tsui; Feng, Chia-Hsien
2011-09-15
The renin-angiotensin-aldosterone system (RAAS) is an essential body fluid maintenance system that controls pressure in the human body. The conversion of angiotensin I to angiotensin II by angiotensin-converting enzyme (ACE) is a key process in the RAAS because angiotensin II causes the vasoconstriction association with hypertension. Because of its effectiveness as an ACE blocker, quinipril is widely used for clinical treatment of hypertension and chronic congestive heart failure(.) Matrix-assisted laser desorption/ionization coupled with time-of-flight analyzer (MALDI-TOF) is a high throughput instrument for biological sample analysis. This study developed a micro-scale approach for using MALDI-TOF to detect quinapril in biological samples. A micro-liquid-liquid-extraction strategy combined with ion-pair interaction successfully extracted quinapril from aqueous layer to organic layer. Quinolones were then used as matrix additives to suppress undesired substances in plasma produce signals. Several factors affecting extraction efficiency were investigated in a biosample with a volume of only 10 μL. This method is successful to monitor quinapril in the clinical therapeutic range. The proposed method proved effective for monitoring the trace amounts of quinapril typically used for clinical therapy. The relative standard deviation (R.S.D.) and relative error (R.E.) used for evaluating within- and between-day assays of quinapril in plasma consistently remained below 15%. Copyright © 2011. Published by Elsevier B.V.
Laser-assisted atom probe tomography of Ti/TiN films deposited on Si.
Sanford, N A; Blanchard, P T; White, R; Vissers, M R; Diercks, D R; Davydov, A V; Pappas, D P
2017-03-01
Laser-assisted atom probe tomography (L-APT) was used to examine superconducting TiN/Ti/TiN trilayer films with nominal respective thicknesses of 5/5/5 (nm). Such materials are of interest for applications that require large arrays of microwave kinetic inductance detectors. The trilayers were deposited on Si substrates by reactive sputtering. Electron energy loss microscopy performed in a scanning transmission electron microscope (STEM/EELS) was used to corroborate the L-APT results and establish the overall thicknesses of the trilayers. Three separate batches were studied where the first (bottom) TiN layer was deposited at 500°C (for all batches) and the subsequent TiN/Ti bilayer was deposited at ambient temperature, 250°C, and 500°C, respectively. L-APT rendered an approximately planar TiN/Si interface by making use of plausible mass-spectral assignments to N 3 1+ , SiN 1+ , and SiO 1+ . This was necessary since ambiguities associated with the likely simultaneous occurrence of Si 1+ and N 2 1+ prevented their use in rendering the TiN/Si interface upon reconstruction. The non-superconducting Ti 2 N phase was also revealed by L-APT. Neither L-APT nor STEM/EELS rendered sharp Ti/TiN interfaces and the contrast between these layers diminished with increased film deposition temperature. L-APT also revealed that hydrogen was present in varying degrees in all samples including control samples that were composed of single layers of Ti or TiN. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Vazquez, Gerardo; Magana, Fernando; Salas-Torres, Osiris
We explore the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti) and the possibility of inducing superconductivity in a graphene sheet in two cases, one by doping its surface with palladium atoms sit on the center of the hexagons of the graphene layer and other by covering the graphene layer with two layers of titanium metal atoms. The results here were obtained from first-principles density functional theory in the local density approximation. The Quantum-Espresso package was used with norm conserving pseudopotentials. All of the structures considered were relaxed to their minimum energy configuration. Phonon frequencies were calculated using the linear-response technique on several phonon wave-vector mesh. The electron-phonon coupling parameter was calculated with several electron momentum k-mesh. The superconducting critical temperature was estimated using the Allen-Dynes formula with μ* = 0.1 - 0.15. We note that palladium and titanium are good candidate materials to show a metal-to-superconductor transition. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.
Surfactant-assisted atomic-level engineering of spin valves
NASA Astrophysics Data System (ADS)
Chopra, Harsh Deep; Yang, David X.; Chen, P. J.; Egelhoff, W. F.
2002-03-01
Surfactant Ag is successfully used to atomically engineer interfaces and nanostructure in NiO-Co-Cu-based bottom spin valves. At a Cu spacer thickness of 1.5 nm, a strong net ferromagnetic (or positive) coupling >13.92 kA/m (>175 Oe) between NiO-pinned and ``free'' Co layers leads to a negligible ``giant'' magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, the net ferromagnetic coupling could be reduced by a factor of 2 or more in spin valves deposited in the presence of ~1-3 ML of surfactant Ag, and such samples exhibit more than an order of magnitude increase in GMR (8.5-13 %). Based on transmission electron microscopy (TEM), a large contribution to net ferromagnetic coupling in Ag-free samples could be directly attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy and TEM studies show that surfactant Ag floats out to the surface during deposition of successive Co and Cu overlayers, leaving behind smooth interfaces and continuous layers that are less prone to intermixing and pinholes. The use of surfactants in the present study also illustrates their potential use in atomic engineering of magnetoelectronics devices and other multilayer systems.
A new solution chemical method to make low dimensional thermoelectric materials
NASA Astrophysics Data System (ADS)
Ding, Zhongfen
2001-11-01
Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.
Investigation of the flatband voltage (V(FB)) shift of Al2O3 on N2 plasma treated Si substrate.
Kim, Hyungchul; Lee, Jaesang; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag
2013-09-01
The relationships between the physical and electrical characteristics of films treated with N2 plasma followed by forming gas annealing (FGA) were investigated. The Si substrates were treated with various radio frequency (RF) power levels under a N2 ambient. Al2O3 films were then deposited on Si substrates via remote plasma atomic-layer deposition. The plasma characteristics, such as the radical and ion density, were investigated using optical emission spectroscopy. Through X-ray photoelectron spectroscopy, the chemical-bonding configurations of the samples treated with N2 plasma and FGA were examined. The quantity of Si-N bonds increased as the RF power was increased, and Si--O--N bonds were generated after FGA. The flatband voltage (VFB) was shifted in the negative direction with increasing RF power, but the VFB values of the samples after FGA shifted in the positive direction due to the formation of Si--O--N bonds. N2 plasma treatment with various RF power levels slightly increased the leakage current due to the generation of defect sites.
K-distribution models for gas mixtures in hypersonic nonequilibrium flows
NASA Astrophysics Data System (ADS)
Bansal, Ankit
Calculation of nonequilibrium radiation field in plasmas around a spacecraft entering into an atmosphere at hypersonic velocities is a very complicated and computationally expensive task. The objective of this Dissertation is to collect state-of-the art spectroscopic data for the evaluation of spectral absorption and emission coefficients of atomic and molecular gases, develop efficient and accurate spectral models and databases, and study the effect of radiation on wall heat loads and flowfield around the spacecraft. The most accurate simulation of radiative transport in the shock layer requires calculating the gas properties at a large number of wavelengths and solving the Radiative Transfer Equation (RTE) in a line-by-line (LBL) fashion, which is prohibitively expensive for coupled simulations. A number of k-distribution based spectral models are developed for atomic lines, continuum and molecular bands that allow efficient evaluation of radiative properties and heat loads in hypersonic shock layer plasma. Molecular radiation poses very different challenges than atomic radiation. A molecular spectrum is governed by simultaneous electronic, vibrational and rotational transitions, making the spectrum very strongly dependent on wavelength. In contrast to an atomic spectrum, where line wings play a major role in heat transfer, most of the heat transfer in molecular spectra occurs near line centers. As the first step, k-distribution models are developed separately for atomic and molecular species, taking advantage of the fact that in the Earth's atmosphere the radiative field is dominated by atomic species (N and O) and in Titan's and Mars' atmospheres molecular bands of CN and CO are dominant. There are a number of practical applications where both atomic and molecular species are present, for example, the vacuum-ultra-violet spectrum during Earth's reentry conditions is marked by emission from atomic bound-bound lines and continuum and simultaneous absorption by strong bands of N2. For such cases, a new model is developed for the treatment of gas mixtures containing atomic lines, continuum and molecular bands. Full-spectrum k-distribution (FSK) method provides very accurate results compared to those obtained from the exact line-by-line method. For cases involving more extreme gradients in species concentrations and temperature, full-spectrum k-distribution model is relatively less accurate, and the method is refined by dividing the spectrum into a number of groups or scales, leading to the development of multi-scale models. The detailed methodology of splitting the gas mixture into scales is presented. To utilize the full potential of the k-distribution methods, pre-calculated values of k-distributions are stored in databases, which can later be interpolated at local flow conditions. Accurate and compact part-spectrum k-distribution databases are developed for atomic species and molecular bands. These databases allow users to calculate desired full-spectrum k-distributions through look-up and interpolation. Application of the new spectral models and databases to shock layer plasma radiation is demonstrated by solving the radiative transfer equation along typical one-dimensional flowfields in Earth's, Titan's and Mars' atmospheres. The k-distribution methods are vastly more efficient than the line-by-line method. The efficiency of the method is compared with the line-by-line method by measuring computational times for a number of test problems, showing typical reduction in computational time by a factor of more than 500 for property evaluation and a factor of about 32,000 for the solution of the RTE. A large percentage of radiative energy emitted in the shock-layer is likely to escape the region, resulting in cooling of the shock layer. This may change the flow parameters in the flowfield and, in turn, can affect radiative as well as convective heat loads. A new flow solver is constructed to simulate coupled hypersonic flow-radiation over a reentry vehicle. The flow solver employs a number of existing schemes and tools available in OpenFOAM; along with a number of additional features for high temperature, compressible and chemically reacting flows, and k-distribution models for radiative calculations. The radiative transport is solved with the one-dimensional tangent slab and P1 solvers, and also with the two-dimensional P1 solver. The new solver is applied to simulate flow around an entry vehicle in Martian atmosphere. Results for uncoupled and coupled flow-radiation simulations are presented, highlighting the effects of radiative cooling on flowfield and wall fluxes.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in
2016-05-23
Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH{sub 4} + CH{sub 4})-plasma with PH{sub 3} as the doping gas. The effect of PH{sub 3} flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si–QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10{sup −2} S cm{sup −1}) are obtained, which could be appropriately used as n-type window layers for nc-Si solarmore » cells in n-i-p configuration.« less
Plasma transport in an Eulerian AMR code
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; ...
2017-04-04
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions tomore » flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.« less
Plasma transport in an Eulerian AMR code
NASA Astrophysics Data System (ADS)
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; Molvig, K.; Simakov, A. N.; Haines, B. M.
2017-04-01
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions to flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.
Picosecond Streaked K-Shell Spectroscopy of Near Solid-Density Aluminum Plasmas
NASA Astrophysics Data System (ADS)
Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.
2016-10-01
The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured. The targets were driven by high-contrast 1 ω or 2 ω laser pulses at focused intensities up to 1 ×1019W/Wcm2 cm2 . A streaked x-ray spectrometer recorded the Al Heα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E/E ΔE 700). Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Line widths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic model to provide the average plasma conditions in the buried layer as a function of time. It was observed that the resonance line tends toward lower photon energies at high electron densities. The measured shifts will be compared to predicted shifts from Stark-operator calculations at the inferred plasma conditions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the office of Fusion Energy Sciences Award Number DE-SC0012317, and the Stewardship Science Graduate Fellowship Grant Number DE-NA0002135.
Xu, Zhongguang; Tian, Hao; Khanaki, Alireza; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin
2017-01-01
Two-dimensional (2D) hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is promising as a dielectric material for a wide variety of potential applications based on 2D materials. Synthesis of high-quality, large-size and single-crystalline h-BN domains is of vital importance for fundamental research as well as practical applications. In this work, we report the growth of h-BN films on mechanically polished cobalt (Co) foils using plasma-assisted molecular beam epitaxy. Under appropriate growth conditions, the coverage of h-BN layers can be readily controlled by growth time. A large-area, multi-layer h-BN film with a thickness of 5~6 nm is confirmed by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. In addition, the size of h-BN single domains is 20~100 μm. Dielectric property of as-grown h-BN film is evaluated by characterization of Co(foil)/h-BN/Co(contact) capacitor devices. Breakdown electric field is in the range of 3.0~3.3 MV/cm, which indicates that the epitaxial h-BN film has good insulating characteristics. In addition, the effect of substrate morphology on h-BN growth is discussed regarding different domain density, lateral size, and thickness of the h-BN films grown on unpolished and polished Co foils. PMID:28230178
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Sinha, C.
2012-01-01
The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Atomic Oxygen Durability Evaluation of Protected Polymers Using Thermal Energy Plasma Systems
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.; Stidham, Curtis R.; Gebauer, Linda; Lamoreaux, Cynthia M.
1995-01-01
The durability evaluation of protected polymers intended for use in low Earth orbit (LEO) has necessitated the use of large-area, high-fluence, atomic oxygen exposure systems. Two thermal energy atomic oxygen exposure systems which are frequently used for such evaluations are radio frequency (RF) plasma ashers and electron cyclotron resonance plasma sources. Plasma source testing practices such as ample preparation, effective fluence prediction, atomic oxygen flux determination, erosion measurement, operational considerations, and erosion yield measurements are presented. Issues which influence the prediction of in-space durability based on ground laboratory thermal energy plasma system testing are also addressed.
Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas
NASA Astrophysics Data System (ADS)
Allen, Luke Daniel
Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.
2018-01-01
Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiOx and HfOx and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiNx and HfNx films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiOx were slightly improved whereas those of SiNx were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed. PMID:29554799
NASA Astrophysics Data System (ADS)
Berthold, Theresa; Rombach, Julius; Stauden, Thomas; Polyakov, Vladimir; Cimalla, Volker; Krischok, Stefan; Bierwagen, Oliver; Himmerlich, Marcel
2016-12-01
The influence of oxygen plasma treatments on the surface chemistry and electronic properties of unintentionally doped and Mg-doped In2O3(111) films grown by plasma-assisted molecular beam epitaxy or metal-organic chemical vapor deposition is studied by photoelectron spectroscopy. We evaluate the impact of semiconductor processing technology relevant treatments by an inductively coupled oxygen plasma on the electronic surface properties. In order to determine the underlying reaction processes and chemical changes during film surface-oxygen plasma interaction and to identify reasons for the induced electron depletion, in situ characterization was performed implementing a dielectric barrier discharge oxygen plasma as well as vacuum annealing. The strong depletion of the initial surface electron accumulation layer is identified to be caused by adsorption of reactive oxygen species, which induce an electron transfer from the semiconductor to localized adsorbate states. The chemical modification is found to be restricted to the topmost surface and adsorbate layers. The change in band bending mainly depends on the amount of attached oxygen adatoms and the film bulk electron concentration as confirmed by calculations of the influence of surface state density on the electron concentration and band edge profile using coupled Schrödinger-Poisson calculations. During plasma oxidation, hydrocarbon surface impurities are effectively removed and surface defect states, attributed to oxygen vacancies, vanish. The recurring surface electron accumulation after subsequent vacuum annealing can be consequently explained by surface oxygen vacancies.
Sieradzki, A; Kuznicki, Z T
2013-01-01
The ultrafast reflectivity of silicon, excited and probed with femtosecond laser pulses, is studied for different wavelengths and energy densities. The confinement of carriers in a thin surface layer delimited by a nanoscale Si-layered system buried in a Si heavily-doped wafer reduces the critical density of carriers necessary to create the electron plasma by a factor of ten. We performed two types of reflectivity measurements, using either a single beam or two beams. The plasma strongly depends on the photon energy density because of the intervalley scattering of the electrons revealed by two different mechanisms assisted by the electron-phonon interaction. One mechanism leads to a negative differential reflectivity that can be attributed to an induced absorption in X valleys. The other mechanism occurs, when the carrier population is thermalizing and gives rise to a positive differential reflectivity corresponding to Pauli-blocked intervalley gamma to X scattering. These results are important for improving the efficiency of Si light-to-electricity converters, in which there is a possibility of multiplying carriers by nanostructurization of Si.
NASA Astrophysics Data System (ADS)
Sun, Zhencui; Man, Baoyuan; Yang, Cheng; Liu, Mei; Jiang, Shouzhen; Zhang, Chao; Zhang, Jiaxin; Liu, Fuyan; Xu, Yuanyuan
2016-03-01
Se seed layers were used to synthesize the high-quality graphene-Bi2Se3 nanoplates hybrid Dirac materials via chemical vapor deposition (CVD) method. The morphology, crystallization and structural properties of the hybrid Dirac materials were characterized by SEM, EDS, Raman, XRD, AFM and HRTEM. The measurement results verify that the Se seed layer on the graphene surface can effectively saturate the surface dangling bonds of the graphene, which not only impel the uniform Bi2Se3 nanoplates growing along the horizontal direction but also can supply enough Se atoms to fill the Se vacancies. We also demonstrate the Se seed layer can effectively avoid the interaction of Bi2Se3 and the graphene. Further experiments testify the different Se seed layer on the graphene surface can be used to control the density of the Bi2Se3 nanoplates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.
Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less
Anomalous acceleration of ions in a plasma accelerator with an anodic layer
NASA Astrophysics Data System (ADS)
V, M. BARDAKOV; S, D. IVANOV; A, V. KAZANTSEV; N, A. STROKIN; A, N. STUPIN; Binhao, JIANG; Zhenyu, WANG
2018-03-01
In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage V d. The E × B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eV d (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eV d. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8 × 10 -2 ≤ B rA ≤ 4 × 10 -2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.
PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.
The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humayun, Md Tanim; Sainato, Michela; Divan, Ralu
We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less
Humayun, Md Tanim; Sainato, Michela; Divan, Ralu; ...
2017-07-28
We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less
Post, R.F.
1962-09-01
A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Ching-Ting
2016-01-15
A plasma-enhanced atomic layer deposition (PE-ALD) system was used to deposit magnesium zinc oxide (Mg{sub x}Zn{sub 1−x}O) films with various Mg content (x). The Mg{sub x}Zn{sub 1-x}O films were applied to metal–semiconductor–metal ultraviolet (UV) photodetectors (MSM-UPDs) as an active layer. The Mg content in the Mg{sub x}Zn{sub 1-x}O films was modulated by adjusting the ZnO–MgO cycle ratios to 15:1, 12:1, and 9:1. Correspondingly, the Mg content in the Mg{sub x}Zn{sub 1-x}O films characterized using an energy dispersive spectrometer was 0.10, 0.13, and 0.16, respectively. The optical bandgap of the Mg{sub x}Zn{sub 1-x}O films increased from 3.56 to 3.66 eV withmore » an increase in Mg content from 0.10 to 0.16. The peak position of photoresponsivity for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was also shifted from 350 to 340 nm. The UV-visible rejection ratios of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were higher than 3 orders of magnitude. In addition, excellent detectivity and noise equivalent power for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were observed at a bias voltage of 5 V. The high performance of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was achieved by PE-ALD at a low temperature.« less
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi
2009-11-01
In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.
Gold-implanted shallow conducting layers in polymethylmethacrylate
NASA Astrophysics Data System (ADS)
Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.
2009-03-01
PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.
NASA Astrophysics Data System (ADS)
Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas
2016-04-01
Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C4F8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C4F8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.
Park, Hamin; Shin, Gwang Hyuk; Lee, Khang June; Choi, Sung-Yool
2018-05-29
Hexagonal boron nitride (h-BN) is considered an ideal template for electronics based on two-dimensional (2D) materials, owing to its unique properties as a dielectric film. Most studies involving h-BN and its application to electronics have focused on its synthesis using techniques such as chemical vapor deposition, the electrical analysis of its surface state, and the evaluation of its performance. Meanwhile, processing techniques including etching methods have not been widely studied despite their necessity for device fabrication processes. In this study, we propose the atomic-scale etching of h-BN for integration into devices based on 2D materials, using Ar plasma at room temperature. A controllable etching rate, less than 1 nm min-1, was achieved and the low reactivity of the Ar plasma enabled the atomic-scale etching of h-BN down to a monolayer in this top-down approach. Based on the h-BN etching technique for achieving electrical contact with the underlying molybdenum disulfide (MoS2) layer of an h-BN/MoS2 heterostructure, a top-gate MoS2 field-effect transistor (FET) with h-BN gate dielectric was fabricated and characterized by high electrical performance based on the on/off current ratio and carrier mobility.
NASA Astrophysics Data System (ADS)
Ricard, André; Sarrette, Jean-Philippe; Wang, Yunfei; Kim, Yu-Kwon
2017-10-01
N2/0-5% H2 flowing afterglows from Radio Frequency (RF) and High Frequency (HF) sources have been analyzed by optical emission spectroscopy. In similar conditions (pressure 5-6 Torr, flow rate 0.5 slm and power 100 W), it is found in pure N2 a nearly constant N-atom density from the pink to the late afterglow, which is higher in HF than in RF: (1-2) and 0.4 × 1015 cm-3, respectively. With a N2/2% H2 gas mixture, the early afterglows is changed to a late afterglow with about the same N-atom density for both RF and HF cases: (8-9) × 1014 cm-3. Anatase TiO2 nanocrystals and Atomic Layer Deposition-grown films were exposed to the RF afterglows at room temperature. XPS analysis of the samples has shown that the highest N/Ti ratio of 0.24 can be achieved with the pure N2 late afterglow. In the HF pure N2 late afterglow, however, the N/Ti coverage was limited to 0.04 in spite of higher N-atom density. Such differences in the N content between the two RF and HF cases are attributed to the presence of a high O-atom impurity of 2 × 1013 cm-3 in HF as compared to that (8 × 1011 cm-3) in RF. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea
On-stack two-dimensional conversion of MoS2 into MoO3
NASA Astrophysics Data System (ADS)
Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin
2017-03-01
Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas
NASA Astrophysics Data System (ADS)
Takamura, S.; Uesugi, Y.
2015-03-01
Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.
Criado, Miryam; Rebollar, Esther; Nogales, Aurora; Ezquerra, Tiberio A; Boulmedais, Fouzia; Mijangos, Carmen; Hernández, Rebeca
2017-01-09
Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.
Faraz, Tahsin; van Drunen, Maarten; Knoops, Harm C M; Mallikarjunan, Anupama; Buchanan, Iain; Hausmann, Dennis M; Henri, Jon; Kessels, Wilhelmus M M
2017-01-18
The advent of three-dimensional (3D) finFET transistors and emergence of novel memory technologies place stringent requirements on the processing of silicon nitride (SiN x ) films used for a variety of applications in device manufacturing. In many cases, a low temperature (<400 °C) deposition process is desired that yields high quality SiN x films that are etch resistant and also conformal when grown on 3D substrate topographies. In this work, we developed a novel plasma-enhanced atomic layer deposition (PEALD) process for SiN x using a mono-aminosilane precursor, di(sec-butylamino)silane (DSBAS, SiH 3 N( s Bu) 2 ), and N 2 plasma. Material properties have been analyzed over a wide stage temperature range (100-500 °C) and compared with those obtained in our previous work for SiN x deposited using a bis-aminosilane precursor, bis(tert-butylamino)silane (BTBAS, SiH 2 (NH t Bu) 2 ), and N 2 plasma. Dense films (∼3.1 g/cm 3 ) with low C, O, and H contents at low substrate temperatures (<400 °C) were obtained on planar substrates for this process when compared to other processes reported in the literature. The developed process was also used for depositing SiN x films on high aspect ratio (4.5:1) 3D trench nanostructures to investigate film conformality and wet-etch resistance (in dilute hydrofluoric acid, HF/H 2 O = 1:100) relevant for state-of-the-art device architectures. Film conformality was below the desired levels of >95% and attributed to the combined role played by nitrogen plasma soft saturation, radical species recombination, and ion directionality during SiN x deposition on 3D substrates. Yet, very low wet-etch rates (WER ≤ 2 nm/min) were observed at the top, sidewall, and bottom trench regions of the most conformal film deposited at low substrate temperature (<400 °C), which confirmed that the process is applicable for depositing high quality SiN x films on both planar and 3D substrate topographies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo
2009-09-01
Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less
Surface interaction of polyimide with oxygen ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.
2004-07-01
Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.
NASA Astrophysics Data System (ADS)
Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa
2018-04-01
In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.
Damage evaluation in graphene underlying atomic layer deposition dielectrics
Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.
2015-01-01
Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors. PMID:26311131
NASA Astrophysics Data System (ADS)
Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy
2012-12-01
A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya
2015-03-02
A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.
Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.
Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav
2015-01-01
Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial Concentrations of Silicon Atoms in RF Discharges of Silane.
1985-02-18
regions. These profiles were much more sensitive to plasma chemistry changes than profiles obtained from plasma emission. Experiments with nitrogen...addition demonstrated significant changes in the silicon atom profiles near the sheath boundary. Originator supplied keywords include: rf discharge, silane, plasma chemistry , silicon atom, laser-induced fluorescence.
NASA Astrophysics Data System (ADS)
Karbasian, Golnaz
The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam lithography and lift-off, while atomic layer deposition provides precise control over the thickness of the tunnel barrier and significantly increases the choices for barrier materials. As described below in detail, the fabrication of ultra-thin (~1nm) tunnel transparent barriers with PEALD is in fact challenging; we demonstrate that in fabrication of SETs with PEALD to form the barrier in the Ni-insulator-Ni tunnel junctions, additional NiO layers are parasitically formed in the Ni layers that form the top and bottom electrodes of the tunnel junctions. The NiO on the bottom electrode is formed due to oxidizing effect of the O 2 plasma used in the PEALD process, while the NiO on the bottom of the top electrode is believed to form during the metal deposition due to oxygen-containing contaminants on the surface of the deposited tunnel barrier. We also show that due to the presence of these surface parasitic layers of NiO, the resistance of Ni-insulator-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with the tunnel barrier in series with compound layers of NiO and possibly, NiSixOy. The parasitic component in the tunnel junctions results in conduction freeze-out at low temperatures, deviation of junction parameters from ideal model, and excessive noise in the device. The reduction of NiO to Ni is therefore necessary to restore the metal-insulator-metal structure of the junctions. We have studied forming gas anneal as well as H2 plasma treatment as techniques to reduce the NiO layers that are parasitically formed in the junctions. Using either of these two techniques, we reduced the NiO formed on the island after being covered with the PEALD dielectric and before defining the top source and drain. Later, the NiO formed on the bottom of the source/drain is reduced during a second reducing step after the source/drain are formed on the tunnel barrier. Electrical characterization of SETs that are made with the proposed reducing treatments enable us to study the effect of each reducing process on the properties of the constituent tunnel junctions. In comparison to the junctions annealed twice in forming gas at 400°C, we consistently observed a ~10x higher conductance in devices treated twice with H2 plasma at 300°C. The possible damage to the barrier during the plasma treatment and thermally induced film deformation during the anneal which respectively, is believed to increase and lower the conductance are among the possible cause of this difference. Although both types of treatments were effective in alleviating the effect of the activated components in the junctions, all the devices that were treated by two anneal steps or by two H2 plasma steps (for reducing the top and bottom NiO) show deviations from ideal simulated MIM SET model and suffer from significant random telegraph signal (RTS) noise. However, our results show that by using forming gas anneal for bottom NiO reduction and H2 plasma for the top NiO reduction, one can achieve devices close to ideal MIM SETs with significantly less noise.
NASA Astrophysics Data System (ADS)
Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.
2009-01-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.
2013-04-12
absence of Sb-oxides, a reduction in elemental Sb, and an increase in the Ga2O3 content at the interface. The use of an in situ hydrogen...elemental Sb, and an increase in the Ga2O3 content at the interface. The use of an in situ hydrogen plasma pre-treatment eliminates the need for wet...the +1 state (Ga2O) and the +3 state ( Ga2O3 ), with peak positions found at 530.5 eV (Sb2O4), 20.1 eV (Ga2O), and 20.7 eV ( Ga2O3 ) [11,18]. The AFM image
Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing
2015-01-01
In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.
Area-selective atomic layer deposition of platinum using photosensitive polyimide.
Vervuurt, René H J; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus Erwin M M; Bol, Ageeth A
2016-10-07
Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.
Extraordinary Matter: Visualizing Space Plasmas and Particles
NASA Astrophysics Data System (ADS)
Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.
2011-09-01
Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.